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Abstract

Several studies have tested for long-range dependence in macroeconomic and
financial time series but very few have assessed the usefulness of long-memory
models as forecast generating mechanisms. This study tests for fractional
differencing in the U.S. monetary indices (simple sum and divisia) and compares
the out-of-sample fractional forecasts to benchmark forecasts. The long-memory
parameter is estimated using Robinson’s Gaussian semiparametric and
multivariate log-periodogram methods. The evidence amply suggests that the
monetary series possess a fractional order between one and two. Fractional out-
of-sample forecasts are consistently more accurate (with the exception of the M3
series) than benchmark autoregressive forecasts but the forecasting gains are not
generally statistically significant. In terms of forecast encompassing, the
fractional model encompasses the autoregressive model for the divisia series but
neither model encompasses the other for the simple sum series.
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∗ Corresponding author: tel +1-617-552-3673, fax +1-617-552-2308



2

LONG-MEMORY FORECASTING
OF U.S. MONETARY INDICES

1.  Introduction

In this study we investigate the presence of long memory and its

usefulness as a forecast generating mechanism for the U.S. monetary aggregates.

The fractional differencing model employed is the autoregressive fractionally

integrated moving average (ARFIMA) type introduced by Granger and Joyeux

(1980), Hosking (1981), and Geweke and Porter-Hudak (1983). Regarding

macroeconomic time series, evidence of fractional integration has been found in

output series (Diebold and Rudebusch (1989), Sowell (1992)), consumption

(Diebold and Rudebusch (1991)), and inflation rates (Baillie, Chung, and Tieslau

(1996), Hassler and Wolters (1995), Baum, Barkoulas, and Caglayan (1999)).

Porter-Hudak (1990) reported evidence of long memory in simple sum monetary

aggregates while Barkoulas, Baum, and Caglayan (1999) extended similar

findings to components of simple-sum monetary aggregates, divisia monetary

indices, the monetary base, and money multipliers.

Despite the evidence of long memory in macroeconomic series, there are

few applied studies in the literature regarding the predictive ability of ARFIMA

models.1 Such forecasting evaluation would serve as a test of model adequacy, in

discriminating among competing economic hypotheses, and be useful in guiding

policy-making decisions (see Fildes and Stekler (2002) and references therein for

a recent review of issues regarding macroeconomic forecasting). Granger and
                                                  
1  Guegman (1994) points out that, despite the fundamental interest in forecasting, very few
studies related to ARFIMA forecasts have been implemented.
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Joyeux (1980) discuss the forecasting potential of fractional models. Cheung

(1993) finds that ARFIMA-generated forecasts fail to improve upon random-walk

forecasts for foreign exchange rates. Lardic and Mignon (1996) however provide

evidence that fractional forecasts have better predictive accuracy in the short

term (relative to random-walk and structural model forecasts) for three major

currencies. Franses and Ooms (1997) report that ARFIMA models fail to generate

superior forecasts over competing models for the U.K. inflation rate. Through

extensive Monte Carlo analysis, Ray (1993a) and Crato and Ray (1996) find that

simple ARMA models generally outperform or provide competitive forecasts

compared to ARFIMA models. On the other hand, Ray (1993b) establishes that,

by certain criteria, a fractional model provides more accurate forecasts than

benchmark models for IBM product revenues. Barkoulas and Baum (1997) show

that long-memory forecasts result in dramatic improvements in forecasting

accuracy, especially over longer horizons, relative to rival models for several

Eurocurrency deposit rates.

In this paper we investigate the ability of ARFIMA-based forecasts to

outperform benchmark linear forecasts on an out-of-sample basis for seasonally

adjusted U.S. simple sum and divisia monetary indices. Using Robinson’s

(1995a,b) Gaussian semiparametic and multivariate log-periodogram estimation

methods, we find that the monetary indices are fractionally integrated processes.

We subsequently generate genuine out-of-sample fractional forecasts and

compare their accuracy to linear autoregressive forecasts. The statistical

significance of forecasting accuracy of competing forecasts is evaluated using the

Diebold-Mariano (1995) test. We also employ the forecast encompassing testing

approach for the out-of-sample competing forecasts. We find that the ARFIMA
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model provides consistently more accurate point forecasts compared to the

autoregressive model for the monetary indices (with the exception of the M3

series), but the superiority is not statistically significant in general. The fractional

model appears to encompass the autoregressive model for the divisia indices but

neither model is superior in terms of forecast encompassing for the simple sum

indices. Only rarely are fractional forecasts inferior to autoregressive ones. The

evidence is encouraging for the predictive ability of the nonlinear fractional

model for these monetary series.

The plan of the paper is as follows. Section 2 presents the fractional model

and the estimation method for the fractional-differencing parameter. Data and

empirical results are reported in Section 3. We conclude in Section 4 with a

summary and implications of our findings.

2.  Fractionally Differenced Modeling

The model of an autoregressive fractionally integrated moving average

process of order p,d ,q( ) , denoted by ARFIMA p,d ,q( ) , with mean µ , may be

written using operator notation as

( ) uLyLL tt
d )()1()( Θ=−−Φ µ ,       tu  ~ i.i.d.(0, u

2σ ) (1)

where L  is the backward-shift operator, ( ) LLL p
pφφ −−−=Φ ...1 1 ,

( ) LLL p
pϑϑ +++=Θ ...1 1 , and d(1−L)  is the fractional differencing. The

parameter d  is allowed to assume any real value. The arbitrary restriction of d
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to integer values gives rise to the standard autoregressive integrated moving

average (ARIMA) model. The stochastic process ty  is both stationary and

invertible if all roots of Φ(L)  and Θ(L)  lie outside the unit circle and d < 0.5 .

The process is said to exhibit long-memory behavior for ( )1,0∈d . For d ∈ 0.5,1[ ) ,

yt  is nonstationary (having an infinite variance) but it is mean reverting.

Robinson (1995a) proposes a Gaussian semiparametric estimator, GS

hereafter, of the self-similarity parameter H . Assume that the spectral density of

the time series, denoted by ()⋅f , behaves as

ξξ HGf 21~)( −  as 0+→ξ (2)

for ( )∞∈ ,0G  and ( )1,0∈H . The self-similarity parameter H  relates to the long-

memory parameter d by 2
1+= dH . The estimate of H , denoted by Ĥ , is

obtained through minimization of the function

( ) ∑−−=
=

ν

λ
λξν 1

ln
1

12)(ˆln)( HHGHR
(3)

with respect to H , where ( ) ( )∑=
=

−ν

λ
λλ ξξ

ν 1

121ˆ IHG H  and ( ) TTg <=ν  is the

number of Fourier frequencies included in the estimation. The GS estimator is

−ν 21 consistent with the variance of the limiting distribution free of nuisance

parameters and equal to ν4
1 .
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We also estimate the fractional parameter using Robinson’s (1995b)

multivariate formulation of the log-periodogram regression estimator. Let Y t

represent a −M dimensional vector with mth  element MmY mt ,...,1, = . Assume

that Y t  has a spectral density matrix ( ) ,ξξ∫
π
π−

ξ dfeij  with ( )λ,m  element denoted

by ( )ξf mh . The periodogram of Y mt is denoted as

( ) ( ) MmeYnI n
t

it
mtm ,...,1,2

2
1

1 =∑π=ξ =
ξ− . (4)

Define ( )ξ= λλ IX mm log . The least squares estimate of ( )′= GGG M,...1  and

( )′= ddd M,...1  are given by

( ){ },~

~
1−′′=












ZZZXvec

d

G
(5)

where ( ) ( ) ( ) ( )′=ν=′ξ−=′= νλλ XXXandXXXZZZZ mmMM ,1,11 ,...,,...,log2,1,,...

for ν  periodogram ordinates. Standard errors for d m  estimates and for a test of

the restriction that two or more of the d m  are equal may be derived from the

estimated covariance matrix of the least squares coefficients.

3.  Empirical Results

We perform the analysis on monthly, seasonally adjusted U.S. simple sum

(SM1, SM2, SM3, and SL) and divisia monetary aggregates (DM1, DM2, DM3,

and DL) covering the period 1959:1-2002:12 (the SL and DL aggregates span the
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period until 1998:9 after which they were discontinued). The series are obtained

from the Federal Reserve Bank of St Louis' FRED database. The sample period

1959:1-1990:12 is used for in-sample estimation (training data set) with the

remainder of the sample reserved for out-of-sample forecasting purposes

(validation data set).

Figures 1 and 2 graph the first 120 autocorrelation coefficients for the

growth rates of the simple sum and divisia indices, respectively. The

autocorrelations exhibit a clear pattern of persistence and slow decay which is

typical of a long-memory process. The M1 measure of money appears to display

a lower degree of persistence relative to the broader measures.

Table 1 reports the GS estimates of the fractional differencing parameter

d for the growth rates of the monetary series over the in-sample period (the

integration order for the level series is given by 1+d ). The fractional order

estimates are fairly stable across bandwidth choices. Strong evidence of a

fractional order between one and two is found in all monetary aggregates.

Robinson’s LPR test results are presented in Table 2, yielding a vector of

d  estimates, which may be tested for their joint equality via a standard F

statistic. Consistent evidence of fractional differencing is detected in all simple

sum and divisia monetary series. Except for the shorter bandwidth choices, the

F test rejects the hypothesis that all simple sum (or divisia) series  share the same

order of integration. It is apparent that the d  estimate for the narrower measure

of money, M1, is significantly lower than that of the broader money measures. In

a panel including only the M2, M3, and L money series, the F  test fails to reject

the hypothesis that the broader aggregates share a common differencing

parameter for both simple sum and divisia indices.
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The Robinson LPR test results largely corroborate the GS findings. The

order of integration for the growth rates of simple sum and divisia monetary

series is clearly distinguishable from both zero and unity. The growth rates of the

monetary series are characterized by hyperbolically declining cumulative

impulse response weights and unbounded spectral densities at the zero

frequency.

The discovery of a fractional integration order suggests possibilities for

constructing nonlinear econometric models for improved forecasting

performance of the monetary series. The ARFIMA process represents a flexible

and parsimonious way to model both the short and long term dynamic

properties of the series. We proceed to assess the out-of-sample forecasting

effectiveness of the ARFIMA model relative to the rival linear autoregressive

(AR) model. Comparing the predictive distribution of future observations to that

of the realized data is a good way of model validation.

Given the GS estimates of d , we approximate the short-run series

dynamics by fitting an AR model to the fractionally differenced series using Box-

Jenkins methods.2,3 A question arises as to the asymptotic properties of the AR

parameter estimates in the second stage. Conditioning on the d  estimate

obtained in the first stage, Wright (1995) shows that the AR p( )  fitted by the Yule-

Walker procedure to the d - differenced series inherit the δT -consistency of the

                                                  
2  All fractional forecasts are based on the GS estimates of the long-memory parameter. More
specifically, we condition on the average (across bandwidths) GS d  estimate. The results below
are not materially altered if we condition on the lower or higher GS d  estimate.  It must be noted
that the various d  estimates are within sampling error for each series for both GS and Robinson's
LPR estimation methods.
3  The AR order is determined using the Akaike information criterion (AIC) allowing for a
maximum lag length of order 12. Given the optimal choice of lag length, the estimated residual
vector is tested for serial correlation up to order 24. If the residual vector is serially correlated, the
lag length is increased until a serially uncorrelated residual vector is obtained.
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semiparametric estimate of d . We forecast the monetary series by casting the

fitted fractional-AR model in infinite autoregressive form, truncating the infinite

autoregression at the beginning of the sample (thus setting data points before the

sample period equal to zero), and applying Wold's chain rule. A similar

procedure was followed by Diebold and Lindner (1996) to forecast the real

interest rate and Ray (1993b) to forecast IBM product revenues.

The long memory forecasts are compared to those generated by a linear

AR model.4 Observations corresponding to the sample period starting in 1991:1

until the end of the sample are our test set (post-prediction interval).5  We

consider 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 11-, 12-, 15-, 18-, 21-, and 24-months

ahead forecasting horizons. These forecasts are truly ex ante, or dynamic, as they

are generated conditioning only on information available at the time the forecast

is being made.6 The forecasting performance metrics are the root mean square

error (RMSE) and mean absolute deviation (MAD).

Table 4 reports the relative multi-step-ahead ex-ante predictive

performance of the competing modeling strategies, in the form of normalized

forecasting metrics with respect to the AR model, for the simple sum monetary

series. A value less than unity implies that the fractional model provides more

accurate forecasts than the AR model for the horizon in question. The percentage

reductions in the forecasting accuracy criteria (RMSE and MAE) attained by the

fractional model are rather sizeable for the simple sum M1, M2, and L series. In

most cases, the superiority of the fractional forecasts is robust to the forecasting
                                                  
4  In specifying the lag length for the linear AR model, we follow the same procedure as for the
choice of the short-memory (AR) order of the fractional model.
5  We maintain a validation set of adequate size in order to effectively compare the out-of-sample
accuracy of competing forecasts for all prediction horizons.
6  See Lardic and Mignon (1996) for arguments on the comparative performance of fractional
forecasts over short- and longer-term horizons.
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horizon. However, the AR forecasts dominate the fractional forecasts for the

simple sum M3 aggregate. Similar evidence is obtained for the divisia forecasts,

as shown in Table 5. The fractional forecasts provide accuracy gains compared to

the AR counterparts for the DM1, DM2, and DL series but the evidence is weak

and mixed for the DM3 series.

Overall, the results of our forecasting experiment can be summarized as

follows:

i) Out-of-sample fractional forecasts result in rather sizeable

improvements over AR forecasts for most of the monetary aggregates,

ii) Such forecasting gains are robust with respect to the length of

forecasting horizon, and

iii) Such forecasting gains are consistent across forecasting metrics used

(the fractional model “wins” based on both RMSE and MAD measures).7

While the forecasting improvements appear sizeable in most cases, it

might be premature to declare victory as there is no assurance that they are

statistically significant. To test the equality of forecast accuracy between the

competing models, we employ the test proposed by Diebold and Mariano (DM,

1995), which can easily be applied to a wide variety of criteria including RMSE

and MAD. Given two forecast errors { }Ttit 1=ε  and { }T
tjt 1=ε , the DM  statistic is

defined as

                                                  
7  As a long-memory process can be approximated by an AR ( )p  process with a large order p , we
also produced out-of-sample forecasts using an AR model of long order, AR(30), in an attempt to
capture the persistence of the series without modeling it as a long-memory process.  The AR(30)
forecasts are inferior to the ARFIMA forecasts for all simple sum indices (except the SL series)
and for all divisia series. Therefore the long-autoregression forecasts do not appear to be
particularly useful in this instance. These results are available upon request.
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( )
T

f

s
DM

s
0ˆ2π

=

(6)

where ( ) ( )[ ]∑ −=
=

T

t
jtit gg

T
s

1

1
εε  is the sample mean loss differential and ( )0f̂ s  is a

consistent estimate of the spectral density of the loss differential at frequency 0,

( )0f s . A consistent estimator of ( )02 f sπ  is obtained by taking a two-sided

weighted sum of the available sample autocovariances

( )
( )( )

( )τγ
τ

π
τ

ˆ10ˆ2
1

1
s

T

T
s TS
f ∑ 








=

−

−−= (7)

where ( )τγ̂ s  is the sample autocovariance at displacement τ , 
( )










TS

τ
1  is the lag

window, and ( )TS  is the truncation lag. Uniform or Bartlett lag windows and

several truncation lags can be considered. The DM  statistic is asymptotically

−t distributed and accommodates non-Gaussian, nonzero mean, serially

correlated, and contemporaneously correlated forecast errors.

As shown in Tables 3 and 4, only sporadically is the null hypothesis of

equal forecasting accuracy (in RMSE and MAD) by the ARFIMA and AR

forecasts rejected by the DM test. Even though the fractional forecasts result in

rather sizeable forecasting improvements over the benchmark forecasts, such

superiority is not generally statistically significant.
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We also employ the forecasting encompassing testing approach for our

competing forecasts suggested by Clements and Hendry (1998). Let 1=ARFIMA

model, 2=AR model, =Ei forecast error for model 2,1=i , and =D the difference

between the forecasts from the two models. The forecast encompassing test is

based on running two regressions: the first involves regressing the forecast error

from the ARFIMA model on the difference of forecasts, i.e., ε+β+α= ttt DE ,111,1 ,

and the second involves the regression ε+β+α= ttt DE ,222,2 .

If β̂1 ( β̂2 ) is not statistically significant and β̂2  ( β̂1 ) is, the null hypothesis

that neither model encompasses the other is rejected in favor of the alternative

that the ARFIMA (AR) model encompasses the AR (ARFIMA) model. If both β̂1

and β̂2  are statistically significant, or if both are insignificant, then we fail to

reject the null that neither model encompasses the other. The cut-off point for

statistical significance is a significance level less than 5 per cent for the

−t statistics of the estimated slope coefficients.

Table 5 presents the forecast encompassing tests for the simple sum series.

Only rarely is the null hypothesis that neither model encompasses the other

rejected in favor of either ARFIMA or AR forecast encompassing superiority. The

overall evidence therefore suggests neither model is superior to the other in

terms of forecast encompassing.

The forecast encompassing tests provide sharper results for the divisia

indices. As Table 6 reports, for the DM1, DM2, and DL money measures and for

virtually all forecasting horizons, the null hypothesis that neither model

encompasses the other is rejected in favor of the alternative that the ARFIMA
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model encompasses the AR model (

€ 

2
ˆ β  is statistically significant and β̂1 is not).

Only in two cases for the DM1 series is the null hypothesis rejected in favor of

the alternative that the AR model encompasses the ARFIMA one. The evidence

overwhelmingly implies that in those cases where the AR model fails to forecast

the monetary series correctly, such failure can be accounted for by the ARFIMA

model. Additionally, in those cases where the ARFIMA model fails to correctly

forecast the divisia series, such failure cannot be accounted for by the AR model.

The conclusion is that the ARFIMA model can explain the forecast error of the

linear model but not vice versa. For the DM3 series, the majority of the evidence

suggests that neither model encompasses the other.

4.  Conclusions

We demonstrated that simple sum and divisia monetary aggregates are

fractional processes with an integration order between one and two. We also

generated out-of-sample fractional forecasts and showed that, for most monetary

aggregates, they provide more accurate point predictions of the conditional

mean relative to autoregressive forecasts for different prediction horizons.

However, the forecasting improvements are not statistically significant in

general. The forecast encompassing test results suggest that the fractional model

encompasses the autoregressive model for the divisia series, but the two models

have broadly similar power for the simple sum series. With the possible

exception of the M3 series, rarely is the fractional model inferior to the AR model

in terms of forecast effectiveness. This evidence is encouraging and suggestive of

the potential usefulness of nonlinear fractional forecasts for monetary series.



14



15

References

Baillie RT, Chung CF,  Tieslau MA. 1996. Analysing inflation by the fractionally

integrated ARFIMA-GARCH model. Journal of Applied Econometrics 11: 23-

40.

Barkoulas JT, Baum CF. 1997. Fractional differencing modeling and forecasting of

eurocurrency deposit rates. Journal of Financial Research 20(3): 355-372.

Barkoulas JT, Baum CF, Caglayan M. 1999. Fractional Monetary Dynamics.

Applied Economics 31: 1393-1400.

Baum CF, Barkoulas JT, Caglayan M. 1999. Persistence in international inflation

rates. Southern Economic Journal 65: 900-913.

Cheung YW. 1993. Long memory in foreign-exchange rates. Journal of Business

and Economic Statistics 11: 93-101.

Clements M, Hendry D. 1998. Forecasting economic time series. Cambridge

University Press: Cambridge UK.

Crato N, Ray B. 1996. Model selection and forecasting for long-range dependent

processes. Journal of Forecasting 15: 107-125.

Diebold FX, Lindner P. 1996. Fractional integration and interval prediction.

Economics Letters 50: 305-313.

Diebold FX, Mariano R. 1995. Comparing predictive accuracy. Journal of Business

and Economic Statistics 13: 253-263.

Diebold FX, Rudebusch GD. 1989. Long memory and persistence in aggregate

output. Journal of Monetary Economics 24: 189-209.

Diebold FX, Rudebusch GD. 1991. Is consumption too smooth? Long memory

and the Deaton paradox. Review of Economics and Statistics 71: 1-9.



16

Fildes R, Stekler H. 2002. The state of macroeconomic forecasting. Journal of

Macroeconomics 24: 435-468.

Franses PH, Ooms M. 1997. A periodic long-memory model for quarterly UK

inflation. International Journal of Forecasting 13: 117-126.

Geweke J, Porter-Hudak S. 1983. The estimation and application of long memory

time series models. Journal of Time Series Analysis 4: 221-238.

Granger CWJ, Joyeux R. 1980. An introduction to long-memory time series

models and fractional differencing. Journal of Time Series Analysis 1: 15-39.

Guegman D. 1994. Series chronologiques non-lineaires a temps discret. Economica:

Paris.

Hassler U, Wolters J. 1995. Long memory in inflation rates: International

evidence. Journal of Business and Economic Statistics 13: 37-45.

Hosking JRM 1981. Fractional Differencing. Biometrika 68: 165-176.

Lardic S, Mignon V. 1996. ARFIMA predictions of foreign exchange rates: Does

one still exhort to naïve forecasts? In Proceedings of “Theorie et methods de

la macroeconomie” Symposium, Paris, France.

Porter-Hudak S. 1990. An application of the seasonal fractionally differenced

model to the monetary aggregates. Journal of the American Statistical

Association 85: 338-344.

Ray B. 1993a. Modeling long-memory processes for optimal long-range

prediction. Journal of Time Series Analysis 14: 511-525.

Ray B. 1993b. Long range forecasting of IBM product revenues using a seasonal

fractionally differenced ARMA model. International Journal of Forecasting 9:

255-269.



17

Robinson P. 1995a. Gaussian semiparametric estimation of long range

dependence. Annals of Statistics 13: 1630-1661.

Robinson P. 1995b. Log-periodogram regression of time series with long range

dependence. Annals of Statistics 23: 1048-1072.

Sowell F. 1992. Modeling long-run behavior with the fractional ARIMA model.

Journal of Monetary Economics 29: 277-302.

Wright JH. 1995. Stochastic orders of magnitude associated with two-stage

estimators of fractional ARIMA systems. Journal of Time Series Analysis 16:

119-125.



18

Table 1:  Estimates of the Fractional Differencing Parameter   for the U.S.
Monetary Indices

Series Gaussian Semiparametric Estimates
( )50.0d ( )525.0d ( )55.0d ( )575.0d ( )60.0d

Part A: Simple Sum
SM1 0.441

(3.844)*
0.405

(3.799)*
0.332

(3.385)*
0.340

(3.724)*
0.410

(4.851)*
SM2 0.388

(3.382)*
0.336

(3.151)*
0.307

(3.130)*
0.330

(3.614)*
0.375

(4.437)*
SM3 0.459

(4.001)*
0.502

(4.709)*
0.496

(5.058)*
0.513

(5.619)*
0.548

(6.484)*
SL 0.555

(4.838)*
0.609

(5.712)*
0.529

(5.394)*
0.524

(5.740)*
0.539

(6.377)*

Part B: Divisia
DM1 0.458

(3.992)*
0.424

(3.977)*
0.353

(3.599)*
0.367

(4.020)*
0.406

(4.803)*
DM2 0.427

(3.722)*
0.379

(3.555)*
0.342

(3.487)*
0.394

(4.316)*
0.445

(5.265)*
DM3 0.379

(3.304)*
0.410

(3.846)*
0.400

(4.079)*
0.459

(5.028)*
0.513

(6.069)*
DL 0.400

(3.487)*
0.436

(4.090)*
0.433

(4.415)*
0.487

(5.334)*
0.506

(5.987)*
Notes:  The data cover the in-sample period 1959:1-1990:12 for a total of 384 monthly

observations (the remainder of the sample is reserved for out-of-sample forecasting purposes).

All series are expressed in growth rates (first logarithmic differences of the level series). ( )50.0d ,

( )525.0d , ( )55.0d , ( )575.0d , and ( )60.0d  correspond to estimation sample size (number of

Fourier frequencies) T 50.0=ν , T 525.0=ν , T 55.0=ν , T 575.0=ν , and T 60.0=ν , respectively. The

−t statistics are given in parentheses. The superscript * indicates statistical significance for the

null hypothesis 0=d  against the alternative 0≠d  at the 1 per cent level.
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Table 2:  Robinson Multivariate Log-periodogram Regression for the U.S.
Monetary Indices

Series Robinson Multivariate Estimates
( )60.0d ( )65.0d ( )70.0d ( )75.0d ( )80.0d

Part A: Simple Sum
SM1 0. 466

(4.166)*
0. 392

(4.078)*
0. 335

(3.668)*
0. 298

(3.930)*
0. 285

(4.479)*
SM2 0. 352

(3.150)*
0. 366

(3.808)*
0. 494

(5.404)*
0. 415

(5.466)*
0. 482

(7.571)*
SM3 0. 628

(5.609)*
0. 622

(6.476)*
0. 668

(7.317)*
0. 533

(7.014)*
0. 523

(8.205)*
SL 0. 553

(4.940)*
0. 486

(5.064)*
0. 657

(7.191)*
0. 504

(6.638)*
0.440

(6.901)*
F  Test

(Panel:SM1, SM2, SM3, SL)
1.457

(0. 344)
1.457

(0. 227)
2.966

(0.032)
1.926

(0.124)
2.655

(0.048)
F  Test

(Panel: SM2, SM3, SL)
1.597

(0.207)
1.779

(0.172)
1.077

(0.342)
0. 628

(0. 534)
0. 400

(0. 670)

Part B: Divisia
DM1 0.424

(3.914)*
0.348

(3.681)*
0. 267

(3.516)*
0. 243

(3.605)*
0.237

(4.249)*
DM2 0.557

(5.138)*
0. 478

(5.063)*
0. 507

(6.662)*
0.473

(7.012)*
0. 482

(8.621)*
DM3 0.558

(5.147)*
0. 553

(5.853)*
0. 576

(7.567)*
0. 585

(8.671)*
0. 561

(10.037)*
DL 0.485

(4.480)*
0. 497

(5.261)*
0. 543

(7.136)*
0. 587

(8.694)*
0. 613

(10.961)*
F  Test

(Panel:DM1, DM2, DM3, DL)
0.351

(0.788)
0. 844
(0.471)

3.387
(0.018)

5.728
(0.000)

8.832
(0.000)

F  Test
(Panel: DM2, DM3, DL)

0. 172
(0. 842)

0. 197
(0. 821)

0. 240
(0. 786)

1.048
(0.352)

1.492
(0.226)

Notes:  See notes in Table 1 for data and notation details. The Robinson multivariate test is

applied to the growth rates (first logarithmic differences) of the series.  The −t statistics are given

in parentheses below the coefficient estimates. F  test is a test of the equality of d  estimates for

the panel series and its −p value is given in parentheses. The superscript * indicates statistical

significance for the null hypothesis 0=d  against the alternative 0≠d  at the 1 per cent level.
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Growth rates of simple−sum series
Figure 1. Empirical autocorrelations
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Growth rates of divisia series
Figure 2. Empirical autocorrelations


