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Abstract

This paper uses a decomposition of the data into common and idiosyncratic components
to develop procedures that test if these components satisfy the null hypothesis of stationar-
ity. The decomposition also allows us to construct pooled tests that satisfy the cross-section
independence assumption. In simulations, tests on the components separately generally have
better properties than testing the observed series. However, the results are less than satis-
factory, especially in comparison with similar procedures developed for unit root tests. The
problem can be traced to the properties of the stationarity test, and is not due to the weakness
of the common-idiosyncratic decomposition. We apply both panel stationarity and unit root
tests to real exchange rates. We found evidence in support of a large stationary common factor.
Rejections of PPP are likely due to non-stationarity of country-specific variations.
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1 Introduction

Statistical hypotheses are typically set up in a way to favor the null hypothesis unless there is

substantial evidence against it. For many economic problems, the null hypothesis of stationarity is

more natural than the null hypothesis of a unit root. For instance, purchasing power parity (PPP)

implies that real exchange rates are stationary. Testing PPP has been a motivating example for

many papers in the literature on testing stationarity.1 This is because if PPP is rejected for the

stationarity null, then the evidence against PPP would be stronger than merely not rejecting the

unit root null hypothesis. Testing PPP has also been the primary motivation for developing panel

testing procedures, the idea being that time series of cross sections should contain more information

about the dynamic properties of the data than a single series, and panel tests should be expected

to have more power than testing the series individually. Testing stationarity in a panel of data will

also the pursuit of the present paper. Our work distinguishes itself from the large literature on this

topic by making a distinction between common and idiosyncratic variations. Tests are applied to

these components rather than the observed data themselves.

Testing whether a panel of data is I(1) or I(0) has been considered by many researchers.

Quah (1994), Levin and Lin (1993), Im, Pesaran and Shin (1997), Hardi (2000), and Pedroni (1995)

among others derived asymptotic distributions for panel unit root and cointegration tests under

various assumptions about fixed effects and heterogeneous time trends. The statistics are usually

based on averaging of tests or estimated parameters obtained for the individual units. But the

average of statistics could be misleading especially when the distribution of the test is skewed.

Maddala and Wu (1999), and Choi (2001) considered averaging the p-values associated with the

individual tests. Pooling p values has the added advantage that panel tests can be constructed

whether non-stationarity or stationarity is taken as the null hypothesis. However, regardless of the

maintained hypothesis, most (if not all) of these pooled tests assume cross-sectional independence.

This assumption, while convenient, is unlikely to be true for macroeconomic time series. For exam-

ple, real exchange rates are often defined using the same base country; cross-sectional correlation

arises almost by construction. In cross-country and sectoral analysis, the independence assumption

rules out shocks that affect more than one country or one sector. More generally, shocks that are

common to a large number of units in a panel imply the presence of strong cross-section correlation

that cannot be aggregated away.

The assumption of cross-section independence can potentially create two problems. First, a

non-rejection of the unit root null would imply the existence of N independent unit roots when in
1See e.g. Papell (1997), Culver and Papell (1999), Kuo and Mikkola (1999), and the references therein.
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fact fewer than N exist because of common stochastic trends. Second, it is under the independence

assumption that pooled tests have been shown to be more powerful than testing the series one by

one. O’Connell (1998) showed that the pooled tests will over-reject the null hypothesis when the

independence assumption is violated, whether the null hypothesis is a unit root or stationarity.

Size distortions could be misread as higher power. Banerjee, Marcellino and Osbat (2001) argued

against use of panel unit root test because of this potential problem.

A useful framework, and one that will be used in the present study, is to model strong cross-

section correlation via a factor model:

Xit = Dit + λ′iFt + eit (i = 1, 2, ..., N, t = 1, 2, ..., T ). (1)

In a factor model, the data can be decomposed into three components:- Dit is the deterministic

component, Ft (r×1) is a vector of unobservable common factors, and eit is a unit-specific stochastic

term. The presence of Ft implies non-trivial cross-sectional correlation. Associated with these

common factors are loadings denoted λi. These represent the exposure of cross-section i to the

common factors. Some λi’s are allowed to be zero, so that some cross-sections may not be influenced

by the common factors. As is common assumed in factor analysis, the specific component eit is

cross-sectionally uncorrelated and is independent of the common component λ′iFt.

The factor model makes the revealing point that stationarity of an observed series Xit requires

stationarity of Ft (or λi = 0) and of eit. Non-stationarity, on the other hand, could arise because of

a unit root in any one of the r factors, or in eit. Existing testing procedures could have difficulty in

establishing whether Xit is I(1) or I(0) if the data admit a factor structure. This is because when

Ft is I(0) and eit is I(1), Xit becomes the sum of two series with different orders of integration.

Thus, even though Xit is fundamentally I(1), univariate stationarity tests will have low power while

most unit root tests will have distorted sizes when the I(0) component Ft is much larger than the

I(1) idiosyncratic error. In the same manner, when one or more of the r factors Ft are I(1) and eit

is I(0), Xit is I(1) for every i. Stationarity tests will lack power when eit is large, while unit root

tests will reject too often.

In Bai and Ng (2001), we proposed a set of unit root tests for use in panel analysis. The present

paper follows the same theme and develops panel tests for stationarity. Whereas existing tests in

the literature are applied to the observed data, we test the common and idiosyncratic components

separately. This can be expected to be more precise than testing the sum of two components,

especially when the two pieces are integrated of different order. Removing the common components

from the observed data then allows us to construct valid pooled test statistics that satisfy the cross-

section independence assumption.
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Since we only observe Xit but not Ft or eit, the underlying components cannot be identified

from a single time series alone. The key to our analysis lies in consistent estimation of the common

and the idiosyncratic components from large dimensional panels (i.e. when N and T are both

large). Loosely speaking, the large N is necessary to identify variations that are common in the

cross-section, while a large T is necessary to consistently estimate terms that are idiosyncratic. As

in Stock and Watson (1998), Bai and Ng (2001, 2002), we estimate λi and Ft by the method of

principal components. Consistency of the estimator when N and T go to infinity follows from the

results of Bai (2001a) assuming Ft are all I(0), and Bai (2001b) when Ft are I(1). Section 2 proposes

a suite of tests for stationarity. As will become clear, the stationarity test being considered bears

relation to a specific unit root test. Accordingly, Section 3 offers results for the particular panel

unit root. Simulations are presented in Section 4, and tests are applied to real exchange rates in

Section 5.

In the analysis to follow, we assume Dit is a polynomial in time of order p and present results for

p = 0 (in which case Dit = ci) and p = 1 (in which case Dit = ci + βit). We assume the invariance

principle holds so that for a series xt (t = 1, . . . T ) satisfying mixing conditions,

1√
Tσx

[Tr]∑

s=1

xs ⇒ B(r),

where B(r) is a standard Brownian motion and σ2
x is the spectral density of xt at frequency zero.

If x̃t = xt − x̄, where x̄ = 1
T

∑T
t=1 xt, then

1√
Tσx

[Tr]∑

s=1

x̃t ⇒ B(r)− rB(1) ≡ V (r)

is a Brownian bridge. Furthermore, if x̌t is the residual from a regression of xt on a constant and

a time trend,

1√
Tσx

[Tr]∑

s=1

x̌t ⇒ B(r)− rB(1)− 6(r2 − r)
∫ 1

0
(s− 1

2
)dB(s) ≡ U(r)

is a second level Brownian bridge.

Our analysis permits some, none, or all of the factors to be non-stationary. We assume

Fmt = αmFmt−1 + umt m = 1, . . . k (2)

eit = ρieit−1 + εit i = 1, . . . N, (3)

where εit and umt are iid and mutually independent. The results hold even when these errors are

weakly dependent. Factor m is non-stationary if αm = 1. The idiosyncratic component is stationary
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if ρi < 1 and has a unit root if ρi = 1. We consider the KPSS test developed in Kwiatkowski,

Phillips, Schmidt and Shin (1992), the most commonly used test for stationarity. If x is the series

to be tested, the KPSS test is

KPSSx =
1
T

∑T
j=1(

1√
T

∑t
j=1 xj)2

ω2
x

where ω2
x is a consistent kernel estimate of σ2

x. In what follows, we propose a framework that allows

for improved inference taking the properties of the univariate KPSS test as given. The proofs in

the Appendix can be amended to accommodate other consistent stationarity tests of choice.

2 Panel Stationarity Tests

In this section, procedures are proposed to test

H0 : ρi < 0, or eit is I(0) for all i.

H1 : ρi = 1, or eit is I(1) for some i.

Since the objective is to test if the level of Ft and eit are stationary, it would seem natural

to obtain principal component estimates of Ft and eit from (1). These estimates would, however,

be consistent only under the null hypothesis that ρi < 1. Under the alternative hypothesis when

the idiosyncratic errors are non-stationary, the principal components estimator applied to the non-

differenced data cannot guarantee a consistent estimation of Ft. In consequence, the estimated

common factors will be non-stationary even though the true factors are stationary. We therefore

consider applying the principal components method to the data in first differenced form. This

guarantees consistent estimation of the common factors up to a location shift and an invertible

transformation. When the eit are I(0), ∆eit are over-differenced. But over-differencing is permitted

in the theory developed by Bai and Ng (2002) and Bai and Ng (2001). Estimation of the differ-

enced model thus provides consistent estimates eit and Ft under both the null and the alternative

hypothesis.

Estimation of the differenced model yields estimates of ∆eit and ∆Ft. Our interest is in testing

stationarity of eit and Ft in level form. The construction of the test depends on whether or not

there is a linear time trend.

2.1 The Intercept Only Case: p = 0

When p = 0, Xit = ci + λ′iFt + eit. The model in differenced form is:

∆Xit = λ′i∆Ft + ∆eit. (4)
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Let ∆X be the (T−1)×N data matrix in differences such that the ith column is (∆Xi2, ∆Xi3, ...,∆XiT )′

(i = 1, 2, ..., N). Let ∆F = (∆F2,∆F3, ...,∆FT )′ and Λ = (λ1, ..., λN )′. The estimated factors (in

differences), ∆̂F1t, . . . ∆̂Fkt, are the k eigenvectors corresponding to the first k largest eigenvalues of

the (T −1)×(T −1) matrix ∆X ·∆X ′. The estimated loading matrix, Λ̂, is equal to Λ̂ = ∆X ′ ·∆̂F .

Finally, let ∆̂eit = ∆Xit − λ̂′i∆̂Ft (t = 2, ..., T, i = 1, 2, ..., N).

The steps to test stationarity of the common factors and the idiosyncratic components can be

summarized as follows:

1: Estimate ∆Ft and λi by the method of principal components, as described above.

2: Given ∆̂Ft, construct the following partial sum process for each m = 1, . . . k,

F̂mt =
t∑

s=2

∆̂Fms.

Test the null hypothesis that F̂mt is stationary for each m = 1, . . . k using the KPSS test with

demeaning. Denote this test by Sc
F (m).

3: For each i, construct the partial sum ẽit =
∑t

s=2 ∆̂eis, t = 2, . . . T .

(a) If Fmt is I(0) for every m = 1, . . . k, for each i = 1, . . . N , apply the KPSS test to {ê0
it}T

t=1,

where ê0
it is ẽit after demeaning.2 Denote the test statistic by Sc

e0(i).

(b) If k̄ of the Fts are I(1), let ê1
it be the residuals from a projection of of ẽit on 1 and F̂1t, . . . F̂k̄t.

For each i, apply the test to {ê1
it}T

t=1 to give Sc
e1(i).

Theorem 1 (p = 0) Suppose the KPSS statistic developed in Kwiatkowski et al. (1992) is used

to test stationarity and assume that N,T → ∞. Let Vum and Vei (i = 1, . . . N), which are N + k

mutually independent Brownian bridges.

1. If Fmt is stationary, then

Sc
F (m) ⇒

∫ 1

0
Vum(r)2dr.

2. If Fmt is I(0) for every m, then for each i = 1, . . . N ,

Sc
e0(i) ⇒

∫ 1

0
Vεi(r)2dr.

3. If k̄ of the factors are I(1), then Sc
e1(i) has the same limiting distribution as the statistic

developed in Shin (1994) for testing the null hypothesis of cointegration with k̄ integrated

regressors and a constant.
2That is, ẽit − ẽi with ẽi being the sample mean of ẽit.
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Bai (2001a) showed that the condition
√

T/N → 0 is sufficient for consistent estimation of the

factors, which will clearly be true if N is large. Since F̂t can be consistently estimated under the

assumptions of the analysis, stationarity tests can treat the estimated factors as though they were

known. The Sc
F test has the same distributions as derived in Kwiatkowski et al. (1992) for the

constant only case. At the 5% level, the critical value is 0.463.

The limiting distributions for the test on êit depend on whether Ft is I(1) or I(0). If every

Fmt is I(0), the test on êit has the same limit as the KPSS stationary test. At the 5% level, the

critical value is also .463. If k̄ factors are I(1), stationarity of eit implies cointegration between Xi

and a subset of F of dimension k̄. Then test of the estimated idiosyncratic components has the

same limiting distribution as resported in Shin (1994) developed for testing the null hypothesis of

cointegration. At the 5% level, the critical values are 0.324 and .225 for k̄ = 1 and 2, respectively.

In each case, the null hypothesis is rejected when the test statistic exceeds the critical value.

2.2 The Case with a Linear Trend: p = 1

When p = 1, Xit = ci + βit + λ′iFt + eit. The model in differenced form is:

∆Xit = βi + λ′i∆Ft + ∆eit. (5)

Let ∆̃X be the (T − 1) ×N matrix such that the ith column is the ith cross-section series (in

differences) with demeaning. That is, the ith column of ∆̃X is (∆Xi2 − ∆Xi, ...,∆XiT − ∆Xi)′,

where ∆Xi = 1
T−1

∑T
t=2 ∆Xit (i = 1, 2, ..., N). Let ∆̂F be the k eigenvectors corresponding to the

k largest eigenvalues of the (T − 1)× (T − 1) matrix ∆̃X · ∆̃X
′
and Λ̂ = ∆̃X · ∆̂F . Finally, define

∆̂eit = ∆Xit −∆Xi − λ̂′i∆̂F t.

The steps to test stationarity of the common factors and the idiosyncratic components are as

follows:

1: Estimate ∆Ft and λi by the method of principal components, as described above.

2: Given ∆̂Ft, construct the following partial sum process for each m = 1, . . . k,

F̂mt =
t∑

s=2

∆̂Fms.

Test the null hypothesis that F̂mt is stationary for each m = 1, . . . k using the KPSS test with

demeaning and detrending. Denote this test by Sτ
F (m).

3: For each i, construct the partial sum ẽit =
∑t

s=2 ∆̂eis, t = 2, . . . T .
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(a) If Fjt is I(0) for every j = 1, . . . k, then for each i = 1, . . . N , apply the KPSS test to {ê0
it}T

t=1,

where ê0
it are the residuals from a projection of ẽit on a constant and a time trend. Denote

the test by Sτ
e0(i).

(b) If k̄ of the Fts are I(1), let ê1
it be the residuals from a projection of ẽit on a constant, a time

trend, and F̂1t, . . . F̂k̄t. The test statistic for the series {ê1
it}T

t=1 is denoted by Sτ
e1(i).

Theorem 2 (p = 1) Suppose the KPSS statistic developed in Kwiatkowski et al. (1992) is used to

test stationarity and assume that N and T both approach infinity. Let Uum (m = 1, . . . k) and Uei

be N + k mutually independent second level Brownian bridges.

1. If Fmt is stationary, then

Sτ
F (m) ⇒

∫ 1

0
Uum(r)2dr.

2. If Fmt is I(0) for every m, then for each i = 1, . . . N ,

Sτ
e0(i) ⇒

∫ 1

0
Uεi(r)2dr.

3. If k̄ of the factors are I(1), then Sτ
e1(i) has the same limiting distribution as the statistic

developed in Shin (1994) for testing the null hypothesis of cointegration in an equation with

k̄ integrated regressors and a time trend.

Because of the explicit estimation of intercepts and linear trends, the test statistics are invariant

to coefficients on the intercepts and the linear trends. In particular, the test statistics will be the

same whether or not the common factors Ft have a non-zero mean and a linear trend. That is,

if Ft = µ + πt + ξt, where µ and π are k × 1 vector of coefficients; and ξt is a vector (k × 1) of

zero-mean stationary processes (under the null) or a vector of non-drifting I(1) processes (under

the alternative), we can simply treat ξt as our Ft. The limiting distribution of Sτ
F (m) coincides

with that of the KPSS test derived for the linear trend case. At the 5% level, the critical value

is .149. As in the case when p = 0, the properties of Sτ
e (i) depends on whether Ft is I(1) or I(0).

Under stationarity, the limiting distribution is identical to that of Sτ
F (m) and thus also has a 5%

critical value of .149. When k̄ of the common factors are I(1), testing stationarity of eit is the same

as testing the null hypothesis of cointegration. As shown in Shin (1994), the limiting distribution

depends on functionals of the I(1) regressors. The critical values thus depend on the rank of these

regressors. For k̄= 1 and 2, these are .122 and .100, respectively.

Pooling is valid when the limiting distribution of the test on unit i does not contain terms

that are common across i. Theorems 1 and 2 show that tests on Xit do not have this property.
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However, for testing stationarity of the idiosyncratic components, the limiting distributions are

cross-sectionally independent when the Ft’s are stationary or trend stationary. More precisely,

test statistics based on ê0 are asymptotically independent over i. Using the same argument as in

Maddala and Wu (1999) and Choi (2001), we have the following result:

Corollary 1 Let q(i) be the p-value associated with the Sc
e0(i) test (or Sτ

e0(i) test). Consider pooled

tests defined by Q = −2
∑N

i=1 log q(i). If Fmt is I(0) for every m = 1, . . . k, then

Q− 2N√
4N

⇒ N(0, 1).

In contrast, I(1) factors have non-vanishing effect on the projection residuals êit. Test statistics

based on ê1
it have limiting distributions that depend on the I(1) common factors and thus not

independent over i, making pooling invalid.

3 A Panel Unit Root test

In Bai and Ng (2001), we proposed a suite of test procedures which we referred to as PANIC:-panel

analysis of nonstationarity of the idioysncratic and common components. Results were derived

assuming the Dickey-Fuller test was used to test the null hypothesis of a unit root. But the key

to PANIC is consistent estimation of Ft and λi, and applicability of the results is not limited to

the Dickey-Fuller test. In this section, we present results for another unit root test. Specifically,

consider testing for a unit root in the series {xt} using the statistic:

MSBx =
T−2 ∑T

t=1 x2
t−1

s2
w

, (6)

where s2
w is an autoregressive estimate of σ2

w, the spectrum at frequency zero of {∆xt}.3 The MSB

test is the square of the SB statistic developed in Sargan and Bhargava (1983) for iid errors. It is

extended to the case of weakly dependent errors by Stock (1990), leading to the MSB (modified

Sargan-Bhargava) test as defined above.

Under the null hypothesis that ρi = 1 for every i, we estimate the factor model using the first

differenced data when p = 0, and the demeaned first-differenced data when p = 1. This yields ∆̂eit

and ∆̂Ft. Cumulating these series leads to ẽit and F̂1t . . . F̂mt as defined in Section 2. Now for each

3The autoregressive estimate of the spectrum is s2
w = σ̂2

wk/(1 −∑k

j=1
b̂j)

2, where b̂j and σ̂2
wk are obtained from

the regression
∆xt = b0xt−1 + b1∆xt−1 + . . . + bk∆xt−k + wtk

with σ̂2
wk = 1

T

∑T

t=k+1
ŵ2

t . The estimator s2
ω is consistent for σ2

ω under the null hypothesis of a unit root and bounded
under the alternative. As discussed in Perron and Ng (1998), this is required for the class of MSB to be consistent.
The test is a member of a class of tests analyzed in Perron and Ng (1996).
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i = 1, . . . N and m = 1, . . . k, apply the MSB test to ẽit and F̂mt. Denote these tests by M c
e (i) and

M c
F (m) when p = 0, and by M τ

e (i) and M τ
F (m) when p = 1.

Theorem 3 Suppose the MSB statistic is used to test the unit root null hypothesis. Suppose also

that N,T →∞.

1. When p = 0,

M c
F (m) ⇒

∫ 1

0
Bum(r)2dr (7)

M c
e (i) ⇒

∫ 1

0
B2

εi(r)dr. (8)

2. When p = 1,

M τ
F (m) ⇒

∫ 1

0
Vum(r)2dr (9)

M τ
e (i) ⇒

∫ 1

0
V 2

εi(r)dr. (10)

The results stated in (8) and (10) hold whether Ft is I(0) or I(1). These evidently do not depend

on Ft, and thus the test statistics are poolable across i.

Corollary 2 For (i = 1, 2, ..., N), let q(i) be the p-value associated with the M c,τ
e (i) test using

{ẽit}T
t=1. Define Q = −2

∑N
i=1 log q(i). Under the null hypothesis that ρi = 1 ∀i

Q− 2N√
4N

⇒ N(0, 1).

Examination of the results reveals that the limiting distribution of M τ
e (i) (corresponding to

p = 1) is the same as Sc
e0(i) (corresponding to p = 0). All the distributions derived in the preceding

theorems belong to the family of generalized Cramér-von Mises distributions. As Harvey (2001)

pointed out, unit root and stationarity tests with such limiting distributions can be studied in a

unified framework. Whereas inference about a unit root is based on the upper tail of a Cramér-von

Mises distribution, stationarity tests are based on the lower tail.

Nonetheless, the KPSS and MSB tests in the present context are fundamentally different in

three ways. First, stationarity tests for eit depend on whether the common factors are I(1) or I(0),

and in practice, pretesting of Ft will be necessary. However, a unit root test on the idiosyncratic

errors is invariant to the properties of Ft and is thus immuned to inference problems that might

arise in pretests. Second, the stationarity test is based on explicit detrending of ẽit according to

whether p is 0 or 1. In contrast, the unit root test is based ẽit detrended according to the first-

differenced model. The deterministic terms will likely have a larger effect on the stationarity than
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the unit root test. Third, the stationarity test is based on the partial sum of the series, while the

unit root test is based on the level of the series itself. Errors from estimation of the factors can be

expected to have a larger impact on the stationarity test.

3.1 Monte Carlo Simulations

Data are generated according to (1)-(3) with a single common factor (k = 1). In addition, λi are

i.i.d. N(1, 1), εit are i.i.d. N(0, 1), and ut ∼ N(0, σ2
F ). Let α be the autoregressive parameter in the

common factor process Ft and let ρ be the (common) autoregressive parameter in the idiosyncratic

error processes eit. The following parameters are considered:

• σ2
F =10, 1, and .5.

• (ρ, α)={(.5,.8),(.8,.5),(0,.9),(.9,0),(1,0),(1,.5),(1,.8),

(1,.9),(1,.95),(0,1), (.5,1),(.8,1),(.9,1),(.95,1)}.

Because the factor model is estimated in differenced form, the tests are invariant to the value of ci

in (1) and thus is set to zero. Similarly, when the differenced data are demeaned when p = 1, the

tests are also invariant to βi in (1) and thus also set to zero. We report results for T = 200 and

N = 20.4 Asymptotic critical values at the 5% significance level are used. These are obtained by

first approximating the standard Brownian motion as the partial sum of 500 N(0,1) errors. The

critical values for the individual tests are the percentiles from 10,000 simulations of the limiting

distributions reported in Theorems 1 and 2. The pooled tests depend on the p values associated

with either the stationarity or the unit root test. Approximate p-values are obtained by creating a

look-up table that contains 300 percentage points of the asymptotic distributions simulated earlier.

In particular, 100 points is used to approximate the upper tail, 100 to approximate the lower tail,

and 100 points for the middle part of the asymptotic distributions. The p values match up very

well with Table 3 of MacKinnon (1994), whenever they are available. These look-up tables are

available from the authors.

Tables 1 and 2 report the rejection rates over 1000 replications. The column labeled F̂ is the

rejection rate of the tests applied to the estimated common factor. The columns labeled X and e

are the average rejection rates, where the average is taken across N units over 1000 trials. Results

for a particular i are similar.

We first report in Table 1a results for the modified Sargan-Bhargava (MSB) unit root test.

These rejection rates represent size in one of three cases: (i) when F̂t is tested and α = 1, or (ii)

when êt is tested and ρ = 1, or (iii) when X is tested and either α = 1 or ρ = 1. Other entries
4The results change little for larger N . As expected, power is higher when T is large.
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represent power.5 The first thing to note is that the results for p = 0 are similar to those for p = 1.

When both F and e are stationary, the MSB test has more power when applied to the data X

directly, as indicated by the first five rows of Table 1a. But when F is nonstationary (implying X

is nonstationary but its first difference has a negative moving average component), the MSB test

on X is oversized. However, separate tests on F and e are much more accurate. As shown in rows

with α = 1, the rejection rates on F are close to the nominal size of 5%, while the test also has

power in rejecting a unit root in F . Similarly, when only e is I(1), the test also has good size and

power. The results thus show that testing the components separately is more precise than testing

the sum of two series, even when the components have to be estimated from cross sections with

only 20 units.

Table 1b reports the rejection rates for the pooled unit root test. The entries are given size

and power interpretation as described in the previous paragraph. Pooled tests based on X are

invalid because of cross-sectional dependence. Only pooling on ê is permitted by our theory. This

is confirmed by the simulations. Consistent with the findings of O’Connell (1998), the pooled test

applied to X rejects the unit root hypothesis too often. Size distortions are significantly smaller

when tests based on ê are pooled. A motivation for considering pooled tests is higher power.

Indeed, the power of the pooled tests on ê is remarkably higher than the univariate tests reported

in Table 1a. When a linear trend is in the model, the size of the pooled tests is inflated somewhat,

but have good properties overall. In all, Tables 1a and 1b show that the idiosyncratic-common

decomposition is effective. More accurate univariate and powerful pooled tests can be obtained.

We now turn to the stationarity tests. As discussed in Caner and Kilian (2002) and many others,

the KPSS test is extremely sensitive to the choice of the bandwidth used in kernel estimation. We

experimented with a large number of bandwidths and report results for int[12(T/100)1/4] lags,

found in many studies to yield the best results. Table 2a reports results for testing {Xit}, {F̂t},
and {êit} unit by unit. These rejection rates represent power in one of three cases:- (i) when F̂t is

tested and α = 1, or (ii) when êt is tested and ρ = 1, or (iii) when X is tested and either α = 1 or

ρ = 1. All other entries represent size. Notably, the results are less satisfactory than the unit root

tests. The statistic for testing if X is stationary should have rejection rates close to the nominal

size of .05 when α < 1 and ρ < 1. In simulations, this is true only when both Ft and eit are iid, and

the test is imprecise when the common factor or the idiosyncratic error is persistent. It rejects with

probability .22 when (ρ, α) = (0, .9), and has a rejection rate of .18 when (ρ, α) = (.9, 0). The test

also has size problems when applied to the components separately, though they are more precise
5The MSB test necessitates the choice of the lag length for the autoregressive spectrum. This is set to 6 for X

and 2 for ê. This is based on analysis in Ng and Perron (2001a) that a longer lag is necessary when there is a negative
moving component, and a shorter lag should be used to preserve power otherwise.
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than testing X directly when either e or F is iid. For example, when (ρ, α) = (0, .9), the test on

ê0 has a rejection rate of .08. When (ρ, α) = (.9, 0), the rejection rate on F is .05. In general, the

KPSS test rejects stationarity too often. Thus, even though power appears high when one of the

components indeed has a unit root, they are likely inflated by the size problem. As with many

others, we experimented with different bandwidths and kernels but failed to find one that is robust

over a large range of parameter values.

The simulation results show that the KPSS test is substantially oversized except in the unin-

teresting case when the common factors or idiosyncratic errors are very weakly serially correlated.

Because of size distortion in the individual tests, the pooled tests become difficult to interpret.

Nonetheless, Table 2 reveals some useful results that support the theoretical analysis. Our theory

predicts that when α = 1, a test on the stationarity of the idiosyncratic errors eit should be based

on ê1, while the test based on ê0 is invalid. Indeed, by examining the rows of Table 2a with α = 1,

tests based on ê1 have less size distortion than those based on ê0. Similarly, when α < 1, theory

suggests that ê0 should be used. The first five rows in Table 2a show less size distortion when using

ê0 than using ê1. However, when ρ = 1 and α < 1, using ê0 has less power than using ê1. These

results suggest that it would be useful in practice to pretest F , and then decide whether to use ê0

or ê1. It is conceivable that better size and power can be achieved.

To the extent that the panel unit root test works very well, and both stationarity and unit root

tests are based on estimation of the same factor model in first differenced form, the problem is

not likely due to the decomposition of the data into common and idiosyncratic components. It is

nonetheless possible that the errors from estimation of the factors are magnified by the stationarity

test considered, which is based on partial sums. The present analysis evidently provides no solution

to the size problem with the KPSS, which has previously been documented by Caner and Kilian

(2002), Hobijn, Franses and Ooms (1998), among others.6 However, our analysis is useful in

understanding size distortion arising from pooling, vis-á-vis size distortion due to the univariate

test itself. As we have shown, even when the problem of cross-section dependence is solved, the

panel stationarity test will still tend to over-reject stationarity.

4 Application to PPP

Under PPP, real exchange rates should be mean reverting and thus stationary. Because real ex-

change rates are often defined using the same base country, cross-section correlation arises almost

by construction, even in the absence of global shocks. Strong cross-section correlation amounts to
6The Leybourne and McCabe (1994) statistic is also used to test stationarity but also has problems similar to the

KPSS test, as pointed out by Caner and Kilian (2002).
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a common factor that cannot be aggregated away. As O’Connell (1998) found, standard panel unit

root tests are biased towards the alternative hypothesis and thus also suffer from size distortions.

O’Connell suggests removing the cross-section correlation by a GLS transformation of the data.

This requires that the common component be stationary, which need not be the case. Also, con-

structing a consistent N ×N covariance matrix estimator is not easy when N is allowed to go to

infinity. The decomposition approach of this paper offers a useful alternative. It also allows us to

discern the source of nonstationarity.

Quarterly data for nominal exchange rates and the consumer price indices are obtained from

the International Finance Statistics. We use data from 1974:1-1997:4 for 21 countries:- Canada,

Australia, New Zealand, Austrai, Belgium, Denmark, Finland, France, Germany, Ireland, Italy,

Netherlands, Norway, Spain, Sweden, Switzerland, UK, Japan, Korea, Singapore, and Thailand.

The U.S. is used as the numeraire country. Since the nominal exchange rates are expressed as the

national currency per US dollar, an increase in the real currency means a real depreciation for the

home country vis-á-vis the US dollar. To proceed with statistical analysis, we take logarithms of

the data, which are then demeaned and standarized to have unit variance.

We begin with testing for stationarity and unit roots for the observed data Xit (real exchange

rates). The results are reported in Table 3, the column under X. We tag a series with a ‘-’ if the

KPSS test rejects stationarity. A ‘+’ is used for series that cannot reject a unit root. According to

the column labeled X, the KPSS statistic rejects the null hypothesis of stationarity in 5 of the 21

observed series:- Canada, Australia, Ireland, Japan, and Thailand. The MSB rejects the unit root

null hypothesis for all but Ireland and Japan.

Our earlier simulations show that testing the common and idiosyncratic components separately

is more accurate than testing on the observed data. We then proceed to estimate the factors and

the loadings using the method of principal components. The number of factors k is unknown. Bai

and Ng (2002) proposed an information based procedure that can consistently estimate k. Using

the penalty (N + T ) log(N + T )/NT , the criterion selects one factor. The factor associated with

largest eigenvalue explains 58% of the variations in the data, while the second factor explains only

14% of the variations. We proceed with estimation assuming there is one common factor. The MSB

test on the common factor is .053, very close to the critical value of .057, and is weak evidence for a

unit root. The KPSS test for the common factor process is 0.172 with a p value of .783. We cannot

reject the null hypothesis that the common component is stationary. In light of fact that the KPSS

tends to over-reject stationarity, this non-rejection is rather strong evidence for stationarity.

As a first diagnostic, we first get some idea of whether the real exchange rates appear consistent

with a factor structure. Columns 1 and 2 of Table 3 report the ratio of the standard deviation of the
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idiosyncratic component (based on one factor) to the standard deviation of the differenced data,

as well as the standard deviation of the common to the idiosyncratic component. If all variations

are idiosyncratic, the first statistic should be close to one and the second should be small. The

Asian countries and Canada have real exchange rate variations dominated by the idiosyncratic

components, as var(∆̂e)
var∆X exceeds .9 for all these countries. But real exchange rate variations of

the 14 European countries are apparently dominated by the common components. Overall, the

evidence suggest that there are indeed non-trivial common variations in the data.

We then test the idiosyncratic errors assuming Ft is stationary. For the KPSS test, the relevant

column is thus ê0. It suggests that 13 of the 21 series are non-stationary. The MSB test also finds

13 non-stationary series. Interestingly, unit root tests on X cannot reject the null hypothesis in all

eight cases that the idiosyncratic errors cannot reject a unit root. Since a series with no tagged

symbol is judged stationary by both tests, while a series with a ‘-’ and corresponding ‘+’ are judged

non-stationary by both tests, of the 21 idiosyncratic series, the KPSS and MSB are in agreement

over 13 series. Six series (New Zealand, Denmark, Norway, the U.K., Korea, and Singapore) are

stationary, while 7 series (Australia, Austria, Germany, Ireland, Sweden, Switzerland, Japan) are

non-stationary. At the 10% level, both tests also suggest Italy is non-stationary.

The pooled stationarity test strongly rejects the hypothesis that the observed series, or their

idiosyncratic components, are stationary. In fact, the pooled statistic is the same for both X and ê0.

The pooled unit root statistic on X rejects the hypothesis that all the observed series are I(1), but

does not reject the hypothesis that all idiosyncratic series are I(1). This last finding is consistent

with the simulation results that cross-section correlation will bias the pooled test towards rejecting

the unit root null. Both pooled tests suggest that the underlying source of non-stationarity in the

observed data is likely the idiosyncratic components.

5 Conclusion

When a series is the sum of two components with possibly different dynamic properties, testing

whether the components are I(1) or I(0) should be more accurate than testing the series itself. The

motivation of this paper is to exploit the fact that common and idiosyncratic components can be con-

sistently estimated from a factor model. We develop procedures to test if these components satisfy

the null hypothesis of stationarity. The decomposition into common and idiosyncratic components

also allows us to develop pooled tests that satisfy the cross-section independence assumption. In

simulations, tests on the components are indeed more accurate than testing the summed series.

However, the results are less than satisfactory, especially in comparison with similar procedures

developed for unit root tests. The problem can be traced to the properties of the univariate sta-
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tionarity test, and is not due to the weakness of the common-idiosyncratic decomposition. We look

forward to the development of new stationary tests with more robust properties.7

A primary interest in stationarity tests is the PPP hypothesis. We take our procedures to the

data. Evidence from both panel unit root and stationarity tests suggest the presence of one common,

stationarity factor. In view of the tendency of the KPSS test to over-reject the null hypothesis, this

non-rejection can be seen as strong evidence for stationarity. However, the results also find that a

large number of real exchange rates have non-stationary idiosyncratic components. Understanding

the structural source of this non-stationarity is perhaps a promising way to understand why the

evidence tends to pile up against PPP.

7Jansson (2001) suggests using covariates to improve the power of stationarity tests. This will not resolve the size
problem.
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Appendix

We first explain why the estimated F̂t can be treated as the true Ft process. In the literature

on large dimensional factor analysis, as in Stock and Watson (1998), Bai and Ng (2002), and Bai

(2001ab), it is shown that F̂t is consistent for HFt, where H is a k×k matrix of full rank. It is clear

that Ft is stationary if and only if HFt is stationary. That is, an invertible matrix transformation

does not alter its stationarity property. Furthermore, a transformation of the regressors will not

alter the regression residuals. Thus, whether one uses Ft or HFt (t = 1, 2, ..., T ) as regressors, the

same residuals will be obtained. Of course, F̂t is not exactly equal to HFt because of estimation

errors. But the estimation errors are negligible if N is large. This is due to the following lemma:

Lemma 1 Consistency of F̂t.

• Suppose Ft is I(0) and Assumptions A to G of Bai (2001a) hold. Then F̂t is
√

N consistent

if
√

N/T → 0. If
√

N/T → τ > 0, F̂t is T consistent.

• Suppose Ft is I(1) and Assumptions A-F of Bai (2001b) hold. Then F̂t is
√

N consistent if

N/T 3 → 0. If N/T 3 → τ > 0, F̂t is consistent at rate T 3/2.

One actually does not need a large N relative to T . A further result, given in Bai (2001a), shows

that if
√

N/T → 0, then F̂t can be treated as though it were Ft in any time series regression. It is

possible to give a rigorous proof for Theorems 1 and 2 that explicitly allows for estimation errors

in Ft. But in view of Lemma 1, we can assume Ft is known with little loss of generality.

Proof of the Theorem 1

When p = 0, the model in level and first differenced forms are

Xit = ci + λ′iFt + eit

∆Xit = λ′i∆Ft + ∆eit.

By Lemma 1, the method of principal components applied to ∆Xit will give consistent estimates

of ∆Ft. For large N , ∆Ft can be treated as known. Furthermore, λ̂i will be
√

T consistent. Thus,

we have

∆Xit = λ̂i∆Ft + ∆̂eit.

From ∆̂eit = ∆eit − (λ̂i − λi)∆Ft, the partial sum of this series is

ẽit =
t∑

j=2

∆̂eit

= eit − ei1 − (λ̂i − λi)′(Ft − F1).

16



which depends on ei1 and (λ̂i − λi)′(Ft − F1). Removal of these effects depend on whether Ft is

I(0) or I(1). If Ft is I(0), we demean ẽit. Let ēi = 1
T

∑T
t=2 eit, F̄ = 1

T

∑T
t=2 Ft. Then

ẽi =
1
T

T∑

t=2

ẽit = ēi − ei1 − (λ̂i − λi)′(F̄ − F1),

from which it follows that

ê0
it = ẽit − ẽit = eit − ēi − (λ̂i − λi)′(Ft − F̄ ).

Consider now the scaled partial sum of ê0
it. We have

1√
T

t∑

s=1

ê0
is =

1√
T

t∑

s=1

(eis − ēi)−
√

T (λ̂i − λi)′
1
T

t∑

k=1

(Fs − F̄ )

=
1√
T

t∑

s=1

(eis − ēi) + op(
1√
T

).

Thus if Ft is I(0),

1√
T

[Tr]∑

k=1

ê0
ik ⇒ σi[Bε,i(r)− rBε,i(1)] ≡ Vεi(r)

1
T 2

T∑

t=1

(
t∑

k=1

ê0
it

)2

⇒ σ2
i

∫ 1

0
Vεi(r)2dr.

where σ2
i is the long-run variance of eit. The limiting distribution is independent across i and can

thus be pooled.

If Ft is I(1), demeaning alone is not sufficient to purge the effect of ei1 +(λ̂i−λi)′(Ft−F1). We

must project ẽit on [1 Ft] to obtain new residuals ê1
it. Because ẽit = eit − ei1 − (λ̂i − λi)′(Ft − F1),

êit are equivalent to those obtained by projecting eit on the regressors. The KPSS test on such a

residual process is studied in Shin (1994), where the limiting distributions are also derived. Thus

the details are omitted. Finally, because the limiting distributions across i depend on the common

stochastic trends Ft, they are not independent across i. This implies that these statistics cannot

be pooled.

Proof of the Theorems 2

For p = 1, ∆Xit = βi + λ′i∆Ft + ∆eit, and ∆Xi = 1
T−1

∑T
t=2 ∆Xit = βi + λ′i∆F + ∆ei, where

∆F = 1
T−1

∑T
t=1 ∆Ft = FT−F1

T−1 and ∆ei = eiT−ei1
T−1 . Thus

∆Xit −∆Xi = λ′i(∆Ft −∆F ) + ∆eit −∆ei (11)
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The principal components estimator based on the data ∆Xit − ∆Xi (i = 1, 2, ..., N, t = 2, ..., T )

will provide estimates of λi and ∆Ft − ∆F , respectively. Because ∆̂F t is root-N consistent for

∆Ft − ∆F , when N is large relative to T , the estimation error is negligible and we can simply

assume ∆̂F t = ∆Ft −∆F . This implies that

F̂t =
t∑

s=2

∆̂F s =
t∑

s=2

(∆Fs −∆F ) = Ft − F1 − FT − F1

T − 1
(t− 1)

The residual from projecting F̂t on [1, t] will remove F1 + FT−F1
T−1 (t − 1). This projection residual

is asymptotically equivalent to the residual by projecting the true process Ft on [1, t]. Thus the

KPSS test based on such residuals has a second level Brownian Bridge as its limiting distribution,

as shown in Kwiatkowski et al. (1992). This proves part 1 of Theorem 2.

By the definition of ∆̂eit,

∆Xit −∆Xi = λ̂′i∆̂F t + ∆̂eit (12)

Subtracting (12) from (11) and noting ∆̂F t = ∆Ft −∆F , we have

∆̂eit = ∆eit −∆ei − (λ̂i − λi)(∆Ft −∆F )

Then ẽit =
∑t

s=2 ∆̂eis is given by

ẽit = eit − ei1 − (eiT − ei1)
T

(t− 1)− (λ̂i − λi)
[
Ft − F1 − (FT − F1)

T
(t− 1)

]
. (13)

Because λ̂i − λi = Op(T−1/2), the last term of (13) is negligible if Ft is I(0). By projecting ẽit on

[1, t], the projection residual will further remove the effects due to ei1 + (eiT−ei1)
T (t− 1). Thus the

KPSS test based on the demeaned and detrended ê0
it is asymptotically equivalent to the one based

on the residual from a projection of eit on [1, t]. Thus the limiting distribution is a second level

Brownian bridge. This proves part 2 of Theorem 2.

If Ft is I(1), the last term of (13) is no longer negligible. We need to project ẽit on [1, t; F1t, . . . Fk̄t].

The projection will purge the effect of Ft, the linear trends, the term ei1, as well as (λ̂i − λi)′F1 in

(13). The resulting residual is asymptotically equal to the residual by projecting the true process

eit on [1, t;F1t, . . . Fk̄t]. The limiting distribution of the KPSS test on such residuals is derived in

Shin (1994).

Proof of Theorem 3. The MSB test is based on ẽit in equation (13) (no further demeaning and

detrending). Because (λ̂i − λi) = Op(T−1/2), the last of term of (13) is Op(1) whether Ft is I(1) or

I(0). Thus

ẽit = eit − eiT
t− 1

T
+ Op(1)
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Under the null hypothesis that eit is I(1), for t = [Tr],

ẽit√
T

=
eit√
T
− eiT√

T

( t− 1
T

)
+

1√
T

Op(1) ⇒ σi,ε[Bi(r)− rBi(1)]

where σ2
i,ε is the long-run variance of ∆eit = εit and Bi(r) is a Brownian motion process. It follows

that
1
T 2

T∑

t=1

ẽ2
it =

1
T

T∑

t=1

( ẽit√
T

)2 ⇒ σ2
i,ε

∫ 1

0
Vi(r)2dr

where Vi(r) = Bi(r) − rBi(1). Dividing the above by a consistent estimator of σ2
i,ε leads to the

desired result.
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Table 1a: Rejection rates for the null hypothesis of a unit Root
σF =

√
10 σF = 1 σF =

√
.5

T N ρ α X F̂ ê0 X F̂ ê0 X F̂ ê0

p = 0
200 20 0.00 0.00 0.99 0.80 0.79 0.99 0.81 0.80 0.99 0.78 0.79
200 20 0.50 0.80 0.99 0.92 0.90 1.00 0.91 0.90 1.00 0.92 0.90
200 20 0.80 0.50 1.00 0.90 0.92 0.99 0.89 0.92 1.00 0.91 0.92
200 20 0.00 0.90 0.94 0.85 0.79 0.92 0.85 0.79 0.92 0.87 0.79
200 20 0.90 0.00 0.90 0.78 0.85 0.92 0.78 0.85 0.92 0.78 0.85
200 20 1.00 0.00 0.07 0.75 0.06 0.06 0.47 0.06 0.06 0.34 0.06
200 20 1.00 0.50 0.21 0.88 0.06 0.08 0.67 0.06 0.07 0.55 0.06
200 20 1.00 0.80 0.38 0.90 0.05 0.13 0.75 0.06 0.10 0.61 0.06
200 20 1.00 0.90 0.43 0.86 0.06 0.16 0.72 0.06 0.12 0.61 0.06
200 20 1.00 0.95 0.34 0.55 0.06 0.15 0.46 0.06 0.12 0.42 0.06
200 20 0.00 1.00 0.09 0.06 0.66 0.08 0.04 0.65 0.10 0.05 0.64
200 20 0.50 1.00 0.08 0.05 0.84 0.13 0.05 0.84 0.16 0.07 0.83
200 20 0.80 1.00 0.12 0.06 0.88 0.20 0.06 0.88 0.24 0.06 0.87
200 20 0.90 1.00 0.11 0.06 0.82 0.22 0.06 0.82 0.27 0.06 0.82
200 20 0.95 1.00 0.12 0.08 0.57 0.19 0.06 0.57 0.24 0.06 0.57
200 20 1.00 1.00 0.07 0.06 0.06 0.07 0.06 0.06 0.07 0.05 0.06

p = 1
200 20 0.00 0.00 0.96 0.74 0.74 0.95 0.76 0.74 0.96 0.73 0.75
200 20 0.50 0.80 0.95 0.85 0.90 0.96 0.85 0.90 0.97 0.86 0.89
200 20 0.80 0.50 0.98 0.90 0.85 0.96 0.89 0.85 0.96 0.90 0.85
200 20 0.00 0.90 0.77 0.61 0.73 0.73 0.60 0.73 0.73 0.62 0.73
200 20 0.90 0.00 0.70 0.77 0.61 0.72 0.71 0.61 0.74 0.69 0.62
200 20 1.00 0.00 0.03 0.69 0.06 0.02 0.49 0.06 0.03 0.34 0.06
200 20 1.00 0.50 0.12 0.87 0.06 0.03 0.74 0.06 0.03 0.62 0.06
200 20 1.00 0.80 0.26 0.84 0.06 0.06 0.75 0.06 0.05 0.65 0.06
200 20 1.00 0.90 0.28 0.63 0.06 0.08 0.55 0.06 0.05 0.51 0.06
200 20 1.00 0.95 0.18 0.27 0.06 0.07 0.26 0.06 0.06 0.26 0.06
200 20 0.00 1.00 0.03 0.06 0.64 0.04 0.06 0.63 0.06 0.06 0.63
200 20 0.50 1.00 0.04 0.06 0.85 0.08 0.06 0.86 0.10 0.06 0.85
200 20 0.80 1.00 0.05 0.05 0.83 0.13 0.05 0.83 0.16 0.06 0.82
200 20 0.90 1.00 0.05 0.05 0.60 0.14 0.06 0.60 0.17 0.06 0.60
200 20 0.95 1.00 0.06 0.06 0.29 0.10 0.07 0.29 0.13 0.05 0.28
200 20 1.00 1.00 0.03 0.07 0.06 0.03 0.05 0.06 0.03 0.06 0.06
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Table 1b: Pooled Tests: Rejection rates for the null hypothesis of a unit root
σF =

√
10 σF = 1 σF =

√
.5

T N ρ α X ê0 X ê0 X ê0

p = 0
200 20 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.50 0.80 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.80 0.50 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.90 0.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.00 0.28 0.08 0.13 0.09 0.13 0.10
200 20 1.00 0.50 0.86 0.09 0.23 0.09 0.18 0.09
200 20 1.00 0.80 0.99 0.08 0.56 0.09 0.37 0.10
200 20 1.00 0.90 0.99 0.10 0.70 0.08 0.49 0.08
200 20 1.00 0.95 0.95 0.07 0.68 0.09 0.54 0.08
200 20 0.00 1.00 0.29 1.00 0.33 1.00 0.37 1.00
200 20 0.50 1.00 0.33 1.00 0.44 1.00 0.51 1.00
200 20 0.80 1.00 0.36 1.00 0.58 1.00 0.66 1.00
200 20 0.90 1.00 0.39 1.00 0.62 1.00 0.72 1.00
200 20 0.95 1.00 0.39 1.00 0.58 1.00 0.72 1.00
200 20 1.00 1.00 0.30 0.10 0.24 0.09 0.22 0.09

p = 1
200 20 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.50 0.80 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.80 0.50 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.00 0.90 0.98 1.00 1.00 1.00 0.99 1.00
200 20 0.90 0.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.00 0.02 0.11 0.00 0.13 0.00 0.13
200 20 1.00 0.50 0.38 0.11 0.01 0.13 0.00 0.11
200 20 1.00 0.80 0.81 0.12 0.08 0.13 0.02 0.12
200 20 1.00 0.90 0.80 0.12 0.17 0.11 0.05 0.13
200 20 1.00 0.95 0.56 0.13 0.15 0.11 0.06 0.13
200 20 0.00 1.00 0.13 1.00 0.14 1.00 0.16 1.00
200 20 0.50 1.00 0.13 1.00 0.22 1.00 0.26 1.00
200 20 0.80 1.00 0.17 1.00 0.33 1.00 0.44 1.00
200 20 0.90 1.00 0.15 1.00 0.36 1.00 0.46 1.00
200 20 0.95 1.00 0.17 1.00 0.30 1.00 0.39 1.00
200 20 1.00 1.00 0.09 0.12 0.03 0.13 0.01 0.12

21



Table 2a: Rejection rates for the null hypothesis of stationarity
σF =

√
10 σF = 1 σF =

√
.5

T N ρ α X F̂ ê0 ê1 X F̂ ê0 e1 X F̂ ê0 ê1

p = 0
200 20 0.00 0.00 0.05 0.06 0.05 0.12 0.05 0.05 0.04 0.12 0.04 0.03 0.05 0.12
200 20 0.50 0.80 0.12 0.13 0.06 0.14 0.10 0.11 0.06 0.13 0.09 0.12 0.05 0.13
200 20 0.80 0.50 0.08 0.06 0.11 0.23 0.10 0.06 0.11 0.23 0.10 0.06 0.11 0.23
200 20 0.00 0.90 0.22 0.23 0.08 0.11 0.20 0.22 0.08 0.11 0.20 0.23 0.09 0.11
200 20 0.90 0.00 0.18 0.05 0.23 0.38 0.22 0.14 0.24 0.39 0.23 0.15 0.23 0.38
200 20 1.00 0.00 0.76 0.51 0.79 0.89 0.79 0.75 0.79 0.84 0.79 0.77 0.79 0.81
200 20 1.00 0.50 0.71 0.26 0.79 0.89 0.78 0.65 0.79 0.85 0.79 0.71 0.79 0.83
200 20 1.00 0.80 0.61 0.18 0.80 0.89 0.75 0.47 0.79 0.86 0.77 0.57 0.79 0.84
200 20 1.00 0.90 0.57 0.28 0.79 0.88 0.74 0.41 0.79 0.87 0.76 0.48 0.79 0.85
200 20 1.00 0.95 0.58 0.42 0.80 0.86 0.72 0.47 0.79 0.85 0.75 0.52 0.79 0.84
200 20 0.00 1.00 0.79 0.80 0.51 0.05 0.77 0.80 0.52 0.05 0.76 0.80 0.52 0.05
200 20 0.50 1.00 0.78 0.79 0.33 0.06 0.76 0.81 0.33 0.06 0.72 0.78 0.32 0.06
200 20 0.80 1.00 0.79 0.81 0.22 0.10 0.72 0.81 0.22 0.11 0.69 0.80 0.23 0.11
200 20 0.90 1.00 0.77 0.80 0.28 0.20 0.68 0.78 0.27 0.21 0.66 0.79 0.28 0.21
200 20 0.95 1.00 0.74 0.77 0.41 0.35 0.69 0.78 0.41 0.35 0.66 0.78 0.41 0.36
200 20 1.00 1.00 0.78 0.79 0.79 0.72 0.80 0.80 0.79 0.70 0.80 0.79 0.80 0.70

p = 1
200 20 0.00 0.00 0.04 0.04 0.04 0.10 0.05 0.06 0.04 0.10 0.04 0.04 0.04 0.10
200 20 0.50 0.80 0.13 0.14 0.05 0.11 0.10 0.11 0.05 0.10 0.08 0.11 0.05 0.10
200 20 0.80 0.50 0.08 0.05 0.13 0.23 0.11 0.06 0.13 0.22 0.11 0.06 0.13 0.22
200 20 0.00 0.90 0.27 0.28 0.08 0.09 0.26 0.29 0.09 0.09 0.25 0.29 0.09 0.09
200 20 0.90 0.00 0.21 0.05 0.28 0.43 0.27 0.13 0.29 0.43 0.28 0.17 0.29 0.43
200 20 1.00 0.00 0.70 0.25 0.77 0.85 0.76 0.61 0.77 0.83 0.76 0.69 0.77 0.82
200 20 1.00 0.50 0.61 0.14 0.77 0.85 0.74 0.46 0.77 0.84 0.75 0.55 0.76 0.82
200 20 1.00 0.80 0.48 0.16 0.77 0.85 0.68 0.30 0.76 0.83 0.72 0.39 0.77 0.83
200 20 1.00 0.90 0.49 0.28 0.76 0.83 0.66 0.35 0.76 0.82 0.70 0.41 0.77 0.82
200 20 1.00 0.95 0.60 0.53 0.77 0.81 0.69 0.53 0.76 0.79 0.72 0.55 0.77 0.80
200 20 0.00 1.00 0.73 0.75 0.35 0.06 0.72 0.77 0.36 0.05 0.69 0.75 0.36 0.06
200 20 0.50 1.00 0.75 0.77 0.18 0.06 0.68 0.76 0.18 0.06 0.69 0.79 0.19 0.06
200 20 0.80 1.00 0.72 0.76 0.16 0.14 0.66 0.78 0.17 0.15 0.61 0.78 0.17 0.14
200 20 0.90 1.00 0.71 0.76 0.29 0.29 0.63 0.77 0.29 0.29 0.58 0.76 0.30 0.30
200 20 0.95 1.00 0.72 0.76 0.50 0.49 0.66 0.75 0.50 0.48 0.64 0.77 0.50 0.49
200 20 1.00 1.00 0.76 0.75 0.77 0.73 0.77 0.78 0.77 0.73 0.77 0.76 0.76 0.74
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Table 2b: Pooled Tests: Rejection rates for the null hypothesis of stationarity
σF =

√
10 σF = 1 σF =

√
.5

T N ρ α X ê0 ê1 X ê0 ê1 X ê0 ê1

p = 0
200 20 0.00 0.00 0.26 0.07 0.75 0.19 0.05 0.75 0.16 0.07 0.77
200 20 0.50 0.80 0.43 0.16 0.80 0.37 0.15 0.78 0.37 0.13 0.77
200 20 0.80 0.50 0.30 0.61 0.99 0.48 0.65 0.99 0.55 0.65 0.99
200 20 0.00 0.90 0.60 0.32 0.65 0.59 0.33 0.69 0.60 0.33 0.67
200 20 0.90 0.00 0.90 0.98 1.00 0.98 0.99 1.00 0.99 0.99 1.00
200 20 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.00 1.00 0.96 0.91 0.24 0.96 0.91 0.23 0.95 0.92 0.24
200 20 0.50 1.00 0.96 0.81 0.29 0.96 0.82 0.28 0.95 0.82 0.29
200 20 0.80 1.00 0.96 0.88 0.57 0.96 0.87 0.58 0.97 0.89 0.57
200 20 0.90 1.00 0.96 1.00 0.87 0.98 0.99 0.87 0.99 1.00 0.88
200 20 0.95 1.00 0.97 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99
200 20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p = 1
200 20 0.00 0.00 0.29 0.12 0.71 0.24 0.12 0.71 0.20 0.13 0.73
200 20 0.50 0.80 0.48 0.21 0.75 0.47 0.20 0.72 0.44 0.19 0.71
200 20 0.80 0.50 0.40 0.87 0.99 0.67 0.85 1.00 0.75 0.85 1.00
200 20 0.00 0.90 0.70 0.44 0.61 0.69 0.46 0.61 0.70 0.47 0.61
200 20 0.90 0.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.00 1.00 0.95 0.88 0.33 0.95 0.88 0.31 0.95 0.88 0.35
200 20 0.50 1.00 0.96 0.75 0.38 0.95 0.72 0.36 0.96 0.77 0.38
200 20 0.80 1.00 0.96 0.93 0.83 0.97 0.94 0.84 0.97 0.93 0.83
200 20 0.90 1.00 0.98 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00
200 20 0.95 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 3: Application to Real Exchange Rates

KPSS SHIN MSB

Country var(∆̂e)
var(∆X)

σ(λ̂′iF̂t)

σ(ê0)
X ê0 ê1 X ê

CANADA 0.995 0.044 0.476− 0.475− 0.522− 0.030 0.141+

AUSTRALIA 0.891 0.357 0.605− 0.794− 0.837− 0.041 0.181+

NEW ZEALAND 0.724 0.844 0.233 0.224 0.161 0.007 0.037
AUSTRIA 0.081 3.378 0.308 0.691− 0.677− 0.038 0.213+

BELGIUM 0.093 2.330 0.155 0.639− 0.715− 0.033 0.131+

DENMARK 0.092 5.001 0.190 0.177 0.110 0.030 0.057
FINLAND 0.316 1.364 0.098 0.149 0.156 0.018 0.107+

FRANCE 0.113 3.920 0.140 0.633− 0.651− 0.037 0.566+

GERMANY 0.086 2.972 0.167 0.580− 0.565− 0.035 0.275+

IRELAND 0.158 1.761 0.515− 0.531− 0.768− 0.061+ 0.119+

ITALY 0.337 1.614 0.281 0.374 0.367− 0.039 0.173+

NETHERLANDS 0.076 2.871 0.142 0.723− 0.696− 0.029 0.054
NORWAY 0.173 3.438 0.121 0.451 0.402− 0.047 0.015

SPAIN 0.385 1.264 0.296 0.496− 0.622− 0.031 0.165+

SWEDEN 0.347 1.387 0.201 0.724− 0.845− 0.036 0.267+

SWITZERLAND 0.219 2.142 0.407 0.706− 0.751− 0.031 0.511+

UK 0.415 1.312 0.246 0.262 0.270 0.024 0.029
JAPAN 0.560 0.594 0.837− 0.992− 0.968− 0.089+ 0.567+

KOREA 0.988 0.187 0.117 0.101 0.072 0.001 0.000
SINGAPORE 0.548 0.618 0.276 0.258 0.272 0.035 0.038
THAILAND 0.938 0.278 0.797− 0.897− 0.881− 0.021 0.037

5% CV .463 .463 .320 .057 .057
10% CV .343 .343 .235 .076 .076
Pooled 3.129 3.129 10.123 4.259 .341

The stationarity tests are based on 12 lags of the Parzen kernel. The unit root test is based on 4 lags in estimation

of the autoregressive spectral density.

A ‘-’ denotes rejection of stationarity, and a ‘+’ indicates non-rejection of the unit root hypothesis.
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