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Abstract

In this paper we compare the relative efficiency of different methods of forecasting

the aggregate of spatially correlated variables. Small sample simulations confirm the

asymptotic result that improved forecasting performance can be obtained by imposing

a priori constraints on the amount of spatial correlation in the system. One way to do

so is to aggregate forecasts from a Space-Time Autoregressive model (Cliff et al., 1975),

which offers a solution to the ‘curse of dimensionality’ that arises when forecasting with

VARs. We also show that ignoring spatial correlation, even when it is weak, leads to

highly inaccurate forecasts. Finally, if the system satisfies a ‘poolability’ condition,

there is a benefit in forecasting the aggregate variable directly.
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1 Introduction

Many variables of economic interest are contemporaneous aggregates of variables observed

over time and across a number of different regions. When interested in forecasting the ag-

gregate across regions, the analyst might ask whether it will be more efficient to forecast

the aggregate series directly or to model the individual components separately and then

aggregate the forecasts. The literature that tries to answer the question is fairly large, but

does not provide clear guidelines; most papers focus on particular econometric models under

restrictive assumptions and the results of simulations and empirical investigations are often

contradictory. Whatever the model used for forecasting, it is plausible to think that the final

verdict on whether to aggregate or not will be sensitive to the degree of interdependence ex-

isting among the variables measured in the different regions. The early literature in the field

restricts attention to the standard regression framework, where temporal and cross-sectional

dependence among the variables is ignored (e.g., Grunfeld and Griliches, 1960, Aigner and

Goldfeld, 1974) or only generic contemporaneous correlation in the errors is allowed (e.g.,

Pesaran, Pierse and Kumar, 1989). The case where the correlation between variables is due

to the presence of a common factor is analyzed by Granger (1980, 1987), who illustrates

the implications of aggregating variables that depend on both common and idiosyncratic

factors. It is shown that, when aggregation is across a large number of units, the common

factors will dominate the process for the aggregate, even though they might be relatively

unimportant at the individual level. It follows that there might be a benefit in forecasting

the disaggregated variables, provided the common factor is appropriately taken into account

(a similar conclusion is reached in an empirical application by Zellner and Tobias, 2000). A

different strand of literature conducts the analysis of contemporaneous aggregation in the

context of vector ARMA processes, that allow the variables to be dependent in both time

and cross-sectional directions. A comprehensive treatment of this case and an extended bib-
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liography can be found in Lütkepohl (1987). In this paper, we consider the situation where

one is interested in forecasting the aggregate of a number of variables observed in a moder-

ately large number of regions and over a long time period. As the cross-sectional dimension

increases, forecasting with vector ARMA models becomes quickly infeasible, as the so-called

‘curse of dimensionality’ makes it difficult to estimate the model accurately and raises the

issue of the effect of estimation uncertainty on the model’s forecasting performance. To

restrict the amount of interdependence in our system, we make use of the concept of ‘spatial

autocorrelation’, which arises when observations at one region are systematically dependent

on the observations at neighboring regions, while the dependence vanishes for regions far

apart. In some sense, our position is intermediate between the approaches taken in the liter-

ature, where the cross-sectional dependence among the units to aggregate is either ignored

or assumed to be due to a common factor. The latter case, in particular, corresponds to an

assumption of constant spatial autocorrelation across regions, whereas our approach assumes

that the spatial correlation disappears for regions sufficiently distant in space. The issue of

spatial autocorrelation is relevant for a wide range of economic fields, such as environmental

economics, urban economics, industrial organization and international economics. Econo-

metric models that explicitly account for spatial dependence were originally proposed by Cliff

and Ord (1973) and Cliff, Haggett, Ord, Bassett and Davies (1975), but their application

in economics was initially restricted to a few specific fields such as regional science and real

estate economics. More recently, there has been a renewed interest for models of spatial de-

pendence in traditional economics, perhaps due to the growing attention in economic theory

for models that explicitly account for interaction among heterogeneous agents and, on the

empirical side, to the increasing availability of highly disaggregated and spatially referenced

data from the Geographic Information Systems. An excellent review of the current state of

the field of spatial econometrics can be found in Anselin (1988). See also Haining (1990)

and references therein. In this paper, we will analyze contemporaneous aggregation within
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a class of stochastic models known as Space-Time Autoregressive (Space-Time AR) models

introduced by Cliff et al. (1975) and generalized by Pfeifer and Deutsch (1980)1. More re-

cent discussions and applications of the Space-Time AR model in econometrics are Elhorst

(2000) and Szulc (2000), while a generalization of the model to continuous space is proposed

by Brown, Karesen, Roberts and Tonellato (2000).

The paper is organized as follows. Section 2 briefly anticipates some of the issues involved

with aggregation of spatially correlated variables in a very simplified example. Section 3

introduces the forecasting model that will be used in the paper to describe the spatial

interactions among the variables of interest. Different ways to forecast the aggregate of

spatially correlated variables are proposed and their efficiency compared in Section 4, both

in a framework that assumes the parameters of the models to be known and in the more

realistic setting where parameter estimation uncertainty is present. Section 5 explores the

small sample behavior of the different forecasts of the aggregate and compares their efficiency

in a Monte Carlo experiment. Section 6 concludes. All proofs are in the Appendix.

2 A simple model of spatial dependence

To illustrate the issues involved with the aggregation of processes that are spatially depen-

dent, we will initially consider a very simple example in which a variable xt is measured over

time in three neighboring regions i− 1, i and i+1.2 Because of the spatial proximity of the
regions, we can assume that the value of the variable at time t in region i depends on the

values of the variable at all three locations at time t − 1, a situation that can be visually
1Both authors propose a general Space-Time ARMA class of models, which are a generalization of uni-

variate ARMA models that explicitly incorporate spatial dependence. For simplicity, we will only focus on

the autoregressive subgroup
2Here and in the following, we adopt the convention of using lowercase letters for either random variables

or their realizations.
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represented as follows.

xi−1,t−1 xi,t−1 xi+1,t−1

& ↓ .

xi,t

Since we are not including in our analysis regions on either sides of the diagram, we have

that the time-t values of x in regions i−1 and i+1 are only functions of their own lag and of
the lagged variable in region i, which introduces so-called ‘edge effects’ into our framework.3

Suppose that the dependence in the diagram can be expressed as

xi,t = φxi,t−1 + ψ1xi−1,t−1 + ψ2xi+1,t−1 + εi,t, (1)

where εi,t is a zero-mean white noise uncorrelated across regions. Denoting the spatial

aggregate measured in region i and at time t with Si,t(x) =
Pi+1

k=i−1 xk,t, we have

Si,t(x) = φSi,t−1(x) + ψ1Si−1,t−1(x) + ψ2Si+1,t−1(x) + Si,t(ε). (2)

If we assume that the edge effects are negligible, it follows that the aggregate variables Si,t−1,

Si−1,t−1 and Si+1,t−1 are approximately equal and therefore (2) becomes

St(x) = (φ+ ψ1 + ψ2)St−1(x) + St(ε). (3)

In sum, the process for the aggregate is approximately an AR(1) and the coefficients of

spatial dependence (ψ1 and ψ2) are incorporated into the autoregressive coefficient. We can

thus conclude that aggregation causes in this case a ‘simplification’ of the dynamic properties

of the process.

3‘Edge effects’ result from excluding from the data set spatial units that are related to the units in the

sample. This problem can be compared to the issue of initial values in time series, but it presents further

complications due to the particular nature of spatial dependence (see Anselin, 1988, pp.172-176).
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3 The Space-time Auto Regressive model

A space-time model is a time-series model that explicitly takes into account linear dependence

between the variables that is lagged both in time and in space. Suppose that the variable of

interest xit is observed at each of k fixed locations (i = 1, ..., k) and over time (t = 1, ..., T ).

In the remainder of the paper, the locations will be referred to as ‘regions’, but they can

represent a variety of levels of data agglomeration, from city districts and counties to states

and countries. The construction of space-time models relies on the assumption that the

relationships among the variables in the various regions under examination depend in a

systematic way on the regions’ relative distance. The conditional mean of the variable xit

is thus modeled as a linear function of past observations of the variable at region i and

at neighboring regions. To be able to relate a variable at one region to the observations

for the same variable at other regions, it is necessary to introduce the concept of spatial

lag, which presents some complications relative to the fairly intuitive definition of time lag.

While the temporal lag operator shifts the variable by one or more periods in time, in space

the direction of shift is not unique and the definition could change depending on the spatial

arrangement of the data. The first step thus consists in identifying the neighbors of each

region according to some prespecified criterion (e.g., border-sharing), and grouping them is

neighboring sets (e.g., first-order, second-order neighbors and so forth).

Once the sets of neighbors for each region have been identified, the spatial lag operator

can be defined as the weighted average of all the observations in a given neighboring set (see,

e.g., Anselin, 1988, pp.22-26). Formally, if xi is the observation in region i and Js is the set

of neighbors of order s, the spatial lag of order s is given by

L(s)xi =
X
j∈Js

w
(s)
ij xj s = 1, 2, ... (4)

We see that a spatial lag is in practice a distributed lag, rather than a shift in a given

direction like in the time series case. The choice of the weights w(s)ij in (4) is a crucial issue in
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spatial econometrics. The weights are usually assumed to be exogenous, nonstochastic and

to satisfy the following properties:

1) w(s)ij ≥ 0,
2) w(s)ii = 0,

3)
P

j∈Js w
(s)
ij = 1.

4

Typically, the spatial weights are chosen a priori by the researcher to reflect geographical

characteristics of the regions under consideration (e.g., distance, length of common borders,

number of roads etc.), but alternative specifications, for example based on definitions of

economic distance, have also been used in the literature (e.g., Pinkse and Slade, 1998).5

The overwhelming majority of the spatial econometric literature assumes the spatial weight

matrix to be known in advance. As a consequence, as pointed out by Stetzer (1982), any

inference conducted with a spatial model will be sensitive to the problem of misspecification

of the weight matrix, with possible resulting inconsistency of the parameter estimates and

misleading assessment of forecast performance. Detailed references and a discussion of weight

matrix specification can be found in Anselin (1988). In this paper, we will conform to the

standard practice in the spatial econometric literature of considering the weight matrix to

be known a priori and to be correctly specified, while fully acknowledging that the presence

of estimation uncertainty in the weight’s specification may affect the conclusions we draw.

The central issue of the paper, forecasting with data that exhibit spatial dependence, can

4The normalization of the weights (property n. 3) is usually motivated by an ease of interpretation of the

model’s coefficients. Anselin (1988, p. 24) points out that this assumption in some situations implies a view

of spatial interaction that is not economically meaningful. For example, if the weights for the N neighbors of

a given region are simply equal to 1/N, it follows that a higher number of neighbors implies less individual

influence, an assumption not always justifiable on economic grounds.
5When economic theory is not helpful in guiding the choice of the appropriate weights, and if the model

is manageably small, one could alternatively conduct a model-selection search by fitting different weight

specifications and choosing the one that maximizes the likelihood.
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be illustrated using the simplest form of space-time model for the conditional mean of the

zero-mean variable xit, a Space-Time AR(1, 1), which ignores dependence beyond the first

temporal and spatial lags

xit = φxit−1 + ψ
kX
j=1

wijxjt−1 + εit i = 1, ..., k t = 1, ..., T. (5)

The weights wij sum to one for each i and are non-zero only for neighbors of region i.

Collecting the weights wij in a k×k spatial weight matrixW = (wij) , we can rewrite model

(5) in vector form as

xt = φxt−1+ψWxt−1+εt, t = 1, ... , T. (6)

The first element on the right hand side of equation (6) represents the first temporal lag of

xt, while the second element is the first spatial lag of the vector at time t−1. In the paper, we
assume for simplicity that initial and edge effects are negligible, corresponding to the ideal

situation of a long time series which is measured near the ‘center’ of a spatial configuration

of regions. Edge effects are a known problem in spatial econometrics, and some partial -

and often arbitrary - solutions have been proposed in the literature (see Anselin, 1988, for

a discussion). Even though the theoretical results assume the absence of edge effects, the

impact of this assumption will be briefly discussed in the simulation in section 5.

The Space-Time AR model in (6) should not be confounded with the Spatial AR model,

denoted SAR, which is anARmodel that contains a simultaneous spatially lagged dependent

variable. The Space-Time AR model is more appropriate than the SAR to discuss the effects

of spatial correlation on forecast efficiency, since the model assumes that the spatial effects

take one period to become manifest, and can thus be exploited for forecasting.

It is easily seen that the Space-Time AR(1, 1) model defined in (6) is a special case of

a vector autoregressive model (V AR) of order 1, where the autoregressive coefficient matrix

is restricted to equal φIk + ψW (the generalization to higher spatial and temporal orders is

straightforward). It is in this sense that the space-time model we consider in this paper is a
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refinement of a multivariate time-series model. Whereas a V AR model allows all variables

in a system to be related to all other variables, the Space-Time AR model imposes a priori

restrictions on this interdependence due to the spatial allocation of the variables, exploiting

the fact that contiguous regions could be related in a systematic way.

In the remainder of the paper, we will assume model (6) to be correctly specified for

the conditional mean of xt. Clearly, the model considered is very simple, and does not

claim to be an accurate description of reality. Potentially important features ignored by the

specification (6) are, e.g., exogenous explanatory variables, contemporaneous spatial lags

of the dependent variable and a number of cross-sectional units which increases with the

sample size (whereas we consider it to be fixed as T → ∞). We feel however that use of
a more sophisticated model would unnecessarily complicate the analysis without providing

any more insight into the problem of interest.

4 Forecasting aggregated space-time processes

Suppose that the goal is to forecast yt ≡
Pk

i=1 xit, the aggregate across regions of a set of k

variables xit, related by spatial dependence.

When time series of the k variables {xit}Tt=1 and of the aggregate {yt}Tt=1 are available,
the researcher can obtain a forecast for yt in several different ways:

• f1. The aggregate yt can be forecasted directly by fitting a univariate forecasting model
to the series {yt}Tt=1.

• f2. Univariate forecasts of each variable xit, i = 1, ..., k can similarly be obtained and
then aggregated.

• f3. The vector xt may be forecasted by fitting a multivariate forecasting model to the
series {xt}Tt=1. A forecast for yt is obtained by aggregating the resulting forecasts for
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each xit.

• f4. A Space-Time AR model can be used to forecast each variable xit, i = 1, ..., k. The
forecasts for each component are then aggregated.

Intuitively speaking, the different scenarios correspond to forecasting using different in-

formation sets. The first scenario only utilizes information contained in the univariate aggre-

gated series. The second scenario treats each component separately and for each component

only uses the information in the relative univariate series. The third and fourth methods

further incorporate information about possible or known interdependencies among the indi-

vidual series.

There are various reasons why one would consider forecasting using the different scenarios.

The multivariate models in f3 and f4 have the advantage of utilizing the maximum amount

of information present in the data, but they can become easily unmanageable when the

dimension of the system increases. Forecasting with a univariate model of the aggregate, on

the other hand, offers a quick and easy alternative and has the advantage of being tightly

parameterized, but it implies a loss of information. Aggregating univariate forecasts of the

components can be a viable alternative, since it is based on more information than the direct

forecast of the aggregate, but it entails ignoring the relationships among the component

series.

In the rest of the paper, we will attempt to rank the four different approaches in terms

of their relative efficiency.

To formalize, we make the following assumptions about the data-generating process

(DGP):

Assumption 1. The k×1 data vector xt is generated according to xt = φ0xt−1+ψ0Wxt−1+εt,

t = 1, ..., T, εt ∼ i.i.d. N(0,Σε). W is the nonstochastic weight matrix defined in (??),W 6= 0.
The aggregate variable is then given by yt = ι0xt, where ι is a k × 1 vector of ones.
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Assumption 2. The eigenvalues of the matrix φ0Ik + ψ0W lie inside the unit circle.

The assumption of normality for the variable of interest is quite restrictive and unrealistic,

but it is dictated by the desire to obtain tractable analytical solutions.

The forecasts we will be referring to are optimal (minimum mean squared error) lin-

ear predictors, based on the relevant information set. To illustrate, the optimal one-step-

ahead forecast of yt using the Space-Time AR(1, 1) model in (6) (f4) is given by yt−1(1) =

ι0(φxt−1+ψWxt−1). For scenario f3, we have instead yt−1(1) = ι0Bxt−1, where B is the k×k
coefficient matrix in a V AR(1) model of xt. For the univariate forecasting situations f1 and

f2, the optimal forecasts of yt and of xit, i = 1, ..., k can be based on the ARMA repre-

sentations of yt and xit. Such ARMA representations (with finite orders) exist due the fact

that any linear transformation of an ARMA process has an ARMA representation (see,

e.g., Lütkepohl, 1987, Corollary 4.2.2), and both yt and xit are linear transformations of the

V AR(1) process xt.We will make the following assumption about the orders of the ARMA

representations of the variables of interest in each forecasting situation.

Assumption 3. The orders of the ARMA representations of yt, xt and xit, i = 1, ..., k

are minimal and they are either known or estimated consistently.

In practice, the forecasts formulated in all scenarios depend on parameters, which will

have to be estimated. From the above discussion, it is clear that a comparison of the

efficiency of different forecasting methods will rely on the interplay between how well a given

model exploits the information available and the effects of estimation uncertainty, as we

will explore in detail in the following sections. A large part of this section is related to the

results collected in Lütkepohl (1987). Our treatment differs from Lütkepohl (1987)’s in that

we assume the presence of spatial correlation in the system.
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4.1 Forecast comparisons with known parameters

To establish a benchmark, we will initially compare the relative efficiency of forecasting the

aggregate in scenarios f1-f4 under the assumption of no parameter estimation uncertainty.

In order to simplify the analysis, in this section and in the remainder of the paper we will

restrict attention to one-step-ahead forecasts of yt, denoted by yt−1 (1), and choose as a

measure of forecast accuracy the forecasts’ Mean Squared Error (MSE):

MSE(yt−1(1)) ≡ E[(yt − yt−1(1))2]. (7)

Proposition 1 (Efficiency comparison with known parameters) LetMSE(i), i = 1,..., 4

denote the MSE of the one-step-ahead optimal linear forecast for the aggregate yt obtained

under each of the forecasting scenarios f1-f4, in the absence of parameter estimation uncer-

tainty. Given assumptions 1-3, the following ranking between alternative forecasting methods

can be established

a) The aggregate of forecasts from a V AR is more efficient than the aggregate of univari-

ate forecasts for each component: MSE(3)(yt−1(1)) < MSE(2)(yt−1(1)).

b) The aggregate of forecasts from a V AR is (weakly) more efficient than the forecast

based on the aggregated data: MSE(3)(yt−1(1)) ≤MSE(1)(yt−1(1)).
c) The aggregate of forecasts from a V AR is as efficient as the aggregate of univariate

Space-Time AR forecasts for each component: MSE(3)(yt−1(1)) =MSE(4)(yt−1(1)).

As pointed out by Wei and Abraham (1981), the relative efficiency of forecasting the

aggregate variable directly or aggregating univariate forecasts for the components (i.e., of

methods f1 and f2) cannot be established for a general data-generating process.

Kohn (1982) shows that the equality of MSE in Proposition 1-b) holds for a general

gaussian, stationary V AR(p) process B(L)xt = εt if and only if

ι0B(L) = b(L)ι0, (8)
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where b(L) is a scalar lag polynomial of order p. In other words, condition (8) guarantees

that the aggregate of a V AR(p) is an AR(p) process, in which case it will be equivalent

to forecast the disaggregated system and then aggregate the forecasts or to forecast the

aggregate directly (we will therefore call (8) the ‘poolability’ condition). In our case, the data-

generating process is a Space-Time AR(1, 1), and condition (8) becomes ι0(φ0Ik+ψ0W ) = bι
0,

with b scalar, which corresponds to requiring the matrix φ0Ik + ψ0W to have equal column

sums. Since the typical column sum is of the form sj = φ + ψ
Pk

i=1wij, it follows that

poolability is attained when the spatial weight matrix has equal column sums. Loosely

speaking, each column sum of W represents the total spatial ‘influence’ of region j over all

other regions and therefore condition (8) means that we can forecast the aggregate directly

if the total spatial influence is relatively uniform across regions (which will happen for a set

of regions that share similar spatial and/or economic conditions).

Kohn (1982) exploits condition (8) to devise a simple test for poolability of the variables

in the different regions, which in our case consists in regressing the aggregate variable yt on

yt−1 and on k−1 components of xt−1. Testing the null hypothesis of poolability is equivalent
to a test of zero coefficients on all the included components of xt−1.

To summarize the results, in the absence of estimation uncertainty and if the poolability

condition is not satisfied, it is optimal to forecast the fully disaggregated V AR system and

aggregate the forecasts or, equivalently, to aggregate the forecasts from a Space-Time AR

model. Under the same conditions, both the aggregation of univariate forecasts for the

components and a direct forecast of the aggregate will be sub-optimal.

4.2 Forecast comparisons with estimated parameters

In practice, the parameters that appear in the expressions for the optimal forecast of yt

in each situation are not known, and must be estimated. We see next how the estimation

variability affects the efficiency ranking results that were found in the previous section. In
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the remainder of the paper, the estimation method considered will be maximum likelihood

(ML), and θ̂T will denote the ML estimator of the true parameter θ0 for a sample of size T .

A standard result shows that ML estimators of the parameters of a stationary gaussian

(vector) ARMA are consistent for the true parameters and asymptotically normal.

Lemma 2 Given assumptions 1-3, for each of the models estimated in scenarios f1-f4, the

ML estimator of the parameters satisfies θ̂T
p→ θ0 and

√
T (θ̂T − θ0)

d→ N(0,Σθ̂), where Σθ̂

is the Hessian, Σθ̂ = T
h
−E ∂2 ln l

∂θ∂θ0

i−1
.

We use the estimated models to build forecasts and compare their relative efficiency in

terms of asymptotic MSE. Given that all models used for forecasting in situations f1-f4 are

members of the (vector) ARMA class, we will first derive the asymptotic MSE for the one-

step-ahead forecast of the generic k × 1 variable zt based on a vector ARMA model for zt.
For simplicity, we make the following assumption.

Assumption 4. Estimation and forecasting are based on independent and identically

distributed processes.

Asymptotic MSE for dynamic models that do not rely on this last assumptions have been

derived in the literature (see, e.g., Brown and Mariano, 1989), but at the cost of increased

complexity.

Lütkepohl (1987) proves the following result.

Lemma 3 Given assumptions 1-4, the forecast ẑt−1(1), obtained by replacing the true param-

eter θ0 of the optimal linear predictor of zt (zt−1(1)) by its ML estimator θ̂T , is a consistent

estimator of zt−1(1) and

√
T [ẑt−1(1)− zt−1(1)] d→ N(0,Ωz), (9)

where

Ωz = E

·
∂zt−1(1)

∂θ0
Σθ̂

∂zt−1(1)
∂θ

0¸
. (10)
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The asymptotic MSE of ẑt−1(1) is given by

MSE(ẑt−1(1)) =MSE(zt−1(1)) +
1

T
Ωz. (11)

Equation (11) shows that the presence of parameter estimation uncertainty adds a posi-

tive definite term 1
T
Ωz (asymptotically vanishing) to the MSE that would be obtained if the

parameters of the data-generating process were known. When comparing the performance

of forecasts constructed in the different scenarios, one must thus take into account both

components of the asymptotic MSE. The expression for Ωz is rather complicated for general

ARMA processes (see, e.g., Yamamoto, 1981 and Baillie, 1980), but it can be seen that

its magnitude depends on the number of parameters estimated. This fact can be proven

explicitly for the asymptotic MSE of the aggregate forecast obtained in situation f3.

Lemma 4 Let xt be a stationary, k-dimensional V AR(p) process B(L)xt = εt, with εt ∼
i.i.d.N(0,Σε). Then we have

√
T [x̂t−1(1)− xt−1(1)] d→ N(0,Ωx), (12)

with Ωx = kpΣε.

Proposition 5 (Asymptotic MSE for situation f3) Under assumptions 1-4, the fore-

cast for yt obtained by estimating a V AR(1) model on the k × 1 vector xt and aggregating
the forecasts of the components has asymptotic MSE given by

MSE(3)(ŷt−1(1)) = ι0Σει+
k

T
ι0Σει (13)

The above result indicates that, in the presence of estimation uncertainty, the forecast

scenario f3, which is optimal when the data-generating process is known, may lose its op-

timality properties. To see why, assume for the time being a diagonal covariance matrix

for the disturbances, E(εtε0t) = σ2Ik, in which case the asymptotic MSE for the estimated

aggregate becomes MSE(ŷt−1(1)) = σ2k + 1
T
σ2k2. We see that the component of the MSE
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that is due to estimation error grows at the rate of k2, where k is the number of units to

aggregate, while the component that would be obtained in the absence of estimation un-

certainty only grows at rate k. This fact introduces a trade-off between the optimality of

specifying the fully disaggregated system (no information loss) and the reduction in efficiency

due to estimation error and thus the relationships between theMSE0s in Proposition 1 - a),

b) are no longer valid in general. Instead, for each given specification of the DGP, one could

find integers k1 and k2 such that the forecast of the aggregate from f1 is more efficient than

the forecast from f3 for k > k1 and the forecast from f2 is more efficient than the one from

f3 for k > k2. The only ranking we can establish is the following.

Proposition 6 (Efficiency comparison with estimated parameters) Given assump-

tions 1-4, in the presence of estimation uncertainty, the following relative efficiency results

among forecasting methods f1-f4 can be established:

a) The aggregate of forecasts from a Space-Time AR model is (weakly) more efficient

than the aggregate of forecasts from a V AR. MSE(4)(ŷt−1(1)) ≤MSE(3)(ŷt−1(1)).
b) If the poolability condition (8) is satisfied, it is more efficient to forecast the aggregate

directly rather than to aggregate forecasts from a V AR. MSE(1)(ŷt−1(1)) < MSE(3)(ŷt−1(1)).

To summarize the results of this section, we found that in the presence of estimation

uncertainty aggregating forecasts from the Space-Time AR(1, 1) model is weakly more ef-

ficient than aggregating forecasts from a V AR(1). If the poolability condition (8) cannot

be rejected, it is also always preferable to forecast the aggregate directly than to aggregate

forecasts from the V AR(1), and the benefits increase proportionally to the number of regions

considered.
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5 Monte Carlo experiment

5.1 Simulation design

In this section the small sample behavior of the forecasts of the aggregate obtained in sce-

narios f1-f4 are investigated by means of a Monte Carlo experiment. The process used for

the simulation is the Space-Time AR(1, 1) in (6)

xt=φxt−1+ψWxt−1+εt

where the disturbances are i.i.d.N (0, Ik). We consider the case of k = 4, 6, 9, 16 regions

arranged on a regular grid as follows

k = 4 :
1 2

3 4
k = 6 :

1 2 3

4 5 6
k = 9 :

1 2 3

4 5 6

7 8 9

k = 16 :

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

.

Because of this particular spatial arrangement of the regions, the system will be affected

by edge effects. For k = 9, for example, region 5 is the only one with all four first-order

neighbors in the system, while all other regions are situated on the edges and therefore are

plausibly affected by units not included in the system. We therefore perform the simulation

with two alternative specifications of the spatial weight matrix W. The first specification is

obtained by dividing the weights equally between all first order neighbors of each unit. For
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example, for k = 4 and 6, the matrices W will be

W (4) =



0 .5 .5 0

.5 0 0 .5

.5 0 0 .5

0 .5 .5 0


, W (6) =



0 .5 0 .5 0 0

.33 0 .33 0 .33 0

0 .5 0 0 0 .5

.5 0 0 0 .5 0

0 .33 0 .33 0 .33

0 0 .5 0 .5 0


(14)

where row 1 contains the weights for region 1’s first order neighbors, row 2 the weights for

region 2’s first order neighbors and so forth. The matrixW for k = 9 and 16 is constructed in

a similar fashion. For this particular choice of weights, the spatial weight matrixW has equal

column sums only for k = 4, in which case the process satisfies the poolability condition.

For all other values of k the poolability condition is not verified. The second specification

of the spatial weight matrix assumes that each region has four first-order neighbors, with

weights equally split among them. As a consequence, the weight matrices will be modified

so that each non-zero entry in the matrices in (14) will equal 0.25.6

For each k, we generate data from four different processes, reflecting different assumptions

about the value of the autoregressive coefficient φ and of the spatial coefficient ψ. We consider

the four specifications 1) φ = .45, ψ = .45, 2) φ = .45, ψ = .1, 3) φ = .1, ψ = .45, 4) φ = .1,

ψ = .1. These values of the parameters, together with the two alternative specifications of

W, are such that Assumption 2 is satisfied.

The predictors for scenarios f1-f4 described in Section 4 are computed as follows (all

parameters are estimated by ML).

6In some sense the second specification of the weight matrices can be thought of as being obtained from

a larger weight matrix in which a ‘buffer zone’ around the edges has been eliminated. This is similar to the

common practice of dropping a number of observations at the beginning of the series when generating time

series data, so that the influence of the initial value is reduced.
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• f1. A univariate ARMA model is fitted to the time series for the aggregate using a
BIC selection criterion with maximum number of lags kmax = 4 and the model is used

to forecast.

• f2. A univariate ARMA model is fitted to each component using a BIC selection

criterion with kmax = 4. The univariate forecasts for each component are then aggre-

gated.

• f3. A V AR(1) is estimated and the forecasts for each component are aggregated.

• f4. A Space-Time AR(1, 1) model is estimated and the forecasts aggregated.

When estimating the V AR(1), especially for large k, a large number of coefficients will

not be significantly different from zero, due to the fact that the matrix W contains a large

number of zeros. We thus consider a further forecasting scenario f3new that tries to eliminate

this possible source of inefficiency.

• f3new. A V AR(1) is estimated equation by equation, the non-significant coefficients
dropped, and the system re-estimated only using the significant lags. Forecasts for

each component are then aggregated.

For each of the above methods, we divide the sample in two parts. Estimation is per-

formed using the first T = 200 observations, the estimated model is used to produce a

sequence of n = 100 forecasts for the out-of-sample period and the MSE is computed. We

repeat the procedure for 1000 times for all four simulated processes and for all k. The results

are reported in Tables 1 and 2 and Figures 1 and 2.

5.2 Interpretation of the results

As the results are robust to both specifications of the weight matrix, we only discuss the case

of the first weight specification in (14). Figures 1 and 2 report the average MSE over the 1000
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Monte Carlo replications for each data-generating process and for the different forecasting

methods considered. The figures reveal that, in general, the aggregate of forecasts from

the Space-Time AR model has the lowest average MSE, while the aggregate of univariate

forecasts has the highest, with a widening gap as the number of regions increases. The

inefficiency of forming univariate forecasts of the components is not surprising when the

data exhibit high spatial dependence, since this dependence is ignored by the procedure.

A less expected result is the clear ranking that emerges from Figure 2, where the data are

characterized by weak spatial dependence. Even in this case, we conclude that forecasting

with the Space-Time AR outperforms all competitors, and that the aggregate of univariate

forecasts leads to high MSE. This result suggests that even though the spatial dependence

among regions is weak, ignoring it altogether will lead to inefficiencies, especially when the

number of units in the system increases. Table 1 reports the proportion of times each one of

the five methods has the lowest MSE in the Monte Carlo iterations, while Table 2 analyzes

the performance of the Space-Time AR compared to each one of the other methods.

The results in Table 1 reveal different dynamics for the various specifications of the data-

generating process. In the majority of cases, the aggregate forecast from the Space-Time

AR model (f4) is seen to be the most efficient, and a similar conclusion emerges from Table

2. Exceptions to the optimality of method f4 that can be seen in both Table 1 and Table

2 are the data-generating process with high AR and low spatial coefficients and the case

of k = 4, for which the most efficient forecast is the direct forecast of the aggregate (f1).

For k = 4 the process satisfies the poolability condition (8), and therefore the Monte Carlo

simulation seems to confirm the asymptotic result of optimality of the aggregate forecast

when the poolability condition is satisfied (Proposition 6).

Another conclusion that emerges from Table 1 is that the worst performing method is in

the majority of cases the aggregation of univariate forecasts for the components (f2). This

is not surprising, since forecasting each component separately ignores the interrelationships
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between regions and thus causes a loss of information, as well as introducing a large amount

of parameter estimation uncertainty. In confirmation of the conclusion from Figure 2, notice

that even in the case of low spatial coefficient (and low AR coefficient) it is never advisable

to forecast with univariate models, a fact symbolized by zero entries in the table.

The relative performance of forecasting with the Space-Time AR model versus the V AR,

i.e., of f4 versus f3 can be analyzed by looking at Table 2. It is shown that f4 is more efficient

than f3, with only one exception for k = 4. We can thus conclude that both asymptotic

results derived in Proposition 6 hold even in relatively small samples.

A surprising conclusion that emerges from the tables is the bad performance of method

f3new, the re-estimated V AR. From Table 2, we see that the Space-Time ARmodel is always

more efficient than the re-estimated V AR and the efficiency improvement from imposing the

spatial relationship instead of reducing the dimension of the system through a general-to-

specific search is in general greater for higher number of components. These results seem

to shed a negative light on the procedure of model selection through a general-to-specific

search. It is known that this model selection criterion is not consistent, in the sense that

asymptotically it has a non-zero probability of overfitting (see, e.g., Hall, 1994), and our

results might in part be a reflection of this fact.

6 Conclusion

When forecasting the aggregate of variables measured over time and in different regions, it

is plausible to assume that the individual components will be spatially correlated. A system

is characterized by spatial correlation (see, e.g., Cliff and Ord, 1973) when data collected

in neighboring regions are related in a systematic way, while the correlation disappears for

regions that are far apart in space. In this paper, we analyzed different methods of forecasting

the aggregate of spatially correlated disaggregates and compared their relative efficiency.
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We presented both asymptotic results and small sample simulation results, that suggest that

imposing constraints dictated by economic theory (in this case in the form of a spatial weight

matrix) leads to improved forecast performance. One way to impose such constraints is to

aggregate forecasts from a Space-Time Autoregressive model (see, e.g., Cliff et. al., 1975),

which was shown to be a restricted VAR with constraints dictated by a priori considerations

on the amount of spatial correlation in the system. Forecasting with a Space-Time AR model

offers a solution to the ‘curse of dimensionality’ that arises when we try to model panel data

with a moderately large cross-sectional dimension using a VAR. The forecasting performance

of a VAR was revealed to rapidly deteriorate in our Monte Carlo simulation as the number of

regions increased. We also showed that ignoring spatial dependence, and simply aggregating

univariate forecasts for each region, leads to highly inaccurate forecasts. The same conclusion

was also reached in the case when the spatial dependence in the system is only weak, as has

been found in some empirical investigations (e.g., Bronars and Jansen, 1987). Another result

that was proven in the paper is that if the variables measured in different regions satisfy

the ‘poolability’ condition, and especially for a large number of regions, there is a benefit in

forecasting the aggregate variable directly. The simple test for poolability suggested by Kohn

(1982) under the simplifying assumption of no estimation uncertainty is applicable in our

framework, and it was seen to lead to similar inferences, even once estimation uncertainty

is taken into account. Finally, we analyzed aggregating forecasts from a parsimonious VAR

obtained through a general-to-specific search that eliminates the insignificant variables and

re-estimates the model, a procedure which yielded highly inefficient forecasts.

Our results support some of the recent findings in the literature on forecasting with heav-

ily parameterized econometric models. An example is Clements and Hendry (1998, Ch. 12),

who show that the forecast accuracy of a number of models can be improved by imposing

zero restrictions on coefficients that are close to zero, a procedure that in some situations

outperforms forecasting with the true data-generating process. This last finding, in particu-
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lar, offers a hopeful answer to the concern of misspecification of the constraints embedded in

the Space-Time AR specification, since it implies that even invalid zero restrictions on some

coefficients can potentially improve forecast accuracy. The greater accuracy of forecasting

with parsimonious models could also explain the success in forecasting macro-variables with

Bayesian VAR, which has been documented, among others, by Doan, Litterman and Sims

(1984).

The analysis in the paper relied on many simplifications of the actual complexity of data

measured in space and time and therefore it does not claim to be exhaustive. Our hope is

that this paper will highlight issues of importance in the modeling of aggregates of variables

that are possibly spatially dependent. We believe accounting for even weak spatial effects

can lead to improved forecasts, and further econometric results in this direction are awaited.
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7 Appendix

Proof of Proposition 1. The weak inequality results for part a) and b) are proven by

Lütkepohl (1987), Section 4.2 and Kohn (1982). The strong inequality in part a) follows from

W 6= 0 and Corollary 4.1.3 of Lütkepohl (1987), which states that the inequality is strong
for a non-diagonal V AR operator. To prove part c), notice that the forecast of the vector

xt from the V AR and the univariate forecasts of each component xit from the Space-Time

AR are based on the same information set {xt−j; j ≥ 1} and thus coincide if the parameters
of the DGP are known.

Proof of Lemma 2. See, e.g., Anderson (1980).

Proof of Lemma 3. See proof of Prop. 3.1 in Lütkepohl (1987).

Proof of Lemma 4. See, e.g., Akaike (1969).

Proof of Proposition 5. From (11), we have that MSE(ŷt−1(1)) =MSE(ŷt−1(1)) +

1
T
Ωy. The first component of the sum is derived in the following way: in the case of

known parameters, the best one-step ahead linear forecast of xt from the V AR(1) model

xt= Bxt−1+εt is xt−1(1) = Bxt−1, and therefore the forecast for the aggregate yt = ι0xt is

given by ŷt−1(1) = ι0xt−1(1) = ι0Bxt−1. The forecast error for ŷt−1(1) is then obtained as

et(1) = yt − ŷt−1(1) = ι0εt, which leads to

MSE(ŷt−1(1)) = E(et(1)et(1)0) = ι0E(εtε0t)ι = ι0Σει (15)

From Lemma 4, it follows that for the forecast of the aggregate the asymptotic covariance

matrix will be

1

T
Ωy =

1

T
ι0Ωxι =

1

T
ι0kΣει =

k

T
ι0Σει (16)

and therefore the asymptotic MSE of the estimated aggregate forecast is obtained by sum-

ming (15) and (16).
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Proof of Proposition 6. a) From Proposition 1 - c) and (11) it follows that

MSE(3)(ŷt−1(1))−MSE(4)(ŷt−1(1)) = 1

T
(Ω(3)y − Ω(4)y ). (17)

For both forecasting scenarios f3 and f4, we have that ŷt−1(1) = ι0x̂t−1(1). In f3, x̂t−1(1) is

obtained by substituting the true parameter vector θ(3)0 with its ML estimator θ̂T into xt−1(1)

and, similarly, x̂t−1(1) in f4 is obtained by substituting the true parameter vector θ
(4)
0 with

its ML estimator θ∗T into xt−1(1). We have shown that the Space-Time AR(1, 1) model can

be seen as a V AR(1) model with restrictions on the parameters, which implies that θ∗T is a

restricted ML estimator of θ(3). If the restrictions are true, the estimator θ∗T is more efficient

than θ̂T , i.e., Σθ̂−Σθ∗ is positive semidefinite, where Σθ is the asymptotic matrix of the ML

estimator defined in Lemma 2. This, in turn, implies that

Ω(3)x − Ω(4)x = E

·
∂xt−1(1)

∂θ0
(Σθ̂ − Σθ∗)

∂xt−1(1)
∂θ

0¸
(18)

is positive semidefinite, which gives

MSE(3)(ŷt−1(1))−MSE(4)(ŷt−1(1)) = 1

T
(Ω(3)y − Ω(4)y ) =

1

T
ι0(Ω(3)x − Ω(4)x )ι ≥ 0. (19)

b) If condition (8) is satisfied, the aggregate yt is an AR(1),

yt = ι0xt = ι0Bxt−1 + ι0εt = byt−1 + vt (20)

where vt ∼ i.i.d.N(0, ι0Σeι). Applying Lemma 4, it follows that

MSE(1)(ŷt−1(1)) =MSE(1)(yt−1(1)) +
1

T
Ωy = ι0Σeι+

1

T
ι0Σeι. (21)

The asymptoticMSE for forecasting method f3 is derived in Proposition 5: MSE(3)(ŷt−1(1)) =

ι0Σει+
k
T
ι0Σει and thus, for k > 1, we have that MSE(1)(ŷt−1(1)) < MSE(3)(ŷt−1(1)).
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Table 1

Proportion of times each forecasting method has lowest MSE

Low spatial coefficient High spatial coefficient

N. regions f1 f2 f3 f3new f4 f1 f2 f3 f3new f4

4 .32 0 .26 0 .42∗ .35∗ .01 .22 .17 .25

Low 6 .35 0 .21 .01 .44∗ .27 .01 .15 .13 .44∗

AR 9 .35 0 .15 .01 .49∗ .25 0 .11 .09 .55∗

coeff. 16 .39 0 .08 0 .53∗ .37 0 .08 .06 .49∗

4 .35∗ .15 .18 .13 .19 .35∗ .01 .24 .19 .21

High 6 .34∗ .17 .15 .11 .23 .24 .01 .14 .17 .44∗

AR 9 .38∗ .13 .12 .12 .25 .12 0 .11 .21 .56∗

coeff. 16 .38∗ .15 .07 .13 .27 .32 .01 .12 .08 .48∗

This table shows the proportion of times that each forecasting method has the lowest MSE

in the Monte Carlo simulation. If forecasts from the five methods were all equally efficient, the

number of times one particular model has the lowest MSE would be distributed as a Binomial

(T,0.2), where T is the sample size. For T=1000, one can use the Normal approximation to the

Binomial and derive a 95% confidence interval p̂± 0.025 for each proportion p̂ reported in the table.
A ‘ ∗ ’ indicates that the forecasting method in the corresponding column is the best the highest

number of times, while a ‘_ ’ denotes the worst performing method. For example, for a number of

regions k = 4 and low spatial and AR coefficients, the aggregate of Space-Time AR forecasts (f4)

is the best, since it has the lowest MSE 42% of the time. For the same data-generating process,

the aggregate of univariate forecasts (f2) fares the worst, since it has lowest MSE 0% of the time.
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Table 2

Proportion of times the Space-Time AR has lower MSE than other methods

Low spatial coefficient High spatial coefficient

N. regions f1 f2 f3 f3new f1 f2 f3 f3new

4 .58∗ .99∗ .64∗ .98∗ .43 .97∗ .58∗ .71∗

Low 6 .56∗ .99∗ .72∗ .98∗ .61∗ .98∗ .73∗ .82∗

AR 9 .59∗ .99∗ .78∗ .98∗ .66∗ .98∗ .73∗ .82∗

coeff. 16 .56∗ 1∗ .88∗ .99∗ .56∗ .98∗ .87∗ .92∗

4 .32 .67∗ .59∗ .64∗ .40 .97∗ .49 .67∗

High 6 .45 .68∗ .69∗ .66∗ .66∗ .98∗ .69∗ .78∗

AR 9 .43 .69∗ .76∗ .69∗ .71∗ .99∗ .78∗ .85∗

coeff. 16 .43 .68∗ .87∗ .74∗ .59∗ .99∗ .78∗ .88∗

This table shows the proportion of times that the aggregate of Space-Time AR forecasts has a

lower MSE than the other four methods in the Monte Carlo simulation. If forecasts from the two

methods were equally efficient, the number of times the model in the column has lower MSE would

be distributed as a Binomial (T,0.5), where T is the sample size. For T=1000, the 95% confidence

interval for each proportion p̂ in the table is given by p̂± 0.03. A ‘ ∗ ’ indicates that the Space-Time
AR significantly outperforms the alternative method at the 5% significance level. For example, for

a number of regions k = 4 and low spatial and AR coefficients, the aggregate of Space-Time AR

forecasts has a lower MSE than the forecast based on the aggregate (f1) 58% of the time.
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Figure 1: The Figure shows the average MSE (vertical axis) over the Monte Carlo replications

for increasing number of regions (horizontal axis). Upper panel represents the DGP with

φ = .45 and ψ = .45. Lower panel represents the DGP with φ = .45 and ψ = .1.
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Figure 2: The Figure shows the average MSE (vertical axis) over the Monte Carlo replications

for increasing number of regions (horizontal axis). Upper panel represents the DGP with

φ = .1 and ψ = .45. Lower panel represents the DGP with φ = .1 and ψ = .1.
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