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Abstract

This paper proposes a method for comparing and combining conditional quantile forecasts

in an out-of-sample framework. We construct a Conditional Quantile Forecast Encompassing

(CQFE) test as a Wald-type test of superior predictive ability. Rejection of CQFE provides

a basis for combination of conditional quantile forecasts. Two central features of our imple-

mentation of the principle of encompassing are, first, the use of the ‘tick’ loss function and,

second, a conditional, rather than unconditional approach to out-of-sample evaluation. Some

of the advantages of the conditional approach are that it allows the forecasts to be generated

by using general estimation procedures and that it is applicable when the forecasts are based

on both nested and non-nested models. The test is also relatively easy to implement using

standard GMM techniques. An empirical application to Value-at-Risk evaluation illustrates the

usefulness of our method.
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1 Introduction

The vast majority of the economic forecasting literature has traditionally focused on producing

and evaluating point forecasts for the conditional mean of some variable of interest. More recently,

increasing attention has been devoted to other characteristics of the unknown forecast distribution,

besides its conditional mean, such as a particular conditional quantile.

A primary example of the growing interest for conditional quantile forecasts is in the context of

risk management, as witnessed by the literature on Value at Risk (e.g., Duffie and Pan 1997).1 There

are a variety of approaches to estimating conditional quantiles in general and Value at Risk (VaR)

in particular. They range from fully parametric (e.g., Danielsson and de Vries 1997, Barone-Adesi,

Bourgoin, and Giannopoulos 1998, Diebold, Schuermann and Stroughair 1998, Embrechts, Resnick

and Samorodnitsky 1999, McNeil and Frey 2000), to semi-parametric (e.g., Koenker and Zhao 1996,

Taylor 1999, Engle and Manganelli 1999, Chernozhukov and Umanstev 2001, Christoffersen, Hahn

and Inoue 2001), and non-parametric (e.g., Battacharya and Gangopadhyay 1990, White 1992).

Given the range of techniques available for producing conditional quantile forecasts, it is neces-

sary to develop adequate tools for their evaluation. A number of authors have focused on absolute

evaluation, that is, on testing whether a given forecasting model is correctly specified or whether a

sequence of forecasts satisfies certain optimality properties. For example, Zheng (1998) and Bierens

and Ginther (2001) propose specification tests for evaluating a given model against a generic al-

ternative. Christoffersen (1998), instead, proposes a ‘correct conditional coverage’ criterion for

evaluating a sequence of interval forecasts which does not require knowledge of the underlying

model. A potential problem with absolute evaluation is that if different models are rejected as

being misspecified, or if they are all accepted, then we are left without any guidance as to which

one to choose. In this case, it may be more appropriate to consider relative evaluation, which

involves comparing the performance of alternative, possibly misspecified, models or sequences of

1Ever since August 1996, when US bank regulators adopted a ‘market risk’ supplement to the Basle Accord

(1988), the regulatory capital requirements of commercial banks with trading activities are based on Value at Risk

(VaR) estimates. This important measure of market risk is defined as the opposite of a prespecified quantile of the

conditional distribution of portfolio returns, and its estimates are routinely generated by the banks’ internal models.
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forecasts for the same variable and choosing the one that performs the best. This approach is

taken by Christoffersen et al. (2001), who propose a method for comparing alternative, non-nested

VaR estimates. The authors assume that the VaR is a linear function of the volatility and propose

estimating the parameters by the information theoretic alternative to GMM due to Kitamura and

Stutzer (1997). The evaluation of Christoffersen et al. (2001) is conducted in-sample and is only

valid if the returns belong to a location-scale family (which implies that the VaR is a linear func-

tion of the volatility). Further, in order to apply their test, all competing VaR forecasts must be

obtained by the estimation method proposed by Kitamura and Stutzer (1997).

It is however frequently the case that good in-sample performance does not imply good out-of-

sample performance and that the models underlying the forecasts remain partially or completely

unknown to the forecast user. Moreover, given the variety of approaches to the estimation of

conditional quantile models outlined above, it may be of interest to investigate whether different

estimation techniques have an effect on forecast performance. In general, in the situation where

several forecasts of the same variable are available, it is desirable to have formal testing procedures

for out-of-sample comparison, which do not necessarily require knowledge of the underlying model,

or, if the model is known, which do no restrict attention to a specific estimation procedure. The

goal of this paper is to provide such a test.

Given an appropriate choice of loss function, one could in principle compare the out-of-sample

average loss implied by two alternative quantile forecasts using the tests of equal predictive ability

proposed by Diebold and Mariano (1995) and West (1996), but these two approaches are not

applicable in several important cases, such as when the forecasts are from nested models or when

they depend on semi- or non-parametric estimators.

In this paper, we choose a different approach and construct a test for out-of-sample conditional

quantile forecast comparison based on the principle of encompassing. The idea of encompassing

(e.g., Hendry and Richard 1982, Mizon and Richard 1986, Diebold 1989, Clements and Hendry

1998) requires that a forecast be able to explain the predictive ability of a rival forecast, and thus

it can be seen as a test of superior predictive ability.

Two central features of our implementation of the principle of encompassing are, first, the
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choice of the relevant loss function, which we argue to be the ‘tick’ loss function (also known as

asymmetric linear loss function of order α) and, second, the focus on conditional expected loss,

rather than unconditional expected loss in the formulation of the encompassing test. The focus

on conditional evaluation links the approach in this paper to the one of Giacomini and White

(2003) who propose a general framework for out-of-sample predictive ability testing. Some of

the advantages of the conditional approach over the unconditional approach (e.g., West 1996) are

that it allows the forecasts to be generated by (estimated) parametric models as well as by semi-

and non-parametric techniques and that it is applicable to both nested and non-nested forecast

comparisons. The implementation of the test makes use of fairly standard Generalized Method of

Moments (GMM) techniques, appropriately modified to accommodate the non-differentiability of

our criterion function. As a by-product, our framework also provides a link to Christoffersen’s

(1998) ‘correct conditional coverage’ criterion for the absolute evaluation of interval forecasts.

A final feature of our encompassing approach is that it gives a theoretical basis for quantile fore-

cast combination, in cases when neither forecast has superior predictive ability. From a theoretical

viewpoint, forecast combination can be seen as a way to pool the information contained in the

individual forecasts, and its benefits have been widely advocated since the early work of Bates and

Granger (1969).2 Recent empirical work by Stock and Watson (1999, 2001) has further confirmed

the accuracy gains induced by forecast combination for a large number of macroeconomic and fi-

nancial time series. Surprisingly little empirical work has been done in the context of conditional

quantile forecasting. Yet, the benefits of expanding the information set through combination might

be particularly evident for quantiles with small nominal coverage - as is usually the case for VaR.

Extreme quantiles are very sensitive to the few observations in the tails of the empirical distribution

of the sample, and combining forecasts based on different information sets can thus be seen as a

way to make the forecast performance more robust to the effects of sample-specific factors.

2From a theoretical point of view there are, according to Granger (1989), two situations when it is useful to

combine forecasts for the same variable. If the forecasts are based on the same information set, then a forecast

combination can only be useful if the original forecasts are sub-optimal according to the relevant loss function. When

the forecasts are instead based on different information sets, combining the forecasts can potentially improve the

forecasting performance by pooling the information contained in the two sets.
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We illustrate the usefulness of the CQFE test by applying it to the problem of VaR evaluation

using S&P500 daily return data. We consider a number of popular models for producing 1% and

5% VaR forecasts and generally conclude that the forecast combination outperforms the individual

forecasts.

The remainder of the paper is organized as follows: Section 2 describes the environment and

gives an overview of our encompassing approach to comparing and combining competing conditional

quantile forecasts. Section 3 introduces the test for conditional quantile forecast encompassing and

discusses the estimation problem underlying the implementation of the test. Section 4 analyzes the

small-sample size and power properties of the proposed test and Section 5 applies the test to the

problem of VaR forecast evaluation and combination. Section 6 concludes the paper. All proofs

are in the Appendix.

2 Overview

2.1 Description of the Environment

Consider a stochastic process X ≡ {Xt : Ω −→ Rk+1, k ∈ N, t = 1, . . . , T} defined on a complete

probability space (Ω,F , P ) where F ≡ {Ft, t = 1, . . . , T} and Ft is the σ-field Ft ≡ σ{Xs, s 6 t}. In

what follows we partition the observed vector Xt as Xt ≡ (Yt, Z 0t)0, where Yt : Ω→ R is a continuous

random variable of interest and Zt : Ω → Rk a vector of explanatory variables. More specifically,

we are interested in the α-quantile of the distribution of Yt+1 conditional on the information set

Ft, Qt,α, defined as

Pt(Yt+1 6 Qt,α) = α, or (1)

Qt,α ≡ F−1t (α), (2)

where α ∈ (0, 1), Ft is the conditional distribution function of Yt+1 and F−1t its inverse. Using the

standard convention, the subscript t under the probability P (·), distribution function F (·), density

f(·), expectation E[·] or α-quantile Qt denotes conditioning on the information set Ft. To further

simplify the notation, we hereafter drop the reference to the index α and simply denote the time t
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conditional α-quantile as Qt. As a general rule, a lowercase letter is used to denote observations of

the corresponding random variable (e.g. xt and Xt).

In this paper we propose a test for comparing alternative sequences of one-step-ahead forecasts

of Qt. The evaluation is conducted in an out-of-sample fashion. This consists in dividing the

available sample of size T into an in-sample part of size m and an out-of-sample part of size n,

so that T = m + n. The in-sample portion is used to produce the first set of forecasts and the

evaluation is performed over the remaining out-of-sample portion. We impose fairly few restrictions

on the way the forecasts are produced. In particular, they may be based on parametric models or

be generated by use of semi-parametric or non-parametric techniques. We allow the forecasts to be

generated using either: (1) a fixed forecasting scheme, or (2) a rolling window forecasting scheme.

For example, in the case of a parametric model, a fixed forecasting scheme involves estimating

the parameters only once on the first m observations and using these estimates to produce all

the forecasts for the out-of-sample period t = m + 1, ..., T. A rolling window forecasting scheme,

instead, implies re-estimating the parameters at each out-of-sample point t using an estimation

sample containing the m most recent observations, i.e. the observations from date t −m + 1 to

date t.

Let β̂t,m denote the k×1 vector collecting the time-t estimated parameters from the two models

(for parametric forecasting) or whatever semi-parametric or non-parametric estimator used in the

construction of the forecasts. In the following, we will use the common notation β̂t,m for either

forecasting scheme, with the understanding that a fixed forecasting scheme corresponds to the case

where β̂t,m = β̂m,m for all t, m 6 t 6 T − 1, while for the rolling window forecasting scheme β̂t,m

changes with t but only depends on the previous m observations.

For simplicity, we restrict attention to pairwise comparison and combination, but all the tech-

niques can be readily applied to the case of multiple forecasts. For each time t, m 6 t 6 T − 1,

the one-step ahead forecasts of the conditional quantile Qt formulated at time t are denoted by

q̂1m,t ≡ q1(xt, xt−1, ..; β̂t,m) and q̂2m,t ≡ q2(xt, xt−1, ...; β̂t,m), where q1 and q2 are Ft-measurable

functions. Note that our notation implies, in particular, that the forecasts are formed using the

actual realizations of the variables over the out-of-sample period (i.e., the forecasts are not truly
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ex-ante).

The crucial requirement that we impose on the functions q1 and q2 is that they remain constant

over time. This implies, in particular, that use of an expanding estimation window (recursive

forecasting scheme) is not allowed, whereas forecasting schemes using (1) a fixed or (2) a rolling

window of constant length satisfy the requirement. In the remainder of the paper, we assume that

the in-sample size m is a finite constant, chosen by the user a priori. As a consequence, all of our

results should be interpreted as being conditional on the given choice of m, but for ease of notation

we choose not to make this dependence explicit (except for q̂1m,t and q̂2m,t).

2.2 Principles of Forecast Encompassing

Our approach to comparing conditional quantile forecasts is based on the principle of encompassing.

Following, for example, Hendry and Richard (1982), Mizon and Richard (1986) and Diebold (1989),

encompassing arises when one of two competing forecasts is able to explain the predictive ability

of its rival. According to Clements and Hendry (1998, p. 228), a test for forecast encompassing

can be generally defined as follows:

‘A test for forecast encompassing is a test of the conditional efficiency of a forecast, where

a forecast is said to be conditionally efficient if the expected loss of a combination of

that forecast and a rival forecast is not significantly less than the expected loss of the

original forecast alone.’

In the general definition of forecast encompassing proposed by Clements and Hendry (1998),

the two key ingredients of a forecast encompassing test are: (1) the loss function involved in the

computation of the expected loss and (2) the weights of the forecast combination. Before proceeding

with the implementation of such a test we therefore need to discuss each of the two points in more

detail. First, note that the choice of the loss function is closely related to which characteristic

of the unknown future distribution of the variable one wants to forecast. Let f̂t be a forecast of

some characteristic of interest of the random variable Yt+1, conditional on the information set at

time t. The forecast f̂t is said to be optimal if it minimizes Et[L(Yt+1 − f̂t)], where L is some loss
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function, L : R → R+. Note that the optimal forecast minimizes the expected loss conditional

on Ft. As discussed in detail below, the focus on conditional, rather than unconditional, expected

loss is a central feature of our treatment of both evaluation and combination of forecasts, and one

that distinguishes our approach from related literature (e.g., Granger 1989, Taylor and Bunn 1998,

Elliott and Timmermann 2002).

Different loss functions L correspond to different optimal forecasts. For example, letting

et+1 ≡ yt+1 − f̂t, if a quadratic loss function L(et+1) = e2t+1 is used, then the optimal forecast

is the conditional mean of the distribution of Yt+1. If, on the other hand, an absolute value loss

function L(et+1) = |et+1| is used, the optimal forecast corresponds to the conditional median of the

distribution of Yt+1. In the particular case of this paper, the object of interest is Qt, the conditional

α-quantile of the distribution of Yt+1. The corresponding loss function L is the asymmetric linear

loss function of order α, Tα, defined as

Tα(et+1) ≡ (α− 1(et+1 < 0))et+1, (3)

which is also known as ‘tick’ or ‘check’ loss function in the literature. We can thus argue that

the ‘tick’ function T is the implicit loss function whenever the object of interest is a forecast of a

particular quantile of the conditional distribution of Yt+1.

This brings us to the second key ingredient of a forecast encompassing test - the choice of

weights in the forecast combination. In this paper, we focus on linear combinations of forecasts

for the conditional α-quantile of Yt+1, (θ1q̂1m,t +θ2q̂2m,t), obtained by choosing a set of weights

(θ1, θ2) ∈ Θ, with Θ being a compact subset of R2. The combination weights θ1 and θ2 can further

be constrained to lie in (0, 1), with θ1 + θ2 = 1, but we choose not to impose this restriction

in the paper (for a discussion of restrictions on the combination weights see e.g., Granger and

Ramanathan 1984). In general, there are numerous possibilities for the choice of θ1 and θ2, each

leading to different properties of the forecast combination, as shown by Elliott and Timmermann

(2002). In the context of encompassing, however, special role is played by an ‘optimal’ set of weights

(θ∗1, θ
∗
2), which we define next.
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2.3 Encompassing for Conditional Quantiles

Based on the general idea by Clements and Hendry (1998), the concept of encompassing for con-

ditional quantile forecasts can then be formalized as follows. A Conditional Quantile Forecast

Encompassing (CQFE) test for q̂1m,t with respect to q̂2m,t is a test for conditional efficiency of the

forecast q̂1m,t, where q̂1m,t is said to be conditionally efficient with respect to q̂2m,t if

Et[Tα(Yt+1 − q̂1m,t )] 6 Et[Tα(Yt+1 − (θ1q̂1m,t + θ2q̂2m,t)], for all (θ1, θ2) ∈ Θ. (4)

In practice, testing the inequality (4) is not feasible, since it would involve computing the expected

loss for all (θ1, θ2) ∈ Θ. Instead, let (θ∗1, θ∗2) denote the optimal set of weights, defined as a solution

to the minimization problem: min(θ1,θ2)∈ΘEt[Tα(Yt+1 − (θ1q̂1m,t +θ2q̂2m,t))]. We then have that

Et[Tα(Yt+1 − (θ∗1q̂1m,t + θ∗2q̂2m,t))] 6 Et[Tα(Yt+1 − (θ1q̂1m,t + θ2q̂2m,t)], for every (θ1, θ2) ∈ Θ. This

in particular implies that

Et[Tα(Yt+1 − (θ∗1q̂1m,t + θ∗2q̂2m,t))] 6 Et[Tα(Yt+1 − q̂1m,t)]. (5)

Hence, we obtain the following condition for the conditional efficiency of q̂1m,t with respect to q̂2m,t,

which is equivalent to that in (4).

Definition 1 (Conditional Quantile Forecast Encompassing) Let q̂1m,t and q̂2m,t be two al-

ternative forecasts for Qt. The forecast q̂1m,t is said to encompass q̂2m,t if and only if

Et[Tα(Yt+1 − q̂1m,t )] = Et[Tα(Yt+1 − (θ∗1q̂1m,t + θ∗2q̂2m,t )], a.s.− P , for t=1,2,..., (6)

where Tα is the ‘tick’ loss function defined in (3) and (θ∗1, θ
∗
2) is a solution to the problem

min(θ1,θ2)∈ΘEt[Tα(Yt+1 − (θ1q̂1m,t + θ2q̂2m,t))].

Comments:

1. Interpreting a conditional expectation as a prediction, the equality (6) can be viewed as saying

that q̂1m,t encompasses q̂2m,t if the forecaster cannot predict whether the optimal combination of

the two forecasts will outperform the original forecast in the future, given what is known today.
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This focus on prediction of future performance (conditional expectation), rather than on assessment

of average performance (unconditional expectation) in the definition of encompassing distinguishes

our approach from the classic encompassing literature (e.g., Hendry and Richard 1982, Mizon

and Richard 1986) and establishes a link with the general framework for predictive ability testing

proposed by Giacomini and White (2003).

2. Similarly to Giacomini and White (2003), the forecasts q̂1m,t and q̂2m,t in our definition of

encompassing explicitly depend on the parameter estimates at time t, rather than on population

values of the parameters as in, e.g., West (2001). The implicit premise here is that the forecast

user is interested in real-time forecast selection or combination, that is, in selecting at time t the

best forecast for time t+1 or in combining the available forecasts if neither is found to be superior.

The relevant objects of the evaluation are in this case the actual forecasts, depending on parameter

estimates, rather than forecasts which depend on population values only achieved in the limit.

3. Focusing on the actual forecasts, rather than the underlying models, in the definition of

encompassing means that we do not impose the restriction that the forecasts are estimated using

the same ‘tick’ loss function used for the estimation of the combination weights. As a result, we

provide a unified framework for comparing forecasts which may be obtained by utilizing different

estimation techniques.

Since the right hand side of equation (6) is the minimum of the conditional expected loss over

Θ, the equality in equation (6) will only hold if θ∗1 = 1 and θ∗2 = 0. A CQFE test for q̂1m,t with

respect to q̂2m,t can thus be formulated as a test of the null hypothesis H10 : (θ
∗
1, θ

∗
2) = (1, 0)

against H1a : (θ
∗
1, θ

∗
2) 6= (1, 0). Similarly, to test whether q̂2m,t encompasses q̂1m,t , the relevant null

and alternative hypotheses would be H20 : (θ
∗
1, θ

∗
2) = (0, 1) and H2a : (θ

∗
1, θ

∗
2) 6= (0, 1). If one of

the two forecasts represents a natural benchmark, or in cases where economic theory may suggest

which of the two hypotheses H10 or H20 is more relevant, only one of the two encompassing tests

will be performed. If, instead, no a priori ordering is available, one would in practice perform a

sequential test of H10 and H20. If both null hypotheses H10 and H20 are rejected, the conclusion

would be that neither forecast can fully explain the predictive ability of the other, and thus both

contain relevant information about Yt+1. In this last case, the forecast combination defined as q̂m,t
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≡ θ∗1q̂1m,t +θ
∗
2q̂2m,t might outperform both of the original forecasts.

To ease the notation, we hereafter let θ ≡ (θ1, θ2)0, and q̂m,t ≡ (q̂1m,t, q̂2m,t)
0, so that θ1q̂1m,t +

θ2q̂2m,t = θ0q̂m,t. The set of optimal weights θ∗ ≡ (θ∗1, θ∗2)0 introduced in Definition 1 solves

θ∗ = argmin
θ∈Θ

Et[(α− 1(Yt+1 − θ0q̂m,t < 0))(Yt+1 − θ0q̂m,t)], (7)

and the first order condition corresponding to (7) is given in the following Proposition.

Proposition 2 (Correct conditional coverage criterion) Let θ∗ be a solution to the mini-

mization problem (7). Then θ∗ satisfies the following first order condition

Et[α− 1(Yt+1 − θ∗0q̂m,t < 0)] = 0, a.s.− P. (8)

It is interesting to note that the first order condition (8) verified by a solution to the initial

minimization problem (7) corresponds exactly to the Christoffersen’s (1998) ‘correct conditional

coverage criterion’ for evaluating the performance of interval forecasts. The key appealing property

of Christoffersen’s correct conditional coverage condition is its intuitive interpretation in terms of

information content of a given sequence of interval forecasts. What Proposition 2 shows is that the

correct conditional coverage condition also corresponds to a particular choice of loss function. We

can thus say that any conditional quantile forecast satisfying the first order condition (8) is optimal

in the sense that it minimizes the expected ‘tick’ loss.

In practice, the optimal vector of weights θ∗ in (7) is unknown and needs to be estimated. In

the following section we discuss the estimation problem in the conditional framework used to define

forecast encompassing.

3 Conditional Quantile Forecast Encompassing (CQFE) Test

We separately discuss the estimation of the combination weights and the implementation of the

test.
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3.1 GMM Estimation of Optimal Combination Weights

According to the results of Proposition 2, the magnitude in (8) should be uncorrelated with any

information available at time t. It should therefore be the case that E[(α − 1(Yt+1 − θ∗0q̂m,t <

0))Wt] = 0, for all Ft-measurable functions Wt. Let W ∗
t be an h-vector of variables that are

observed at time t and that contain all the relevant information from Ft. We refer to W ∗
t as the

‘information vector’. Further, denote by g an h-vector-valued function g : Θ× R× Rh → Rh such

that

g(θ; yt+1, w
∗
t ) ≡ (α− 1(yt+1 − θ0q̂m,t < 0))w

∗
t . (9)

When the information vector W ∗
t contains all the relevant information from Ft, that is, when

it includes all elements of the time-t information set potentially correlated with the variable α −

1(Yt+1 − θ∗0q̂m,t < 0), the solution θ∗ to the first order condition (8) coincides with the solution

θ∗∗ to E[g(θ∗∗;Yt+1,W ∗
t )] = 0. In the remainder of the paper, we assume that W ∗

t satisfies such

requirement and accordingly redefine θ∗ to be a solution to

g0(θ
∗) ≡ E[g(θ∗;Yt+1,W ∗

t )] = 0. (10)

In practice, the choice of W ∗
t depends on the nature of the application considered. Typically, W

∗
t

consists of different functions of explanatory variables and/or lags of Yt+1, but one may also include

previous forecasts or measures of past forecast performance.3 Some discussion on how to choose

the information vector in practical applications is contained in Section 5.

An estimate of θ∗ based on condition (10) can be obtained by using Hansen’s (1982) GMM

approach, appropriately modified to accommodate non-differentiable criterion functions. We pro-

pose estimating θ∗ over the out-of-sample portion of size n = T −m, consisting of the sequence of

observations (w∗0m, ym+1, ..., w∗0T−1, yT )
0. The GMM estimator of θ∗, denoted θ̂n, is defined as a local

3As stated in Proposition 4, the general requirement on {W ∗
t } is that it is a strictly stationary and mixing series.

In practical applications, one should therefore verify that this assumption if satisfied. One implication is that W ∗
t

could include previous forecasts provided, as in our assumptions, that the forecast are produced by either a fixed

or a rolling window forecasting scheme. The reason is that in these two cases the forecasts are constant measurable

functions of a finite window of data and thus inherit the properties of stationarity and mixing from the underlying

series.
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solution to the minimization problem

min
θ∈Θ

[gn(θ)]
0Ŝ−1[gn(θ)], (11)

where gn(·) is the sample moment function, gn(θ) ≡ n−1
PT−1

t=m g(θ; yt+1, w
∗
t ), and Ŝ a consistent

estimator of the asymptotic variance matrix S,

S ≡ lim
n→∞n ·E[gn(θ∗)gn(θ∗)0] (12)

Using the fact that the first order condition (8) implies that {g(θ∗;Yt+1,W ∗
t ),Ft} is a martingale

difference sequence, a consistent estimator of S is given by

Ŝ(θ̂n) ≡ n−1
XT−1

t=m
g(θ̂n; yt+1, w

∗
t )g(θ̂n; yt+1, w

∗
t )
0, (13)

where θ̂n is some consistent initial estimate of θ∗.4

The fact that the weighting matrix Ŝ−1(θ̂n) depends on the estimator θ̂n itself, calls for a

recursive approach. The computation of the GMM estimator θ̂n is typically carried out by first

choosing an r× r identity weighting matrix Ir×r and using (11) to compute the corresponding θ̂n,1.

The resulting new weighting matrix Ŝ−1(θ̂n,1) is more efficient than the previous one, and solving

(11) leads to a new estimator θ̂n,2. The last two steps can then be repeated until θ̂n,j equals its

previous value θ̂n,j−1.

We now focus on the asymptotic properties of the GMM estimator θ̂n obtained as a local

solution to the minimization problem (11). In principle, we expect θ̂n to converge to any solution

to the first order condition (8), which might turn out not to be the best optimal one. Indeed, the

expected ‘tick’ loss in Definition 1 can possibly have multiple local minima, all of which satisfy the

first order condition (8). Hence, we need to make sure that the value θ∗ which solves g0(θ∗) = 0

does attain the lowest possible expected ‘tick’ loss. In other words, θ∗ must be a global minimum

in equation (7). A sufficient condition granting θ∗ to be the best optimum weight is to impose

4 In cases when the information vector fails to incorporate all the relevant information, condition g0(θ
∗) = 0 is no

longer equivalent to the first order condition (8) and {g(θ∗;Yt+1,W ∗
t )} is no longer a martingale difference sequence.

However, S can still be consistently estimated by using some heteroskedasticity and autocorrelation robust estimator,

like the Newey and West’s (1987) estimator.
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uniqueness, so that any local minimum is also a global one. This is established in the following

lemma.

Lemma 3 (Uniqueness) Let θ∗ be a solution to the first order condition (8). Suppose:

(i) the conditional density of Yt+1, ft(·), is continuous and strictly positive;

(ii) for i = 1, 2: q̂im,t 6= 0, a.s.− P, and Corr(q̂1m,t, q̂2m,t) 6= ±1.

Then θ∗ is unique.

Assumption (ii) is a fairly mild condition which rules out the possibility that the two sequences

of forecasts are perfectly correlated, which would happen, e.g., if the two models were proportional

or if they only differed by a constant. The consistency result for θ̂n is as follows.

Proposition 4 (Consistency) Let the Assumptions of Proposition 3 hold and further assume:

(iii) the sequence {(W ∗0
t ,X

0
t)
0} is strictly stationary and α-mixing with α of size −r/(r − 2), with

r > 2;

(iv) the matrix E[W ∗
t W

∗0
t ] is nonsingular;

(v) there exist some δ > 0 such that E||W ∗
t ||2r+δ <∞;

Then θ̂n
p→ θ∗, as n→∞.

The restriction on the amount of heterogeneity and dependence in the data implied by assump-

tion (iii) is in principle stronger than necessary, but we adopt it for convenience. Conditions (iv)

and (v) are fairly standard and imply in particular that all the components of the information

vector are not linearly dependent.

We now turn to the asymptotic distribution of θ̂n. The standard asymptotic normality results

for GMM require that the moment function gn(θ) be once differentiable, which is not the case here.

There are however asymptotic normality results for non-smooth functions and we will hereafter use

the one proposed by Newey and McFadden (1994). The basic insight of their approach is that a

smoothness condition on the moment function gn(θ) can be replaced by the smoothness of its limit,

which in the standard GMM case corresponds to the expectation g0(θ), with the requirement that
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certain remainder terms are small. The asymptotic normality of the GMM estimator θ̂n is given in

the next proposition.

Proposition 5 (Asymptotic normality) Let the Assumptions of Proposition 4 hold and further

assume:

(vi) E||q̂m,t||4 <∞;

(vii) the conditional density of Yt+1, ft(·), is bounded;

(viii) θ∗ is an interior point of Θ.

Then the GMM estimator θ̂n is asymptotically normal,
√
n(θ̂n − θ∗) d→ N (0, (γ0S−1γ)−1), with

γ ≡ −E[ft(θ∗0q̂m,t)W
∗
t q̂
0
m,t], (14)

and S as defined in (12).

Comments:

1. Unlike the corresponding result in, e.g., West (2001), the asymptotic matrix is not affected

by the presence of estimation uncertainty in the forecasts. From a technical point of view, this

is a result of adopting a conditional approach (in particular, of writing the null hypothesis of

encompassing in terms of forecasts depending on parameter estimates rather than on probability

limits) and of considering asymptotics where only the out-of-sample size grows, whereas the in-

sample size remains finite (see also the comments to Theorem 6 below).

2. Note that the expression of γ, which depends on the value of the conditional density ft

evaluated at the optimal combination of quantiles is similar to the one observed in the quantile

regression literature (e.g., Koenker and Bassett, 1978).

3.2 Implementation of the CQFE Test

The asymptotic normality result derived above allows us to propose a conditional test of encom-

passing, which is a test on the coefficients of the optimal combination of quantile forecasts.

We consider conducting the two separate tests: H10 : (θ
∗
1, θ

∗
2) = (1, 0) against H1a : (θ

∗
1, θ

∗
2) 6=

(1, 0), and H20 : (θ
∗
1, θ

∗
2) = (0, 1) against H2a : (θ

∗
1, θ

∗
2) 6= (0, 1), which respectively correspond to
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testing whether forecast q̂1m,t encompasses q̂2m,t or whether q̂2m,t encompasses q̂1m,t. We propose

a Wald test of hypotheses H10 and H20 in the following theorem, which is the main result of this

paper.

Theorem 6 (CQFE Test) Let the Assumptions of Proposition 5 hold. Consider the test statistics

ENC1n = n((θ̂1n, θ̂2n)− (1, 0))Ω̂−1((θ̂1n, θ̂2n)− (1, 0))0 (15)

ENC2n = n((θ̂1n, θ̂2n)− (0, 1))Ω̂−1((θ̂1n, θ̂2n)− (0, 1))0, (16)

where (θ̂1n, θ̂2n) are defined in (11) and Ω̂ is a consistent estimator of the asymptotic variance

Ω ≡ (γ0S−1γ)−1 in (5).

We then have:

(a) under Hi0 : EN Cin
d→ χ22 , as n→∞, i = 1, 2;

(b) under Hia : EN Cin → +∞ , as n→∞, i = 1, 2.

Comments:

1. Similarly to Giacomini and White (2003), the asymptotic distribution here is obtained for

the number of out-of-sample observations going to infinity, whereas the in-sample size m remains

finite. This is in contrast with the approach taken in the existing predictive ability literature (e.g.,

West 1996, McCracken 2000 etc.), which assumes that both the in-sample and the out-of-sample

sizes grow.

2. A result of not letting the in-sample size grow is that the estimation uncertainty embedded in

the forecasts does not vanish asymptotically. This is desirable for two main reasons. First, it allows

us to focus on forecast, rather than model, evaluation; this means, for example, that our test could

be used for assessing the impact on forecast accuracy of using different estimation methods for

the same model. Second, it avoids the problems associated with comparison of predictive ability

involving nested models. To see why, suppose that we were comparing nested models and that

the smaller model were correctly specified. Letting m go to infinity would cause the parameter

estimates to converge to their probability limits, which would render the forecasts from the two

models asymptotically perfectly correlated, thereby invalidating assumption (ii).
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The CQFE test is then implemented as follows. For a desired level of confidence, one first

chooses the corresponding critical value c from the χ22 distribution.
5 If ENC1n 6 c we conclude

that q̂1m,t encompasses q̂2m,t . If ENC2n 6 c, we infer that q̂2m,t encompasses q̂1m,t . If instead both

ENC1n and ENC2n > c, the final conclusion is that neither q̂1m,t encompasses q̂2m,t, nor q̂2m,t

encompasses q̂1m,t , in which case the combination quantile q̂cm,t ≡ θ̂1nq̂1m,t + θ̂2nq̂2m,t significantly

outperforms its components. The tests proposed have correct asymptotic size, as reflected by the

fact that the test statistics have a distribution that is free of nuisance parameters under the null

hypotheses and they are consistent, since the test statistics diverge under the alternative.6

In the computation of the encompassing test statistics ENC1n and ENC2n, we propose letting

Ω̂−1 = γ̂0Ŝ−1γ̂, where Ŝ ≡ Ŝ(θ̂n) is defined in equation (13) and γ̂ is a numerical derivative estimator

of γ in (14) whose jth column is given by

γ̂j ≡ [gn(θ̂n + ejεn)− gn(θ̂n − ejεn)]/2εn, (17)

where ej is the jth unit vector and εn is a small positive constant that depends on the sample size.

Note that this particular estimator for γ, suggested by Komunjer (2002), does not require previous

estimation of the conditional density ft, which facilitates its practical computation. The magnitude

of εn can be chosen so that γ̂ is consistent: it suffices to consider εn → 0 and
√
nεn →∞ (see e.g.,

Theorem 7.4 in Newey and McFadden 1994, p.2190). In applications one can set εn = n−δ, where

δ should in principle be the largest possible, positive and less than 0.5 (as required for consistency

of γ̂), and such that the corresponding standard errors are sufficiently smooth. Choosing a value

for δ is in practice a difficult problem and useful guidelines can be found in Newey and McFadden

(1994, p. 2190). In the next section, we analyze the robustness of the small sample CQFE test’s

properties to different choices of δ.

Because of the non-differentiability of the GMM objective function, the maximization problem in

(11) requires special attention. In principle, the optimization methods used to solve problems such

5The conditional encompassing test for quantile forecasts can be easily generalized to the comparison of k forecasts

(or, more generally, k weights). In this case, the limiting distribution of the test statistic will be χ2k.
6Even though each encompassing test is correctly sized, the overall size might be overstated due to the sequential

nature of the testing approach.
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as the one in (11) can be sorted into two groups. The first group consists of gradient-based search

methods (e.g. Newton-Raphson), which require that the objective function be sufficiently smooth.

In the GMM case studied here, none of these methods is applicable.7 The non-differentiability of the

objective function is no longer a problem if one uses an optimization method which is not gradient-

based. This second group of search methods regroups algorithms such as simulated annealing, used

here, or genetic algorithm, used by Engle and Manganelli (1999). More details on the properties of

the simulated annealing algorithm can be found in Goffe, Ferrier and Rogers (1994).

4 Monte Carlo evidence

In this section, we investigate the performance of our CQFE test in finite samples of sizes typically

available to financial economists. The proposed evaluation is done along three dimensions: the

size of the test, its power and its sensitivity to the choice of εn in the construction of γ̂ above

(17). We design our Monte Carlo experiment to match as closely as possible the problem of VaR

evaluation and combination, which is the object of the empirical application in the following section.

For simplicity, we restrict attention to the Conditional Autoregressive Value at Risk (CAViAR)

family of VaR models proposed by Engle and Manganelli (1999). Our choices of models within the

CAViAR family, as well as the parameter values used for the simulation are driven by the empirical

application.

4.1 Size properties

We consider forecasts generated by the Asymmetric Absolute Value (AAV) CAViAR model,

V aRAAV,t+1 = β0 + β1V aRAAV,t + β2|rt − β3|, (18)

and by the Symmetric Absolute Value (SAV) model,

V aRSAV,t+1 = β̃0 + β̃1V aRSAV,t + β̃2|rt|, (19)

7Note that the optimization approach taken in the case of Koenker and Bassett’s (1978) quantile regression is

based on a linear programming representation of the objective function. Here, however, the GMM objective function

is quadratic and the duality theorem traditionally employed no longer holds.
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where V aRAAV,t+1 and V aRSAV,t+1 are forecasts of the conditional α-quantile of −rt+1. Our null

hypothesis is that the AAV model encompasses the SAV model. To generate data that supports the

null hypothesis, we proceed as follows: We first fix the values of the true parameters (β0, β1, β2, β3)

and (β̃0, β̃1, β̃2) in (18) and (19), respectively, and replicate (V aRAAV,1, . . . , V aRAAV,n) and

(V aRSAV,1, . . . , V aRSAV,n) by assuming that rt ∼ i.i.d.N (0, σ2) with σ = 0.1. In this particu-

lar case, the in-sample size m is zero and T = n. Accordingly, all inference is done conditional on

the set of true parameter values (β0, β1, β2, β3) and (β̃0, β̃1, β̃2). Next, we constrain V aRAAV,t+1 to

be the conditional α-quantile of −rt+1 by redefining the original series. For every t, t = 0, . . . , n−1,

we let the Data-Generating Process (DGP) be

rt+1 = −V aRAAV,t+1 + ut+1, (20)

with ut+1 ∼ i.i.d.N (−σΦ−1(α), σ2), σ = 0.1, where Φ is the distribution function of a standard

normal random variable. By restricting ut+1 to have the α-quantile of zero we ensure that the AAV

model in (18) produces forecasts of the true conditional α-quantile of −rt+1.

The parameter values (β0, β1, β2, β3) = (0, 0.8, 0.3, 1) in (18) and (β̃0, β̃1, β̃2) = (0, 0.9, 0.2) in

(19) are chosen so as to match the estimates obtained in the empirical application for α = 5%.

We consider a range of values for the out-of-sample size n and the step size εn in (17):

n = (1000, 2500, 5000) and εn = n−δ where δ ranges from 0.4 to 0.5 with increments of 0.01.8

For each sample size n we generate 500 Monte Carlo replications of the time series {rt}nt=1,

{V aRAAV,t}nt=1 and {V aRSAV,t}nt=1 each of length n.9 We then consider the forecast combination

(θ0+θAAV ·V aRAAV,t+θSAV ·V aRSAV,t) and construct the GMM estimator (θ̂0n, θ̂AAV n, θ̂SAV n)0 of

the optimal weight vector (θ∗0, θ
∗
AAV , θ

∗
SAV )

0 according to the procedure described in Section 3. Note

that we include a constant term in the forecast combination, thus allowing the empirical coverage

of the original forecasts to be different from the 5% nominal value. In our particular case, the AAV

forecasts will display correct empirical coverage by construction, whereas the forecasts from the mis-

8For smaller sample sizes n the simulated annealing has low convergence rate, hence we chose not to report the

corresponding results.
9 In reality, we generate series of length n + 50 and discard the first 50 data points in order to avoid problems

linked to the choice of starting values.
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specified SAV model will in general be biased. Finally, we compute the proportion of rejections, at

the 5% nominal level, of the null hypothesis H10 : (θ
∗
AAV , θ

∗
SAV ) = (1, 0). The test statistic ENC1n

is similar to the one in Theorem 6, where we have modified Ω̂ into R·Ω̂·R0 so as to reflect the appro-

priate parameter restrictions.10 The information vector W ∗
t is W

∗
t ≡ (1, rt, V aRAAV,t, V aRSAV,t)

0.

The results are collected in Table 1.

Table 1 : Empirical size of nominal .05 test 
 δ 
n .40 .41 .42 .43 .44 .45 .46 .47 .48 .49 .50 
1000 .075 .092 .068 .088 .092 .078 .078 .092 .095 .105 .139 
2500 .051 .046 .032 .037 .060 .046 .051 .069 .051 .074 .088 
5000 .057 .050 .028 .050 .043 .050 .043 .090 .086 .107 .107 
NOTE: Empirical size of the CQFE test for a nominal size of .05. Entries represent the rejection frequencies over 500 Monte Carlo 
replications of the null hypothesis that forecasts from the AAV CAViAR model encompass forecasts from the SAV CAViAR model 
when the DGP is the AAV CAViAR.  n is the sample size and δ is a user-defined constant required in the computation of the numerical 
derivative estimator in equation (17).  

The test appears to be well-sized, with a moderate tendency to over-reject for the smallest

sample size n = 1000 or for δ close to 0.5.

4.2 Power properties

In order to generate data under the alternative hypothesis of no encompassing of AAV forecasts with

respect to SAV forecasts, we first replicate (V aRAAV,1, . . . , V aRAAV,n) and (V aRSAV,1, . . . , V aRSAV,n)

for parameter values (β0, β1, β2, β3) = (0, 0.8, 0.3, 1) and (β̃0, β̃1, β̃2) = (0, 0.9, 0.2), respectively, fol-

lowing the procedure described in the previous section and then let the DGP be

rt+1 = −[ρV aRSAV,t+1 + (1− ρ)V aRAAV,t+1] + ut+1, (21)

where 0 < ρ < 1 and ut+1 ∼ i.i.d.N (−σΦ−1(α), σ2), σ = 0.1, as in the previous section. Note that

the size study is obtained when the data are generated according to (21) with ρ = 0. Accordingly,

increasing ρ towards 0.5 allows us to obtain the power curve for the CQFE test. We consider a

number of different values for ρ, ranging from ρ = 0.1 to ρ = 0.5, at increments of 0.1. We keep the

step size fixed at εn = n−.45. For each parameterization, we generate 500Monte Carlo replications of

10 In this particular case, we have R =

 0 1 0

0 0 1

 .
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the time series {rt}nt=1, {V aRAAV,t}nt=1 and {V aRSAV,t}nt=1 and proceed as previously by computing

the proportion of rejections of the null hypothesis that V aRAAV,t+1 encompasses V aRSAV,t+1 at

the 5% nominal level. Figure 1 plots the power curves for n = (1000, 2500, 5000).

The test displays fairly good power properties. For example, when the true VaR is an equal-

weighted average of AAV and SAV VaRs, the test rejects the null of encompassing at least 85%

of the time. As expected, the power increases (although by small amounts) as the size n of the

out-of-sample evaluation data set increases.

5 Empirical Evaluation and Combination of VaR forecasts

We illustrate the potential usefulness of our CQFE test by applying it to the problem of VaR

evaluation. The importance of VaR has become institutional in August 1996, when US bank

regulators adopted a ‘market risk’ supplement to the Basle Accord of 1988. VaR has thus become a

risk-measure for setting capital-adequacy standards of US commercial banks. The data used in our

empirical application consist of 16 years of daily returns on the S&P500 index (source: Datastream),

from September 1985 to September 2001 (T = 4176 observations). The first third of the sample,

corresponding to the period from September 1985 to January 1991 (m = 1392 observations) is used

as the in-sample period, while the remaining two thirds (n = 2784 observations) are reserved to

evaluate the out-of-sample performance. We adopt a fixed forecasting scheme, which means that

all forecasts depend on the same set of parameters estimated over the first m observations. We

consider a portfolio consisting of a long position in the index, with an investment horizon of 1 day.

5.1 VaR models

For the purposes of this empirical application we consider the 5% and 1% VaR forecasts origi-

nated from four different models: V aR1,t+1 and V aR2,t+1 are VaR forecasts based on conditional

heteroskedasticity models, rt+1|Ft ∼ D(0, σ2t+1) with D belonging to a location-scale family of dis-

tributions. In this case, VaR is a linear function of the conditional volatility of the returns σt+1 and

different VaR models correspond to different specifications for the conditional variance σ2t+1. Two

such specifications are the commonly used GARCH(1,1) model in which σ21,t+1 = ω0+ω1σ
2
1,t+ω2r

2
t ,
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and the JP Morgan’s (1996) RiskMetrics model where the variance is obtained as an exponential

filter σ22,t+1 = λσ22,t+(1−λ)r2t , with λ = 0.94 for daily data. In both cases, the corresponding VaR

model is

V aRi,t+1 = β0 + β1σi,t+1, i = 1, 2. (22)

Models such as (22) above have been studied by Christoffersen et al. (2001), among others. Here-

after, we refer to V aR1,t+1 as GARCH VaR and to V aR2,t+1 as RiskMetrics VaR.

A different approach to VaR modeling and estimation is taken by Engle and Manganelli (1999).

Here we consider two examples of the CAViAR model proposed by these authors: V aR3,t+1 is a

forecast based on an Asymmetric Absolute Value (AAV) model

V aR3,t+1 = β0 + β1V aR3,t + β2|rt − β3|, (23)

while V aR4,t+1 is based on an Asymmetric Slope (AS) model,

V aR4,t+1 = β0 + β1V aR4,t + β2r
+
t + β3r

−
t , (24)

where r+t and r−t correspond to the positive and the negative part of rt respectively.11 Figures 2

and 3 show the out-of-sample sequences of VaR forecasts generated by the above models, together

with the sequences of VaR violations.

For each of the four VaR models (22)-(24) we first construct an estimator β̂m ≡ β̂m,m of the

unknown parameter vector β in sample, i.e. by using the first m = 1392 observations. This

estimator is then used to form out-of-sample VaR forecasts according to a fixed forecasting scheme.

In other words, at each out-of-sample date t, m 6 t 6 T − 1, we compute one-step-ahead VaR

forecasts V aRi,t+1, i = 1, 2, 3, 4, based on the four models (22)-(24). The computation is done

11The three models V aR1,t+1, V aR3,t+1 and V aR4,t+1 are chosen on the basis of their individual performance

in modeling the VaR for the S&P500 index. As shown by Christoffersen, Hahn and Inoue (2001), the GARCH

VaR V aR1,t+1 is the only VaR measure, among several alternatives considered by the authors, which passes the

Christoffersen’s (1998) ‘conditional coverage test’ for both 5% and 1% coverage rates. Similarly, Engle and Manganelli

(1999) show that the Asymmetric Absolute Value model V aR3,t+1 and the Asymmetric Slope model V aR4,t+1 are

the best CAViAR specifications for the S&P500 according to a criterion they propose (see Engle and Manganelli,

1999, for details). Finally, the JP Morgan’s (1996) RiskMetrics model V aR2,t+1 is chosen as a benchmark model

commonly used by practitioners.
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recursively, meaning that for each i = 1, 2, 3, 4, the value of V aRi,t+1 depends on the past forecast

V aRi,t (σ2i,t in the case of models (22)) and on the out-of-sample realization rt (respectively r2t ).

For illustration, we report the parameter estimates β̂m in Table 2. Alternatively, one can consider

sequences of VaR forecasts provided by different groups of outside researchers/analysts, without

knowing the underlying forecasting models, as long as the latter satisfy the assumptions discussed

in previous sections.

Table 2 : VaR parameter estimates 

α = 0.01 
0
β̂  

1
β̂  

2
β̂  

3
β̂  α = 0.05 

0
β̂  

1
β̂  

2
β̂  

3
β̂  

Model  
GARCH 0.982 1.597 - - GARCH 0.055 1.446 - - 

 (0.048) (0.033)   (0.075) (0.095)   
RiskMetrics 0.959 1.698 - - RiskMetrics 0.500 1.039 - - 

 (0.104) (0.125)   (0.104) (0.137)   
AAV 0.213 0.714 0.761 0.422 AAV -0.074 0.804 0.328 1.070 

 (0.020) (0.040) (0.068) (0.026) (0.008) (0.016) (0.015) (0.065) 
AS 0.460 0.716 0.110 -0.796 AS 0.120 0.834 0.025 -0.404 

 (0.029) (0.061) (0.011) (0.081) (0.048) (0.058) (0.006) (0.123) 
NOTE: Parameter estimates for different VaR models. Data: Datastream daily returns on S&P500 from September 1985 to 
January 1991 (m = 1392 observations). The estimation is carried out by GMM in the GARCH and RiskMetrics VaR models 
and by QML in the CAViAR models. For VaR models where rt+1|Ft ~ N(0,σ 2

t+1) with (1) GARCH volatility σ 2
t+1 = ω0 

+ω1σ2
t + ω2r2

t we have ω0 = 0.117, ω1 = 0.763 and ω2 = 0.150, and (2) RiskMetrics volatility σ 2t+1 = λσ 2t + (1-λ)r2
t we take 

λ = 0.94. 
 

As a quick check of the out-of-sample performance of individual VaR models and their equally

weighted pairwise combinations (0.5·V aRi,t+1+0.5·V aRj,t+1), we compute the empirical coverage a

of the corresponding sequence of forecasts, a ≡ n−1
Pn

t=1 It+1, where It+1 denotes the ‘hit’ variable

It+1 ≡ 1(Yt+1− V aRt+1 < 0). If the VaR model under consideration performs well then we expect

that it will display correct unconditional coverage, attained when the empirical coverage a equals

the nominal coverage α.12 The out-of-sample empirical coverages are reported in Table 3.

12Note that one could devise a simple likelihood ratio test of the null hypothesis that It+1 is Bernoulli(α), which is

the main principle of the so-called ‘unconditional coverage’ test, discussed, among others, by Christoffersen (1998).

This test, however, assumes away parameter estimation uncertainty, and thus we decided not to report its results

here.

23



Table 3 : Out-of-sample empirical coverage 

α = 1%      

Models  GARCH RiskMetrics AAV AS 

 GARCH 0.853% 0.742% 0.705% 0.742% 
 RiskMetrics - 0.705% 0.705% 0.631% 
 AAV - - 0.742% 0.668% 
 AS - - - 0.631% 
     

α = 5%      

Models  GARCH RiskMetrics AAV AS 

 GARCH 4.674% 4.711% 4.191% 4.191% 
 RiskMetrics - 4.970% 4.228% 4.191% 
 AAV - - 4.303% 4.303% 
 AS - - - 4.228% 
NOTE: Empirical coverage a = n-1∑ It+1 for individual VaR models (diagonal elements)
and their equally weighted pairwise combinations (off-diagonal elements). Data:
Datastream daily returns on S&P500 from January 1991 to September 2001 (n = 2784
observations).  

Based on the results from Table 3, we can compare VaRmodels in terms of the difference between

their out-of-sample empirical coverage a and the nominal coverage α. For α = 1%, the best model

is GARCH(1,1) with empirical coverage 0.853%, followed by three equally performing models with

coverage 0.742%: AAV and equally weighted combinations of GARCH with RiskMetrics and AS.

For α = 5%, the best empirical coverage (4.970%) is that of RiskMetrics, followed by an equally

weighted combination of RiskMetrics and GARCH (4.711%), and GARCH alone (4.674%). It is

interesting to note that, in general, the unconditional coverage of equally weighted combinations

(0.5 · V aRi,t+1 + 0.5 · V aRj,t+1) never outperforms both individual series V aRi,t+1 and V aRj,t+1.

In order to assess the relative performance of the two models with best empirical coverages, as

identified above, we perform our CQFE test. Specifically, we test (1) whether at α = 1% level,

GARCH encompasses AAV, and (2) if at α = 5% level, RiskMetrics encompasses GARCH. 13

13Before applying the CQFE test, we verified that the sequences of forecasts are not perfectly correlated. The out-

of-sample correlation coefficients were .91 for case (1) and .86 for case (2), which made us conclude that assumption

(ii) is not violated.
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5.2 CQFE Test Results

We estimate the optimal combination weights (θ∗0, θ
∗
i , θ

∗
j )
0 in the forecast combination θ0+θiV aRi,t+

θjV aRj,t by using the GMM approach described in Section 3. The estimation of the combination

weights crucially depends on the choice of the information vectorW ∗
t . As a general rule, W

∗
t should

include variables that are part of the time-t information set which are thought to help forecast

the conditional quantile of Yt+1. Examples of variables that might be relevant are, e.g., lags of

the variable, lags of the quantile forecasts and/or non-linear functions of the above. Also, lags of

‘hit’ variables Ii,t+1 can be included, to take into account possible persistence in the variable that

indicates whether a ‘violation’ of the quantile forecast occurred at the given time. The appropriate

information vector may also vary with the type of quantile considered. For example, for values

of α that approach .5 (corresponding to the conditional median), it is plausible to think that

the quantile forecast would be affected by variables that are typically used in conditional mean

forecasting. On the other hand, for small values of α, as in the case of our application, the

dynamics of the conditional quantile more likely mimic those of the conditional volatility. The vast

literature on volatility forecasting can in this case help guide the choice of the relevant variables

- e.g., lagged squared returns - to be included in the instrument set. For the purposes of this

empirical application, we let W ∗
t ≡ (1, rt, V aRi,t, V aRj,t)

0.

We report the estimated combination weights θ̂0n, θ̂in and θ̂jn together with their standard

errors in Table 4. It is important to note that the computation of standard errors is based on the

numerical derivative γ̂ given in equation (17), which in turn depends on the size of the step εn. In

our application we set εn = n−δ with δ = 0.45 for all weights. Table 4 also contains the values of

the test statistics ENCin and ENCjn.
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Table 4 : Conditional Quantile Forecast Encompassing Test for VaR measures 

Model n0θ̂  inθ̂  jnθ̂  J ENCin ENCjn 

α = 0.01  

GARCH (i) vs AAV (j) -1.506 
(0.186) 

1.048 
(0.193) 

0.382 
(0.094) 8.636 26.484* 46.982* 

α = 0.05  

RiskMetrics (i) vs GARCH (j) -0.118 
(0.097) 

0.005 
(0.073) 

0.565 
(0.057) 10.545 188.232* 116.277* 

NOTE: Out of sample CQFE test for VaR measures for a portfolio composed of a long position in S&P500 index with an investment 
horizon of 1 day. Data: Datastream daily returns on S&P500 from January 1991 to September 2001 (n =2784 observations). The 
consistent standard errors of the GMM estimator (θ0n, θin, θjn)’ were computed with δ = 0.45 and are reported in parentheses. J is the 
value of the J-test statistics: J = gn (θn)’S-1gn (θn). The marked (*) values of the CQFE test statistics ENCin and ENCjn are significant 
at the 1% level. 

 

As can be seen from Table 4, neither forecast encompasses its competitor, for both levels of

α. This implies that the forecast combination in both cases outperforms the individual forecasts.

However, note that for α = 5% the weight on the RiskMetrics forecast is not significantly different

from zero (t-stat = 0.068), which suggests that the optimal combination is in this case simply the

bias-corrected GARCH forecast.

6 Conclusion

In this paper we propose a Conditional Quantile Forecast Encompassing (CQFE) test for comparing

alternative conditional quantile forecasts in an out-of-sample framework. We base our evaluation on

the concept of encompassing, which requires that a forecast be able to explain the predictive ability

of a rival forecast. The CQFE test can thus be viewed as a test for superior predictive ability.

The setup proposed in this paper also allows us to discuss the benefit of forecast combination

for quantile forecasts, which becomes relevant when the encompassing tests indicate that neither

forecast outperforms its competitor.

The key features of our approach are: (1) the use of the ‘tick’ loss function rather than the

quadratic loss function in the definition of encompassing and (2) a conditional, rather than uncon-

ditional, approach to out-of-sample evaluation. Some of the benefits of the conditional approach are

that it allows comparison of forecasts based on both nested and non-nested models and of forecasts

produced by general estimation procedures.
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The implementation of the CQFE test is done by using a fairly standard GMM estimation tech-

nique, with optimization procedure appropriately modified to accommodate our non-differentiable

criterion function. The CQFE test displays good size and power properties for samples of sizes

typically available in financial applications.

We apply the CQFE test to the problem of conditional VaR forecast evaluation using S&P500

daily index returns. At 1% level, we show that a forecast combination (with intercept) of GARCH

and AAV CAViAR forecasts outperforms both individual components. A similar result holds at

5% level, where we compare VaR forecasts generated from RiskMetrics and GARCH models. In

the latter case, however, we find that the combination weight on the RiskMetrics forecast is not

significantly different from zero, indicating that bias-corrected GARCH forecasts for the 5% VaR

encompass RiskMetrics forecasts.
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Appendix: Proofs

Notation:

if V is a real n-vector, V ≡ (V1, . . . , Vn)0, then ||V || denotes the L2-norm of V , i.e. ||V ||2 ≡ V 0V =Pn
i=1 V

2
i . If M is a real n× n-matrix, M ≡ (Mij)16i,j6n, then ||M || denotes the L∞-norm of M ,

i.e. ||M || ≡ max16i,j6n |Mij |.

Proof of Proposition 2. We derive the set of first order conditions corresponding to the

minimization problem (7)

θ∗ ≡ argmin
θ∈Θ

Et[(α− 1(Yt+1 − θ0q̂m,t < 0))(Yt+1 − θ0q̂m,t)] = argmin
θ∈Θ
Σ(θ)

where θ ≡ (θ1, θ2)0 ∈ Θ, Θ being a compact subset of R2 and q̂m,t ≡ (q̂1m,t, q̂2m,t)
0. We consider

Σ(θ) = Et[(α− 1(Yt+1 − θ0q̂m,t < 0))(Yt+1 − θ0q̂m,t)]

=

Z
R
(α− 1(Yt+1 − θ0q̂m,t < 0))(yt+1 − θ0q̂m,t)dFt(yt+1)

=

Z
R
α(yt+1 − θ0q̂m,t)dFt(yt+1)−

Z
R
1(Yt+1 − θ0q̂m,t < 0)(yt+1 − θ0q̂m,t)dFt(yt+1)

=

Z +∞

−∞
α(yt+1 − θ0q̂m,t)dFt(yt+1)−

Z θ0q̂m,t

−∞
(yt+1 − θ0q̂m,t)dFt(yt+1)

=

Z +∞

−∞
α(yt+1 − θ0q̂m,t)dFt(yt+1)−

Z 0

−∞
xt+1dFt(xt+1 + θ0q̂m,t),

where we have defined xt+1 ≡ yt+1 − θ0tq̂m,t. Thus

∇Σ(θ) = −αq̂m,t −
Z 0

−∞
q̂m,txt+1ft(xt+1 + θ0q̂m,t)dxt+1,

since we assume that the random variable Yt+1 has a continuously differentiable conditional density

ft, i.e. dFt(yt+1) = ft(yt+1)dyt+1 and ft continuous. By arranging the previous equality we obtain

∇Σ(θ) = −αq̂m,t

−[q̂m,txt+1ft(xt+1 + θ0q̂m,t)]
0
−∞ +

Z 0

−∞
q̂m,tft(xt+1 + θ0q̂m,t)dxt+1,

so that

∇Σ(θ) = −αq̂m,t + q̂m,t

Z θ0q̂m,t

−∞
ft(yt+1)dyt+1.
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We can then write

∇Σ(θ) = −Et[(α− 1(Yt+1 − θ0q̂m,t < 0))q̂m,t].

If θ∗ is a solution to the initial minimization problem then ∇Σ(θ)|θ∗ = 0, a.s.− P , i.e.

Et[(α− 1(Yt+1 − θ0q̂m,t < 0))q̂m,t] = 0, a.s.− P.

The variable q̂m,t being measurable with respect to the information set Ft, we can rewrite the

previous equation as

Et[α− 1(Yt+1 − θ0q̂m,t < 0)] = 0, a.s.− P,

which completes the proof of Proposition 2.

Lemma 7 For all t, if Corr(q̂1m,t, q̂2m,t) 6= ±1 and q̂im,t 6= 0, a.s.− P for i = 1, 2 then q̂1m,t and

q̂2m,t are linearly independent, i.e., γ1q̂1m,t + γ2q̂2m,t = 0, a.s.− P implies γ1 = γ2 = 0.

Proof of Lemma 7. By contradiction, suppose there exist (γ1, γ2) 6= (0, 0) such that γ1q̂1m,t+

γ2q̂2m,t = 0, a.s. − P Without loss of generality, suppose γ1 6= 0. Then q̂1m,t = −(γ2/γ1)q̂2m,t

, a.s.−P , from which it follows that either (1) γ2 = 0, which implies that q̂1m,t = 0, a.s.−P or (2)

γ2 6= 0, which implies that Corr(q̂1m,t, q̂2m,t) = sgn(−(γ2/γ1)) = ±1 . This completes the proof of

Lemma 7.

Proof of Proposition 3. We show that if θ∗ and θ both satisfy the first order condition in

(8), then θ∗ = θ, i.e.

0 = Et[α− 1(Yt+1 − θ∗0q̂m,t < 0)] = Et[α− 1(Yt+1 − θ
0
q̂m,t < 0)], a.s.− P ⇒ θ∗ = θ.

Let Wt denote an element of the information set Ft. Then, the previous statement is equivalent to

(∀Wt ∈ Ft, 0 = E[(α− 1(Yt+1 − θ∗0q̂m,t < 0))Wt] = E[(α− 1(Yt+1 − θ
0
q̂m,t < 0))Wt])⇒ θ∗ = θ.

Consider the difference ∆(Wt), defined by

∆(Wt) ≡ E[(α− 1(Yt+1 − θ∗0q̂m,t < 0))Wt]−E[(α− 1(Yt+1 − θ
0
q̂m,t < 0))Wt].
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We have

∆(Wt) = E[Wt(1(Yt+1 − θ
0
q̂m,t < 0)− 1(Yt+1 − θ∗0q̂m,t < 0))]

= E[Wt(1(θ
∗0q̂m,t < Yt+1 < θ

0
q̂m,t)− 1(θ

0
q̂m,t < Yt+1 < θ∗0q̂m,t))]

= E[WtEt[1(θ
∗0q̂m,t < Yt+1 < θ

0
q̂m,t)− 1(θ

0
q̂m,t < Yt+1 < θ∗0q̂m,t)]],

since Wt is Ft-measurable. The conditional expectation on the right hand side of the previous

equality is in turn equal to Z θ
0
q̂m,t

θ∗0q̂m,t

ft(yt+1)dyt+1 ≡ Dt(θ, θ
∗),

where ft(·) is the conditional density of Yt+1. Thus ∆(Wt) = E[WtDt(θ, θ
∗)] and we have

(∀Wt ∈ Ft,∆(Wt) = 0)⇒ Dt(θ, θ
∗) = 0, a.s.− P.

By assumption (i), the conditional density of Yt+1, ft(·), is continuous and strictly positive on R, so

that Dt(θ, θ
∗) can only be almost surely zero when θ

0
q̂m,t = θ∗0q̂m,t, a.s.−P, i.e., (θ− θ∗)0q̂m,t = 0,

a.s.− P. From Lemma 7, this implies that (θ − θ∗) = 0. In conclusion, we have that

(∀Wt ∈ Ft,∆(Wt) = 0)⇒ θ∗ = θ,

which completes the proof of Proposition 3.

Proof of Proposition 4. We first discuss the nature of the sequence {g(θ;Yt+1,W ∗
t )}. The

moment function g(θ;Yt+1,W
∗
t ) depends on the data through Yt+1, W

∗
t and q̂m,t. Let us consider

separately the two cases of (1) fixed forecasting scheme and (2) rolling window forecasting scheme.

(1) If a fixed forecasting scheme is used, the forecasts q̂m,t, t = m, ..., T − 1 depend, on the one

hand, on pre-determined parameter estimates β̂m,m hence on the variables (X1, . . . ,Xm), and on

the other hand, on some set of right hand variables of the forecasting model which are observed

at time t. Typically, those variables are going to be included in the vector W ∗
t . Therefore, by

letting Vt+1 ≡ (Yt+1,W ∗
t ,X1, . . . ,Xm)

0, for every t, t = m, ..., T − 1, we can rewrite g(θ;Yt+1,W ∗
t )

as g(θ;Vt+1).

(2) If instead a rolling window forecasting scheme is used, the vector of forecasts q̂m,t, t = m, ..., T−1
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is a constant measurable function of the estimation window which consists of the m most recent

observations of Xt. In that case, we can again let Vt+1 ≡ (Yt+1,W ∗
t ,Xt, . . . ,Xt−m+1)0, for every t,

t = m, ..., T − 1, and rewrite g(θ;Yt+1,W ∗
t ) as g(θ;Vt+1).

Since for every t, t = m, ..., T − 1, Vt+1 is function of a finite number (m+2) of variables which, by

assumption (iii), are strictly stationary and α-mixing, the sequence {Vt} is strictly stationary and

α-mixing of same size (see, e.g., Theorem 3.49 of White 2001). Note that strict stationarity and

α-mixing of {Vt} imply ergodicity (see, e.g., Theorem 3.44 in White 2001), so that we can use one

of the standard results on the consistency of GMM estimators for stationary and ergodic sequences.

Specifically, we verify that the conditions of Theorem 2.6 of Newey and McFadden (1994, pp. 2132-

2133) are satisfied in our case (note that the results of Theorem 2.6 hold if the iid assumption is

replaced with the condition that {Vt} is strictly stationary and ergodic).

First, we need to show that Ŝ(θ̂n)
p→ S where S is the asymptotic covariance matrix defined in

equation (12). Recall from equation (13) that Ŝ(θ) ≡ n−1
PT−1

t=m g(θ; vt+1)g(θ; vt+1)
0, where vt+1 is a

realization of Vt+1 defined above. Note that the moment function g is an Ft+1-measurable function

of {Vt+1} which is strictly stationary and α-mixing. By using, once again., Theorem 3.49 of White

(2001), we can then say that {g(θ;Vt+1)} and {g(θ;Vt+1)g(θ;Vt+1)0} are strictly stationary and α-

mixing of same size. Hence, we can apply a law of large numbers (LLN) for α-mixing sequences to

show that for every θ ∈ Θ, Ŝ(θ) converges to S̃(θ) ≡ E[g(θ;Vt+1)g(θ;Vt+1)
0]. Specifically, we check

that all the assumptions of Corollary 3.48 in White (2001) hold: first, note that for r > 2, we have

−r/(r−1) > −r/(r−2) so that the sequence {g(θ;Vt+1)g(θ;Vt+1)0} is moreover α-mixing with α of

size −r/(r−1). We now need to show that for some δ̃ > 0 we have E||g(θ;Vt+1)g(θ;Vt+1)0||r+δ̃ <∞:

recall from equation (9) that we have

||g(θ;Vt+1)g(θ;Vt+1)0|| = [α− 1(Yt+1 − θ0q̂m,t < 0)]
2||W ∗

t W
∗0
t ||

6 ||W ∗
t W

∗0
t ||, a.s.− P.

Moreover, we know, by norm equivalence, that there exist some positive constant c such that

||W ∗
t W

∗0
t || = |W ∗

t,i0 ·W
∗
t,j0 | 6 |W

∗
t,i0 | · |W

∗
t,j0 | 6 c2 · ||W ∗

t ||2, a.s.− P,

where i0 and j0, 1 6 i0, j0 6 h = dim(W ∗
t ), are such that ||W ∗

t W
∗0
t || = max16i,j6h |W ∗

t,i ·W ∗
t,j | =
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|W ∗
t,i0
· W ∗

t,j0
|. Hence, E||g(θ;Vt+1)g(θ;Vt+1)0||r+δ̃ 6 c2 · max{1, E||W ∗

t ||2r+2δ̃}, and so by letting

2δ̃ = δ and using assumption (v), we get E||g(θ;Vt+1)g(θ;Vt+1)0||r+δ̃ < ∞. Together, the strict

stationarity of {g(θ;Vt+1)g(θ;Vt+1)0} and Corollary 3.48 in White (2001) than ensure that Ŝ(θ)
p→

S̃(θ) = E[g(θ;Vt+1)g(θ;Vt+1)
0]. In particular, if θ̂n is some previously obtained consistent estimate

of θ∗, then Ŝ(θ̂n)
p→ S̃(θ∗) = E[g(θ∗;Vt+1)g(θ∗;Vt+1)0] which, due to the fact that {g(θ∗;Vt+1),Ft}

is a martingale difference sequence and that {g(θ∗;Vt+1)g(θ∗;Vt+1)0} is strictly stationary, equals

the asymptotic covariance matrix S in (12).

We now check that all the other conditions of Theorem 2.6 in Newey and McFadden (1994) are

satisfied: in particular, we have S = E[g(θ∗;Yt+1,W ∗
t )g(θ

∗;Yt+1,W ∗
t )
0] = E{[α−1(Yt+1−θ∗0q̂m,t <

0)]2W ∗
t W

∗0
t } so that for any ζ ∈ Rh, we have ζ 0 · S · ζ = 0 if and only if

ζ 0[α− 1(Yt+1 − θ∗0q̂m,t < 0)]
2W ∗

t W
∗0
t ζ = [α− 1(Yt+1 − θ∗0q̂m,t < 0)]

2[W ∗0
t ζ]

2 = 0, a.s.− P,

which is equivalent to W ∗0
t ζ = 0, a.s. − P . Since we know from assumption (iv) that E[W ∗

t W
∗0
t ]

is nonsingular, this last equality implies that ζ needs to be equal to an h-vector of zeros. Hence,

the matrices S and its inverse S−1 are positive definite, therefore nonsingular. In particular, this

implies that S−1E[g(θ;Vt+1)] = 0 only if E[g(θ;Vt+1)] = 0 which by using the unicity result in

Proposition 3 in turn implies θ = θ∗. This verifies the condition (i) of Theorem 2.6.

Condition (ii) of Theorem 2.6 is the standard compactness condition on the parameter space Θ

which we impose here. The continuity condition (iii) of Theorem 2.6 holds since g(θ;Vt+1) is a.s.

continuous on Θ. Indeed, note that the only discontinuity point occurs when Yt+1 = θ∗0q̂m,t, a.s.−P

which due to the continuity of Yt+1 produces with probability zero.

Finally, condition (iv) of Theorem 2.6 is verified by imposing assumption (v) since for all θ ∈ Θ we

have ||g(θ;Vt+1)|| 6 ||W ∗
t ||, a.s.−P , so that E[supθ∈Θ ||g(θ;Vt+1)||] 6 E||W ∗

t || < max{1, E||W ∗
t ||2r+δ} <

∞. We can now safely apply the results of Newey and McFadden’s (1994) Theorem 2.6 to show

that θ̂n
p→ θ∗, which completes the proof of Proposition 4.

Lemma 8 (Asymptotic First Order Condition) Let the Assumptions of Proposition 4 hold.

We then have
√
n||gn(θ̂n)||

p→ 0.

32



Proof of Lemma 8. Recall from (11) that θ̂n is defined as a local minimum of [gn(θ)]0Ŝ−1[gn(θ)]

on Θ, where gn(θ) = n−1
PT−1

t=m(α− 1(yt+1 − θ0q̂m,t < 0))w
∗
t . Note that this implies that θ̂n is also

a local minimum of ||gn(θ)||2 = [gn(θ)]0 · [gn(θ)]. For i = 1, 2 and j = 1, . . . , h = dim(W ∗
t ), let

ĝn,i,j(a) ≡ n−1
XT−1

t=m
(α− 1(yt+1 − (θ̂n + εei)

0q̂m,t < 0))w
∗
t,j ,

where {e1, e2} is the standard basis of R2, and a ∈ R is such that for i = 1, 2, θ̂ + aei ∈ Θ. Note

that ĝn,i,j(0) = gn,j(θ̂n) where gn,j corresponds to the jth-component of gn. For i = 1, 2 and for

every j = 1, . . . , h the function a 7→ [ĝn,i,j(a)]
2 is convex , so that for every ε > 0, we have

[ĝn,i,j(0)]
2 − [ĝn,i,j(−ε)]2 6 {[ĝn,i,j(ε)]2 − [ĝn,i,j(−ε)]2}/2 6 [ĝn,i,j(ε)]2 − [ĝn,i,j(0)]2. (25)

Now, note that

[ĝn,i,j(ε)]
2 − [ĝn,i,j(−ε)]2 = [ĝn,i,j(ε) + ĝn,i,j(−ε)] · [ĝn,i,j(ε)− ĝn,i,j(−ε)]

= [ĝn,i,j(ε) + ĝn,i,j(−ε)]·

[n−1
PT−1

t=m(1(yt+1 − (θ̂n − εei)
0q̂m,t < 0)−

1(yt+1 − (θ̂n + εei)
0q̂m,t < 0))w

∗
t,j ],

so that when ε → 0, [ĝn,i,j(ε)]2 − [ĝn,i,j(−ε)]2 → 2ĝn,i,j(0)[n
−1PT−1

t=m 1(yt+1 = θ̂
0
nq̂m,t)w

∗
t,j ]. By

using the inequality (25) it must therefore be the case that

P (ĝn,i,j(0)[n
−1XT−1

t=m
1(Yt+1 = θ̂

0
nq̂m,t)W

∗
t,j ] = 0) = 1. (26)

Hence

P (
√
n||gn(θ̂n)|| > �) 6 P ( max

16j6h
|gn,i,j(θ̂n)| > �/

√
n)

6 P ( max
16j6h

|ĝn,i,j(0)| > �/
√
n)

6 P ( max
16j6h

|ĝn,i,j(0)|[n−1
XT−1

t=m
1(Yt+1 = θ̂

0
nq̂m,t)W

∗
t,j ] > �/

√
n),

where we have used the fact that Yt+1 is a continuous random variable, so that n−1
PT−1

t=m 1(Yt+1 =

θ̂
0
nq̂m,t)W

∗
t,j = op(1). Using the condition (26), last the inequality above implies

√
n||gn(θ̂n)||

p→ 0,

which completes the proof of Lemma 8.

Proof of Proposition 5. In order to show the asymptotic normality of the GMM estimator

θ̂n we use the result by Newey and McFadden (1994) and check that all the conditions of their

33



Theorem 7.2 (p. 2186) are verified. We first need to check that gn(θ̂n) verifies an ‘asymptotic

first order condition’: gn(θ̂n)0Ŝ−1gn(θ̂n) 6 infθ∈Θ gn(θ)
0Ŝ−1gn(θ) + op(n

−1). For this it suffices to

have
√
n||gn(θ̂n)||

p→ 0, which is what we have shown in the previous Lemma 8. Note that we also

have Ŝ
p→ S, with S nonsingular so that Ŝ−1 p→ S−1. Moreover, S−1 is positive definite. We now

proceed with checking that conditions (i) to (v) Theorem 7.2 hold.

Recall from our previous discussion that the solution θ∗ to the first order condition (8) coincides

with the solution θ∗∗ to E[g(θ∗∗;Yt+1,W ∗
t )] = 0 whenever the information vector W

∗
t contains all

the relevant information from Ft, that is, when it includes all elements of the time-t information

set potentially correlated with the variable α − 1(Yt+1 − θ∗0q̂m,t < 0). Hence, θ∗ is a solution to

g0(θ
∗) = 0 which shows that condition (i) of Theorem 7.2 hold.

In order to show that the condition (ii) hold, note that g can be written as

g(θ;Yt+1,W
∗
t ) = [α−H(θ0q̂m,t − Yt+1)]W

∗
t ,

where H(·) is the Heaviside function, i.e. H(x) = 1 if x > 0 and 0 if x < 0. The ‘gradient’ of g(·)

is the function ∆ : R2 ×Rh ×Θ→ R2 ×Rh such that ∆ : (θ;yt+1, w∗t )7→∆(θ;yt+1, w∗t ) with

∆(θ;Yt+1,W
∗
t ) ≡ −δ(θ0q̂m,t − Yt+1)W

∗
t q̂
0
m,t, (27)

where δ(·) represents the Dirac function, i.e. δ(x) = 0 if x 6= 0 and
R
R δ(x)dx = 1. Note that

δ(·) is the derivative of H(·), so that we have |H(x + ε) − H(x) − εδ(x)| = o(|ε|) for all x ∈

R. We now show that ∆ is indeed a ‘gradient’ of g in a neighborhood of θ∗, in the sense that

||g(θ;Yt+1,W ∗
t )− g(θ∗;Yt+1,W ∗

t )−∆(θ∗;Yt+1,W ∗
t )(θ − θ∗)|| = op(||θ − θ∗||). Let

r(θ∗;Yt+1,W ∗
t ) ≡ ||g(θ;Yt+1,W ∗

t )− g(θ∗;Yt+1,W ∗
t )−∆(θ∗;Yt+1,W ∗

t )(θ − θ∗)||/||θ − θ∗||.

In order to simplify the notation we drop the reference to t and let X ≡ θ∗0q̂m,t − Yt+1 and

ε ≡ (θ − θ∗)0q̂m,t. Thus

r(θ∗;Yt+1,W ∗
t ) = ||W ∗

t || · |H(X + ε)−H(X)− ε · δ(X)|/||θ − θ∗||

6 ||W ∗
t || · ||q̂m,t|| · |H(X + ε)−H(X)− ε · δ(X)|/|ε|, a.s.− P,
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where we used the fact that |ε| 6 ||θ − θ∗|| · ||q̂m,t||. Let At ≡ ||W ∗
t || · ||q̂m,t||. By Cauchy-Schwartz

inequality, we have

E(A2t ) 6 [E||W ∗
t ||4]1/2[E||q̂m,t||4]1/2,

so that assumptions (v) and (vi) imply that E(A2t ) <∞. We now use the finiteness of the second

moment of At to construct an upper bound for P (r(θ∗;Yt+1,W ∗
t ) > �). For any η > 0 and any

� > 0 let A ≡ [2E(A2t )/η]1/2 <∞ and �̃ ≡ �/A > 0: we then have

P (r(θ∗;Yt+1,W ∗
t ) > �) 6 P (At · |H(X + ε)−H(X)− ε · δ(X)|/|ε| > �)

6 P (At · |H(X + ε)−H(X)− ε · δ(X)|/|ε| > �|At 6 A) · P (At 6 A)

+P (At · |H(X + ε)−H(X)− ε · δ(X)|/|ε| > �|At > A) · P (At > A)

6 P (|H(X + ε)−H(X)− ε · δ(X)|/|ε| > �/A) + P (At > A),

so that by Chebyshev’s inequality

P (r(θ∗;Yt+1,W ∗
t ) > �) 6 P (|H(X + ε)−H(X)− ε · δ(X)|/|ε| > �̃) + 1/A2 ·E(A2t )

6 P (|H(X + ε)−H(X)− ε · δ(X)|/|ε| > �̃) + η/2.

Since Dirac delta function is the derivative of Heaviside function we know that given �̃ > 0 and

η0 ≡ η/3 > 0, there exist some e > 0 such that |ε| < e implies P (|H(X+ε)−H(X)−ε ·δ(X)|/|ε| >

�̃) < η/3. Further, recall that ε ≡ (θ − θ∗)0q̂m,t, so that for any e > 0, there exist some ρ > 0 such

that ||θ−θ∗|| < ρ implies |ε| < e, and therefore implies P (|H(X+ε)−H(X)−ε·δ(X)|/|ε| > �̃) < η/3.

For any η > 0 and any � > 0 we have found ρ > 0 such that ||θ−θ∗|| < ρ implies P (r(θ∗;Yt+1,W ∗
t ) >

�) < η, i.e. we have shown that P (limθ→θ∗ r(θ
∗;Yt+1,W ∗

t ) = 0) = 1. Therefore, we can say that

g0(θ) = E[g(θ;Yt+1,W
∗
t )] is differentiable at θ

∗ with derivative γ ≡ E[∆(θ∗;Yt+1,W ∗
t )]. Using the

expression in (27), note that

γ = E[−δ(θ∗0q̂m,t − Yt+1)W
∗
t q̂
0
m,t]

= E[Et[−δ(θ∗0q̂m,t − Yt+1)]W
∗
t q̂
0
m,t]

= −E[ft(θ∗0q̂m,t)W
∗
t q̂
0
m,t],

where ft(·) is the density of Yt+1 conditional on the information set Ft. We now show that γ0S−1γ

is nonsingular: as previously, consider the quadratic form ζ 0γ0S−1γζ, where ζ ∈ R2. We have
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ζ 0γ0S−1γζ = 0 if and only if γζ = 0 ∈ Rh since, as shown in Proposition 4, S−1 is positive definite.

On the other hand γζ = 0 if and only if E[ft(θ∗0q̂m,t)W
∗
t q̂
0
m,tζ] = 0. Given that ft is assumed to

be strictly positive, this last equality hold only if q̂0m,tζ = 0, a.s. − P . Since by assumption (ii),

q̂i,m,t 6= 0, a.s.−P , the previous condition can only hold if ζ = 0. Hence, γ0S−1γ is positive definite,

therefore nonsingular.

Condition (iii) of Theorem 7.2 is trivially satisfied by imposing Θ to be compact. In order to show

that condition (iv) of Theorem 7.2 holds, i.e. that
√
ngn(θ

∗) d→ N (0, S), we use a central limit

theorem (CLT) for martingale difference sequences (e.g., Corollary 5.26 in White, 2001, p 135):

recall from (8) that {g(θ∗;Yt+1,W ∗
t ),Ft} is a martingale difference sequence. Also, recall from our

previous proof of Proposition 4 that Ŝ(θ∗) = n−1
PT−1

t=m g(θ∗; yt+1, w∗t )g(θ
∗; yt+1, w∗t )0 is a consistent

estimator of the asymptotic covariance matrix S in (12), i.e. Ŝ(θ∗) p→ S. In order to apply the CLT

provided in Corollary 5.26 of White (2001), we need to show that the following moment condition

hold: E||g(θ∗;Yt+1,W ∗
t )||2+δ <∞ for some δ > 0. We have: E||g(θ;Yt+1,W ∗

t )||2+δ 6 E||W ∗
t ||2+δ 6

max{1, E||W ∗
t ||2r+δ}, where r > 2, so that by assumption (v), E||g(θ;Yt+1,W ∗

t )||2+δ <∞ for some

δ > 0. We can therefore use Corollary 5.26 of White (2001) to show that
√
ngn(θ

∗) d→ N (0, S).

Finally, Andrews (1994) has shown that the stochastic equicontinuity condition (v) of Theorem 7.2

holds for moment functions such as g(θ;Yt+1,W ∗
t ). We can now safely apply the results of Theorem

7.2 in Newey andMcFadden (1994) to show that
√
n(θ̂n−θ∗) d→ N (0, (γ0S−1γ)−1γ0S−1γ(γ0S−1γ)−1),

i.e.
√
n(θ̂n − θ∗) d→ N (0, (γ0S−1γ)−1), which completes the proof of Proposition 5.

Proof of Theorem 6. From Theorem 5, it follows that Ω−1/2
√
n(θ̂n− θ∗) d→ N (0, I2), where

Ω−1/2 is such that (Ω−1/2)0(Ω−1/2) = Ω and I2 indicates the identity matrix of order 2. Since Ω̂
p→ Ω

as n→∞, Theorem 4.30 of White (2001) implies that n(θ̂n − θ∗)0Ω̂−1(θ̂n − θ∗) d→ χ22, from which

(a) and (b) follow.

36



References

[1] Andrews, D.W.K., (1994): ‘Empirical Process Methods in Econometrics’, in Handbook of

Econometrics, 4, 2247-2294.

[2] Barone-Adesi, G., Bourgoin, F., and Giannopoulos, K. (1998), ‘Don’t look back’, Risk, 11.

[3] Bates J. M., and Granger, C. W. J., (1969): ‘The Combination of Forecasts’, Operational

Research Quarterly, 20, 451-468.

[4] Battacharya, P.K. and Gangopadhyay, A.K. (1990), ‘Kernel and a nearest-neighbor estimation

of a conditional quantile’, Annals of Statistics, 18, 1400-1415.

[5] Bierens, H.J., and Ginther, D. (2001): ‘Integrated Conditional Moment Testing of Quantile

Regression Models’, Empirical Economics, 26, 307- 324.

[6] Chernozhukov, V. and Umantsev, L., (2001): ‘Conditional Value-at-Risk: Aspects of Modeling

and Estimation’, MIT Department of Economics Working Paper, 01-19.

[7] Christoffersen, P., (1998): ‘Evaluating Interval Forecasts’, International Economic Review, 39,

841-862.

[8] Christoffersen, P., Hahn, J., Inoue, A., (2001): ‘Testing and Comparing Value-at-Risk Mea-

sures’, Journal of Empirical Finance, 8, 325-342.

[9] Clemen, R. T., (1989): ‘Combining Forecasts: a Review and Annotated Bibliography’, Inter-

national Journal of Forecasting, 5, 559-583.

[10] Clements, M. P., Hendry, D. F. (1998): Forecasting Economic Time Series, Cambridge Uni-

versity Press

[11] Danielsson, J., and de Vries, C. (1997), ‘Tail index and quantile estimation with very high

frequency data’, Journal of Empirical Finance, 4, 241-257.

[12] Diebold, F. X., (1989): ‘Forecast Combination and Encompassing: Reconciling Two Divergent

Literatures’, International Journal of Forecasting, 5, 589-592.

37



[13] Diebold, F. X., Mariano, R. S. (1995): ‘Comparing Predictive Accuracy’, Journal of Business

and Economic Statistics, 13, 253-263.

[14] Diebold, F.X., Schuermann, T. and Stroughair, J. (1998), ‘Pitfalls and Opportunities in the

Use of Extreme Value Theory in Risk Management,’ in A.-P. N. Refenes, J.D. Moody and

A.N. Burgess (eds.), Advances in Computational Finance, 3-12, Amsterdam: Kluwer Academic

Publishers. Reprinted in Journal of Risk Finance, 1 (Winter 2000), 30-36.

[15] Duffie, D. and Pan, J., (1997), ‘An Overview of Value at Risk’, Journal of Derivatives, 4, 7-49.

[16] Elliott, G. and Timmermann, A., (2002): ‘Optimal Forecast Combinations under General Loss

Functions and Forecast Error Distributions’, University of California, San Diego Discussion

Paper 2002-08.

[17] Embrechts, P., Resnick, and Samorodnitsky, G. (1999), ‘Extreme value theory as a risk man-

agement tool’, North American Actuarial Journal, 3, 30-41.

[18] Engle, R.F., and Manganelli, S. (1999), ‘CAViaR: Conditional Autoregressive Value at Risk

by Regression Quantiles’, UCSD Department of Economics Discussion Paper, 1999-20.

[19] Giacomini, R., White, H. (2003): ‘Tests of Conditional Predictive Ability’, University of Cali-

fornia, San Diego manuscript.

[20] Goffe, W., Ferrier, G.D. and Rogers, J. (1994), ‘Global Optimization of Statistical Functions

with Simulated Annealing’, Journal of Econometrics, 60, 65-100.

[21] Granger, C. W. J., (1969): ‘Prediction with a Generalized Cost of Error Function’, Operational

Research Quarterly, 20, 199-207.

[22] Granger, C. W. J., (1989): ‘Combining Forecasts - Twenty Years Later’, Journal of Forecasting,

8, 167-173.

[23] Granger, C. W. J. and Ramanathan, R., (1984): ‘Improved Methods of Combining Forecasts’,

Journal of Forecasting, 3, 197-204.

38



[24] Hansen, L.P., (1982): ‘Large Sample Properties of Generalized Method of Moments Estima-

tors’, Econometrica, 50, 1029-1054.

[25] Hendry, D. F., Richard, J. F. (1982): ‘On the Formulation of Empirical Models in Dynamic

Econometrics’, Journal of Econometrics, 20, 3-33.

[26] Kitamura, Y., and Stutzer, M., (1997): ‘An Information-theoretic Alternative to Generalized

Method of Moments Estimation’, Econometrica, 65, 861-874.

[27] Koenker, R. W., Bassett, G. W. (1978): ‘Regression Quantiles’, Econometrica, 46, 33-50.

[28] Koenker, R. and Zhao, Q. (1996), ‘Conditional quantile estimation and inference for ARCH

models’, Econometric Theory, 12, 793-813.

[29] Komunjer, I. (2002), ‘Quasi-Maximum Likelihood Estimation for Conditional Quantiles’, Cal-

Tech Social Science Working Paper, 1139.

[30] McNeil, A.J. and Frey, R. (2000), ‘Estimation of tail-related risk measures for heteroscedastic

financial time series: an extreme value approach’, Journal of Empirical Finance, 7, 271-300.

[31] Mizon, G. E., Richard, J. F., (1986): ‘The Encompassing Principle and its Application to

Testing Non-nested Hypotheses’, Econometrica, 54, 657-678.

[32] Morgan, JP, (1996), RiskMetrics, Technical Document, 4th edition, New York.

[33] Newey, W. K. and West, K. D. (1987): ‘A Simple, Positive Semidefinite, Heteroskedasticity

and Autocorrelation Consistent Covariance Matrix’, Econometrica, 55, 703-708.

[34] Stock, J. H. and Watson, M. W., (1999): ‘A Comparison of Linear and Nonlinear Univari-

ate Models for Forecasting Macroeconomic Time Series’, Engle, R. F. and White, H. (eds.),

Cointegration, Causality and Forecasting, Oxford University Press.

[35] Stock, J. H. and Watson, M. W., (2001): ‘Forecasting Output and Inflation: the Role of Asset

Prices’, Harvard University Department of Economics Working Paper.

39



[36] Taylor, J. W., Bunn, D. W. (1998): ‘Combining Forecast Quantiles Using Quantile Regression:

Investigating the Derived Weights, Estimator Bias and Imposing Constraints’, Journal of

Applied Statistics, 25, 193-206.

[37] Taylor, J. (1999), ‘A Quantile Regression Approach to Estimating the Distribution of Multi-

Period Returns’, Journal of Derivatives, Fall, 64-78.

[38] West, K. D. (1996): ‘Asymptotic Inference about Predictive Ability’, Econometrica, 64, 1067-

1084.

[39] West, K. D. (2001): ‘Encompassing Tests When No Model is Encompassing’, Journal of

Econometrics, 105, 287-308.

[40] White, H. (1992), ‘Nonparametric estimation of conditional quantiles using neural networks’,

in H. White (eds.), Artificial Neural Networks: Approximation and Learning Theory, 191-205,

Oxford: Blackwell.

[41] White, H. (2001): Asymptotic Theory for Econometricians, Academic Press, San Diego.

[42] Zheng, J. X. (1998): ‘A Consistent Nonparametric Test of Parametric Regression Models under

Conditional Quantile Restrictions’, Econometric Theory, 14, 123-138.

40



0 0 .1 0 .2 0 .3 0 .4 0 .5
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1
P o w e r curve s

R ho

n =  1000
n  =  2500
n  =  5000

Figure 1: Power curves of the CQFE test in the Monte Carlo experiment discussed in Section

4.2. Each curve represents the rejection frequencies over 500 Monte Carlo replications of the null

hypothesis that V aRAAV,t+1 encompasses V aRSAV,t+1 at the 5% nominal level when the DGP is

rt+1 = −[ρV aRSAV,t+1 + (1 − ρ)V aRAAV,t+1] + ut+1. The horizontal axis represents increasing

values of ρ.
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Figure 2: In and out-of-sample daily series of percentage losses on S&P500 index with 5% VaR

from the GARCH VAR (top) and the RiskMetrics (bottom) models. VaR violations (or ‘hits’) are

represented by dots.
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Figure 3: In and out-of-sample daily series of percentage losses on S&P500 index with 5% VaR from

the Asymmetric Absolute Value (top) and Asymmetric Slope (bottom) models. VaR violations (or

‘hits’) are represented by dots.
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