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1 Introduction

Many statistical and econometric data sets exhibit some form of truncation. In this paper

we consider estimation of a truncated regression model, which corresponds to a regression

model where the sample is selected on the basis of the dependent variable. An empirical

example of this type of sampling is the study of the determinants of earnings in Hausman and

Wise(1977). Their sample from a negative income tax experiment was truncated because

only families with income below 1.5 times the poverty level were allowed to participate in

the program.

We define the truncated regression model within the latent variable framework. Let

ỹi, wi, and ei denote a latent dependent variable, a J + 1 dimensional vector of observed

covariates (which may include a constant), and a random unobserved disturbance term. We

have the following latent variable relationship:

ỹi = w′
iθ0 + ei

For our truncated model the econometrician does not observe ỹi, but the non-negative vari-

able yi, where

yi = ỹi|ỹi ≥ 0

If ỹi were observed without truncation, then it could be linearly regressed on wi using ordi-

nary or two stage least squares to estimate θ0, which is the parameter of interest. However,

this simple estimator cannot be used because our data are only sampled from individuals

having ỹi positive.

Our method of obtaining identification makes relatively weak assumptions regarding ei,

but it assumes we can estimate the population (as opposed to the truncated) distribution of

the regressors wi. One way this may be accomplished is with having two distinct data sets,

one being a sample of yi, wi observations generated by the truncation model yi = ỹi|ỹi ≥ 0,

and the other a possibly independent sample of just wi observations that are drawn from the

population distribution of wi. The latter, augmented data would be used to construct an

estimate of the population density of wi, which is the feature of the untruncated population

that our estimator requires. For example, ỹi could be an attribute of consumers or workers

that we sample with truncation, and wi could be a vector of demographic characteristics

with a population distribution that can be estimated from census data. See, e.g., Devereux

and Tripathi (2004) and Chen et al.(2005)1 for recent work on optimally combining primary

1Chen et al.(2005) develop general asymptotic theory results for two sample sizes, one corresponding
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and augmented data in semiparametric models.

Another sampling design that fits our framework are data derived from a classical cen-

sored regression model, where the econometrician observes regressor wi values for both cen-

sored and uncensored observations, and can thus infer the population regressor distribution

from the data. However, we emphasize that the truncated regression model considered here is

more general than the censored regression model, since censored regression data also provides

information on the probability of the variable ỹi being negative and hence the probability of

censoring, while our estimators do not require that information.

Our estimators also require either regressors or instruments that are uncorrelated with ei,

and requires one regressor to satisfy some additional conditional independence and support

requirements.

Most parametric truncated regression models restrict ei to be distributed independently

of wi and lie in a parametric family, so that θ0 and nuisance parameters in the distribution

of ei could be estimated by MLE or (nonlinear) least squares. These estimators are generally

inconsistent if the distribution of ei is misspecified, if ei is correlated with wi, or if conditional

heteroskedasticity is present.

Semiparametric, or “distribution-free” estimators for truncated models have been pro-

posed with various restrictions on ei, including Bhattacharya et al. (1983), Powell (1986),

Newey (1987,2001), Lee (1989,1993), and Honoré and Powell (1994). With the exception of

Lee (1989), which converges at a rate of the cube root of the sample size, these estimators

converge at parametric rates, and have asymptotic normal distributions. Attaining this rate

is more difficult in the truncated model than it is for standard models. For example, Newey

(2001) shows that attaining the parametric rate is not possible with only a conditional mean

restriction on the disturbance term.

In this paper, two new estimators for the truncated regression model are proposed.

The estimators are numerically simple, being equivalent to linear weighted least squares

or weighted two stage least squares, though the weights depend on an estimated (plug in)

density. The error distribution is assumed to be unknown, and permits very general forms of

heteroskedasticity, including forms not permitted by other semiparametric estimators. Un-

like the above listed estimators, our estimator does not require conditional independence,

to a primary data set and the other to an auxiliary data set. Their asymptotic theory is for an estimation

procedure based on the method of sieves, which cannot be applied to our procedures, which require estimation

of probability density functions.
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conditional symmetry, or conditional mode restrictions on the errors. The estimators may

also be applied to doubly truncated data.

Given instruments zi that are uncorrelated with the latent errors ei, the two stage least

squares estimator we propose permits estimation of coefficients when these errors are cor-

related with the regressors (as would arise in models with endogenous or mismeasured re-

gressors), analogous to a standard linear model two stage least squares regression. This is

in contrast to the semiparametric approaches referred to above, which do not allow for any

form of endogeneity.

The new estimators involve weighting the data by an estimate of the population proba-

bility density of one of the regressors. We provide the limiting distribution for a general class

of density weighted estimators. This limiting distribution theory includes a new result on

the use of asymptotic trimming to deal with issues regarding first stage density estimation,

specifically addressing the boundary bias without knowledge of the support boundary. It

also encompasses the case where the density of wi might be estimated using an auxiliary

data set.

Turning attention to the notation we will be adopting in the rest of the paper, we de-

compose the regressor vector as wi = (vi, x
′
i)
′ with vi denoting a regressor that satisfies

restrictions discussed below, and xi denoting the J-dimensional vector of other regressors.

Correspondingly we decompose the parameter vector as θ0 = (α0, β
′
0)
′. With this notation

the truncated regression model is

ỹi = viα0 + x′iβ0 + ei (1.1)

yi = ỹi|ỹi ≥ 0 (1.2)

There may also be a vector of instruments zi that are uncorrelated with ei. The primary

data set consists of n observations of yi, vi, xi, and possibly zi.

We assume a fixed underlying or untruncated distribution for the random variables

V, X,Z, e, or equivalently for V,X, Z, Ỹ . We will refer to this as the underlying, or untrun-

cated population, and use E∗ to denote expectations over this population. Our estimator de-

pends on knowing or estimating a conditional distribution of the regressors and instruments,

V, X,Z, so our augmented data generating process consists of draws from the underlying or

untruncated distribution of V, X,Z. In what follows, we will let (v∗i , x
∗
i , z

∗
i ), i = 1, 2, ...n∗

denote the (i.i.d.) draws from this distribution, with n∗ denoting the sample size.

Our primary data generating process is draws of truncated data. These are draws, de-

noted by (vi, xi, zi, ei), from the joint distribution of V,X,Z, e, conditional on viα0 +x′iβ0 +
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ei ≥ 0 (i.e., discarding draws where this inequality does not hold), and yi defined by equation

(1.2). We refer to these draws as coming from the truncated population, use E to denote

expectations over this truncated distribution, and let n denote the sample size.

The rest of the paper is organized as follows. The following section shows identification of

the parameters of interest and motivates the weighted and two stage least squares estimation

procedures. Section 3 discusses the asymptotic properties of the proposed estimators, first by

establishing general asymptotic results concerning functions that satisfy a density weighted

moment condition, and then by applying the general results to the estimators at hand.

Section 4 explores the finite sample properties of the estimators by means of a Monte Carlo

study, and Section 5 concludes. Details regarding the asymptotics of our estimators are

provided in the appendix.

2 Identification

2.1 Preliminary Results

Our identification results are based on conditions imposed on the relationships between

ei, xi, vi for the heteroskedastic truncated regression model and on the relationships between

ei, xi, vi, zi for the endogenous truncated regression model, where zi is a vector of instrumental

variables.

Let F ∗
e (e|·) denote the underlying, untruncated conditional distribution of an observation

of e given data ·. The minimal uncorrelated error assumption for (exogenous) linear models,

E∗[ex] = 0 (2.1)

is not generally sufficient to identify the coefficients in the truncated regression model. We

make two additional assumptions for identification and estimation. These assumptions are

analogous to those imposed in Lewbel (1998,2000), though the identification and estimation

results in those papers do not apply to truncated regression models. One such assumption

is that the underlying distribution of e is conditionally independent of the one regressor v,

or equivalently,

F ∗
e (e|v, x) = F ∗

e (e|x). (2.2)

The other is that the underlying distribution of v is assumed to have a large support.
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The conditional independence restriction in (2.2) is an example of what Powell (1994),

Section 2.5, calls a strong exclusion restriction. He notes that it permits general forms of

conditional heteroskedasticity. Thus, this assumption generalizes the widely assumed uncon-

ditional independence assumption, which imposes homoskedastic error terms. Magnac and

Maurin (2003) also discuss this restriction, calling it partial independence. This conditional

(or partial) independence exclusion assumption arises naturally in some economic models.

For example, in a labor supply model where e represents unobserved ability, conditional

independence is satisfied by any variable v that affects labor supply decisions but not abil-

ity, such as government defined benefits. In demand models where e represents unobserved

preference variation, prices satisfy the conditional independence condition if they are deter-

mined by supply, such as under constant returns to scale production. Lewbel, Linton and

McFadden (2001) consider applications like willingness to pay studies, where v is a bid de-

termined by experimental design, and so satisfies the necessary restrictions by construction.

An analogous exclusion restriction in the endogenous setting can be interpreted as a form

of exogeneity, e.g., Blundell and Powell (2003) show that e, x | v, z ∼ e, x | z is very closely

related to their control function assumption.

The other assumption for identification is that v have large support. Assuming a regressor

to have large or infinite support is common in the literature on semiparametric limited

dependent variable models. Examples include Manski (1975,1985) and Horowitz (1992) for

heteroskedastic binary choice models, and Han (1987) and Cavanagh and Sherman (1998)

for homoskedastic transformation models.

Examples of empirical applications that have made use of a regressor v that satisfies

both the exclusion and large support assumptions include Anton, Sainz, and Rodriguez-Póo

(2001) and Cogneau and Maurin (2002).

Let F ∗
ex(e, x|·) denote the underlying, untruncated joint distribution of (e, x) conditional

on data (·), with support denoted Ωex(·). Let f ∗(v|·) denote the underlying, untruncated

conditional density of an observation of v, conditional on an observation of (·). In the exoge-

nous setting we condition on the regressors x, while in the endogenous model we condition

on a vector of instruments z.

Theorem 2.1 Let θ be a vector of parameters and let h(v, x, z, e, θ) be any function

ψ(θ) = E∗
[
h(v, x, z, e, θ)

f ∗(v|x)

]
(2.3)

If F ∗
ex(e, x|v, z) = F ∗

ex(e, x|z), Ωex(v, z) = Ωex(z), and the support of the random variable v
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is the interval [L,K], then

E∗
[
h(v, x, z, e, θ)

f ∗(v|z)
|z

]
= E∗[

K

∫
L

h(v, x, z, e, θ)dv|z] (2.4)

Proof:

E∗
[

h

f ∗(v|z)
|z

]
= E∗

[
E[h|v, z]

f ∗(v|z)
|z

]
(2.5)

=
K

∫
L

(
E[h|v, z]

f ∗(v|z)
f ∗(v|z)

)
dv (2.6)

=
K

∫
L

E[h|v, z]dv (2.7)

=
K

∫
L
∫

Ωex

h(v, x, z, e, θ)dF ∗
ex(e, x|z)dv (2.8)

= ∫
Ωex

K

∫
L

h(v, x, z, e, θ)dvdF ∗
ex(e, x|z) (2.9)

¥

An immediate implication of Theorem 2.1 is

ψ(θ) = E∗
[
h(v, x, z, e, θ)

f ∗(v|z)

]
= E∗[

K

∫
L

h(v, x, z, e, θ)dv] (2.10)

The usefulness of equations (2.4) or (2.10) is that h can be a function of a limited

dependent variable, and appropriate choice of the function h can make ∫K
L h(v, x, z, e, θ)dv

either linear or quadratic in e, which then permits direct estimation of θ from ψ(θ).

Taking z = x yields the following Corollary to Theorem 2.1, which will be useful for

estimation of models in which the errors are uncorrelated with the regressors.

Corollary 2.1 If F ∗
e (e|v, x) = F ∗

e (e|x), Ωe(v, x) = Ωe(x), and the support of the random

variable v is the interval [L,K], then

E∗
[
h(v, x, e, θ)

f ∗(v|x)

]
= E∗[

K

∫
L

h(v, x, e, θ)dv] (2.11)
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To illustrate Theorem 2.1, consider as a special case the binary choice model d =

I(v + x′β0 + e ≥ 0) with data consisting of a sample of observations of di, vi, xi, zi. Let-

ting h(v, x, z, e, θ) = z[d− I(v ≥ 0)] gives, by equation (2.10),

E∗
[
z
d− I(v ≥ 0)

f ∗(v|z)

]
= E∗[z(x′β0 + e)] (2.12)

which, if E∗[ze] = 0, shows that β0 in the binary choice model can be estimated by linearly

regressing [di − I(vi ≥ 0)]/f ∗(vi|zi) on xi using instruments zi. This is the binary choice

model identification result proposed in Lewbel (2000).

We will now apply Theorem 2.1 and its corollary to obtain identification results for

truncated regression models.

2.2 Exogenous Truncated Regression Model Identification

Our identification for the truncated regression model with exogenous regressors and possibly

heteroskedastic errors is based on the following assumptions:

ASSUMPTION A.1: Assume the truncated data are draws v, x, e, y conditional on ỹi ≥
0 as described by equations (1.1) and (1.2) with α0 6= 0. The underlying, untruncated

conditional distribution of v given x is absolutely continuous with respect to a Lebesgue

measure with conditional density f ∗(v|x).

ASSUMPTION A.2: Let Ω denote the underlying, untruncated support of the distribu-

tion of an observation of (v, x). Let F ∗
e (e|v, x) denote the underlying, untruncated condi-

tional distribution of an observation of e given an observation of (v, x), with support denoted

Ωe(v, x). Assume F ∗
e (e|v, x) = F ∗

e (e|x) and Ωe(v, x) = Ωe(x) for all (v, x) ∈ Ω.

ASSUMPTION A.3: The underlying, untruncated conditional distribution of v given x

has support [L,K] for some constants L and K, −∞ ≤ L < K ≤ ∞.

ASSUMPTION A.4: For all (x, e) on the underlying, untruncated support of (x, e),

[I(α0 > 0)L − I(α0 < 0)K]α0 + x′β0 + e < 0. Let k̃ equal the largest number that satisfies

the inequality k̃ ≤ [I(α0 > 0)K − I(α0 < 0)L]α0 + x′β0 + e for all (x, e) on the support of

(x, e). k̃ > 0.

ASSUMPTION A.5: For some positive, bounded function w(x) chosen by the econome-

trician, E∗[exw(x)] = 0 and E∗[w(x)xx′] exists and is nonsingular.
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Assumption A.1 defines the truncated regression model and says that v has a continuous

distribution. The Assumptions do not require the distributions of e or x to be continuous,

e.g., they can be discrete or contain mass points. The vector of regressors x can include

dummy variables. Squares and interaction terms, e.g., x3i = x2
2i, are also permitted. In

addition, x can be related to (e.g., correlated with) v, though Assumption A.1 rules out

having elements of x be deterministic functions of v.

Assumption A.2 is the conditional (or partial) independence exclusion assumption dis-

cussed earlier.

Assumption A.3 and A.4 together imply that whatever value x,e take on, there exists

some value of v that results in ỹ ≥ 0, and in this sense requires v to have a large support.

Standard models like tobit have errors that can take on any value, which would require v to

have support equal to the whole real line. These assumptions imply that the estimator is

likely to perform best when the spread of observations of v is large relative to the spread of

x′β + e, since if the observed spread of v values were not large, then the observed data may

resemble data drawn from a process that violated A.4. Given this large support assumption

it might be possible to construct alternative estimators based on identification at infinity,

though note that the set of values of v that ensures no truncation can have measure zero.

For Assumption A.5, the function w(x) will be chosen for efficiency. If E∗[e|x] = 0, w(x)

can be almost any positive, bounded function. Under the weaker assumption E∗[ex] = 0, we

can just let w(x) ≡ 1.

The truncation takes the form y = ỹ|ỹ ≥ 0. It follows that for any function h(y, x, e) and

constant k > 0 the relationship of the truncated to untruncated expectation is

E[h(y, x, v, e)I(0 ≤ y ≤ k)] =
E∗[h(ỹ, x, v, e)I(0 ≤ ỹ ≤ k)]

prob(ỹ ≥ 0)
(2.13)

The following Corollary to Theorem 2.1, along with equation (2.13), provides the main

identification result which is the basis for our estimator of the heteroskedastic model:

Corollary 2.2 Let Assumptions A.1, A.2, A.3 and A.4 hold. Let H(ỹ, x, e) be any function

that is differentiable in ỹ. Let k be any constant that satisfies 0 ≤ k ≤ k̃. Then

E∗
[
∂H(ỹ, x, e)

∂ỹ

I(0 ≤ ỹ ≤ k)

f ∗(v|x)

]
= E∗

[
H(k, x, e)−H(0, x, e)

|α0|
]

(2.14)

provided that these expectations exist.

8



Proof: First apply Corollary 2.1, then do a change of variables in the integration from

v to ỹ to get

E∗
[
∂H(ỹ, x, e)

∂ỹ

I(0 ≤ ỹ ≤ k)

f ∗(v|x)

]
= E∗

[
K

∫
L

∂H[ỹ(v, x, e), x, e]

∂ỹ(v, x, e)
I[0 ≤ ỹ(v, x, e) ≤ k] dv

]
(2.15)

= E∗
[

Kα0+x′β0+e

∫
Lα0+x′β0+e

∂H(ỹ, x, e)

∂ỹ
I(0 ≤ ỹ ≤ k) dỹ/α0

]
(2.16)

if α0 > 0, or

= −E∗
[−Lα0+x′β0+e

∫
−Kα0+x′β0+e

∂H(ỹ, x, e)

∂ỹ
I(0 ≤ ỹ ≤ k) dỹ/α0

]
(2.17)

if α0 < 0. Either way, by Assumptions A.3, A.4, and 0 < k ≤ k̃, we get

= E∗
[

k

∫
0

∂H(ỹ, x, e)

∂ỹ
dỹ/|α0|

]
(2.18)

which proves the result. ¥

Theorem 2.2 : Let Assumptions A.1, A.2, A.3, A.4, and A.5 hold. Let k be any constant

that satisfies 0 < k ≤ k̃. Define the function µ(α, β) by

µ(α, β) = E

[
(y − vα− x′β)2α−2I[0 ≤ y ≤ k]w(x)

f ∗(v|x)

]
(2.19)

Then

(α0, β0) = arg min µ(α, β) (2.20)

and (α0, β0) are the only finite solutions to the first order conditions ∂µ(α, β)/∂α = 0 and

∂µ(α, β)/∂β = 0.

Proof of Theorem 2.2: Define h(y, x, v, e) in equation (2.13) by h(y, x, v, e) = (y −
vα − x′β)2α−2w(x)/f ∗(v|x). Equations (2.13) and (2.14) will be combined by defining H
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such that [∂H(ỹ, x, e)/∂ỹ] /f ∗(v|x) = h(ỹ, x, v, e). Specifically by equations (2.13), (2.19),

and v = (ỹ − x′β0 − ei)/α0 we obtain

µ(α, β) = E∗
[

[ỹ( 1
α
− 1

α0
) + x′( β0

α0
− β

α
) + e

α0
]2 I(0 ≤ ỹ ≤ k) w(x)

f ∗(v|x)

]
/prob(ỹ ≥ 0) (2.21)

Next apply Corollary 2.2, obtaining H(ỹ, x, e) by integrating h(ỹ, x, e)f ∗(v|x) and making

use of E∗[exw(x)] = 0 to get

µ(α, β)prob(ỹ ≥ 0) =
1

|α0|E
∗
[

k

∫
0
[ỹ(

1

α
− 1

α0

) + x′(
β0

α0

− β

α
) +

e

α0

]2 w(x)dỹ

]
(2.22)

=
k3E∗[w(x)]

3|α0| (
1

α
− 1

α0

)2 +
k2

|α0|(
1

α
− 1

α0

)E∗[w(x)x′](
β0

α0

− β

α
)

+
k

|α0|(
β0

α0

− β

α
)′E∗[w(x)xx′](

β0

α0

− β

α
) +

kE∗[w(x)e2]

|α0|α2
0

(2.23)

Minimizing this expression for µ(α, β) first over β gives the first order condition

(
β

α
− β0

α0

) =
k

2
(
1

α
− 1

α0

)E∗[w(x)xx′]−1E∗[w(x)x] (2.24)

which is linear in β and so has a unique solution. Call this solution β(α). The second order

condition

∂2µ(α, β)

∂β∂β′
=

2k

|α0|α2
E∗[w(x)xx′] (2.25)

is positive definite, so β(α) does indeed minimize µ(α, β) with respect to β. Substituting the

above first order condition into µ(α, β) gives,

µ[α, β(α)]prob(ỹ ≥ 0) =
k3

|α0|(
1

α
− 1

α0

)2

(
E∗[w(x)]

3
+

3

4
E∗[w(x)x′]E∗[w(x)xx′]−1E∗[w(x)x]

)

+
kE∗[w(x)e2]

|α0|α2
0

(2.26)

The first order condition for minimizing µ[α, β(α)] is

2k3

|α0|α2
(

1

α0

− 1

α
)

(
E∗[w(x)]

3
+

3

4
E∗[w(x)x′]E∗[w(x)xx′]−1E∗[w(x)x]

)
= 0 (2.27)

which has solutions α = ±∞ and α = α0. Now

µ(±∞, β) =
1

|α0|α2
0

(
k3E∗[w(x)]

3
+ k2E∗[w(x)x′]β0 + kβ′E∗[w(x)xx′]β0 + kE∗[w(x)e2]

)
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(2.28)

while β(α0) = β0 and

µ(α0, β0) =
kE∗[w(x)e2]

|α0|α2
0

≤ µ(±∞, β) (2.29)

Also the second order condition

d2µ[α0, β(α0)]

∂α2
=

2k3

|α0|α4
0

(
E∗[w(x)]

3
+

3

4
E∗[w(x)x′]E∗[w(x)xx′]−1E∗[w(x)x]

)
(2.30)

is positive, and hence α = α0 and β = β0 is both the only finite solution to the first order

conditions, and is the global minimizer of µ(α, β). ¥

Theorem 2.2 shows that α0 and β0 are identified, and can be estimated by a linear

weighted least squares regression of y∗ on x. The variable y∗ depends on the untruncated

population density f ∗(v|z), which we will estimate using a kernel density estimator

2.3 Endogenous Truncated Regression Model Identification

Now consider identification of the truncated regression model with endogenous or mismea-

sured regressors as well as heteroskedastic errors. Theorem 2.3 below describes instrumental

variables based identification of this model, where we assume E∗[ez] = 0 (i.e., the standard

assumption regarding instruments in two stage least squares regressions) and the underlying,

untruncated conditional independence

F ∗
ex(e, x|v, z) = F ∗

ex(e, x|z) (2.31)

ASSUMPTION A.1’: Assume the truncated data are draws v, x, z, e, y conditional on

ỹi ≥ 0 as described by equations (1.1) and (1.2) with α0 6= 0. The underlying, untruncated

conditional distribution of v given x is absolutely continuous with respect to a Lebesgue

measure with conditional density f ∗(v|z).

ASSUMPTION A.2’: Let Ω denote the underlying, untruncated support of the distri-

bution of an observation of (v, z). Let F ∗
e (e, x|v, z) denote the underlying, untruncated

conditional distribution of an observation of (e, x) given an observation of (v, z), with sup-

port denoted Ωex(v, z). Assume F ∗
ex(e, x|v, z) = F ∗

ex(e, x|z) and Ωex(v, z) = Ωex(z) for all

(v, z) ∈ Ω.
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ASSUMPTION A.3’: The underlying, untruncated conditional distribution of v given z

has support [L,K] for some constants L and K, −∞ ≤ L < K ≤ ∞.

ASSUMPTION A.4’: Same as Assumption A.4.

ASSUMPTION A.5’: E∗[ez] = 0, E∗[zz′] exists and is nonsingular, and the rank of

E∗[xz′] is J (the dimension of x).

Define Σxz, Σzz, ∆, and y∗ by Σxz = E∗[xz′], Σzz = E∗[zz′],

∆ = (ΣxzΣ
−1
zz Σ′

xz)
−1ΣxzΣ

−1
zz (2.32)

y∗ =
(y − vα0)I(0 ≤ y ≤ k)/f ∗(v|z)

E [I(0 ≤ y ≤ k)/f ∗(v|z)]
(2.33)

Theorem 2.3 Let Assumptions A.1’, A.2’, A.3’, A.4’ and A.5’ hold. Let k be any constant

that satisfies 0 < k ≤ k̃. Then E[zy∗] = E∗[zx′]β0 so

β0 = ∆E[zy∗] (2.34)

Proof of Theorem 2.3: Let H(ỹ, x, z, e) be any function that is differentiable in ỹ. If

Assumptions A.1’, A.2’, A.3’ and A.4’ hold then

E∗
[
∂H(ỹ, x, z, e)

∂ỹ

I(0 ≤ ỹ ≤ k)

f ∗(v|z)

]
= E∗

[
H(k, x, z, e)−H(0, x, z, e)

|α0|
]

(2.35)

provided these expectations exist. The proof follows the same steps as the proof of Corollary

2.2. Similarly, the analog to equation (2.13) is

E[h(y, x, v, z, e)I(0 ≤ y ≤ k)] =
E∗[h(ỹ, x, v, z, e)I(0 ≤ ỹ ≤ k)]

prob(ỹ ≥ 0)
(2.36)

and these two equations are combined by defining H such that [∂H(ỹ, x, z, e)/∂ỹ] /f ∗(v|z) =

h(ỹ, x, v, z, e).

Applying (2.35) and (2.36) with h(y, x, z, e) = 1/f ∗(v|z), which makes H(ỹ, x, z, e, θ) = ỹ,

gives

E[I(0 ≤ y ≤ k)/f ∗(v|z)] =
k

|α0|prob(ỹ ≥ 0)
(2.37)
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and applying (2.35) and (2.36) with h(y, x, z, e) = z(y − vα0)/f
∗(v|z) gives

E[z(y − vα0)I(0 ≤ y ≤ k)/f ∗(v|z)] =
E∗[z(ỹ − vα0)I(0 ≤ ỹ ≤ k)/f ∗(v|z)]

prob(ỹ ≥ 0)

=
E∗[z(x′β0 + e)I(0 ≤ ỹ ≤ k)/f ∗(v|z)]

prob(ỹ ≥ 0)

=
k[E∗[zx′]β + E∗[ze]]
|α0|prob(ỹ ≥ 0)

where the last equality applies (2.35) with H(ỹ, x, z, e, θ) = z(x′β0 + e)ỹ. With E∗[ze] = 0,

it follows that E∗[zy∗] = E∗[zx′]β0. ¥

We next provide an identification result for α0. Define η(k) by

η(k) =

(
2v I(0 ≤ y ≤ k)/f ∗(v|z)

E [I(0 ≤ y ≤ k)/f ∗(v|z)]

)
(2.38)

Corollary 2.3 Let Assumptions A.1’, A.2’, A.3’ A.4’ and A.5’ hold. Let k and k∗ be any

constants that satisfy 0 < k∗ < k ≤ k̃. Then

α0 =
k − k∗

η(k)− η(k∗)
(2.39)

Proof of Corollary 2.3:

E[vI(0 ≤ y ≤ k)/f ∗(v|z)] = E[α−1
0 (y − x′β − e)I(0 ≤ ỹ ≤ k)/f ∗(v|z)] (2.40)

=

(
k2

2α0|α0| −
kE∗[x′β − e]

α0|α0|
)

/prob(ỹ ≥ 0) (2.41)

where the second equality above applies (2.35) and (2.36) with h(y, x, v, z, e) = α−1
0 (y −

x′β − e)/f ∗(v|z) which implies H(ỹ, x, z, e) = α−1
0 [(ỹ2/2) − ỹ(x′β + e)]. Similarly, E[I(0 ≤

ỹ ≤ k)/f ∗(v|z)] is given by equation (2.37), so η(k) = (k/α0) − 2E∗[x′β − e], and equation

(2.39) follows immediately. ¥

Equation (2.34) in Theorem 2.3 shows that β0 is identified, and can be estimated by

an ordinary linear two stage least squares regression of y∗ on x, using instruments z. The

variable y∗ depends on f ∗(v|z), which we will estimate using a kernel density estimator, and
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it also depends on α0. Equation (2.39) can be used to construct an estimator for α0. A

disadvantage of equation (2.39) is that it requires choosing a constant k∗ in addition to k.

If the assumptions of Theorem 2.3 hold for z = x, then either the weighted least squares

estimator of theorem 2.2 or the two stage least squares estimator could be used, but in

that case the weighted least squares is likely to be preferable, in part because it does not

require this separate preliminary estimator for α0. Identification was achieved in one step in

the exogenous setting because the coefficient of the regressor vi (which equals the intercept

after dividing by vi) is obtained along with the other parameters by minimizing a least

squares based criterion, which is valid under exogeneity. In contrast, in the endogenous case,

identification of coefficients other than the coefficient of v are obtained by instrumenting. In

this case, the coefficient of vi cannot be obtained in the same way as the others, because we

must integrate over vi to obtain properly weighted instruments.

3 Estimation

In this section we provide descriptions and limiting distributions of the weighted and two

stage least squares estimators based on the identification results in the previous section.

3.1 Weighted Least Squares Estimation of the Heteroskedastic

Truncated Regression Model

Let u = u(x) be any vector of variables such that the conditional density of v given x

equals the conditional density of v given u, that is, f ∗(v|u) = f ∗(v|x), where no element of

u equals a deterministic function of other elements of u. This construction of u is employed

because f ∗(v|x) will be estimated as f̂ast(v|u) using a kernel density estimator. Also, if v is

known to be conditionally independent of some elements of x, then this construction allows

u to exclude those elements of x, thereby reducing the dimension of this conditional density

estimation. As mentioned previously, f ∗(v|x) and hence f ∗(v|u) refers to the underlying

population density before truncation, and consequently, its kernel density estimator requires

availability of an augmented data set on regressor observations (either regressor observations

for the truncated data, as in a censored regression data set, or data from another source such

as a census). As a result f̂ ∗(v|u) is estimated from the augmented data set, but is evaluated

at observations that are drawn from truncated data.

To deal with boundary bias issues or vanishing marginal densities that arise in kernel
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density estimation, we incorporate a “trimming” function into the estimator procedure. A

novelty of the asymptotic trimming we apply to address boundary bias is that it is based

directly on the distance of observation i to the boundary of the support (if known), or on the

distance to the nearest (element by element) extreme observation in the data. This trimming

permits root n convergence of a density weighted average over the entire support of the data.

The resulting estimator based on Theorem 2.2 is

(α̂, β̂) = arg min
1

n

n∑
i=1

τni
(yi − viα− x′iβ)2 α−2 I(0 ≤ yi ≤ k) w(xi)

f̂ ∗(vi|ui)
(3.1)

for some chosen scalar k, weighting function w(x), and trimming function τni ≡ τ(xi, n) ,

with properties that are detailed in the appendix. The n observations in equation (3.1) are

of truncated data, while the function f̂ ∗(v|u) is constructed from an augmented data set,

with sample size n∗. The resulting limiting distribution depends on the asymptotic relative

sample sizes of these data sets.

The function w(x) is chosen by the researcher and so may be selected to ensure that

the assumptions of theorem 2.2 are likely to hold in a particular application, e.g., taking

w(x) = 1 if economic theory suggests only that E∗[ex] = 0. Alternatively, if E∗[e|x] = 0,

then w(x) may be chosen to maximize an estimated measure of efficiency. Similarly, the

truncation point k may be chosen either by a sensible rule of thumb based on not discarding

much data, or more formally to maximize an efficiency measure. In our simulations we

simply take w(x) = 1 and set the right truncation point k to be the sample 75th percentile

of yi.

Closed form expressions for (α̂, β̂) can be obtained as follows. Let a = 1/α and b = −β/α.

Then (y−vα−x′β)2α−2I(0 ≤ y) = (v−ya−x′b)2I(0 ≤ y), so from equation (2.14) α̂ = 1/â

and β̂ = −b̂/â where

(â, b̂) = arg min
1

n

n∑
i=1

τni · (vi − yia− x′ib)
2 I(0 ≤ yi ≤ k) w(xi)

f̂ ∗(vi|ui)
(3.2)

and (3.2) is just a linear weighted least regression of v on y and x, using weights I(0 ≤
yi ≤ k)w(xi)/f̂

∗(vi|ui). Unlike an ordinary least squares regression, where weighting only

affects efficiency, in equation (3.1) or (3.2) the weights are functions of the regressand and

are required for consistency.

The following theorem characterizes the limiting distribution of this estimator. Asymp-

totic theory corresponds to the primary (i.e. truncated) data set, with sample size n going
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to infinity. To allow for an augmented data set to be used for density estimation, with n∗

denoting its sample size, we let cp = limn→∞ n
n∗ , with 0 ≤ cp < ∞.

The conditions upon which the theorem is based, as well as its proof, can be found in

the appendix.

Theorem 3.1 Define the (J + 1)× (J + 1) matrix Q as:

Q =

[
α2

0 01×J

α0β0 α0IJ×J

]
(3.3)

where 01×J refers to a (1×J) vector of 0’s and IJ×J refers to a (J ×J) identity matrix, and

define the (J + 1)× (J + 1) matrix H0 as

H0 =
k

|α0|

[
E[w(xi)]

k2

3
E[w(xi)x

′
i]

k
2

E[w(xi)xi]
k
2

E[w(xi)xix
′
i]

]
(3.4)

Also, define the (J + 1)× 1 vector ~i ≡ (~1i, ~′2i)
′ as:

~1i = I[0 ≤ yi ≤ k]w(xi)α
−1
0 yi(vi − yi − x′iβ0) (3.5)

~2i = I[0 ≤ yi ≤ k]w(xi)α
−1
0 xi(vi − yi − x′iβ0) (3.6)

Let f(xi) denote the density function of X from the truncated sample evaluated at xi. Simi-

larly, let f(vi, xi) denote the joint density function of V,X from the truncated sample evalu-

ated at vi, xi. Let rxi = f(xi)
f∗(xi)

denote the ratio of the density functions of X from the truncated

sample over the density function of X from the underlying (untruncated) sample, evaluated

at draws from the truncated sample, xi. Furthermore, let rvxi = f(vi,xi)
f∗(vi,xi)

denote the analogous

ratio (truncated over underlying) of joint density functions of X,V . Furthermore, we let

ϕa(·) = E[
rxi~i

fi

|xi = ·]

ϕb(·, ·) = E[
rvxi~i

fi

|vi = ·, xi = ·].

where fi is shorthand notation for f ∗(vi|ui). Define the “score” vector

δi =
~i

fi

− cp(ϕb(v
∗
i , x

∗
i )− ϕa(x

∗
i )) (3.7)

Note that δi depends on values drawn from both the truncated and untruncated distributions.

Finally, set Ω = Ẽ[δiδ
′
i], where the operator Ẽ[·] denotes that the expectation is taken over

both the truncated and underlying distributions. Then:

√
n(θ̂ − θ0) ⇒ N(0,QH−1

0 ΩH−1
0 Q′) (3.8)
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The last two terms in the definition of δi correspond to the correction term for replacing

the true conditional density function with its estimator. If an augmented data set is used to

estimate this density function and is sufficiently large with respect to the primary data set,

then cp = 0 and this correction term in δi disappears asymptotically, so in that case one can

treat the density function as known.

3.2 Two Stage Least Squares Estimation of the Endogenous Trun-

cated Regression Model

Equations (2.34) and (2.39) suggest natural estimators for α0, β0. Let τni denote a trimming

function as before. Let f ∗i and f̂ ∗i denote f ∗(vi|zi) and f̂ ∗(vi|zi), respectively, the latter

being a kernel estimator of the underlying conditional density function, using the augmented

sample, evaluated at observations in the truncated sample. Define µ0(k) ≡ E
[

I[0≤yi≤k]
fi

]
, and

its estimator

µ̂(k) =
1

n

n∑
i=1

τni
I[0 ≤ yi ≤ k]

f̂ ∗i
(3.9)

and define our estimator of η(k) from equation (2.38) as

η̂(k) = µ̂(k)−1 1

n

n∑
i=1

τni
2viI[0 ≤ yi ≤ k]

f̂ ∗i
(3.10)

Then our estimator of α0 is

α̂ =
k − k∗

η̂(k)− η̂(k∗)
(3.11)

The following theorem characterizes the limiting distribution of this estimator. The condi-

tions under which it holds, as well as its proof, are left to the appendix:

Theorem 3.2 The estimator α̂ is root-n consistent and asymptotically normal. Specifically,

we have

√
n(α̂− α0) ⇒ N(0, Ẽ[ψ2

αi]) (3.12)

where

ψαi =
α0

η(k)− η(k∗)
(η(k)µ0(k)−2ψµi(k) + µ0(k)−1ψηi(k))

− α0

η(k)− η(k∗)
(η(k∗)µ0(k

∗)−2ψµi(k
∗) + µ0(k

∗)−1ψηi(k
∗)) (3.13)
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and

ψµi(k) =
I[0 ≤ yi ≤ k]

fi

− µ0 − cp(ϕµb(v
∗
i , z

∗
i )− ϕµa(z

∗
i )) (3.14)

and

ψηi(k) =
viI[0 ≤ yi ≤ k]

fi

− η(k)− cp(ϕηb(v
∗
i , z

∗
i )− ϕηa(z

∗
i )) (3.15)

where

ϕµb(·, ·) = E

[
rvzi

I[0 ≤ yi ≤ k]

fi

∣∣∣∣vi = ·, zi = ·
]

ϕµa(·) = E

[
rzi

I[0 ≤ yi ≤ k]

fi

∣∣∣∣zi = ·
]

and

ϕηb(·, ·) = E

[
rvzi

viI[0 ≤ yi ≤ k]

fi

∣∣∣∣vi = ·, zi = ·
]

ϕηa(·) = E

[
rzi

viI[0 ≤ yi ≤ k]

fi

∣∣∣∣zi = ·
]

with, analogous to the notation we adopted before, rzi, rvzi denoting ratios of density functions

for truncated and underlying distributions.

To estimate β0 we define the estimator of ∆ by

∆̂ =




(
1

n∗

n∗∑
i=1

x∗i z
∗′
i

)(
1

n∗

n∗∑
i=1

z∗i z
∗′
i

)−1 (
1

n∗

n∗∑
i=1

z∗i x
∗′
i

)

−1 (

1

n∗

n∗∑
i=1

x∗i z
∗′
i

)(
1

n∗

n∗∑
i=1

z∗i z
∗′
i

)−1

(3.16)

Note that ∆̂ is, like f̂ ∗, estimated from the augmented data set, that is, from a sample drawn

from the untruncated population of the regressors and instruments. Define the estimator of

y∗i by

ŷ∗i = µ̂−1 (yi − viα̂)I[0 ≤ yi ≤ k]

f̂ ∗i
(3.17)

Then our proposed estimator of β0 is

β̂ = ∆̂
1

n

n∑
i=1

τniziŷ
∗
i (3.18)

The following theorem characterizes the limiting distribution of our proposed instrumental

variables estimator. The conditions on which it holds, as well as its proof, are left to the

appendix:
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Theorem 3.3 Define the following mean zero vectors:

ψβ1i = −
(

µ−2
0

k

α0

E∗[zx′]β0

)
· ψµi (3.19)

ψβ2i = −
(

1

2α2
0

(k2E∗[z]− kE∗[zx′]β0

)
· µ−1

0 · ψαi (3.20)

ψβ3i =
µ−1

0 zi(yi − viα0)I[0 ≤ yi ≤ k]

fi

− zix
′
iβ0 − cp(ϕβb(v

∗
i , z

∗
i )− ϕβa(z

∗
i )) (3.21)

where

ϕβb(·, ·) = E

[
rvzi

µ−1
0 zi(yi − viα0)I[0 ≤ yi ≤ k]

fi

∣∣∣∣vi = ·, zi = ·
]

ϕβa(·) = E

[
rzi

µ−1
0 zi(yi − viα0)I[0 ≤ yi ≤ k]

fi

∣∣∣∣zi = ·
]

and let

ψβi = ψβ1i + ψβ2i + ψβ3i (3.22)

and

Ωβ = Ẽ
[
ψβiψ

′
βi

]
(3.23)

Then we have

√
n(β̂ − β0) ⇒ N(0, ∆ · Ωβ ·∆′) (3.24)

Corollary 3.1 It immediately follows from the proofs of Theorems 3.2 and 3.3 that the

limiting distribution of θ̂ = (α̂, β̂′)′ is:

√
n(θ̂ − θ0) ⇒ N(0, Ẽ[ψiψ

′
i]) (3.25)

where

ψi = (ψαi, (∆ψβi)
′)′ (3.26)
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4 Monte Carlo Results

In this section, the finite sample properties of the estimators proposed in this paper are

examined by a small simulation study. The performance of our estimators are compared to

existing parametric and semiparametric estimators. The study was performed in GAUSS.

Simulation results for the weighted least squares (WLS) estimator, both with the regressor

density known, and with the density estimated from an augmented data set, are reported in

Tables 1-3. We simulated data from the following model:

ỹi = 1 + vi + 0.5 ∗ xi + σ(xi)ei (4.1)

yi = ỹi|ỹi ≥ 0. (4.2)

The random variables xi, vi were distributed bivariate normal, with correlation of 0.25, and

marginals with mean zero and standard deviation of 0.25. The error term ei was distributed

independently of vi, xi, either standard normal truncated at -2 and 2, or chi-squared with

one degree of freedom, censored at 4, minus its mean. For homoskedastic designs the scale

function σ(xi) was set to 1, and for heteroskedastic designs the scale function was set to

exp(0.5 ∗ xi).

To simulate the model we first generated a censored data set sequentially until the desired

sample size n for the truncated data set was achieved. For the proposed estimator with

estimated density function (AWLS in the tables), we estimate the density function from

exogeneous variables in the censored data set using kernel methods with a bandwidth of order

n∗−1/5 to estimate the joint density of vi, xi, and a bandwidth of order n∗−1/4 for estimating

the marginal density of xi, n∗ denoting the number of observations in the censored data set.

Silverman’s (1986) rule of thumb was used to calculate the constant, and an Epanechnikov

kernel function was used. We set the right truncation point k to be the sample 75th percentile

of yi.

For comparison, results are also reported for the symmetrically trimmed least squares

(STLS) estimator in Powell (1986), the pairwise difference (PWD) estimator in Honoré

and Powell (1994) (this estimator can only identify the slope coefficient so no results are

reported for its intercept term), and the maximum likelihood estimator (MLE) assuming

a homoskedastic normal distribution. The PWD and STLS were computed using linear

programming and iterative least squared methods, respectively. The MLE was computed

using the BFGS algorithm. The summary statistics reported are mean bias, median bias,

root-mean squared error (RMSE), and mean absolute deviation (MAD). Sample sizes of 100,
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200, 400, and 800 were simulated with 801 replications.

As the results in Table 1-3 indicate, the proposed WLS estimator performed moderately

well at all sample sizes in both the homoskedastic and heteroskedastic designs. The AWLS

performs worse for the intercept term, reflecting perhaps the method of bandwidth selection.

The MLE performs poorly for all designs, due to distributional misspecification and/or

heteroskedasticity. The STLS poorly estimates the intercept with the chi-squared errors,

and PWD performs poorly in the heteroskedastic designs.

Table 4 reports results for the instrumental variables two stage least squares (2SLS)

estimator. Here we simulated data from the following model:

ỹi = 1 + vi + 0.5 ∗ xi + ei (4.3)

yi = ỹi|ỹi ≥ 0 (4.4)

To incorporate endogeneity, we simulated a binary variable di which took the value 1

with probability 1/2 and 0 otherwise. When di was 1, the error term ei was equal to xi, and

when di was 0, the error term was drawn from the truncated normal distribution mentioned

previously. The instrument zi was independently distributed as uniform between -1 and 1

when di was one, and equal to xi when di was 0.

Here again we first simulated a censored data set for which the density functions could be

estimated, and then truncated the data. For implementing the proposed 2SLS procedure, we

used the same kernel function and bandwidth selection procedure as in the heteroskedastic

designs. The constants k and k∗ needed for this procedure were chosen to be the 25th and

75th percentiles of the dependent variable.

Results using this endogenous model are reported in Table 4 for our 2SLS estimator, and

for the STLS, PWD, and MLE estimators. As Tables 4 indicates, only the 2SLS performs

at an acceptable level when the regressor is endogenous. The other estimators, which are

inconsistent when the regressors are endogenous, perform very poorly, with biases as high

as 50%, and not decreasing with the sample size.

Overall, the results of our simulation study indicate that the estimators introduced in this

paper perform well in moderately sized samples. The results for the endogenous regressor

design are especially encouraging when compared to other estimation procedures.
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5 Conclusions

This paper proposes new estimators for truncated regression models. The estimators are

“distribution free”, and are robust to general forms of conditional heteroskedasticity, as well

as general forms of measurement error and endogeneity. The proposed estimators converge

at the parametric rate and have a limiting normal distribution.

Our limiting distribution theory employs a new variant of asymptotic trimming to deal

with boundary bias issues. This is demonstrated for estimation of density weighted averages,

but should be usefully applicable in general contexts involving two step ’plug-in’ estimators

with a nonparametric first step.

We have focused on estimation of coefficients, but the proposed methodology may also

be useful in recovering other information regarding the distribution of the latent ỹ. For

example, given our estimate of α0, equation (2.37) could be used to obtain an estimate of

prob(ỹ ≥ 0), that is, the probability of truncation.

The results in this paper suggest areas for future research. For example, the semipara-

metric efficiency bound of the models considered needs to be derived under the exclusion

restriction we imposed, so that the relative efficiency of our estimators can be computed.

Magnac and Maurin (2003) compute the bound for a binary choice model under similar

identifying assumptions, and Jacho-Chavez (2005) finds the bound for other similar den-

sity weighted estimators. Both find that such estimators are generally semiparametrically

efficient.

It would also be interesting to see if other semiparametric truncated and limited depen-

dent variable model estimators could be constructed given our assumed augmented regressor

data. In parametric model estimators such as maximum likelihood, such data only affect the

efficiency of the resulting estimates, but semiparametric estimators can depend profoundly

on the distribution of regressors (rather than simply conditioning on the observed values).

Application of the exclusion restriction we impose to other limited dependent variable

models would also be worth exploring.
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Appendix

The appendix first develops regularity conditions for a general density weighted closed

form estimator, and then applies the results to the weighted and two-stage least squares

estimators introduced in this paper. Throughout this section ‖ ·‖ will denote the Euclidean

norm, i.e. for a matrix A with components {aij}, ‖A‖ = (
∑

i,j a2
ij)

1/2. ‖ · ‖∞ will denote

the sup norm over the regressor support: e.g. ‖I[τn(x) > 0](f̂ ∗ − f ∗)‖∞ = supx I[τn(x) >

0]|f̂ ∗(x)− f ∗(x)|.

A Theorem for Density Weighted Estimators

In this section, we establish the asymptotic properties of a general density weighted esti-

mator. The estimator is defined as a function of the data, a preliminary root-n consistent

estimator of a finite dimensional nuisance parameter (denoted by κ0), and a preliminary

estimator of the underlying conditional density function using kernel estimation. Here, we

let Ξ0 ∈ Rk denote the parameter of interest in the general setting, defined here as

Ξ0 = E

[
~i

f ∗i

]
(A.1)

with ~i, f
∗
i denoting ~(yi, vi, xi, zi, κ0) and f ∗(vi|zi) respectively. For any other possible value

of the nuisance parameter, κ, we will let ~i(κ) denote ~(yi, vi, xi, zi, κ). We define the esti-

mator as a sample analog to the above equation:

Ξ̂ =
1

n

n∑
i=1

τni
~̂i

f̂ ∗i
(A.2)

with ~̂i, f̂
∗
i denoting ~i(κ̂) and f̂ ∗(vi|zi) respectively; τni denotes the trimming function as

before, and κ̂ denotes an estimator of κ0.

We will assume throughout this section that κ̂ has an asymptotically linear representation.

Letting the random variables yi, vi, and the random vectors zi, xi be as defined previously,

we express the representation as:

κ̂− κ0 =
1

n

n∑
i=1

ψi + op(n
−1/2) (A.3)

where ψi denotes ψ(yi, xi, vi, zi) and satisfies E[ψi] = 0 and E[‖ψi‖2] < ∞. The estimator

of the parameter of interest also involves an estimator of the underlying conditional density

function f ∗(vi|zi). We assume that a kernel estimator is used to estimate this function,
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and denote the estimator by f̂ ∗(vi|zi). To define this estimator, we first assume that the

vector zi can be partitioned as zi = (z
(c)
i , z

(d)
i ), where z

(c)
i ∈ RZc is continuously distributed,

and z
(d)
i ∈ RZd is discretely distributed. As alluded to in the paper, for identification in

the truncated regression model we assume either the population density of the regressors

(without truncation) is either known or can be estimated from an alternative or augmented

data set. In the latter case, to avoid notational confusion we will distinguish observations

from this data set by the superscript ∗, and let n∗ denote the number of observations for

this data set. Regarding relative sample sizes, we will assume limn→∞ n/n∗ = cp ∈ [0,∞).

Furthermore, as the two regressor density functions may be different, we will let rzi, rvzi

denote f(zi)
f∗(zi)

, f(vi,zi)
f∗(vi,zi)

, respectively.

We define the kernel estimator as:

f̂ ∗(vi|zi) =

1

n∗hZc+1
n

∑n∗
j=1 I[z

(d)
i = z

∗(d)
j ]K1

(
z
∗(c)
j −z

(c)
i

hn

)
K2

(
v∗j−vi

hn

)

1

n∗hZc
n

∑n∗
j=1 I[z

(d)
i = z

∗(d)
j ]K1

(
z
∗(c)
j −z

(c)
i

hn

) (A.4)

Where K1 and K2 are “kernel” functions, and hn is a bandwidth sequence. Properties of

K1, K2 and hn will be detailed in assumptions needed for the main theorems.

Our theorem for the asymptotic properties of Ξ̂ are based on an i.i.d. assumption on the

sequences of vectors (yi, vi, x
′
i, z

′
i)
′ and (v∗i , x

∗′
i , z∗

′
i )′, and the following Assumptions:

C1 ~i(κ) is continuously differentiable for κ ∈ A, a neighborhood of κ0.

C2 E
[
supκ∈A

∥∥∥~i(κ)
f∗i

∥∥∥
]

< ∞

C3 The function E
[
~i(κ)
f∗i

]
is continuous at κ0.

C4 With ∇κ denoting the partial derivative with respect to the nuisance parameter, let

Mκ denote E
[
∇κ

~i(κ0)
f∗i

]
, and let δni denote the vector

Mκψi + τni
~i

f ∗i
− E

[
τni
~i

f ∗i

]
− cpϕnb(v

∗
i , z

∗
i ) + cpϕna(z

∗
i ) (A.5)

where

ϕnb(·, ·) = E

[
τnirvzi

~i

f ∗i

∣∣∣∣vi = ·, zi = ·
]

(A.6)

ϕna(·) = E

[
τnirzi

~i

f ∗i

∣∣∣∣zi = ·
]

(A.7)
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and let δi denote the mean 0 vector

Mκψi +
~i

f ∗i
− Ξ0 − cpϕb(v

∗
i , z

∗
i ) + cpϕa(z

∗
i ) (A.8)

where

ϕb(·, ·) = E

[
rvzi

~i

f ∗i

∣∣∣∣vi = ·, zi = ·
]

(A.9)

ϕa(·) = E

[
rzi
~i

f ∗i

∣∣∣∣zi = ·
]

(A.10)

then we assume that

C4.1 Ẽ [‖δni‖2] < ∞ uniformly in n ∈ N.

C4.2 1
n

∑n
i=1 δi − δni = op(n

−1/2)

C5 We let Z = Zc × Zd denote the support of zi, which we assume to be the same for the

truncated and untruncated populations. We assume the support set Zc is an open,

convex subset of RZc and assume the support of vi, denoted by V is an open interval

in R. Let f ∗(v, z(c)|z(d)) denote the (population untruncated) conditional (Lebesgue)

density of vi, z
(c)
i given z

(d)
i , and let f ∗(z(d)) denote the probability mass function of

z
(d)
i . Furthermore, let f ∗(v, z) denote f ∗(v, z(c)|z(d)) · f ∗(z(d)). Then we assume:

C5.1 f ∗(v, z(c)|z(d)), considered as a function of v, z(c), is p times continuously differ-

entiable, with bounded pth derivatives on V × Z.

C5.2 There exists a constant µ0 > 0 such that for all zi ∈ Z, f ∗(z(d)
i ) 6∈ (0, µ0).

C6 The kernel functions K1(·), K2(·) satisfy the following properties:

C6.1 They are each the product of a common univariate function which integrates to

1, has support [−1, 1], and is assumed to be p times continuously differentiable.

C6.2 For two vectors of the same dimension, u, l, we let ul denote the product of

each of the components of u raised to the corresponding component of l. Also,

for a vector l which has all integer components, we let s(l) denote the sum of its

components. The kernel functions are assumed to have the following property:
∫

Kj(u)uldu = 0 j = 1, 2 l ∈ N, 1 ≤ s(l) < p (A.11)
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C7 The functions

ϕna(z) (A.12)

and

ϕnb(v, z) (A.13)

are p times differentiable with bounded pth derivatives, in z(c) and z(c), v respectively,

for all values of z(d) and all n ∈ N.

C8 The trimming function satisfies the following properties:

C8.1 τni is a function of vi, zi and n only, and 0 ≤ τni ≤ 1 for all n ∈ N.

C8.2 For each vi, zi ∈ V × Z, τni → 1 as n →∞.

C8.3 For all δ > 0, supvi,zi∈V×Z τni/f
∗
i = o(nδ), and supvi,zi∈V×Z τni/f

∗
vzi = o(nδ),

where f ∗vzi denotes f ∗(vi, zi).

We now state the theorem for the density weighted closed form estimator:

Theorem A.1 Suppose Assumptions C1-C8 hold and the bandwidth hn satisfies
√

n∗hp
n → 0,

and

n∗1/2+δ/(n∗h2Zc
n ) → 0 for some arbitrarily small δ > 0, then

√
n(Ξ̂− Ξ0) ⇒ N(0, Ω) (A.14)

where Ω = Ẽ[δiδ
′
i].

Remark A.1 Before proceeding to the proof of the theorem, which characterizes the limiting

distribution of the density weighted estimator, we remark on the regularity conditions im-

posed. Many of these assumptions (e.g. smoothness, moment conditions) are standard when

compared to assumptions imposed for existing semiparametric estimators. However, some of

our assumptions regarding the trimming function τni have particular features which warrant

comment.

1. Assumption C8 implicitly makes assumptions regarding where and how quickly the den-

sities f ∗i ,f ∗vzi approach 0, as was assumed in Sherman(1994). Sherman(1994) provides

concrete examples where C8 will be satisfied.
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2. Assumption C4 ensures that the bias induced by the trimming function decreases to

zero faster than the parametric rate. For the estimators proposed in this paper, this

assumption imposes conditions on the tail behavior of ei, vi, zi, and can be satisfied in a

variety of cases. For example, if the error term ei has bounded support, the condition is

satisfied if vi (strictly) contains the support of ei. The assumption can also be satisfied

when ei has an unbounded support, if the support of vi has sufficiently “heavier” tails.

Remark A.2 As an alternative to the trimming conditions in C8, which has the drawback

of requiring that the researcher know where and how quickly regressor densities go to 0, we

propose the following data dependent trimming procedure. This procedure only applies to

situations where the regressors which have a bounded, “rectangular” support, as opposed to

the support assumptions stated at the beginning of Assumption C5. Here we assume z
(c)
i , vi

have compact support that is independent of z
(d)
i .

Specifically, we let zmx denote the Zc−dimensional vector of the maxima in the supports

of each of the Zc components of z
(c)
i and zmn denote the vector of minima. Let vmx, vmn

denote the maximum and minimum of vi.

We assume a ”rectangular support” of z
(c)
i , vi, providing an alternative condition to C5:

C5’ f ∗(v, z(c)|z(d)) > 0 ∀z(d) ∈ Zd, (z(c), v) ∈ [z
[1]
mn, z

[1]
mx] × [z

[2]
mn, z

[2]
mx] × ...[z

[Zc]
mn , z

[Zc]
mx ] ×

[vmn, vmx] where superscripts [·] denote components of a vector. Furthermore, the

smoothness condition in C5.1 is satisfied on the interior of the rectangular support

of z
(c)
i , vi.

Also, before imposing the trimming conditions for these support conditions we slightly

modify the smoothness conditions in C7 to account for the rectangular support assumption

C7’ The functions

ϕna(z) (A.15)

and

ϕnb(v, z) (A.16)

are p times differentiable with bounded pth derivatives on the interior of the (rectangu-

lar) support of z
(c)
i , vi.
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Turning to the trimming procedure, one form of the infeasible trimming function is the

product of Zc + 1 indicator functions:

τn(vi, zi) = I[vi ∈ [vmn + hn, vmx − hn]] · I[z
[1]
i ∈ [z[1]

mn + hn, z[1]
mx − hn]

· I[z
[2]
i ∈ [z[2]

mn + hn, z
[2]
mx − hn]] · ...I[z

[Zc]
i ∈ [z[Zc]

mn + hn, z[Zc]
mx − hn]] (A.17)

Note this trimming procedure trims away observations near the boundary of the support,

where the bias of the kernel estimator may be of a higher order than for interior points.

To define the feasible, data-dependent trimming function, let zm̂x denote the Zc vector

obtained by taking the maximum of each of the components of z
(c)
i from a sample of n ob-

servations. Let zm̂n denote the vector of sample minima, and analogously denote sample

minima and maxima for vi as vm̂n, vm̂x respectively. The feasible trimming function is

C8’ τ̂n(vi, zi) = I[vi ∈ [vm̂n + hn, vi ∈ vm̂x − hn]] · I[z
[1]
i ∈ [z

[1]
m̂n + hn, z

[1]
m̂x − hn]]

· I[z
[2]
i ∈ [z

[2]
m̂n + hn, z

[2]
m̂x − hn]] · ...I[z

[Zc]
i ∈ [z

[Zc]
m̂n + hn, z

[Zc]
m̂x − hn]](A.18)

We now show that for our purposes, the feasible data dependent trimming function is

asymptotically equivalent to the infeasible trimming function in density estimation, and so

we can work with the latter in later proofs.

Lemma A.1

1

n

n∑
i=1

(τ̂n(vi, zi)− τn(vi, zi)) = op(n
−1/2) (A.19)

Proof: Let An denote 1
n

∑n
i=1 τn(vi, zi)− τ̂n(vi, zi), and for an arbitrarily small δ > 0, let Bn

denote the event

|vm̂x − vmx| < n−(1/2+δ), |vm̂n − vmn| < n−(1/2+δ),

|z[j]
m̂x − z[j]

mx| < n−(1/2+δ), |z[j]
m̂n − z[j]

mn| < n−(1/2+δ) j = 1, 2, ...Zc (A.20)

We have for some arbitrarily small ε > 0,

P (n1/2|An| > ε) ≤ P (n1/2|An| > ε, Bn) + P (Bc
n) (A.21)
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where Bc
n denotes the complement of the event Bn. We note that

P (Bc
n) ≤ P (|vm̂x − vmx| ≥ n−(1/2+δ)) + P (|vm̂n − vmn| ≥ n−(1/2+δ))

+
Zc∑
j=1

P (|z[j]
m̂x − z[j]

mx| ≥ n−(1/2+δ)) + P (|z[j]
m̂n − z[j]

mn| ≥ n−(1/2+δ)) (A.22)

and the right hand side goes to 0 by the well known n-rate of convergence of the extreme

estimators under the compact support conditions. Also, we note that

P (n1/2|An| > ε, Bn) ≤ P (Cn > ε) (A.23)

where

Cn =
1√
n

n∑
i=1

(
I[vi ∈ [vmx − hn − n−(1/2+δ), vmx − hn]] + I[vi ∈ [vmn + hn − n−(1/2+δ), vmn + hn]]

+
Zc∑
j=1

I[z
[j]
i ∈ [z[j]

mx − hn − n−(1/2+δ), z[j]
mx − hn]]

+ I[z
[j]
i ∈ [z[j]

mn + hn − n−(1/2+δ), z[j]
mn + hn]] > 0]

)
(A.24)

We note that by the assumption that vi, z
(c)
i has positive density everywhere on the rectangle,

E[Cn] = o(1) and Var(Cn) = o(1), so P (Cn > ε) → 0, establishing the desired result. ¥

We now prove the theorem for the density weighted closed form estimator. The proof

applies to either of the two trimming assumptions, and their corresponding support assump-

tions. For clarity of exposition, we focus on the first set of assumptions, and simply note

that Assumptions C5’,C7’, and C8’ could be used whenever C5,C7, and C8 are referred to

in the proof.

Proof: We work with the relationship:

Ξ̂− Ξ0 =
1

n

n∑
i=1

τni

(
~̂i

f̂ ∗i
− ~i

f ∗i

)
(A.25)

+
1

n

n∑
i=1

(
τni
~i

f ∗i
− E

[
τni
~i

f ∗i

])
(A.26)

+ E

[
τni
~i

f ∗i

]
− Ξ0 (A.27)
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We note that the last term is o(n−1/2) by Assumption C4.2. We first focus attention on the

first term. The difference in ratios can be linearized, yielding the terms:

1

n

n∑
i=1

τni
~̂i − ~i

f ∗i
+ (A.28)

1

n

n∑
i=1

τni~̂i(
1

f̂ ∗i
− 1

f ∗i
) + Rn (A.29)

The remainder term is of order 1
n

∑n
i=1 τni(~̂i−~i)(f̂

∗
i − f ∗i ) and is op(n

−1/2) by Assumptions

C1,C5,C6,C7 and the conditions on hn, (which imply the fourth root consistency with respect

to ‖ · ‖∞ of the kernel density estimator- see, e.g. Newey and McFadden(1994), Lemma 8.10

for the support and trimming conditions C5’,C8’, or Sherman(1994), Corollary 5A, for the

conditions C5,C8). We derive a linear representation for (A.28). A mean value expansion of

~̂i around ~i implies we can express (A.28) as:

(
1

n

n∑
i=1

τni
~∗κi

f ∗i

)
(κ̂− κ0) (A.30)

where ~κi denotes ∇κ~(yi, vi, xi, zi, κ
∗), with κ∗ denoting an intermediate value. By As-

sumptions C1, C2, C3, and the root-n consistency of κ̂, we can express
(

1
n

∑n
i=1 τni

~∗κi

f∗i

)
as

Mκ + op(1). It thus follows by (A.3) that (A.28) has the following linear representation:

1

n

n∑
i=1

Mκψi + op(n
−1/2) (A.31)

Turning attention to (A.29), we again first replace ~̂i with ~i. By the root-n consistency of

κ̂ and the uniform consistency of the kernel density estimator (see either Newey and McFad-

den(1994) for the bounded support case, or Sherman(1994) for the support and trimming

conditions in C5,C8), the resulting remainder term is op(n
−1/2). We next establish a linear

representation for (A.29) with ~i replacing ~̂i. As the steps are more involved, we state this

as a separate lemma.

Lemma A.2 Under Assumptions C5-C8, if the bandwidth hn satisfies
√

n∗hp
n → 0, and

n∗1/2+δ/(n∗hZc
n ) → 0 for some arbitrarily small δ > 0, then

1

n

n∑
i=1

τni~i

(
1

f̂ ∗i
− 1

f ∗i

)
=

cp

n

n∑
i=1

ϕna(z
∗
i )− ϕnb(v

∗
i , z

∗
i ) + op(n

−1/2)
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Proof: We again work with the identity

1

f̂ ∗i
− 1

f ∗i
=

f̂ ∗zi − f ∗zi

f ∗vzi

(A.32)

− f ∗zi(f̂
∗
vzi − f ∗vzi)

(f ∗vzi)
2

(A.33)

− (f̂ ∗zi − f ∗zi)(f̂
∗
vzi − f ∗vzi)

f ∗vzif̂
∗
vzi

(A.34)

+
f ∗zi(f̂

∗
vzi − f ∗vzi)

2

f̂ ∗vzi(f
∗
vzi)

2
(A.35)

where f ∗zi denotes the true (population) conditional density function of the continuous com-

ponents of the instrument vector times the probability function of the discrete components,

and f̂ ∗zi denotes estimated values. By Assumption C5,C6, and the conditions on the band-

width, by Lemma 8.10 in Newey and McFadden(1994) for the bounded support case, or

Sherman(1994) for the unbounded support case, we have ‖f̂ ∗zi− f ∗zi‖∞ and ‖f̂ ∗vzi− f ∗vzi‖∞ are

both op(n
∗−1/4). It will thus suffice to derive representations for

1

n

n∑
i=1

τni~i
f̂ ∗zi − f ∗zi

f ∗vzi

(A.36)

and

1

n

n∑
i=1

τni~i
f ∗zi(f̂

∗
vzi − f ∗vzi)

(f ∗vzi)
2

(A.37)

Turning attention to the first of the above terms, we let f̄ ∗zi denote the expected value of the

kernel estimator f̂ ∗zi and work with the decomposition

1

n

n∑
i=1

τni~i
f̂ ∗zi − f̄ ∗zi

f ∗vzi

(A.38)

+
1

n

n∑
i=1

τni~i
f̄ ∗zi − f ∗zi

f ∗vzi

(A.39)

We note that by the definition of f̂ ∗zi, (A.38) can be expressed as :

1

n∗ · n
n∑

i=1

n∗∑
j=1

τni~i

h−Zc
n K1

(
z
∗(c)
j −z

(c)
i

hn

)
I[z

∗(d)
j = z

(d)
i ]− f̄ ∗zi

f ∗vzi

(A.40)
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To write this in U−statistic form, we will multiply the terms in the double summation by

the sequence of numbers vni = I[i ≤ n]. Therefore, the above equation can be expressed as:

1

n∗ · n∗
n∗∑
i=1

n∗∑
j=1

τnivni~i

h−Zc
n K1

(
z
∗(c)
j −z

(c)
i

hn

)
I[z

∗(d)
j = z

(d)
i ]− f̄ ∗zi

f ∗vzi

(A.41)

We apply a projection theorem (see, e.g Powell et al.(1989), for example) to derive a

linear representation. Let ζ denote the vector corresponding to observed data, either from

the primary or augmented data set, and let χn∗(ζi, ζ
∗
j ) denote the term inside the double

summation. We first note that Ẽ
[∥∥χn∗(ζi, ζ

∗
j )

∥∥2
]

= O(h−Zc
n ) which is o(n∗) by the conditions

on hn. We also note that E∗
[

χn∗(ζi, ζ
∗
j )

∣∣∣ζi

]
= 0. It follows by Lemma 3.1 in Powell et

al.(1989) that it will suffice to derive a representation for E
[

χn∗(ζi, ζ
∗
j )

∣∣∣ζ∗j
]
. We first show

that

1

n∗

n∗∑
j=1

E


τnivni~i

K1

(
z
∗(c)
j −z

(c)
i

hn

)
I[z

∗(d)
j = z

(d)
i ]

hZc
n f ∗vzi

∣∣∣∣z∗j




=
1

n∗

n∗∑
j=1

E

[
τnivnirzi

~i

f ∗i

∣∣∣z∗j
]

+ op(n
∗−1/2) (A.42)

=
n

n∗
1

n

n∑
j=1

E

[
τnirzi

~i

f ∗i

∣∣∣z∗j
]

+ op(n
−1/2) (A.43)

To show (A.42), it will be notationally convenient to let ϕnna(·) denote E
[
τnivnirzi

~i

f∗i
|zi = ·

]
.

We note that

E


τnivni~i

K1

(
z
∗(c)
j −z

(c)
i

hn

)
I[z

∗(d)
j = z

(d)
i ]

hZc
n f ∗vzi

∣∣∣∣z∗j




can be written as

1

hZc
n

∫
ϕnna(z

(c)
i , z

∗(d)
j )K1

(
z
∗(c)
j − z

(c)
i

hn

)
dz

(c)
i

A change of variables u =
z
∗(c)
j −z

(c)
i

hn
yields the following integral:

∫
ϕnna(z

∗(c)
j − uhn, z

∗(d)
j )K1 (u) du (A.44)
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By Assumptions C5,C6,C7 a pth order Taylor series expansion of ϕnna(z
∗(c)
j − uhn, z

∗(d)
j )

around ϕnna(z
∗
j ) implies that the above integral can be expressed as the sum of ϕnna(z

∗
j ) and

a remainder term which is of the form

hp
n

p!

∫ ∑

j:s(pj)=p

∇pj
ϕnna(z

∗(c)
j − uh∗n, z

∗(d)
j )upjK1(u)du

where here pj denotes a vector of non negative integers, ∇pj
ϕnna(·) denotes partial derivatives

of ϕnna(·) with respect to its components, and the order of each partial corresponds to

components of pj; the vector u raised to the vector of integers pj denotes the product of

the components of u raised to the corresponding component of pj. Therefore, each term in

the summation is a scalar, and we sum over all vectors pj where the sum of its components,

s(pj), is p. Finally, h∗n denotes an intermediate value between 0 and hn. It follows by the

dominated convergence theorem and the conditions on hn that:

E


E


τnivni~i

K1

(
z
∗(c)
j −z

(c)
i

hn

)
I[z

∗(d)
j = z

∗(d)
i ]

hZc
n f ∗vzi

∣∣∣∣z∗j


− ϕnna(z

∗
j )


 = op(n

−1/2) (A.45)

We also note by the continuity and boundedness of ϕnna(·), an application of the dominated

convergence theorem to (A.44) implies that:

∫
ϕnna(z

∗(c)
j − uhn, z

∗(d)
j )K1 (u) du− ϕnna(z

∗
j ) → 0

as hn → 0. Another application of the dominated convergence theorem implies that

E

[ ∥∥∥∥
∫

ϕnna(z
∗(c)
j − uhn, z

∗(d)
j )K1 (u) du− ϕnna(z

∗
j )

∥∥∥∥
2
]
→ 0

as hn → 0. Thus (A.42) follows from Chebyshev’s inequality.

To complete the linear representation of E
[

χn(ζi, ζ
∗
j )

∣∣∣ζj

]
we show that

E

[
τni

~i

f ∗vzi

f̄ ∗zi

]
= E

[
~i

f ∗i

]
+ op(n

−1/2) (A.46)

Note that E
[
τni

~i

f∗vzi
f ∗zi

]
= E[ ~i

f∗i
]+o(n−1/2) by Assumption C4.2. Note also that

∥∥∥E
[
τni

~i

f∗vzi
(f̄ ∗zi − f ∗zi)

]∥∥∥
is bounded above by

‖f̄ ∗zi − f ∗zi‖∞ · E
[ ∥∥∥∥τni

~i

f ∗vzi

∥∥∥∥
]
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‖f̄ ∗zi−f ∗zi‖∞ = O(hp
n) by Sherman(1994) (or Lemma 8.9 in Newey and McFadden(1994)in the

bounded support case) and E
[ ∥∥∥τni

~i

f∗vzi

∥∥∥
]

is bounded for all n by assumption. The desired

result follows by the conditions on the bandwidth.

To complete the linear representation in (A.36) we show that

1

n

n∑
i=1

τni
~i

f ∗vzi

(f̄ ∗zi − f ∗zi) = op(n
−1/2) (A.47)

First note that
∥∥∥E

[
τni

~i

f∗vzi
(f̄ ∗zi − f ∗zi)

]∥∥∥ is bounded above by

‖f̄ ∗zi − f ∗zi‖∞ · E
[ ∥∥∥∥τni

~i

f ∗vzi

∥∥∥∥
]

‖f̄ ∗zi−f ∗zi‖∞ = O(hp
n) (by Lemma 8.9 in Newey and McFadden(1994) in the bounded support

assumption, Sherman(1994), otherwise), and E
[ ∥∥∥τni

~i

f∗vzi

∥∥∥
]

is bounded for all n by assump-

tion. The desired result follows by the conditions on the bandwidth. Therefore, it will suffice

to show that

1

n

n∑
i=1

τni
~i

f ∗vzi

(f̄ ∗zi − f ∗zi)− E

[
τni

~i

f ∗vzi

(f̄ ∗zi − f ∗zi)

]
= op(n

−1/2) (A.48)

By Chebyshev’s inequality it will suffice to establish the above relation by showing that

E

[ ∥∥∥∥τni
~i

f ∗vzi

(f̄ ∗zi − f ∗zi)

∥∥∥∥
2
]
→ 0

This follows by an application of the dominated convergence theorem and the condition that

hn → 0.

Using virtually identical arguments, we can show that (A.37) has the following linear repre-

sentation:

1

n∗

n∗∑
i=1

ϕnnb(v
∗
i , z

∗
i )− E

[
~i

f ∗i

]
+ op(n

−1/2) (A.49)

where

ϕnnb(·, ·) = E

[
τnivnirzi

~i

f ∗i
|vi = ·, zi = ·

]
(A.50)

This completes the proof of the lemma. ¥
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Combining all our results we have the following linear representation for the density

weighted closed form estimator:

Ξ̂− Ξ0 =
1
n

n∑

i=1

(
τni
~i

f∗i
− E

[
τni
~i

f∗i

]
+ Mκψi − cpϕnb(v∗i , z∗i ) + cpϕna(z∗i )

)
+ op(n−1/2) (A.51)

The conclusion of the theorem follows from Assumption C4.2 and an application of the central limit theorem.

¥

A.1 Truncated Model Estimators

In this section, we apply the general theorems of the previous sections to derive the limiting

distributions of the estimation procedures proposed in the paper. The results are derived

under the support, smoothness, and trimming conditions in C5, C7, C8, but we note the

result also hold under the conditions C5’, C7’, C8’.

A.1.1 Asymptotics for the Weighted Least Squares Estimator

Here we derive the limiting distribution of the weighted least squares estimator for the

truncated regression model estimator. For notational convenience, here we set ui = xi. We

will derive the limiting distribution for the closed form estimators obtained from (3.2), so

that our theorem for density weighted closed form estimators can be applied. Specifically,

here we will let π0 denote (a0, b
′
0)
′ with a0 = 1/α0 and b0 = −β0/α0. From (3.2) we can

define

π̂ = (
1

n

n∑
i=1

τniŵkixix
′
i)
−1 1

n

n∑
i=1

τniŵkixivi (A.52)

where here xi = (yi, x
′
i)
′ and ŵki = I[0≤yi≤k]w(xi)

f̂∗(vi|xi)
. Note we have

π̂ − π0 = (
1

n

n∑
i=1

τniŵkixix
′
i)
−1 1

n

n∑
i=1

τniŵkixi(vi − x′iπ0) (A.53)

= Ĥ−1
n Ŝn (A.54)

where Ĥn = 1
n

∑n
i=1 τniŵkixix

′
i and Ŝn = 1

n

∑n
i=1 τniŵkixi(vi − x′iπ0).

The proof of limiting distribution theory is based on the following assumptions:

WLS1 0 < α0 < ∞
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WLS2 The sequences of random vectors (yi, vi, xi) and (v∗i , x
∗
i ) are i.i.d.

WLS3 The J dimensional vector xi can be partitioned as (x
(c)
i , x

(d)
i ), where the Jc dimen-

sional vector x
(c)
i is continuously distributed, and the Jd dimensional vector x

(d)
i is

discretely distributed. Furthermore, setting zi = xi, assume either the support con-

dition at the beginning of Assumption C5, or the rectangular support assumption in

C5’.

WLS4 The error term ei satisfies either E∗[ex] = 0 or the stronger condition E∗[e|x] = 0.

WLS5 Letting f ∗(v, x(c)|x(d)) denote the (population untruncated) joint density function of

vi, x
(c)
i conditional on x

(d)
i , we assume this function is p times continuously differentiable

in its arguments v, x(c) with bounded derivatives, for all values of x(d). This smoothness

assumption holds over the entire support defined at the beginning of Assumption C5,

or on the interior of the rectangular support in C5’.

WLS6.1 The trimming function, here a function of vi, xi, n satisfies either C8 (if the support

condition at the beginning of C5 is satisfied), or C8’ (if condition C5’ is satisfied).

WLS6.2 For the vector ~i = I[0 ≤ yi ≤ k]w(xi)xi(vi−x′iπ0), the trimming function satisfies:

E

[
τni
~i

f ∗i

]
= o(n−1/2) (A.55)

WLS7 Having defined ~i, τni for the estimator at hand, Condition C7 is satisfied. Alterna-

tively, C7’ holds if the support and trimming conditions in C5’ and C8’ are satisfied.

WLS8 The matrix H0 ≡ E[wkixix
′
i] is finite and positive definite, where wki = I[0≤yi≤k]w(xi)

f∗(vi|xi)
.

WLS9 With ~i defined in WLS6.2, δi is defined as in Assumption C4, with zi = xi, z∗i = x∗i .

Defining Ω = Ẽ[δiδ
′
i], assume ‖Ω‖ < ∞.

We now state the theorem characterizing the limiting distribution of the weighted least

squares estimator π̂ ≡ (â, b̂′)′ of π0 ≡ (a0, b
′
0)
′.

Theorem A.2 Assume the bandwidth hn satisfies
√

n∗hp
n → 0, and n∗1/2+δ/(n∗hZc

n ) → 0

for some arbitrarily small δ > 0, the kernel function satisfies Assumption C6, and that

Assumptions WLS1-WLS9 hold. We then have

√
n(π̂ − π0) ⇒ N(0, H−1

0 ΩH−1
0 ) (A.56)
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Proof: Our proof strategy will be to show the probability limit of the term Ĥn is the

matrix H0 and use the results from the previous section to derive a linear representation for

H−1
0 Ŝn. Finally, with the asymptotic distribution theory for π0 ≡ (a0, b

′
0)
′ we can apply the

delta method to attain the asymptotic distribution theory of our estimators of θ0 = (α0, β
′
0)
′.

As a first step note that the conditions on the bandwidth sequence and the kernel

functions (i.e. Assumption WLS3) we can replace kernel density estimates with true values

and the remainder term is uniformly (in the support of xi, vi) op(1). (See, e.g. Newey

and McFadden(1994), Lemma 8.10 for the bounded support and trimming in C5’,C8’ or

Sherman(1994), Corollary 5A, for the support and trimming in C5,C8). Thus we are left

with the term:

1

n

n∑
i=1

τniwkixix
′
i (A.57)

Thus by the law of large numbers and Assumptions WLS8,WLS9 the above term converges

to H0 ≡ E[wkixix
′
i]. Note that using (2.14) we can alternatively express H0 as:

H0 =
k

|α0|

[
E[w(xi)]

k2

3
E[w(xi)x

′
i]

k
2

E[w(xi)xi]
k
2

E[w(xi)xix
′
i]

]
(A.58)

By assumption WLS8 it follows that Ĥ−1
n

p→ H−1
0 .

Next we apply results from the previous section to derive a linear representation for

H−1
0

1

n

n∑
i=1

τniŵkixi(vi − x′iπ0) (A.59)

First we note that (by (2.14)) and the conditions on the trimming function behavior (specif-

ically WLS6.2), E[τniwkixi(vi − x′iπ0)] = o(n−1/2). Conditions C1-C8 follow immediately

from Assumptions WLS1-WLS9. To state the form of the limiting variance matrix of the

estimator of π0 we note ~i/f
∗
i is mean 0 by (2.14), and so δi in WLS9 is mean 0.

Finally, to get the asymptotic variance of the parameters of interest θ0 = (α0, β0) we

can simply apply the delta method and pre and post multiply the matrix H−1
0 ΩH−1

0 by the

Jacobian of transformation. This (J + 1) × (J + 1) matrix, referred to here as Q, is of the

form:

Q =

[
α2

0 01×J

α0β0 α0IJ×J

]
(A.60)

where 01×J refers to a (1× J) vector of 0’s and IJ×J refers to a (J × J) identity matrix. ¥
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A.1.2 Asymptotics for the Instrumental Variables Estimator

The asymptotic properties of the two stage least squares estimator are based on the following

assumptions in addition to the identification assumptions A1’-A5’ in the text.

IV1 The random vectors (yi, vi, x
′
i, z

′
i)
′, (v∗i , x

∗′
i , z∗

′
i )′ are i.i.d.

IV2 The Z dimensional vector zi can be partitioned as (z
(c)
i , z

(d)
i ), where the Zc dimensional

vector z
(c)
i is continuously distributed, and the Zd dimensional vector z

(d)
i is discretely

distributed. Assume the support and (population untruncated) density smoothness

conditions in Assumption C5 are satisfied, or alternatively, the conditions in C5’.

IV3 E∗[‖z‖2] < ∞, E∗[‖x‖2] < ∞.

IV4 For the vectors

~1i = I[0 < yi < k] (A.61)

~2i = µ−2
0 2yiI[0 < yi < k] (A.62)

~3i = zi(y
∗
i − x′iβ0) (A.63)

Define δj
i , δ

j
ni j = 1, 2, 3 as in Assumption C4, with ~i = ~ji j = 1, 2, 3, and assume

C4 is satisfied.

IV5 For j = 1, 2, 3, the functions τni
rvzi~ji

f∗i
satisfy the smoothness of conditional expectation

conditions in Assumption C7, or C7’ depending on support conditions.

IV6 The trimming function depends on vi, zi, n, and satisfies either Assumption C8 or C8’,

depending on support conditions.

We now derive the limiting distribution of the two stage estimator. Our arguments are based

on applying Theorem A.1, so we will be verifying Assumptions C1-C8. We first derive a

linear representations for µ̂ and α̂, assuming that α0 > 0. As mentioned in the text, this

assumption is not problematic as the sign of α0 can be estimated at an exponential rate, as

shown in Lewbel(1998, 2000). The following lemma characterizes the limiting distribution

of the estimator µ̂.

Lemma A.3 If Assumptions A1’-A5’ and IV1-IV6 hold, and the bandwidth sequence satis-

fies
√

n∗hp
n → 0,
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n∗1/2+δ/(n∗hZc
n ) → 0 for some arbitrarily small δ > 0, and the kernel function satisfies

Assumption C6, then

µ̂− µ0 =
1

n

n∑
i=1

ψµi + op(n
−1/2) (A.64)

where µ0 ≡ E
[

I[0<yi<k]
f∗i

]
and

ψµi =
I[0 < yi < k]

f ∗i
− µ0 − cpϕµb(v

∗
i , z

∗
i ) + cpϕµa(z

∗
i ) (A.65)

Proof: The result follows directly from Theorem A.1, with ~i = I[0 < yi < k]. ¥

We can now derive a limiting representation for α̂.

Theorem A.3 If Assumptions A1’-A5’ and IV1-IV6 hold, and the bandwidth sequence sat-

isfies
√

n∗hp
n → 0, and n∗1/2+δ/(n∗hZc

n ) → 0 for some arbitrarily small δ > 0, and the kernel

function satisfies Assumption C6, then

α̂− α0 =
1

n

n∑
i=1

ψαi + op(n
−1/2) (A.66)

with

ψαi =
α0

η(k)− η(k∗)
(η(k)µ0(k)−2ψµi(k) + µ0(k)−1ψηi(k) (A.67)

=
α0

η(k)− η(k∗)
(η(k∗)µ0(k

∗)−2ψµi(k
∗) + µ0(k

∗)−1ψηi(k
∗) (A.68)

Proof: We again apply theorem A.1. In this case ~i = µ−2
0 2yiI[0 < yi < k], and the

plugged in estimator is µ̂. Note that E
[
∇µ

~i

f∗i

]
= −2µ−1

0 α0. ¥

With the established linear representations, we can now derive the limiting distribution

of β̂.

Theorem A.4 Suppose Assumptions A1’-A5’ and IV1-IV6 hold, and the bandwidth se-

quence satisfies

√
n∗hp

n → 0, and n∗1/2+δ/(n∗hZc
n ) → 0 for some arbitrarily small δ > 0, and the kernel
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function satisfies Assumption C6. Define the following mean 0 vectors:

ψβ1i = −
(

µ−2
0

k

α0

E[zix
′
i]β0

)
· ψµi (A.69)

ψβ2i = −
(

1

2α2
0

(k2E[zi]− kE[zix
′
i]β0

)
· µ−1

0 · ψαi (A.70)

ψβ3i =
µ−1

0 zi(yi − viα0)I[0 < yi < k]

f ∗i
− zix

′
iβ0 − cpϕβb(v

∗
i , z

∗
i )

+ cpϕβaz
∗
i ) (A.71)

and let

ψβi = ψβ1i + ψβ2i + ψβ3i (A.72)

and

Ωβ = E
[
ψβiψ

′
βi

]
(A.73)

Then we have

√
n(β̂ − β0) ⇒ N(0, ∆ · Ωβ ·∆′) (A.74)

Proof : Define ∆̂ as:

∆̂ =




(
1

n∗

n∗∑
i=1

x∗i z
∗′
i

)(
1

n∗

n∗∑
i=1

z∗i z
∗′
i

)−1 (
1

n∗

n∗∑
i=1

z∗i x
∗′
i

)

−1 (

1

n∗

n∗∑
i=1

x∗i z
∗′
i

)(
1

n∗

n∗∑
i=1

z∗i z
∗′
i

)−1

(A.75)

and ŷ∗i as

ŷ∗i = µ̂−1 (yi − viα̂)I[0 < yi < k]

f̂ ∗i
(A.76)

And note we can write

β̂ − β0 = ∆̂
1

n

n∑
i=1

zi(ŷ
∗
i − x′iβ0) (A.77)

We first note that an application of the law of large numbers and Slutsky’s theorem imme-

diately implies that

∆̂
p→ ∆ (A.78)
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To complete the proof we apply theorem A.1 to derive a linear representation for

1

n

n∑
i=1

zi(ŷ
∗
i − x′iβ0) (A.79)

In this context, ~i = µ−1
0 zi(yi − viα0)I[0 < yi < k]− zix

′
iβ0. The preliminary estimators are

µ̂ and α̂. We note that:

E

[
∇µ
~i

f ∗i

]
= −

(
µ−2

0

k

α0

E[zix
′
i]β0

)
(A.80)

and

E

[
∇α
~i

f ∗i

]
= −

(
1

2α2
0

(k2E[zi]− kE[zix
′
i]β0

)
· µ−1

0 (A.81)

Hence the limiting distribution follows from this linear representation, the convergence of ∆̂

to ∆, and Slutsky’s theorem. ¥
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TABLE 1

Simulation Results for Truncated Regression Estimators

Design 1: Homoskedastic Truncated Normal Errors

Slope Intercept

Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD

100 obs.

WLS -0.3244 -0.3092 0.7050 0.5428 0.0029 -0.0061 0.1579 0.1208

AWLS -0.0958 -0.1154 0.7584 0.5626 0.0048 0.0072 0.1755 0.1294

STLS -0.0309 -0.0252 0.5061 0.3948 0.0515 0.0817 0.2398 0.1914

PWD -0.0065 -0.0027 0.4480 0.3546 - - - -

MLE -0.1039 -0.1051 0.3569 0.2832 0.3379 0.3376 0.3465 0.3379

200 obs.

WLS -0.2660 -0.2565 0.4695 0.3740 -0.0055 -0.0033 0.0873 0.0699

AWLS -0.0720 -0.0576 0.4346 0.3435 -0.0090 -0.0073 0.0998 0.0797

STLS 0.0042 0.0003 0.3431 0.2708 0.0853 0.0980 0.1666 0.1388

PWD 0.0026 0.0132 0.3024 0.2408 - - - -

MLE -0.1002 -0.0959 0.2475 0.1970 0.3416 0.3405 0.3461 0.3416

400 obs.

WLS -0.2234 -0.2300 0.3688 0.3026 -0.0018 0.0004 0.0639 0.0507

AWLS -0.0586 -0.0869 0.3377 0.2731 0.0012 0.0021 0.0690 0.0551

STLS -0.0405 -0.0399 0.2328 0.1828 0.0917 0.0998 0.1422 0.1199

PWD -0.0197 -0.0243 0.2142 0.1703 - - - -

MLE -0.1149 -0.1219 0.2013 0.1643 0.3412 0.3441 0.3437 0.3412

800 obs.

WLS -0.1681 -0.1782 0.2571 0.2108 0.0013 0.0030 0.0473 0.0380

AWLS -0.0171 -0.0276 0.2275 0.1778 -0.0013 -0.0022 0.0526 0.0414

STLS -0.0321 -0.0323 0.1646 0.1294 0.0897 0.1003 0.1181 0.1006

PWD -0.0138 -0.0219 0.1452 0.1163 - - - -

MLE -0.1111 -0.1151 0.1580 0.1303 0.3390 0.3394 0.3400 0.3390
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TABLE 2

Simulation Results for Truncated Regression Estimators

Design 2: Homoskedastic Chi-squared Errors

Slope Intercept

Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD

100 obs.

WLS -0.4032 -0.3551 1.7932 0.8954 -0.1212 -0.1635 0.3996 0.2269

AWLS -2.0899 -0.2006 34.7590 3.1147 0.0446 -0.0573 1.8738 0.4271

STLS 0.0701 0.0415 0.5857 0.4451 -0.4990 -0.4992 0.5352 0.5002

PWD 0.0846 0.0445 0.9777 0.7649 - - - -

MLE -0.1215 -0.1054 0.5470 0.4398 0.4803 0.4768 0.4988 0.4803

200 obs.

WLS -0.2424 -0.2234 0.6936 0.5272 -0.1246 -0.1211 0.2941 0.1641

AWLS -0.0403 -0.1456 0.9074 0.6695 0.0052 -0.0132 0.2305 0.1749

STLS 0.1170 0.1351 0.4528 0.3487 -0.4990 -0.4989 0.5135 0.4990

PWD 0.0358 0.0392 0.6091 0.4690 - - - -

MLE -0.1414 -0.1391 0.3626 0.2867 0.4969 0.4935 0.5059 0.4969

400 obs.

WLS -0.2245 -0.2717 0.4694 0.3809 -0.1127 -0.1204 0.1516 0.1297

AWLS -0.0732 -0.1457 0.6271 0.4622 0.0180 0.0088 0.1531 0.1224

STLS 0.0846 0.0811 0.2954 0.2386 -0.5183 -0.5179 0.5260 0.5183

PWD -0.0018 -0.0337 0.4710 0.3706 - - - -

MLE -0.1492 -0.1595 0.2995 0.2453 0.4960 0.4921 0.5005 0.4960

800 obs.

WLS -0.1761 -0.1950 0.3305 0.2711 -0.0950 -0.0986 0.1182 0.1024

AWLS -0.0187 -0.0826 0.5945 0.3752 0.0503 0.0425 0.1390 0.1060

STLS 0.1048 0.1041 0.2189 0.1764 -0.5204 -0.5202 0.5238 0.5204

PWD 0.0083 -0.0160 0.2974 0.2403 - - - -

MLE -0.1442 -0.1524 0.2230 0.1822 0.4962 0.4970 0.4986 0.4962
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TABLE 3

Simulation Results for Truncated Regression Estimators

Design 3: Heteroskedastic Truncated Normal Errors

Slope Intercept

Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD

100 obs.

WLS -0.3353 -0.3621 0.7405 0.5880 -0.0174 -0.0157 0.1596 0.1187

AWLS -0.1248 -0.2202 0.7371 0.5817 -0.0073 -0.0052 0.1695 0.1302

STLS 0.0363 0.0333 0.5515 0.4215 0.0616 0.1078 0.2444 0.2014

PWD 0.3649 0.3590 0.6053 0.4870 - - - -

MLE 0.0980 0.0970 0.3757 0.3023 0.3370 0.3368 0.3460 0.3370

200 obs.

WLS -0.2775 -0.2860 0.4948 0.4028 -0.0221 -0.0221 0.1008 0.0799

AWLS -0.0879 -0.1069 0.4762 0.3774 -0.0128 -0.0149 0.1144 0.0903

STLS 0.0567 0.0718 0.3643 0.2894 0.0856 0.0992 0.1699 0.1414

PWD 0.3755 0.3565 0.4989 0.4188 - - - -

MLE 0.1001 0.0970 0.2629 0.2103 0.3379 0.3396 0.3419 0.3379

400 obs.

WLS -0.2517 -0.2490 0.3999 0.3286 -0.0151 -0.0141 0.0674 0.0538

AWLS -0.0847 -0.1322 0.3819 0.3100 -0.0053 -0.0049 0.0746 0.0598

STLS 0.0099 0.0327 0.2512 0.2008 0.0947 0.1004 0.1400 0.1187

PWD 0.3544 0.3603 0.4259 0.3703 - - - -

MLE 0.0836 0.0876 0.1908 0.1549 0.3389 0.3412 0.3414 0.3389

800 obs.

WLS -0.1803 -0.1711 0.2810 0.2287 -0.0094 -0.0089 0.0511 0.0402

AWLS -0.0180 -0.0460 0.2970 0.2164 -0.0019 0.0022 0.0580 0.0457

STLS 0.0074 0.0101 0.1790 0.1392 0.0895 0.0940 0.1207 0.1013

PWD 0.3581 0.3586 0.3934 0.3607 - - - -

MLE 0.0852 0.0909 0.1491 0.1223 0.3354 0.3365 0.3365 0.3354
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TABLE 4

Simulation Results for Truncated Regression Estimators

Design 4: Endogenous Truncated Normal Errors

Slope Intercept

Mean Bias Med. Bias RMSE MAD Mean Bias Med. Bias RMSE MAD

100 obs.

2SLS 0.2107 0.1556 1.8967 1.4026 -0.0673 -0.0602 0.1724 0.1330

A2SLS -0.1226 -0.1527 1.6439 1.2530 0.0036 0.0054 0.1579 0.1207

STLS 0.3044 0.3256 0.4845 0.4043 0.0335 0.0374 0.1309 0.1029

PWD 0.2551 0.2482 0.4509 0.3665 - - - -

MLE 0.1136 0.1362 0.3082 0.2472 0.2630 0.2659 0.2727 0.2630

200 obs.

2SLS 0.1439 0.1605 1.1743 0.9431 -0.0440 -0.0360 0.1157 0.0873

A2SLS -0.0069 -0.0161 1.0063 0.7719 -0.0048 -0.0055 0.1055 0.0808

STLS 0.3353 0.3413 0.4400 0.3687 0.0302 0.0303 0.0984 0.0795

PWD 0.2841 0.2884 0.3927 0.3254 - - - -

MLE 0.1348 0.1434 0.2558 0.2069 0.2641 0.2633 0.2691 0.2641

400 obs.

2SLS 0.0584 0.0738 0.8483 0.6704 -0.0257 -0.0297 0.0748 0.0604

A2SLS -0.0111 -0.0368 0.7379 0.5867 -0.0043 -0.0042 0.0697 0.0547

STLS 0.3532 0.3526 0.4023 0.3598 0.0360 0.0387 0.0706 0.0567

PWD 0.2974 0.3077 0.3454 0.3053 - - - -

MLE 0.1466 0.1498 0.2025 0.1687 0.2634 0.2639 0.2658 0.2634

800 obs.

2SLS -0.0569 -0.0569 0.5444 0.4390 -0.0136 -0.0115 0.0482 0.0385

A2SLS -0.0366 -0.0508 0.4701 0.3823 -0.0033 -0.0025 0.0448 0.0359

STLS 0.3532 0.3597 0.3793 0.3533 0.0373 0.0358 0.0582 0.0471

PWD 0.3035 0.3107 0.3287 0.3042 - - - -

MLE 0.1516 0.1539 0.1826 0.1586 0.2653 0.2657 0.2667 0.2653
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