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1 Introduction

Given an iid dataset (x1, y1) , . . . , (xn, yn), we propose to estimate an expectation of the inverse density

weighted form

θ = E

·
y

f (x)

¸
(1)

where x and y are real-valued random variables, and f (x) is the unknown density of the continuously

distributed x. The “ordered data” estimator we provide possesses the rather surprising property of achieving

root n consistency and asymptotic normality without requiring sample-size-dependent smoothing. It also

offers the advantage of being numerically extremely simple, requiring little more than ordering the data

and summing the results, thereby avoiding issues regarding the selection of smoothers such as bandwidths,

kernels, etc. A similarly simple estimator is provided for the limiting variance.

Inverse density weighted estimation applies generically to the estimation of definite integrals of conditional

expectations. Suppose

θ =

Z
x∈X

E(w|x)dx (2)

for some random variable w, where X ⊂ supp(x). Then θ can be rewritten as θ = E[y/f(x)] with y =

wI(x ∈ X ), and where I is the indicator function that equals one if its argument is true and zero otherwise.
A number of existing semiparametric estimators make use of inverse density weighted expectations ei-

ther directly or indirectly, via their relationship with integrated conditional expectations. Examples include

density weighted least squares (Newey and Ruud, 1984), average derivative estimation (Härdle and Stoker,

1993), estimators of willingness-to-pay models and general estimators of moments from binomial data (Lew-

bel, 1997, McFadden, 1999, Lewbel, Linton and McFadden, 2002), semiparametric estimators of consumer

surplus (Hausman and Newey, 1995, Newey, 1997), some discrete choice, sample selection, and other latent

variable model estimators (Lewbel, 1998, 2000, 2002), entropy measures of dependence (Hong and White,

2000) and semiparametric functional tests (Hall and Yatchew, 2005).

Let
¡
y[i], x[i]

¢
denote the i-th observation when the data are sorted in increasing order of x, so x[i] is

the i-th order statistic and y[i] is the concomitant statistic to x[i]. Let (yi, xi) denote the i-th observation

when the data are left unsorted. Let F (x) denote the unknown distribution function of x. We show that the

numerically trivial “ordered data” estimator

θ̂ =
n−1X
i=1

¡
y[i+1] + y[i]

¢ ¡
x[i+1] − x[i]

¢
/2 (3)

is root n consistent and asymptotically normal. Specifically, n1/2(bθ − θ)
d→ N(0, 3σ2/2) where

σ2 = E

·
Var(y|x)
f2 (x)

¸
(4)

and a consistent estimator of σ2 is the simple expression

σ̂2 =
n

4

n−1X
i=1

¡
y[i+1] − y[i]

¢2 ¡
x[i+1] − x[i]

¢2
. (5)
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For some intuition for this estimator, let x be a point that lies between x[i] and x[i+1] for some i, and let

y be a corresponding point that lies between y[i] and y[i+1]. Then y ≈ ¡y[i+1] + y[i]
¢
/2 and

1

f(x)
=

µ
dF (x)

dx

¶−1
≈ x[i+1] − x[i]

F (x[i+1])− F (x[i])
≈ x[i+1] − x[i]

1/n
(6)

where the last step results from replacing F with the corresponding empirical distribution function. The

estimator θ̂ is then just an average of y/f(x), using these approximations for y and f(x). This differencing

of the empirical distribution function for x does not yield a consistent estimator for 1/f (x), but averaging

over x speeds the rate of convergence to yield root n consistency. This result is rather exceptional among

semiparametric estimators of nonlinear functionals of the data generating process in that it attains root n

consistency without the use of explicit smoothing techniques.

The ability to bypass kernel and bandwidth selection procedures constitutes a substantial benefit of

the proposed estimator. The well-known bandwidth selection rules used in nonparametric estimation, such

as cross-validation, are not generally applicable to semiparametric settings because the optimal bandwidth

in nonparametric settings typically fails to undersmooth at the rate needed to achieve a o
¡
n−1/2

¢
bias in

the semiparametric functional. In practice, a bandwidth “slightly” smaller than the one given by cross-

validation is often used instead, in an attempt to undersmooth. As the required amount of undersmoothing

is a sample-size-dependent quantity, this informal method does not provide much guidance and may lead

to a nonnegligible bias. The derivation and application of formal data-driven bandwidth selection rules

in semiparametric settings is rarely done, as it involves technical higher-order asymptotic analyses (see,

for instance, Härdle et al., 1992, Hall and Horowitz, 1990) that must be rederived for each semiparametric

estimator of interest, and may depend strongly on the unknown precise degree of smoothness of the estimand.

The method for approximating the reciprocal of a density using longer spacings to achieve consistency

is known (see, e.g., Bloch and Gastwirth, 1968). Our contribution consists mainly of providing limiting

distribution theory for an average of such estimators, for fixed or increasing spacings. The complication

that arises in doing so is accounting for the fact that the spacings x[i+1] − x[i] are not independent. In fact,

the statistical dependence among them is of a form that is not covered by standard central limit theorems

for dependent processes. One spacing depends equally strongly on arbitrarily distant spacings and not only

on its neighbors. To handle this difficulty, we substantially extend a technique of proof proposed by Weiss

(1958) in the case of homogenous functions of spacings of a sample drawn from a uniform distribution to

cover the more general functional (1).

While the use of nearest neighbors in differencing schemes in semiparametric1 settings is not new (e.g.,

Yatchew, 1997), our use of a statistic based on nearest neighbor spacings is innovative. The asymptotic

analysis of differencing techniques only relies on the fact that spacings converge to zero as sample size

increases, while our results require an analysis of their asymptotic distribution.

In addition to providing the limiting distribution of an estimator of (1), we provide an extension of

1The use of differencing using k-nearest neighbors, where k → ∞ as n → ∞ is also well-established (see, e.g. Robinson,
1987) but our asymptotic analysis under fixed k is fundamentally different.

3



the limiting distribution theory to the case where x itself is estimated and consider a generalizations to

multivariate y. We also show how the ordered data estimator could be used in some semiparametric models,

we provide a small Monte Carlo analysis of the estimator, and we apply the estimator in a small empirical

study. Proofs are in the Appendix.

2 Asymptotics

2.1 Main results

The derivation of the asymptotic properties of our “ordered data” estimator relies on a few standard as-

sumptions.

Condition 1 (yi, xi) is a sequence of i.i.d. random variables.

Condition 2 The support of f (x), denoted F , is a finite interval and infx∈F f (x) > 0.

Condition 3 f (x) is uniformly Hölder continuous of exponent hf > 1/2 over the interior of its support

(i.e. |f (x)− f (ξ)| ≤ Hf |x− ξ|hf for x, ξ ∈ F).

Condition 4 g (x) = E [y|x] is uniformly Hölder continuous of exponent hg > 1/2 over the interior of the

support of f (x) (i.e. |g (x)− g (ξ)| ≤ Hg |x− ξ|hg for x, ξ ∈ F).

Condition 5 E
h
Var[y|x]
f2(x)

i
<∞.

Assumption 1 is very common in cross-sectional analysis. Assumptions 3 and 4 impose smoothness con-

straints on f (x) and E [y|x] that are slightly stronger than continuity and weaker than assuming that f (x)
and E [y|x] are Lipschitz (which would corresponds to hf = hg = 1). Assumption 5 is crucial in order to

obtain root n consistency but could probably be relaxed using sample size-dependent trimming if only con-

sistency is desired. Assumption 2 is frequently made in the literature focusing on inverse density weighted

estimators. It can probably be relaxed at the expense of substantial complications in the proofs, however,

we do not pursue such extensions in the present work, because Assumption 5 is rarely satisfied when f (x)

is not bounded away from zero.2

Theorem 1 Under Assumptions 1 through 5,

n1/2
³
θ̃ − θ

´
d→ N

¡
0, 2σ2

¢
(7)

2Another paper that employs this support restriction, for similar reasons, is Abadie and Imbens (2002). This support
restriction can likely be relaxed using trimming or boundary methods similar to those used for kernel estimators, though doing
so may require the introduction of data dependent parameters (such as asymptotic trimming terms). One of the main advantages
of the estimator is that it does not require selection of data dependent parameters like bandwidths. Alternatively, it is always
possible to map a variable with unbounded support onto one with a bounded support by using a fixed nonlinear mapping. Our
estimator will be root n consistent for this transformed variable, provided that the Jacobian of this known transformation is
included in our inverse-density weighted expectation. This would just amount to redefining the y variable and verifying that
the resulting E [y|x] is sufficiently smooth and bounded.
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where

θ̃ =
n−1X
i=1

y[i]
¡
x[i+1] − x[i]

¢
(8)

θ = E

·
y

f (x)

¸
=

Z
E [y|x] dx (9)

σ2 = E

·
Var [y|x]
f2 (x)

¸
. (10)

Corollary 2 Under Assumptions 1 through 5,

n1/2
³
θ̂ − θ

´
d→ N

¡
0, (3/2)σ2

¢
(11)

where

θ̂ =
n−1X
i=1

¡
y[i] + y[i+1]

¢ ¡
x[i+1] − x[i]

¢
/2. (12)

and where θ and σ2 are defined in Theorem 1.

The fundamental reason why root n consistency is possible without smoothing is because spacings directly

estimate the reciprocal of the density and θ is a linear functional of the reciprocal of the density, thus allowing

substantial undersmoothing without introducing nonnegligible nonlinear remainder terms. Kernel-based

estimation would first proceed by estimating the density and then take its reciprocal, a nonlinear operation

that precludes the use of such substantial undersmoothing. The need for smoothing in nonlinear functional

estimation, but not in linear functional estimation, parallels Newey’s linearization condition (Newey, 1994,

Assumption 5.1), which places different constraints on the rate of convergence of plugged-in nonparametric

estimates, depending on whether the functional of interest is linear or not.

The factor 2 in the variance of θ̃ was also noted by Mack and Müller (1988) in the related problem of

estimating a nonparametric conditional expectation using the Priestley and Chao (1972) estimator. See also

Wand and Jones (1995, p. 131). Corollary 2 reduces this factor to 3/2. This factor can be further reduced

to arbitrarily close to one by considering longer spacings. For instance, it can be shown along the same lines

as Theorem 1 that

θ̃k =
n−kX
i=1

y[i]
¡
x[i+k] − x[i]

¢
/k. (13)

has an asymptotic variance equal to σ2
¡
1 + 1

k

¢
. Note that for k = 2, Equation (13) is asymptotically

equivalent to Equation (12).3 Centered differences can also be used, e.g.

θ̂c =
n−1X
i=2

y[i]
¡
x[i+1] − x[i−1]

¢
/2. (14)

3This can be shown along the following lines
Pn−1

i=1 y[i]
¡
x[i+1] − x[i]

¢
/2 +

Pn−1
i=1 y[i+1]

¡
x[i+1] − x[i]

¢
/2 =Pn−1

i=1 y[i]
¡
x[i+1] − x[i]

¢
/2 +

Pn
i=2 y[i]

¡
x[i] − x[i−1]

¢
/2 ≈Pn−1

i=2 y[i]
¡
x[i+1] − x[i−1]

¢ ≈Pn−2
i=1 y[i]

¡
x[i+2] − x[i]

¢
.
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is asymptotically equivalent to both θ̂ and θ̃2. Equation (14) is a convenient form for coding some applica-

tions, since it directly replaces the expectation in equation (1) with a sample average, replacing f(x[i]) with

the estimator
¡
x[i+1] − x[i−1]

¢
/(2n).

The following theorem shows that when the length of the spacings grows with sample size, the asymptotic

variance reaches the value σ2, which can be shown to be semiparametrically efficient using the variance

expressions in Newey (1994).4

Theorem 3 Let kn be a deterministic sequence of integers such that kn = o (lnn) and kn → ∞. Under
Assumptions 1 through 5,

n1/2
³
θ̃kn − θ

´
d→ N

¡
0, σ2

¢
(15)

where θ̃k is given in Equation (13) and where θ and σ2 are defined in Theorem 1.

While Theorem 3 requires an upper bound on the rate at which kn can grow, it imposes no lower bound

(i.e. kn can diverge arbitrarily slowly). This is unusual among semiparametric estimators, which typically

require both an upper bound and a lower bound, in order to control both the bias and the variance. Here,

the variance is already finite even when no smoothing is performed and hence, the mild requirement that

kn →∞ is sufficient to reduce the asymptotic variance term 2σ2 to its efficient value of σ2.

The following Theorem provides a simple consistent estimator for the variance term σ2.

Theorem 4 Under Assumptions 1 through 5, σ̂2
p→ σ2, where5

σ̂2 =
n

4

n−1X
i=1

¡
y[i+1] − y[i]

¢2 ¡
x[i+1] − x[i]

¢2
. (16)

One important point needs to be emphasized regarding the asymptotic variance σ2. If f where known,

the most obvious estimator of θ would be θ̂0 ≡ n−1
Pn

i=1 yi/f(xi). An interesting feature of this model is

that θ̂0 is inefficient, that is, it is more efficient to plug an appropriate estimator for f(xi) into this sample

average than to use the true f . This can be immediately verified by

Var[y/f(x)] = E[Var [y|x] /f2(x)] + Var[E(y|x)/f(x)]
= σ2 +Var[E(y|x)/f(x)] ≥ σ2. (17)

Similar efficiency gains from using estimated rather than true functions has been observed in a model that

is scaled by a conditional density function (see Magnac and Maurin, 2003) and in a model scaled by a

propensity score function (see Hirano, Imbens and Ridder, 2003).
4Let the quantities defined in Newey (1994) be denoted by a N subscript. Our estimator can be written in terms of a

nonparametric estimate hN (x) of the conditional expectation E [y|x] as θ̂ = R
hN (x) dx =

R hN (x)
f(x)

f (x) dx = E
h
hN (x)
f(x)

i
=

E [mN (zN , hN )] where zN = (x, y) and mN (zN , hN ) =
hN (x)
f(x)

. Since mN (zN , hN ) is linear in hN (x), Equation 4.4 in Newey

(1994) holds for δN (x) = (f (x))
−1 and Proposition 4 yields the influence function αN (z) = (f (x))−1 (y −E [y|x]), the variance

of which is E
h
Var [y|x] / (f (x))2

i
≡ σ2.

5The idea of employing
¡
y[i+1] − y[i]

¢
to “differentiate out” the contribution of E [y|x] has been used for instance by Yatchew

(1997) to estimate the partially linear model and by Abadie and Imbens (2002) to estimate the variance of a matching estimator
of treatment effects models. However, our variance estimator combines differencing and spacings, making it impossible to use
these existing results.
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2.2 Extensions

2.2.1 Multivariate case

The result presented so far can be extended in various directions. First, the scalar y can be replaced with a

vector, as follows.

Corollary 5 Let vi be a random vector taking value in Rk. If Assumptions 1 through 5 hold for yi =

vi1, . . . , vik, then

n1/2
³
ψ̂ − ψ

´
d→ N (0, (3/2)V ) (18)

where

ψ̂ =
n−1X
i=1

¡
v[i] + v[i+1]

¢ ¡
x[i+1] − x[i]

¢
/2 (19)

ψ = E

·
v

f (x)

¸
=

Z
E [v|x] dx (20)

V = E

·
E [vv0|x]−E [v|x]E [v0|x]

f2 (x)

¸
. (21)

Moreover, V̂
p→ V , where

V̂ =
n

4

n−1X
i=1

¡
v[i+1] − v[i]

¢ ¡
v[i+1] − v[i]

¢0 ¡
x[i+1] − x[i]

¢2
. (22)

2.2.2 Estimated x

In some applications, it is useful to be able to use an estimated value of x. While the ordered data estimator

requires no modification per se to handle this generated regressor, its asymptotic variance needs to account

for the error in the estimation of x in the first step. For this purpose, let x be a random scalar and w be a

random vector taking a value in RNw that are related through

x = X (w, γ) (23)

for some function X : RNw ×RNγ 7→ R and for some parameter vector γ whose true value is γ∗. Let

θ (γ) = E

·
y

fx|γ (x|γ)
¸
. (24)

We can then establish the following result.

Condition 6 The support of fx|γ (x|γ), denoted Fγ, is a finite interval and infγ∈Γ infx∈F fx|γ (x|γ) > 0,

where Γ is some neighborhood of γ∗.

Condition 7
¯̄
fx|γ (x|γ)− fx|γ (ξ|γ)

¯̄ ≤ Hf |x− ξ|hf for x, ξ ∈ Fγ and any γ ∈ Γ.

Condition 8 |g (x)− g (ξ)| ≤ Hg |x− ξ|hg for x, ξ ∈ ∪γ∈ΓFγ.
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Condition 9 E

·
supγ∈Γ

Var[y|x]
f2
x|γ(x|γ)

¸
<∞.

Condition 10 E
h
supγ∈Γ

¯̄̄
∂X(w,γ)

∂γ

¯̄̄i
<∞.

Condition 11 ∂
∂γE

h³
y

fx|γ(X(w,γ)|γ)
´i
= E

h
∂
∂γ

³
y

fx|γ(X(w,γ)|γ)
´i
for γ ∈ Γ and ∂

∂γE
h³

y
fx|γ(X(w,γ)|γ)

´i
is

continuous in γ at γ∗.

Theorem 6 Let θ̃kn (γ) and kn respectively denote the estimator and the sequence described in Theorem 3.

Let γ̂ be a consistent estimate of γ∗ with influence function6 Ψi. Under Assumptions 1 and 6 through 11,

n1/2
³
θ̃kn (γ̂)− θ (γ∗)

´
→ N (0, V ) (25)

where

V = E

"
(y −E [y|w, γ∗])2

f2x|γ (x|γ∗)

#
+ 2B0E

·
(y −E [y|w, γ∗])

fx|γ (x|γ∗) Ψi

¸
+B0E [ΨiΨ0i]B (26)

B = E

·
y

fx|γ (x|γ∗)
∂

∂x
E

·
∂X (w, γ∗)

∂γ
|x
¸¸
+

−E
"

y¡
fx|γ (x|γ∗)

¢2 ∂fx|γ (x|γ∗)∂x

µ
∂X (w, γ∗)

∂γ
−E

·
∂X (w, γ∗)

∂γ
|x
¸¶#

. (27)

Moreover, if E
h
∂X(w,γ∗)

∂γ |x, y
i
= E

h
∂X(w,γ∗)

∂γ

i
, then B = 0.

Assumptions 6 through 9 replace Assumptions 2 through 5 to ensure that the regularity conditions hold

uniformly for γ ∈ Γ, since θ̃kn (γ) is a random function instead of a random scalar.

Theorem 6 assumes kn →∞, omitting the case where the spacing width k is fixed. With fixed spacings

the function θ̃k (γ) exhibits a peculiar mode of convergence to θ (γ), in that the derivative dθ̃k (γ) /dγ diverges

as n → ∞ almost everywhere and changes discontinuously every time the order of the x[i] changes. As a

result, we do not know if n1/2
³
θ̃k (γ̂)− θ (γ̂)

´
− n1/2

³
θ̃k (γ

∗)− θ (γ∗)
´

p→ 0 with fixed k. The function

θ̃kn (γ) with kn →∞ does not exhibit these problems.

3 Monte Carlo

Here we provide a Monte Carlo analysis to assess the small sample behavior of the estimator. We draw xi

and ei as independent standard normals and let yi = 2xi(1 + ei)I(0 < xi < 1). Table 1 reports results

from estimating θ = E[y/f(x)] = 1 using this simulated data. The sample size is n = 100, the number of

replications is 10, 000, and the reported summary statistics are, respectively, the mean, standard deviation,

quartiles (lower, median, upper), root mean squared error, mean absolute error, and median absolute error.

We report results for seven estimators. The first is bθ0 = n−1
Pn

i=1 yi/f(xi), an estimator that uses

the true, normal, density function f(x), which in a typical application would be unknown. The next is

6That is, n1/2 (γ̂ − γ∗) = n1/2
Pn

i=1Ψi + op (1) where Ψi is i.i.d with mean zero finite variance.
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bθ1 = Pn−1
i=1

¡
y[i+1] + y[i]

¢ ¡
x[i+1] − x[i]

¢
/2, the ordered data estimator of Corollary 2. We also report bθk =Pn−k

i=1

¡
y[i+k] + y[i]

¢ ¡
x[i+k] − x[i]

¢
/(2k) for k = 2 and k = 3, which are ordered data estimators with wider

spacings. The next estimator is bθ4 = n−1
Pn

i=1 yi/
bf(xi, b) where bf(x, b) is a kernel density estimator, using

a quartic kernel and bandwidth b given by Silverman’s rule of thumb. Finally, bθ5 and bθ6 are the same kernel
density based estimators, except using bandwidths b/2 and 2b, respectively.

In terms of mean squared, mean absolute, or median absolute error, the estimator having the best fit isbθ5, though this kernel estimator also has the most mean and median bias. This estimator is undersmoothed
relative to (Silverman’s approximation of) pointwise optimality. Efficiency and root n convergence of plug-

in kernel estimators require undersmoothing relative to pointwise optimality of the nonparametric density

estimator (see, e.g., Newey, 1994).

The ordered data estimator bθ1 had the smallest mean and median bias of all the estimators, but somewhat
larger mean squared errors. These errors decrease as expected as the spacings increase. The estimator using

the true density, bθ0, has largest errors, at least in part reflecting the inefficiency of that estimator as discussed
earlier.

4 Examples

4.1 Latent Moments From Binomial Data

Consider a model of the form di = I(wi > xi), where d is an observed dummy variable, x is an observed

continuously distributed random variable, and w is an unobserved latent random variable that is drawn from

a distribution that is independent of x. The goal is estimation of moments of w.

Problems like this arise in survey research, where w is an attribute of an individual such as wealth or

willingness to pay for a public good. The individual is asked if w exceeds some randomly chosen value x,

and d is the response. This form of survey design is used, because it is likely to produce less biased responses

than directly asking for w (see, e.g., McFadden, 1999 and reference therein).

This model may also be applied in destructive testing, e.g., w could be the speed at which a car safety

device fails, x would be the speed at which the car was tested, and d an indicator of outcome failure, such

as whether a test dummy was injured. Similarly, in bioassay w might be the time required for an animal

to suffer an abnormality, x is the time at which the animal is sacrificed to test for the abnormality, d is

indicator of the test result for abnormality at time x.

Let θ = E(wλ)−cλ where λ is a moment chosen for estimation and c is any chosen element of the support
of x (e.g., c could be the median of x). A special case of results in Lewbel, Linton, and McFadden (2002) is

θ = E

µ
λxλ−1[d− I(x < c)]

f(x)

¶
, (28)

assuming that supp (w) ⊂ supp (x).7 Therefore, letting yi = λxλ−1i [di − I(xi < c)], a simple estimator

of E(wλ) is θ̂ + cλ where θ̂ =
Pn−1

i=1

¡
y[i+1] + y[i]

¢ ¡
x[i+1] − x[i]

¢
/2, n1/2(bθ − θ)

d→ N(0, 3σ2/2), and σ̂2 =

7 See also Lewbel (1997) and McFadden (1999).
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Pn−1
i=1

¡
y[i+1] − y[i]

¢2 ¡
x[i+1] − x[i]

¢2
n/4.

4.2 Selection and Treatment Effects

Consider the model yi = y∗i di, di = I(0 ≤ wi + xi ≤ a), where a is a constant (which could equal infinity),

yi is an individual’s observed outcome, d is an observed dummy variable that indicates if the individual is

selected or treated, x is an observed continuously distributed random variable, and y∗ and w are unobserved

latent random variables that are drawn from a distribution that is independent of x. The goal is estimation

of moments of the potential outcome y∗.

An example is a wage model, where y∗ is an individual’s wage if employed, y is the individual’s observed

wage, d is the indicator of whether an individual is employed, a is infinite, −x is some form of nonwage

income such as a government defined benefit, and w is a latent variable such that the individual chooses to

work if w + x is sufficiently large. More generally, in a treatment context y∗ is an individual’s outcome if

treated (the potential outcome), d is a treatment indicator, and x is a variable that only affects the decision

to treat but not the outcome if treated. An example with a finite a (two sided censoring) would be ordered

treatment, where the latent wi + xi determines the treatment, which if negative would indicate a lesser (or

no) treatment and if greater than a would indicate a stronger treatment, where the possible treatments are,

e.g., dosages of a drug or years of schooling.

Define ω by

ω =
E[y/f(x)]

E[d/f(x)]
(29)

Theorem 1 and Corollary 1 in Lewbel (2002) show that, if a is finite and x has a sufficiently large support,

then ω = E(y∗), and that even without these assumptions, ω ≈ E(y∗).

Both the numerator and denominator of ω are inverse density weighted means, so we propose the simple

estimator bω = Pn−1
i=1

¡
y[i+1] + y[i]

¢ ¡
x[i+1] − x[i]

¢Pn−1
i=1

¡
d[i+1] + d[i]

¢ ¡
x[i+1] − x[i]

¢ (30)

The limiting distribution for bω is obtained by applying Corollary 5 with v = (y, d) to obtain the joint

distribution of the numerator and denominator of bω, then applying the delta method. The result is

n1/2 (bω − ω)
d→ N

¡
0, (3/2)s2

¢
, where

s2 =

·
E

µ
d

f(x)

¶¸−2
E

·
Var [(y − ωd)|x]

f2 (x)

¸
(31)

which can be consistently estimated by

bs2 = n
Pn−1

i=1

£¡
y[i+1] − bωd[i+1]¢− ¡y[i] − bωd[i]¢¤2 ¡x[i+1] − x[i]

¢2hPn−1
i=1

¡
d[i] + d[i+1]

¢ ¡
x[i+1] − x[i]

¢i2 (32)

4.3 Endogeneous Binary Choice Models

Consider the binary choice or binomial response model

di = I(xi + z0iβ + ei ≥ 0) (33)

10



Where for each individual i, di is an observed zero or one outcome, zi is a vector of possibly endogeneous

observed regressors, xi is an observed scalar regressor with coefficient normalized to equal one, β is a vector

of coefficients to be estimated, and ei is an unobserved error term. If e is independent of x, z then β can be

estimated either parametrically by maximum likelihood if the distribution of e is known or semiparametrically

using, e.g., Klein and Spady (1993).

Suppose that the joint distribution of e, z is unknown, but we observe a vector of instrumental variables

ri such that E(re) = 0. If x is independent of z, r, e then, given some regularity and support assumptions8,

Lewbel (2000) shows that

E(rz0)β = E

µ
r
d− I(x > 0)

f(x)

¶
(34)

so β can be consistently estimated by a linear two stage least squares regression of [d− I(x > 0)]/f(x) on z

using instruments r. Note that r and z may contain a constant term, so the regression includes estimation

of location in z0β assuming e has unconditional mean zero.

Corollary 7 below provides a simple method for implementing this result, by applying linear two stage

least squares and using Corollary 5 to deal with the density in the right side of equation (34).

Make the following definitions. Let vi = ri[di − I(xi > 0)], ψ = E[v/f(x)], Σzr = E(zr0), Σrr =

E(rr0), and ∆ = (ΣzrΣ
−1
rr Σ

0
zr)
−1ΣzrΣ−1rr . Assuming the inverses in the definition of ∆ exists, it follows

from equation (34) that β = ∆ψ. The corresponding finite sample expressions are bΣzr = Pn−1
i=1 z[i]r

0
[i]/n,bΣrr =Pn−1

i=1 r[i]r
0
[i]/n, b∆ = (bΣzrbΣ−1rr bΣ0zr)−1bΣzrbΣ−1rr , (35)

ψ̂ =
n−1X
i=1

¡
v[i] + v[i+1]

¢ ¡
x[i+1] − x[i]

¢
/2, (36)

and bβ = b∆ψ̂.
Corollary 7 Given the above definitions, if Assumptions 1 through 5 hold for yi = vi1, . . . , vik, then

n1/2
³bβ − β

´
d→ N (0,Ω) (37)

and bΩ p→ Ω where

Ω = ∆E
£
(W + U) (W + U)

0¤
∆0 (38)

W = (rz0 − Σ0zr)β (39)

U = y −E [y|x] (40)

bΩ = n−1 b∆Ãn−1X
i=1

3

8
Û[i]Û

0
[i] + 2Û[i]

cW 0
[i] +

cW[i]
cW 0
[i]

! b∆0 (41)

cW[i] =
³
r[i]z

0
[i] − bΣ0zr´ bβ. (42)

Û[i] =
¡
y[i] − y[i+1]

¢ ¡
x[i+1] − x[i]

¢
n. (43)

8 In particular, x should have a continuous distribution, be demeaned or otherwise located to contain zero in its support,
and contain the support of −(z0β + e) in its support. Magnac and Maurin (2003) discuss alternative restrictions.
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As noted by Lewbel (2000), the binary choice or binomial response model just described is identified

under more general settings. In particular, the binary outcome can be generated from

di = I(x̃i + z0iβ + ei ≥ 0) (44)

where x̃ does not need to be independent from z and r. In this case, a consistent estimation method consists

in constructing a new variable x from the residuals of the least-squares projection of x̃ on z and r. Provided

that the residual x is independent from z and r, the normal equation 34 still holds and the methodology

outlined in the beginning of this section applies. However, the asymptotic variance and this estimator is

affected by the fact that the variable x is estimated in a first step. Theorem 6 can be used to handle

this situation, by making the following identifications between the quantities used in the statement of the

Theorem (on the left-hand side) and the quantities introduced in the present section (on the right-hand

side).

wi = (z0i, r
0
i) (45)

γ̂ =

Ã
nX
i=1

wiw
0
i

!−1 nX
i=1

wix̃i (46)

X (w, γ) = w0iγ (47)

5 Empirical Application

We now apply the results of the previous section to estimation of a model by Cogneau and Maurin (2002) on

the effects of parental income on school attendance in Madagascar. The data set consists of a representative

sample of 1401 children aged six to eight, from a World Bank survey conducted in 1993-1994. The model

is equation (33) where di equals one if child i is enrolled in school on time (that is, by age 6), and zero

otherwise, xi is the date of birth of the child in the relevant year, normalized to vary from -1/2 to 1/2, and

the other regressors zi are a constant, the child’s sex, parents’ income, and the mother’s education level

(Cogneau and Maurin report virtually no difference between using mother’s or father’s education level).

The latent error ei may be correlated with parent’s income and education level, because of family fixed

effects (common unobserved determinants of parent’s resources and decisions) and measurement errors,

in that parent’s observed income and education level are rough proxies for permanent income and other

measures of total household resources. To control for this endogeneity, instruments ri are defined as the

child’s sex, differences between parents and grandparents education levels, and the difference between fathers

and grandfathers sector of labor activity (agriculture vs nonagriculture). For more details about the data,

the model, and alternative estimators, see Cogneau and Maurin (2002).

Table 2 below reports results using two different estimators, both based on equation (34) and the im-

plication that β = ∆ψ. The first estimator is from Lewbel (2000), which uses the same estimator of ∆

as equation (35), except that observation [n] is not omitted, and estimates ψ as n−1
Pn

i=1 vi/
bf(vi), wherebf(vi) is a quartic kernel estimator. Bandwidth selection and kernel based standard error estimates for this

12



estimator are constructed using the methods described in Lewbel (2000). The second estimator in Table 2

is the ordered data estimator in Corollary 7.

Both the kernel and ordered data estimators are equivalent to a linear two stage least squares regression

of an estimate of [d− I(x > 0)]/f(x) on regressors z using instruments. Each estimator is applied twice in

Table 2. The first application of each uses z as instruments as well as regressors, and so is equivalent to an

ordinary least squares instead of a two stage least squares, which fails to control for endogeneity. The second

application of each estimator uses r as described above as instruments.9

The kernel and ordered data based estimates are generally quite similar. The kernel based two stage least

squares estimates are all within two standard errors of the ordered data based two stage least squares esti-

mates, and vice versa. The main empirical finding is that controlling for endogeneity more than quadruples

the estimated effect of parental income on the decision to start children’s schooling on time. After controlling

for income and endogeneity, the effects of mother’s education level and the sex of the child are small and

statistically insignificant

6 Conclusion

We provide the limiting root n distribution for a simple “ordered data” estimator of means of functions

that are scaled by an unknown density, or equivalently, integrals of conditional expectations. We show that

the ordered data estimator is a viable alternative to more complicated estimators that require smoothing

parameters such as kernels and bandwidths.

Our asymptotic distribution theory is complicated by the fact that the dependence among sorted data

spacings x[i+1]−x[i] is of a form that is not covered by standard central limit theorems for dependent processes.
Each spacing depends equally strongly on arbitrarily distant spacings and not only on its neighbors. We

substantially extend Weiss (1958) to derive asymptotic distribution theory for these spacings.

Although our “ordered data” approach only covers the case where x is scalar, it should be noted that

many if not most empirical applications involving nonparametric density estimation are univariate, e.g., the

popular STATA econometrics package has built in commands for univariate, but not multivariate, nonpara-

metric kernel density and kernel regression estimation. Also, some multivariate applications can, by suitable

semiparametric methods, be encompassed by Theorem 6, such as the example discussed after Corollary 7.

It is possible to extend the approach presented here to obtain consistent estimators for K-dimensional

x by replacing spacings by suitable functions of first-nearest neighbors distances (details are available from

the authors upon request). However, achieving root n consistency involves handling some of the technical

difficulties that also plague semiparametric multivariate kernel estimation. In conventional kernel estimators,

boundary effects introduce a O (h) bias, where h is the bandwidth (Cheng et al., 1997), regardless of the

order of the kernel. By analogy, since the effective bandwidth in a nearest-neighbor estimator is O
¡
n−1/K

¢
,

9The first-step F statistics of the regression of each element of x on z are relatively large (greater than 50), indicating that
our results do not suffer from a weak instrument problem (see Equations (3.5) and (3.7) in Staiger and Stock, 1997).
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the bias is O
¡
n−1/K

¢
, which is sufficiently large to prevent root n consistent estimation with no bias in the

asymptotic distribution10 for K > 1. In the context of kernel estimation, this bias is dealt with using some

form of asymptotic trimming or kernel refinement, such as a local polynomial kernel smoother (Stone, 1977

and Cleveland, 1979). An analogous local nearest-neighbor polynomial estimator would consist of regressing

yj on a polynomial in xj for all xj in some O
¡
n−1/K

¢
neighborhood of xi and using the resulting predicted

value ŷi in a sample average weighted by nearest-neighbor distances to the power K. It would be interesting

to see if such extensions can attain root n consistency with a fixed number of neighbors in a multivariate

setting.
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Appendix A

Lemma 8 Let (i) gi be an iid sequence drawn from a e−gi1 (gi ≥ 0) density, (ii) ui be an iid sequence drawn
from a uniform density on [0, 1], and (iii) zi be a sequence such that the following quantities are defined:

µ = limn→∞ n−1
Pn

i=1E [zi], ρ
2 = limn→∞Var

£
n−1/2

Pn
i=1 zi

¤
, and τ2 = limn→∞ n−1

¡Pn
i=1E

£
z2i
¤¢
. If

(i) zi is independent from gi and
¡
u[i+1] − u[i]

¢
and (ii) if n−1/2 (

Pn
i=1 zigi − nµ) is asymptotically normal,

then

n−1/2
Ã
n−1X
i=1

z[i]n
¡
u[i+1] − u[i]

¢− nµ

!
d→ N

¡
0, ρ2 + τ2 − µ2

¢
. (48)

Proof. This proof is analogous to Weiss’ (1958) derivation of the asymptotic distribution of homogenous

functions of spacings. Let G[i] =
Pi+1

j=0 g[j] and s[i] = g[i]/Gn for i = 1, . . . , n−1. It can be shown (see Weiss,
1958) that the joint distribution of the s[i] is identical to the one of the u[i+1] − u[i]. The desired result can

thus be established by relating the distribution of n−1
Pn−1

i=1 z[i]g[i] to the one of n−1
Pn−1

i=1 z[i]s[i].

Let us first calculate the mean and the variance of n−1
Pn−1

i=1 z[i]g[i]. We have limn→∞E
h
n−1

Pn−1
i=1 z[i]g[i]

i
=

limn→∞ n−1
Pn−1

i=1 E
£
z[i]g[i]

¤
= limn→∞ n−1

Pn
i=1E [zigi] = limn→∞ n−1

Pn
i=1E [zi]E [gi] = limn→∞ n−1Pn

i=1E [zi]·1 = µ. Also, limn→∞Var
h
n−1/2

Pn−1
i=1 z[i]g[i]

i
= limn→∞ n−1E

h
(
Pn

i=1 zigi)
2
i
−µ2 = limn→∞ n−1Pn

i=1E
£
z2i
¤
E
£
g2i
¤
+
Pn

i=1

P
j 6=iE [zizj ]E [gi]E [gj ]−µ2 = limn→∞ n−1

Pn
i=1E

£
z2i
¤·2+Pn

i=1

P
j 6=iE [zizj ]·

1 · 1 − µ2 = limn→∞ n−1
¡Pn

i=1E
£
z2i
¤¢
+ n−1

³Pn
i=1E

£
z2i
¤
+
Pn

i=1

P
j 6=iE [zizj ]

´
− µ2 = τ2 + limn→∞

E
h¡
n−1/2

Pn
i=1 zi

¢2i− µ2 = τ2 + ρ2. Thus,

X0 =

Pn−1
i=1 z[i]g[i] − nµ

n1/2γ
(49)

where γ =
p
τ2 + ρ2, has a N (0, 1) asymptotic distribution. However, X0 can also be written (see Weiss,

1958) as

X0 =

Pn−1
i=1 z[i]g[i] −Gnµ+Gnµ− nµ

n1/2γ

=

Pn−1
i=1 z[i]g[i] −Gnµ¡

Gn

n

¢
n1/2γ

+
Gnµ− nµ¡
Gn

n

¢
n1/2γ

+Op

¡
n−1

¢
=

Pn−1
i=1 z[i]n

¡
g[i]/Gn

¢− nµ

n1/2γ
+

Gnµ− nµ¡
Gn

n

¢
n1/2γ

+Op

¡
n−1

¢
=

Pn−1
i=1 zins[i] − nµ

n1/2γ
+

Gnµ− nµ¡
Gn

n

¢
n1/2γ

+Op

¡
n−1

¢
≡ X1 +X2 +Op

¡
n−1

¢
(50)

where X1 and X2 are independent (because it can be shown (see Weiss, 1958) that di and Gn are indepen-

dent). Moreover,

X2 =
Gnµ− nµ¡
Gn

n

¢
n1/2γ

=

µ
Gn − n

n1/2

¶Ã
µ¡

Gn

n

¢
γ

!
p→
µ
Gn − n

n1/2

¶µ
µ

γ

¶
. (51)
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It follows that X2
d→ N

³
0, (µ/γ)2

´
. Since (i) X0 = X1 +X2, (ii) X0

d→ N (0, 1), (iii) X2
d→ N

µ
0,
³
µ
γ

´2¶
and (iv) X1 and X2 are independent, it follows that the asymptotic distribution of X1 is the one of X0,

“deconvoluted” by the one of X2. For independent normals, the deconvolution operation simply amounts

to subtracting the variances. Thus, X1
d→ N

³
0, 1− (µ/γ)2

´
. Since X1 =

³Pn−1
i=1 z[i]ns[i] − nµ

´
/
¡
n1/2γ

¢
,

then

n−1/2
Ã
n−1X
i=1

z[i]ns[i] − nµ

!
d→ N

¡
0, γ2 − µ2

¢
, (52)

where γ2 − µ2 = ρ2 + τ2 − µ2.

Lemma 9 Let gi be an iid sequence drawn from a e−gi1 (gi ≥ 0) density and let ui be an iid sequence
drawn from a uniform density on [0, 1]. If (i) zi is independent from gi, and

¡
u[i+1] − u[i]

¢
and (ii) if

n−1
Pn

i=1 zig
α
i

p→ µ, then n−1
Pn

i=1 z[i]n
α
¡
u[i+1] − u[i]

¢α p→ µ.

Proof. Let G[i] =
Pi+1

j=0 g[j]. As noted by Weiss (1958), n−1
Pn−1

i=1 z[i]n
α
¡
u[i+1] − u[i]

¢α
has the

same distribution as n−1
Pn

i=1 z[i]n
α
¡
g[i]/G[n]

¢α
= n−1

Pn
i=1 zin

α
¡
gi/G[n]

¢α
=
¡
n/G[n]

¢α
n−1

Pn−1
i=1 zig

α
i =

(1 + op (1))n
−1Pn

i=1 zig
α
i ,where n

−1Pn
i=1 zig

α
i

p→ µ, by assumption.

Lemma 10 If xi is an iid sequence drawn from a continuous density f (x) satisfying assumption 2, thenPn−1
i=1

¡
x[i+1] − x[i]

¢α
= Op

¡
n1−α

¢
for α > 0.

Proof. Let f = infx f (x) and ui = F−1 (xi). By Assumption 2, f > 0 and F−1 (·) is uniquely defined.
We then have, by the mean value theorem and the continuity of f (x),

n−1X
i=1

¡
x[i+1] − x[i]

¢α
=

n−1X
i=1

¡
F−1

¡
u[i+1]

¢− F−1
¡
u[i]
¢¢α

=
n−1X
i=1

¡
u[i+1] − u[i]

¢α³
f
³
ξ[i]

´´α for some ξ[i] ∈
£
u[i], u[i+1]

¤

≤ f−α
n−1X
i=1

¡
u[i+1] − u[i]

¢α
= f−αn1−α

Ã
n−1

n−1X
i=1

nα
¡
u[i+1] − u[i]

¢α!
= f−αn1−αOp (1) = Op

¡
n1−α

¢
(53)

where the second to last equality follows from Lemma 9.

Lemma 11 If Var [ai] <∞, then supi∈{1,...,n} ai = Op

¡
n1/2

¢
.

Proof. Combining P [A ∪B] ≤ P [A] + P [B] with Tschebytchev’s inequality, we have that P [ai ≥
Cn1/2 for some i ≤ n] ≤ Pn

i=1 P
£
ai ≥ Cn1/2

¤ ≤ Pn
i=1Var [ai]C

−2n−1 = Var [ai]C−2, which can be made

arbitrarily small for all n by choosing a C sufficiently large.
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Proof. (of Theorem 1) Let g (x) = E [y|x], ∆y[i] = y[i] − g
¡
x[i]
¢
, d[i] = F

¡
x[i+1]

¢− F
¡
x[i]
¢
and write

θ̃ − θ = N1 +R1 +R2 where

N1 = n−1
n−1X
i=1

∆y[i]

f
¡
x[i]
¢nd[i] (54)

R1 =
n−1X
i=1

g
¡
x[i]
¢ ¡
x[i+1] − x[i]

¢− Z g (x) dx (55)

R2 =
n−1X
i=1

∆y[i]
¡
x[i+1] − x[i]

¢− n−1X
i=1

∆y[i]

f
¡
x[i]
¢d[i]. (56)

R1 can be bounded in probability using the mean value theorem, the Hölder properties of g (x), and Lemma

10:

|R1| =

¯̄̄̄
¯
n−1X
i=1

g
¡
x[i]
¢ ¡
x[i+1] − x[i]

¢− Z g (x) dx

¯̄̄̄
¯ =

¯̄̄̄
¯
n−1X
i=1

Ã
g
¡
x[i]
¢ ¡
x[i+1] − x[i]

¢− Z x[i+1]

x[i]

g (x) dx

!¯̄̄̄
¯

=

¯̄̄̄
¯
n−1X
i=1

³
g
¡
x[i]
¢ ¡
x[i+1] − x[i]

¢− g
³
ξ[i]

´¡
x[i+1] − x[i]

¢´¯̄̄̄¯ for some ξ[i] ∈ £x[i], x[i+1]¤
≤

n−1X
i=1

¯̄̄
g
¡
x[i]
¢− g

³
ξ[i]

´¯̄̄ ¡
x[i+1] − x[i]

¢ ≤ n−1X
i=1

Hg

¯̄̄
ξ[i] − x[i]

¯̄̄hg ¡
x[i+1] − x[i]

¢
≤ Hg

n−1X
i=1

¡
x[i+1] − x[i]

¢1+hg = Op

¡
n−hg

¢
= op

³
n−1/2

´
(57)

The second remainder term R2 can be similarly bounded with the help of the Cauchy-Schwartz inequality:

|R2| =

¯̄̄̄
¯
n−1X
i=1

∆y[i]
¡
x[i+1] − x[i]

¢− n−1X
i=1

∆y[i]

f
¡
x[i]
¢d[i]

¯̄̄̄
¯

=

¯̄̄̄
¯
n−1X
i=1

∆y[i]

f
¡
x[i]
¢ ¡¡x[i+1] − x[i]

¢
f
¡
x[i]
¢− ¡F ¡x[i+1]¢− F

¡
x[i]
¢¢¢¯̄̄̄¯

=

¯̄̄̄
¯
n−1X
i=1

∆y[i]

f
¡
x[i]
¢ ¡x[i+1] − x[i]

¢ ³
f
¡
x[i]
¢− f

³
ξ[i]

´´¯̄̄̄¯ for some ξ[i] ∈ £x[i], x[i+1]¤
≤

n−1X
i=1

¯̄
∆y[i]

¯̄
f
¡
x[i]
¢ ¡x[i+1] − x[i]

¢ ¯̄̄
f
¡
x[i]
¢− f

³
ξ[i]

´¯̄̄
≤ Hfn

−1
n−1X
i=1

¯̄
∆y[i]

¯̄
f
¡
x[i]
¢n ¡x[i+1] − x[i]

¢1+hf
≤ Hf

Ã
n−1

n−1X
i=1

¡
∆y[i]

¢2
f2
¡
x[i]
¢!1/2Ãn−1 n−1X

i=1

n2
¡
x[i+1] − x[i]

¢2+2hf!1/2

= Hf

Ã
n−1

n−1X
i=1

¡
∆y[i]

¢2
f2
¡
x[i]
¢!1/2Ãn n−1X

i=1

¡
x[i+1] − x[i]

¢2+2hf!1/2
= Op (1)Op

¡
n−hf

¢
= op

³
n−1/2

´
. (58)

We now show that the N1 term is asymptotically normal and root n consistent. One cannot simply use the

Lindeberg-Levy CLT to determine the asymptotics of this sum, because the d[i] are dependent. However, by

Lemma 8, one can still achieve asymptotic normality and root n consistency, if two requirements are met:
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(i) ∆y[i]

f(x[i])
is independent from d[i] and (ii) n−1

Pn
i=1

∆yi
f(xi)

gi is asymptotically normal and root n consistent,

where gi is an iid sequence independent from
∆y
f(xi)

and drawn from a e−gi1 (gi ≥ 0) density.
To show that

¡
∆y[i], x[i]

¢
is asymptotically independent (a.i.) from d[i], we use the fact, shown by Barbe

(1994), that u[i] and d[i] are a.i. First note that x[i] and d[i] are also a.i. since x[i] = F−1
¡
u[i]
¢
. Then,

to see that ∆y[i] and d[i] are a.i., observe that, asymptotically, P
£
∆y[i]|x[i], d[i]

¤
= P

£
∆y[i]|x[i], x[i+1]

¤
=

P
£
∆y[i]|x[i]

¤
.

Now, n−1
Pn−1

i=1
∆y[i]

f(x[i])
g[i]

p→ n−1
Pn

i=1
∆y[i]

f(x[i])
g[i] = n−1

Pn
i=1

∆yi
f(xi)

gi, which can be shown to be as-

ymptotically normal by the Lindeberg-Levi CLT, since all the variables are iid and E
h
(∆yg/f (x))

2
i
=

E
h
(∆y/f (x))2

i
E
£
g2
¤
= E

£
Var (y|x) /f2 (x)¤ · 2 <∞ by assumption.

Since both conditions of Lemma 8 are met, we can conclude that the sum n−1
Pn−1

i=1

¡
∆y[i]/f

¡
x[i]
¢¢
nd[i]

is asymptotically normal with mean µ = limn→∞ n−1
Pn

i=1E [∆yi/f (xi)] = 0 and variance ρ2 + τ2 − µ2

where ρ2 = limn→∞Var
£
n−1/2

Pn
i=1∆yi/f (xi)

¤
= E

h
(∆yi/f (xi))

2
i
= E

£
Var [yi|xi] /f2 (xi)

¤
= σ2 and

τ2 = limn→∞ n−1
³Pn

i=1E
h
(∆yi/f (xi))

2
i´
= σ2.

Proof. (of Corollary 2) First observe that

θ̂ =
n−1X
i=1

y[i]
¡
x[i+1] − x[i]

¢
/2 +

n−1X
i=1

y[i+1]
¡
x[i+1] − x[i]

¢
/2 ≡ T1 + T2. (59)

Theorem 1 directly implies that the T1 term is asymptotically normal. After reversing the order of the

data, Theorem 1 also implies that the T2 term is asymptotically normal. We then need to compute the

asymptotic variance, which can be done by applying Lemma 8 with z[i] =
∆y[i]

2f(x[i])
+

∆y[i+1]

2f(x[i+1])
, since it allows

for dependent sequences such as zi. We simply have to derive the new values of ρ2 and τ2:

ρ2 = lim
n→∞Var

"
n−1/2

n−1X
i=1

Ã
∆y[i]

2f
¡
x[i]
¢ + ∆y[i+1]

2f
¡
x[i+1]

¢!#

= lim
n→∞

1

4n
Var

"
2

nX
i=1

∆yi
f (xi)

#
= E

·
Var [y|x]
f2 (x)

¸
= σ2 (60)

τ2 = lim
n→∞n−1

Ã
n−1X
i=1

Var

Ã
y[i]

2f
¡
x[i]
¢ + y[i+1]

2f
¡
x[i+1]

¢!!

= lim
n→∞

2

4n

nX
i=1

Var

Ã
y[i]

f
¡
x[i]
¢! = 1

2
Var

µ
∆yi
f (xi)

¶
=
1

2
E

·
Var [y|x]
f2 (x)

¸
=

σ2

2
(61)

Thus n1/2
³
θ̂ − θ

´
d→ N

¡
0, ρ2 + τ2

¢
, where ρ2 + τ2 = 3σ2/2.
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Proof. (of Theorem 3) Let g (x) = E [y|x], ∆y[i] = y[i]−g
¡
x[i]
¢
, u[i] = F

¡
x[i]
¢
, and dk,[i] = u[i+k]−u[i].

Then, θ̃kn − θ =
Pn−kn

i=1 y[i]
¡
x[i+kn] − x[i]

¢
/kn −

R
g (x) dx = N1 −R0 +R1 +R2 +R3, where

N1 = n−1
nX
i=1

∆y[i]

f
¡
x[i]
¢ (62)

R0 = n−1
nX

i=n−kn+1

∆y[i]

f
¡
x[i]
¢ (63)

R1 =

n−knX
i=1

g
¡
x[i]
¢ ¡
x[i+kn] − x[i]

¢
/kn −

Z
g (x) dx (64)

R2 =

n−knX
i=1

∆y[i]
¡
x[i+kn] − x[i]

¢
/kn −

n−knX
i=1

∆y[i]

f
¡
x[i]
¢dkn,[i]/kn (65)

R3 = n−1
n−knX
i=1

∆y[i]

f
¡
x[i]
¢ ¡ndkn,[i]/kn − 1¢ . (66)

First, we have N1 = n−1
Pn

i=1
∆y[i]

f(x[i])
= n−1

Pn
i=1

∆yi
f(xi)

, which is asymptotically normal by the i.i.d. as-

sumption and the assumption that E
£
Var [∆yi|xi] /f2 (xi)

¤
< ∞. Next, we bound the remainder terms.

R0 ≡ r0
¡
x[n−kn+1]

¢
where

r0 (ξ) = n−1
nX
i=1

∆y[i]

f
¡
x[i]
¢1 ¡x[i] ≥ ξ

¢
= n−1

nX
i=1

∆yi
f (xi)

1 (xi ≥ ξ) (67)

By Tschebytchev’s inequality, for any ε > 0,

P
h¯̄̄
n1/2r0 (ξ)

¯̄̄
≥ ε|ξ

i
≤ ε−2E

"
(∆yi)

2

f2 (xi)
1 (xi ≥ ξ)

#
. (68)

Since Var (yi|xi) /f2 (xi) is positive and E
£
Var (yi|xi) /f2 (xi)

¤
is finite, E

h
1 (xi ≥ ξ) (∆yi/f (xi))

2
i
→ 0 as

ξ → x̄ ≡ supx∈F x. Let ξn be a deterministic sequence such that ξn → x̄ and such that x[n−kn+1] ≥ ξn

with probability approaching one, which is possible since plimx[n−kn+1] = plimx[n] = x̄. Then, w.p.a. 1,

P
£¯̄
n1/2r0

¡
x[n−kn+1]

¢¯̄ ≥ ε
¤ ≤ P

£¯̄
n1/2r0 (ξn)

¯̄ ≥ ε
¤ → 0, implying that P

£¯̄
n1/2r0

¡
x[n−kn+1]

¢¯̄ ≥ ε
¤ → 0

and that r0
¡
x[n−kn+1]

¢
= op

¡
n−1/2

¢
.

Some of the changes of variables in the summations below introduce “boundary” terms, denoted by B,

which can be shown to be op
¡
n−1/2

¢
(The proof is available upon request).

|R1| =

¯̄̄̄
¯
n−knX
i=1

g
¡
x[i]
¢ ¡
x[i+kn] − x[i]

¢
/kn −

n−1X
i=1

Z x[i+1]

x[i]

g (x) dx

¯̄̄̄
¯

=

¯̄̄̄
¯
n−knX
i=1

g
¡
x[i]
¢ ¡
x[i+kn] − x[i]

¢
/kn − k−1n

n−knX
i=1

Z x[i+kn]

x[i]

g (x) dx+B

¯̄̄̄
¯

=

¯̄̄̄
¯
n−knX
i=1

g
¡
x[i]
¢ ¡
x[i+kn] − x[i]

¢
/kn − k−1n

n−knX
i=1

¡
x[i+kn] − x[i]

¢
g
³
ξ[i]

´
+B

¯̄̄̄
¯ for ξ[i] ∈ £x[i], x[i+kn]¤
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=

¯̄̄̄
¯
n−knX
i=1

³
g
¡
x[i]
¢− g

³
ξ[i]

´´ ¡
x[i+kn] − x[i]

¢
/kn +B

¯̄̄̄
¯ ≤ Hg

¯̄̄̄
¯k−1n

n−knX
i=1

¡
x[i+kn] − x[i]

¢1+hg ¯̄̄̄¯+ |B|
= Hg

¯̄̄̄
¯̄̄n−knX
i=1

k−1n
knX
j=1

¡
x[i+j] − x[i+j−1]

¢1+hg
¯̄̄̄
¯̄̄+ |B| ≤ Hg

¯̄̄̄
¯̄n−knX
i=1

k−1n
knX
j=1

¡
x[i+j] − x[i+j−1]

¢1+hg ¯̄̄̄¯̄+ |B|
≤ Hg

¯̄̄̄
¯
n−knX
i=1

¡
x[i+1] − x[i]

¢1+hg ¯̄̄̄¯+ |B| = Op

¡
n−hg

¢
= op

³
n−1/2

´
(69)

The R2 remainder term can be similarly shown to be op
¡
n−1/2

¢
. Finally,

R3 = n−1
n−knX
i=1

∆y[i]

f
¡
x[i]
¢ ¡ndk,[i]/kn − 1¢

= n−1
n−knX
i=1

∆y[i]

f
¡
x[i]
¢
k−1n

knX
j=1

nd1,[i+j−1]

− 1
 (70)

Proceeding as in Lemma 9 and introducing g[i] and G[n] defined therein, R3 has the same distribution as

n−1
n−knX
i=1

∆y[i]

f
¡
x[i]
¢
µ n

G[n]

¶k−1n
knX
j=1

g[i+j−1]

− 1


=

µ
n

G[n]

¶
n−1

n−knX
i=1

∆y[i]

f
¡
x[i]
¢
k−1n

knX
j=1

g[i+j−1]

− 1
+µ1−µ n

G[n]

¶¶
n−1

n−knX
i=1

∆y[i]

f
¡
x[i]
¢

= (1 + op (1))R31 + op (1)Op

³
n−1/2

´
(71)

where

R31 = n−1
n−knX
i=1

∆y[i]

f
¡
x[i]
¢
k−1n

knX
j=1

¡
g[i+j−1] − 1

¢ . (72)

Employing well-known techniques used for the study of U -statistics, it can be shown that E
£
R231

¤
=

O
¡
k−1n n−1

¢
, implying that R3 = Op

³
k
−1/2
n n−1/2

´
= op

¡
n−1/2

¢
.

Proof. (of Theorem 4) We first observe that

σ̂2 =
n

4

n−1X
i=1

¡
∆y[i+1] −∆y[i] + r[i]

¢2 ¡
x[i+1] − x[i]

¢2
(73)

where
¯̄
r[i]
¯̄
=
¯̄¡
y[i+1] − y[i]

¢− ¡∆y[i+1] −∆y[i]¢¯̄ = ¯̄¡
g
¡
x[i+1]

¢− g
¡
x[i]
¢¢¯̄ ≤ Hg

¯̄
x[i+1] − x[i]

¯̄hg , by the
Hölder property of g (x). The remainder of the proof (available upon request) is a straightforward but

tedious extension of the techniques used in Theorem 1.

Proof. (of Corollary 5) This result can be shown along the same lines as Theorems 1, 4 and Corollary 2,

with the Cramer-Wold device, letting yi =
Pk

j=1 αjvij , where (α1, . . . , αk) is a vector of arbitrary constants,

and noting that E
£
Covar [vij , vij0 |xi] /f2 (xi)

¤ ≤ (E [Var [vij |xi] /f (xi)]E [Var [vij0 |xi] /f (xi)])1/2.
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Lemma 12 Let x be a random scalar and w be a random vector taking value in RNw related through x =

X (w, γ) for some function X : RNw × RNγ 7→ R and for some parameter vector γ. If ∂X(w,γ)
∂γ exists and is

such that E
h¯̄̄

∂X(w,γ)
∂γ

¯̄̄i
<∞ then

∂fx|γ (x|γ)
∂γ

= − ∂

∂x

µ
fx|γ (x|γ)E

·
∂X (w, γ)

∂γ
|x
¸¶

. (74)

Proof. Let us introduce the sequence

Sm (ξ) =

 1 if ξ < −m−1
(1−mξ) /2 if ξ ∈ £−m−1,m−1¤
0 if ξ > m−1

, (75)

which converges pointwise to the indicator function 1 (ξ ≤ 0), except at ξ = 0. By the Dominated Conver-
gence Theorem, we have Fx|γ (x|γ) =

R
1 [X (w, γ) ≤ x] dFw (w) =

R
limm→∞ Sm (X (w, γ)− x) dFw (w) =

limm→∞
R
Sm (X (w, γ)− x) dFw (w) since the integrand is dominated, for allm, by the absolutely integrable

measure dFw (w). Differentiating yields ∂Fx|γ (x|γ) /∂γ = limm→∞
R
S0m (X (w, γ)− x) ∂X (w, γ) /∂γdFw (w),

where S0m (ξ) = −2m1
¡|x| ≤ m−1

¢
and where the operator ∂

∂γ commutes with the limit and integral because

S0m (ξ) is absolutely integrable by construction and so is
∂X(w,γ)

∂γ dFw (w), by assumption. Noting that S0m (ξ)

forms a sequence of functions converging to minus the Dirac delta distribution −δ (ξ), we have
∂

∂γ
Fx|γ (x|γ) = −

Z
δ (X (w, γ)− x)

∂X (w, γ)

∂γ
dFw (w)

= −fx|γ (x|γ)
R
δ (X (w, γ)− x) ∂X(w,γ)∂γ dFw (w)

fx|γ (x|γ)

= −fx|γ (x|γ)E
·
∂X (w, γ)

∂γ
|x
¸
, (76)

where the last equality uses the definition of E
h
∂X(w,γ)

∂γ |x
i
. Finally, differentiating Equation (76) with

respect to x yields Equation (74).

Proof. (of Theorem 6)We can decompose the estimation error as n1/2
³
θ̃kn (γ̂)− θ (γ∗)

´
= N1+R1+

N2 +R2 where

N1 = n1/2
³
θ̃kn (γ

∗)− θ (γ∗)
´

(77)

N2 = n1/2
∂θ (γ∗)
∂γ0

(γ̂ − γ∗) (78)

R1 = n1/2
³
θ̃kn (γ̂)− θ (γ̂)

´
− n1/2

³
θ̃kn (γ

∗)− θ (γ∗)
´

(79)

R2 = n1/2
µ
∂θ (γ̇)

∂γ0
− ∂θ (γ∗)

∂γ0

¶
(γ̂ − γ∗) (80)

where γ̇ is a mean value located along the segment joining γ∗ and γ̂. We will evaluate, in turn, (i) R1, (ii)

R2, (iii) N1 (iv) N2 and (v) the asymptotic variance of N1 +N2.

(i) Theorem 3 shows that n1/2
³
θ̃kn (γ)− θ (γ)

´
for a given γ as asymptotically equivalent to n−1/2

Pn
i=1

yi−E[yi|xi]
fx|γ(xi|γ) . In order to handle the fact that all the quantities are function of γ, Theorem 3 needs to be
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adapted for the order of the remainder terms to hold jointly for γ∗ and γ̂. This is achieved by replacing

Assumptions 2 through 5 by corresponding Assumptions 6 through 9 that hold uniformly for γ ∈ Γ. It
follows that R1 is such that

R1 = n−1/2
nX
i=1

yi −E [yi|xi = X (wi, γ̂)]

fx|γ (xi|γ̂) − n−1/2
nX
i=1

yi −E [yi|xi = X (wi, γ
∗)]

fx|γ (xi|γ∗) + op (1)

= R11 +R12 + op (1) (81)

where

R11 = n−1/2
nX
i=1

fx|γ (xi|γ∗)− fx|γ (xi|γ̂)
fx|γ (xi|γ̂) fx|γ (xi|γ∗) ∆yi (82)

R12 = n−1/2
nX
i=1

µ
E [yi|xi = X (wi, γ̂)]−E [yi|xi = X (wi, γ

∗)]
fx|γ (xi|γ̂)

¶
(83)

and where ∆yi = yi −E [yi|xi = X (wi, γ
∗)]. Tschebychev’s inequality lets us write, for any ε > 0,

P [|R11| ≥ ε | γ̂] ≤ ε−2E

Ãn−1/2 nX
i=1

¡
fx|γ (xi|γ∗)− fx|γ (xi|γ̂)

¢
fx|γ (xi|γ̂) fx|γ (xi|γ∗) ∆yi

!2
|γ̂
 (84)

= ε−2
¡
n−1n

¢
E

"¡
fx|γ (xi|γ∗)− fx|γ (xi|γ̂)

¢2
f2x|γ (xi|γ̂) f2x|γ (xi|γ∗)

(∆yi)
2 |γ̂
#

(85)

where E
·
(fx|γ(xi|γ∗)−fx|γ(xi|γ̂))2

f2
x|γ(xi|γ̂)f2x|γ(xi|γ∗)

y2i |γ̂
¸

p→ 0 as11 γ̂
p→ γ∗, by the continuity of fx|γ (xi|γ) in γ (from Lemma 12),

the fact that fx|γ (xi|γ) is bounded away from zero for γ ∈ Γ and that E
·
(fx|γ(xi|γ∗)−fx|γ(xi|γ̂))2

f2
x|γ(xi|γ̂)f2x|γ(xi|γ∗)

(∆yi)
2 |γ̂
¸
≤

4 supγ∈Γ supx∈Fγ f
2
x|γ(x|γ)

infγ∈Γ infx∈Fγ f
2
x|γ(x|γ)

E

·
(∆yi)

2

f2
x|γ(x|γ∗)

¸
< ∞ (since supγ∈Γ supx∈Fγ f

2
x|γ (x|γ) must be finite by the Hölder

continuity of fx|γ (x|γ)). Equation (85) then implies that R11 p→ 0. Similarly, for the R12 term

P [|R12| ≥ ε | γ̂] ≤ ε−2E
h
(E [yi|xi = X (wi, γ̂)]−E [yi|xi = X (wi, γ

∗)])2 /f2x|γ (xi|γ̂) |γ̂
i
. (86)

Since E [yi|xi = X (wi, γ)] =
R E[y|w]δ(xi−X(wi,γ))

fx|γ(X(w,γ)|γ) dw, continuity of fx|γ (x|γ) and X (w, γ) in γ and infγ∈Γ

infx fx|γ (x|γ) > 0 implies that E [yi|xi = X (wi, γ)] is continuous in γ. Then, as for R11, we have R12
p→ 0.

(ii) The remainder R2 can then be bounded using the continuity of
∂θ(γ)
∂γ0 (from Assumption 11), the

assumed root n consistency of γ̂ and the fact that γ̇
p→ γ∗: R2 = (∂θ (γ∗) /∂γ0 − ∂θ (γ̇) /∂γ0)n1/2 (γ̂ − γ) =

op (1)n
1/2Op

¡
n−1/2

¢
= op (1).

(iii) From the proofs of Theorem 3, the N1 term can be written as N1 = n−1/2
Pn

i=1
∆yi

fx|γ(x|γ∗) + op (1),

where the sum is asymptotically normal.

(iv) By the assumption of the existence of an influence representation for γ̂, the N2 term can be written

as N2 = B0n−1/2
Pn

i=1Ψi + op (1), where B = ∂θ (γ∗) /∂γ and where the sum is asymptotically normal.

(v) The estimation error can then be written as

n1/2
³
θ̃kn (γ̂)− θ (γ∗)

´
= n−1/2

nX
i=1

µ
∆yi

fx|γ (x|γ∗) +B0Ψi

¶
+ op (1) (87)

11This expectation converges in probability because it is a function of γ̂, which is random.
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and straightforward calculations provide the expression of the asymptotic variance V of this sum. An explicit

expression for B can be given. First note that

θ (γ) = E

·
y

fx|γ (X (w, γ) |γ)
¸
=

Z
E [y|w]

fx|γ (X (w, γ) |γ)fw (w) dw. (88)

This shows that the only dependence of this expression on γ comes from the denominator fx|γ (X (w, γ) |γ).
We can then write (the required expectations and derivatives commute by Assumption 11):

∂θ (γ)

∂γ
= −E

"
y¡

fx|γ (X (w, γ) |γ)
¢2 ∂fx|γ (X (w, γ) |γ)∂γ

#
. (89)

The quantity fx|γ (X (w, γ) |γ) depends on γ through two different paths: (i) the function fx|γ (·|γ) depends
on γ and (ii) the point of evaluation X (w, γ) depends on γ. We then have

∂θ (γ)

∂γ
= −E

"
y¡

fx|γ (X (w, γ) |γ)
¢2
Ã·

∂fx|γ (x|γ)
∂γ

¸
x=X(w,γ)

+

·
∂fx|γ (x|γ)

∂x

¸
x=X(w,γ)

∂X (w, γ)

∂γ

!#
. (90)

Using Lemma 12 to evaluate ∂fx|γ(x|γ)
∂γ , we obtain

∂θ (γ)

∂γ
= E

·
y

fx|γ (x|γ)
∂

∂x
E

·
∂X (w, γ)

∂γ
|x
¸¸
+ (91)

−E
"

y

fx|γ (x|γ)
∂
¡
ln
¡
fx|γ (x|γ)

¢¢
∂x

µ
∂X (w, γ)

∂γ
−E

·
∂X (w, γ)

∂γ
|x
¸¶#

In the special case mentioned in the second part of the theorem, it can be readily verified thatE
h
∂X(w,γ∗)

∂γ |x, y
i
=

E
h
∂X(w,γ∗)

∂γ

i
implies that ∂θ (γ) /∂γ|γ=γ∗ = 0.

Proof. (of Corollary 7)Since the estimator θ̃ =
Pn−1

i=1 v[i]
¡
x[i+1] − x[i]

¢
, cannot be written as a dif-

ferentiable functional of the joint cdf of y and x, an “influence function” cannot be defined. However, this

estimator can be written as a differentiable functional of the joint density of y, x and an auxiliary random vari-

able gi, which is an iid sequence independent from yi and xi and drawn from a e−gi1 (gi ≥ 0) distribution. We
can then consider a “pseudo influence function” Ψ̃ (yi, xi) =

(yi−E[yi|xi])
f(xi)

gi. The “pseudo influence function”

for the more efficient estimator θ̂ =
Pn−1

i=1

¡
v[i] + v[i+1]

¢ ¡
x[i+1] − x[i]

¢
/2 is Ψ̂ (yi, xi) =

(yi−E[yi|xi])
f(xi)

(gi+hi)
2

where hi is independent from gi and has the same distribution.

For the binary choice estimator bβ, the appropriate pseudo influence function is
n1/2

³bβ − β
´
= n−1/2∆

nX
i=1

µ
(yi −E [yi|xi])

f (xi)

(gi + hi)

2
− ¡riz0i − rz0

¢
β

¶
+ op(1) (92)

(with gi and hi defined above) and so the asymptotic variance is ∆E
£
(Ui −Wi) (Ui −Wi)

0¤
∆0 where

Ui =
(yi −E [yi|xi])

f (xi)

(gi + hi)

2
(93)

Wi =
¡
riz

0
i − rz0

¢
β. (94)
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Note that E [WiW
0
i ] is just a standard variance expression. However,

E [UiU
0
i ] = E

h¡
(yi −E [yi|xi]) (yi −E [yi|xi])0 /f2 (xi)

¢
(gi + hi)

2 /4
i

= E
£¡
(yi −E [yi|xi]) (yi −E [yi|xi])0 /f2 (xi)

¢¤
E
h
(gi + hi)

2
/4
i

= E
£¡
(yi −E [yi|xi]) (yi −E [yi|xi])0 /f2 (xi)

¢¤ ¡
E
£
g2i
¤
+ 2E [gi]E [hi] +

£
h2i
¤¢
/4

= E
£¡
(yi −E [yi|xi]) (yi −E [yi|xi])0 /f2 (xi)

¢¤ 6
4
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£
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¤
(95)

where E
h
Var(yi|xi)
f2(xi)

i
can be estimated by n

4

Pn−1
i=1

¡
y[i+1] − y[i]

¢ ¡
y[i+1] − y[i]

¢0 ¡
x[i+1] − x[i]

¢2
. Finally,

E [UiW
0
i ] = E [(yi −E [yi|xi])W 0

i/f (xi)]E [(gi + hi) /2] = E [(yi −E [yi|xi])W 0
i/f (xi)] (96)

and E [UiW
0
i ] can be estimated by
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¢ ¡
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¢
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.(97)

The expression for bΩ given in the theorem thus follows.
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TABLE 1: MONTE CARLO RESULTS

mean stddev lower median upper rmse mae mdae
true density bθ0 .9959 .2834 .7967 .9820 1.177 .2835 .2264 .1919

ordered data 1 bθ1 1.000 .2663 .8209 1.001 1.175 .2663 .2112 .1770

ordered data 2 bθ2 1.003 .2470 .8374 1.001 1.164 .2470 .1954 .1634

ordered data 3 bθ3 1.006 .2429 .8441 1.002 1.166 .2430 .1921 .1608

Silverman b kernel bθ4 .9925 .2338 .8334 .9891 1.151 .2339 .1866 .1588

b/2 kernel bθ5 .9679 .2262 .8170 .9647 1.121 .2285 .1820 .1528

2b kernel bθ6 1.029 .2546 .8526 1.025 1.199 .2562 .2048 .1744

TABLE 2: SCHOOL ATTENDANCE ESTIMATES

Kernel OLS Ordered OLS Kernel 2SLS Ordered 2SLS

Constant −2.758 −2.251 −12.394 −8.394
(.474) (.757) (2.195) (3.324)

Boy .030 −.007 .033 −.005
(.041) (.067) (.047) (.070)

Log Income .173 .144 .882 .597
(.035) (.056) (.161) (.244)

Mother’s Education .194 .036 −.089 −.068
(.026) (.039) (.061) (.094)

Note: Standard errors are in parentheses.
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