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Abstract

For vectors z and w and scalar v, let r(v, z, w) be a function that can be nonparametri-

cally estimated consistently and asymptotically normally, such as a distribution, density, or

conditional mean regression function. We provide consistent, asymptotically normal nonpara-

metric estimators for the functions G and H, where r(v, z, w) = H[vG(z), w], and some related

models. This framework encompasses homothetic and homothetically separable functions, and

transformed partly additive models r(v, z, w) = h[v + g(z), w] for unknown functions g and

h. Such models reduce the curse of dimensionality, provide a natural generalization of linear

index models, and are widely used in utility, production, and cost function applications. We

also provide an estimator of G that is oracle efficient, achieving the same performance as an

estimator based on local least squares knowing H.
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1 Introduction

Let Vi be an observed scalar and Zi and Wi be observed vectors for i = 1, . . . , n. Let R(v, z, w) be

some function that can be nonparametrically estimated, for example, R(v, z, w) could equal E(Yi |
Vi = v, Zi = z,Wi = w), which is estimated with observations {Yi, Vi, Zi,Wi}. More generally,
R(v, z, w) could be a density, distribution, quantile, or hazard function, or R(v, z, w) could be a

utility or cost function derived from a set of estimated product or factor demands. Assume there

exist unknown functions h and g and known strictly monotonic functions B1, B2, and B3 such that

R(v, z, w) = h[B1(B2(v)B3(g(z)), w] (1)

where h is strictly monotonic on its first element. We provide consistent, asymptotically normal

estimators of the functions h and g. The estimator for g has an “oracle efficiency” property as in

Linton (1996), i.e., it has the same asymptotic distribution as the corresponding estimator defined

when h is known. Also, replacing g and h with their estimates in equation (1) will result in an

estimate of R that has a faster rate of convergence than the original nonparametric R estimate.

One leading example of equation (1) is when B1 is the natural logarithm and B2 and B3 are

exponentiation, which gives

R(v, z, w) = h[v + g(z), w]. (2)

When R is a conditional expectation, this an example of a generalized partly linear model with

unknown link function similar to Horowitz (2001) and Horowitz and Mammen (2005). Equation

(2) also arises in the nonparametric regression context given the model V = −g(Z) + e for some

error term e. If we strengthen the usual nonparametric regression assumption E(e | Z) = 0 to an
independence assumption e ⊥ Z,W , then we obtain equation (2) where R(v, z, w) is the unknown

conditional distribution function of Z evaluated at Z = z, conditional on V = v and W = w.

Another important example of equation (1) is when B1, B2, and B3 are the identity functions,

which gives

R(v, z, w) = h[vg(z), w]. (3)

A function r(x,w) is defined to be homothetically separable in x if and only if

r(x,w) = h[s(x), w] (4)

where h is strictly monotonic in s and s is linearly homogeneous. Let v be one element of x that

never equals zero, and let z be the vector of all the other elements of x divided by v. Alternatively,

rewrite x in polar coordinates as v, z, where v is length and z is direction. Either way, s(x) is

linearly homogeneous if and only if s(x) = vg(z) for some unrestricted function g, so a function r
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is homothetically separable in x if and only if it has the form of R in equation (3). Similarly, when

w is empty, equation (3) is equivalent to the definition of a function that is homothetic in x. For

example, if v is labor and z is the capital labor ratio, then equation (3) equals the definition of a

homothetic production function.

In applications of homothetic separability, r may have multiple homogeneous components, that

is, r(x0, x1, . . . , xk) = h[s1(x1), . . . , sK(xK), x0] for vectors x0, x1, . . . , xK. In this model, each homo-

geneous sk function can be estimated separately by applying the method we propose to estimate g in

equation (3), taking x = xk and w equal to the union of all the elements in x0, x1, . . . , xK except xk.

Then, given estimates of each gk (and hence each sk) function, the function h may be estimated by

nonparametrically regressing r on s1, . . . , sK , x0. In the same way our estimator immediately extends

to models like R(v, z0, z1, . . . , zk) = h[v+
P

k gk(zk), z0], where each gk is estimated by taking z = zk

and w equal to the union of all the elements in z0, z1, . . . , zK except zk.

In many applications the functions h and g are of direct interest, e.g., in equation (3) the returns

to scale of a homothetic production function is defined as the log derivative of h with respect to

s = vg, and the technical rate of substitution is a function of g. Even when h and g are not of direct

interest, our estimator will still be useful for speeding the rate of convergence and for testing whether

functions are homothetic, homothetically separable, or more generally if they satisfy equation (1).

Homothetic and homothetically separable functions are commonly used in models of consumer

preferences and firm production, e.g., r(x,w) could be a utility or consumer cost function recovered

from estimated consumer demand functions via revealed preference theory, or it could be a directly

estimated production or producer cost function. See, e.g., Blackorby, Primont, and Russell (1978),

Lewbel (1991), (1997), Matzkin (1994), Primont and Primont (1994), and Zellner and Ryu (1998).

Linear index models with s(x) = x>β, are a very common semiparametric specification that

arises in a variety of contexts, particularly limited dependent variable models. See Powell (1994) for

a survey. Replacing a linear index x>β with an arbitrary linearly homogeneous function s(x) is a

natural generalization, particularly in contexts where economic theory gives rise to homogeneity but

not necessarily linearity, such as price indices or constant returns to scale technologies.

Matzkin (1992) provides a consistent estimator for the binary threshold crossing model y =

I[s(x)+ε ≥ 0] where s(x) is linearly homogeneous and ε is independent of x. This threshold crossing
model has E(Y | X = x) = h[s(x)] where h is the distribution function of −ε, and so is equivalent
to our framework with r(x) = E(Y | X = x) and w empty. In an unpublished manuscript, Newey

and Matzkin (1993) propose an estimator of Matzkin’s (1992) model. Their estimator imposes

the normalization g(z0) = 1, estimates h using E(Y | V = v, Z = z0) = h(vg(z0)) = h(v), and

they essentially invert the corresponding h function estimate to obtain s(x) from r(x) = h[s(x)].

Advantages of our estimators are that they can include w, they converge at a faster rate, they
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include functions other than conditional means for r, they can attain oracle efficiency for s, and they

do not depend upon a single arbitrarily chosen point z0.

Models satisfying equation (4) without imposing homogeneity on s are called weakly separable.

See Gorman (1959), Goldman and Uzawa (1964) and Blackorby, Primont, and Russell (1978). Pinkse

(2001) provides a general nonparametric estimator of weakly separable models. Pinkse’s estimator

identifies s(x) up to an arbitrary monotonic transformation, whereas our estimator provides the

unique (up to scale) linear homogeneous s(x) = vg(z) (or equivalently g up to location in equation

2)) and exploits this structure of s(x) to obtain a faster rate of convergence than Pinkse.

Many estimators exist for strongly or additively separable models, which are models of the form

E(Y |x) =Pk sk(xk) where the functions sk(xk) are unknown, and for generalized additively separa-

ble models, defined as r(x) = h[
P

k sk(xk)]. Those most closely resembling our model include Härdle,

Kim, and Tripathi (2001), who estimate additively separable models where the sk(xk) functions are

homogeneous, and Horowitz (2001) and Horowitz and Mammen (2005) who estimate generalized

additively separable models where both h and sk are unknown functions.

Matzkin (2003) considers models of the form y = m(x, ε) with an unobserved scalar ε indepen-

dent of x and, as one possible identifying assumption, m being linearly homogeneous in x and ε. In

contrast, our model makes no assumptions about (and provides no estimates of) the role of unob-

servables other than a limiting distribution theory for an estimate of R, and allows for homothetic

rather than just homogeneous dependence on x.

2 Informal Description of the Estimators

Since v is observed and the function B2 is known, we may without loss of generality rewrite equation

(1) as R(v, z, w) = h[B1(vB3(g(z)), w] by redefining v as B2(v). Next, by defining H(B3, w) =

h(B1(B3), w) and G(z) = B3(g(z)), we may again without loss of generality rewrite equation (1) as

R(v, z, w) = H[vG(z), w] (5)

We start with a consistent estimator bR(·) of the function R(·), and provide nonparametric estimators
for G and H. Estimates of the original g and h can then be readily recovered from the estimates of

G and H if desired.

We could have instead started with the form R(v, z, w) = h[B1(B2(v) +B3(g(z)), w], simplifying

as above to R(v, z, w) = H[v+G(z), w], but this is slightly less general, because e.g., it only includes

equation (3) as a special case when vg(z) is constrained to be positive.

We first construct an initial consistent estimator of G(z) by matching. For given values v, z, z0, w

suppose we can find a scalar u such that R(v, z, w) = R(vu, z0, w), a match. Then u = U(z, z0) =
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G(z)/G(z0). The function U(z, z0) can be estimated by finding a zero of the function bR(v, z, w) −bR(vu, z0, w), averaging over a range of values of v and w to improve convergence properties. The

function G (z) is then estimated using a sample analog of G (z) = U(z, z0)/E[U(Z, z0)] (averaged over

a range of values of z0), which holds given the free scale normalization E[G(Z)] = 1. One advantage

of a scale normalization like this over more simply normalizing at a point like G(z0) = 1 is that

the resulting limiting distributions at every point z will then not depend upon the distribution ofbR(v, z0, w).
Given the function G, the function H can be defined as the conditional expectation

H(γ,w) = E [R(V,Z,W ) | V G(Z) = γ,W = w] . (6)

Therefore, given an estimate bG of G, we can estimate the function H by a regression smooth of bRi

on Vi bG(Zi),Wi.

The above steps summarize our sequential, matching-based estimator. The simultaneous estima-

tor begins by defining the functions G and H as minimizers of E{R(V, Z,W ) − H(V G(Z),W )}2]
subject to a normalization constraint E[G(Z)] = 1. This is analogous to least squares estimation

of parametric models, and corresponds to the common definition of a regression function E(Y | X)
as the minimizer of E[(Y −m(X))2] over all measurable functions m. We derive a representation

of the first order conditions that G and H must satisfy from the Lagrangian associated with this

constrained minimization. One of these first order conditions is just equation (6). For any given z,

the other condition can be conveniently expressed as G(z) = s where s is the solution to

E[ζ(V, Z,W, s) | Z = z]− E[ζ(V,Z,W,G(Z))G(Z)] = 0 (7)

ζ(V, Z,W, s) = [R(V, Z,W )−H (V s,W )]
∂H

∂γ
(V G(Z),W )V. (8)

Our simultaneous estimator is based on this representation of these first order conditions. We first

use the sequential estimator to obtain initial consistent estimates of G, H, and ∂H/∂γ, denoted bybG, bH, and ∂ bH/∂γ. Then we define an empirical analogue of equation (7) and (8), which could be

numerically solved for s to yield an estimate of G(z). To simplify computation, we linearize this

expression in s and solve the resulting equation explicitly for s to yield an estimator of G(z). We

then estimate H given our estimate of G as before, corresponding to the first order condition (6),

and iterate.

3 Identification

Assumption A. For some set Ψv,z,w, there exist functions R, H, and G, such that R (v, z, w) =

H(vG(z), w) for all (v, z, w) ∈ Ψv,z,w. Let Ψγ,w = {(γ,w) | γ = vG(z) and (v, z, w) ∈ Ψv,z,w}. Let
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Ψz be the set of all z such that there exists a v, w for which (v, z, w) ∈ Ψv,z,w. Let Ψ∗z be a nonempty

set such that Ψ∗z ⊂ Ψz and for all z0 ∈ Ψ∗z, G(z
0) 6= 0. For each (z, z0) ∈ Ψz × Ψ∗z, define the set

Ψv,w|z,z0 = {(v, w) | (v, z, w) ∈ Ψv,z,w, vG(z)/G(z0), z0, w ∈ Ψv,z,w, v 6= 0, and H(vG(z), w) exists and

is invertible on its first element}. For all (z, z0) ∈ Ψz ×Ψ∗z, the set Ψv,w|z,z0 is nonempty. Without

loss of generality, normalize the scale of G such that
R
z∈Ψz

G(z)F (dz) = 1 where F (dz) is a measure

with support Ψz.

Theorem 1. Let Assumption A hold. For every (z, z0) ∈ Ψz ×Ψ∗z there exists a unique U (z, z0)

such that, for all (v, w) ∈ Ψv,w|z,z0 the equality R (v, z, w) = R (U (z, z0) v, z0, w) holds. For every

(z, z0) ∈ Ψz ×Ψ∗z the function G(z) satisfies

G(z) =

·Z
z00∈Ψz

U (z00, z0)F (dz00)
¸−1

U (z, z0) (9)

and for all (γ,w) ∈ Ψγ,w, the function H satisfies

H(γ,w) = E [R(V,Z,W ) | V G(Z) = γ,W = w] . (10)

Proof of Theorem 1. Having R (v, z, w) = R (U (z, z0) v, z0, w) hold for (v, w) ∈ Ψv,w|z,z0

means that H[vG(z), w] = H[U (z, z0) vG(z0), w], where, at these values, the function H exists and is

invertible on its first element. This equation therefore holds if and only if vG(z) = U (z, z0) vG(z0),

which requires either U (z, z0) = G(z)/G(z0) or v = 0. The latter is ruled out in Ψv,w|z,z0 , so U (z, z0)

is uniquely given by U (z, z0) = G(z)/G(z0), and this result holds for all z, z0 ∈ Ψz × Ψ∗z. The scale

normalization then gives
R
z00∈Ψz

U (z00, z0)F (dz00) =
R
z00∈Ψz

[G(z00)/G(z0)]F (dz00) = 1/G(z0) and the

expression forG(z) follows immediately. The functionH(γ, w) exists at γ = vG(z) = U (z, z0) vG(z0),

and the equation given for H follows from the definition of H.

The scale normalization of G in Assumption A is without loss of generality, because one may

always redefine G(z) as cG(z) for c 6= 0 by redefining H(γ, w) as H(γ/c, w). In our application we
will take F to be the distribution function of Z so the normalization is E[G(Z)] = 1.

By Theorem 1, G(z) is identified even when Ψ∗z and Ψv,w|z,z0 are singletons, but identification fails

if no z0 exists that yields a nonempty set Ψv,w|z,z0. Overidentifying information results when these

sets have multiple elements.

4 Estimation

We suppose that we have a sample of data {Vi, Zi,Wi, i = 1, . . . , n} and that we have an estimatorbR(v, z, w) of the function R(v, z, w) for all relevant values of v, z, w. This may have been computed
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from data on additional variables, generically denoted Yi, but we do not need to specify bR(v, z, w)
so specifically. Let U0, G0, and H0, denote the unknown true functions U , G, and H. Let k(·) be a
univariate kernel function, and for any vector s ∈ Rdim(s), let Ks(u) = k(u1)× · · · k(udim(s)) denote a
suitable product kernel.

4.1 Matching Based Sequential Estimation of G0,H0

4.1.1 Estimation of U0

For estimation, we translate the matching concept into a moment condition. Define U0(z, z0) as the

value of U that solves m1(U ; z, z
0) = 0, where

m1(U ; z, z
0) =

Z
[R(v, z, w)−R(Uv, z0, w)]π(dv, dw | z, z0)

for each z, z0 for some measure π(dv, dw | z, z0) that has support contained inΨv,w|z,z0 .We concentrate

on the case where π(dv, dw | z, z0) = π(v, w | z, z0)dvdw for some conditional density function

π(v, w | z, z0) with non-trivial support, because the averaging can yield improved rates of convergence,
see inter alia Linton and Nielsen (1995). In particular, for simplicity we take π(dv, dw | z, z0) to be
π(v, w) = fv,w(v, w)1[(v, w) ∈ A] for some fixed set A ⊂ ∩z,z0∈Ψz×Ψ∗zΨv,w|z,z0, where 1[·] is the indicator
function. This set A does not vary with z, z0.

In practice we replace unknown quantities by estimators whence we obtain the sample moment

equation bm1(U ; z, z
0) =

R
[ bR(v, z, w) − bR(Uv, z0, w)]bπ(v, w)dvdw, where bR is an estimate of R andbπ is an estimate of π. The integral can be approximated by a variety of numerical methods. For

example, one can use the sample observations themselves and compute the sample moment function

bm1(U ; z, z
0) =

1

n

nX
i=1

[ bR(Vi, z,Wi)− bR(UVi, z0,Wi)]1[(Vi,Wi) ∈ A]. (11)

We work with this definition of bm1(U ; z, z
0). Define the estimator bU(z, z0) for each z, z0 to be any

value such that

|bm1(bU(z, z0); z, z0)| ≤ infU∈U |bm1(U ; z, z
0)|+ op(n

−1/2), (12)

where U is a subset of the values that G(z)/G(z0) could take on. This is a nonlinear optimization
problem, although the parameter U is a scalar so that (11) can be computed by grid search with

high accuracy.

4.1.2 Estimation of G0

To identifyG0(z) we shall make use of our normalization condition thatE[G0(Z)] =
R
G0(z)fZ(z)dz =

1, where fZ(z) is the marginal density of z. It follows from Theorem 1 thatG0(z) =
R
U0(z, z

0)'(dz0)/
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R
U0(z, z

0)'(dz0)fZ(z)dz, where '(dz0) is any measure with support in Ψz. Specifically, '(dz0)dz0

could be the point mass at some point z0 or '(dz0) = '(z0)dz0 with ' a density function on some

non-trivial interval. Based on this equation we estimate G0(z) by

bG(z) = 1
n

Pn
i=1
bU(z, Zi)'f(Zi)

1
n2

Pn
i=1

Pn
j=1

bU(Zi, Zj)'f(Zj)
, (13)

where 'f(z) is a weighting function such that E[g∗(Z)'f(Z)] =
R
g∗(z)'(z)dz for any measurable

function g∗. This estimator automatically satisfies n−1
Pn

i=1
bG(Zi) = 1.

4.1.3 Estimation of H0

Given the function G0(·), the function H0(·) is defined by equation (10). Given an estimate bG(·)
of G0(·), we estimate H0(·) by a regression smooth of bRi on Vi bG(Zi),Wi. We use a class of kernel

smoothers. Let γ = vG0(z), c = (γ,w), bγ = v bG(z), bγi = Vi bG(Zi), and let bc = (bγ,w) and bCi =

(bγi,Wi). Define the sample moment function

bm3(H; c) =
1

nbdW+1H

nX
i=1

Kc

Ã
c− bCi

bH

!
ψ
³ bRi −H

´
, (14)

where bH is some bandwidth sequence and Kc is a dW + 1-dimensional product kernel. Here, bRi =bR(Vi, Zi,Wi) is an estimator of Ri, while ψ is a twice continuously differentiable function with ψ(0) =

0 and ψ0(0) 6= 0. Define the estimator of H(c) to be any sequence bH(c) of approximate zeros of (14)
satisfying

|bm3( bH(c); c)| ≤ infH∈H|bm3(H; c)|+ op(n
−1/2), (15)

where H is some set. If ψ(x) = x we obtain the standard Nadaraya-Watson kernel regression smooth

of bRi on bCi.

We suppose that bCi in (14) is computed as in (13) with the bandwidth bG, but that bRi is computed

with a different, ‘small’, bandwidth b0. The extra bandwidth b0 does not play an important role in

comparison with bH and bG and we shall assume that it is smaller in magnitude. If Yi is observed

and Ri = E[Yi|Vi, Zi,Wi], then we can replace bRi in (14) by Yi, which amounts to taking b0 = 0.

We also define an estimator of ∂H(c)/∂γ by differentiating bH(bc) with respect to γ and denote

this by ∂ bH(bc)/∂γ. Alternatively, one can use a local polynomial method and take the coefficient on
(bγi − bγ) as the estimate of ∂H(bc)/∂γ.
4.2 Simultaneous Estimation of H0 and G0

Our strategy for improving the efficiency of the estimators we defined above is based on using a

more general definition of the functions H0(·) and G0(·). They can be defined as minimizers of the
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functional

E{R(V,Z,W )−H(V G(Z),W )}2] =
Z
[R(v, z, w)−H(vG(z), w)]2 fX(v, z, w)dvdzdw (16)

subject to the restriction that E[G(Z)] = 1, where fX(v, z, w) is the joint density of the random

variables X = (V,Z,W ). For the remainder of the paper, we now let X contain W , unlike the

introduction, since this will ease later notation. When Yi is observed and R is the regression of

Y on V,Z,W, one could replace the criterion (16) by the more standard E[{Y −H(V G(Z),W )}2].
The criterion and the subsequent first order conditions are the same by iterated expectation. This

simultaneous definition of the functional parameters H0(·) and G0(·) as minimizers of a population
objective function is natural and is used in other contexts. See Mammen, Linton, and Nielsen (1999)

for a discussion in the context of additive nonparametric regression.

To find a characterization of the solutions to (16) we follow Weinstock (1952, Chapter 4) in our

treatment. Define the objective functional

L(H,G, λ) =

Z
[R(v, z, w)−H (vG(z), w)]2 fX(v, z, w)dvdzdw + λ

·Z
G(z)fZ(z)dz − 1

¸
for each H,G, λ. Letting G(·) = G0(·) + �τ(·) and H(·) = H0(·) + δη(·) we find the following first
order conditions:

0 =
∂L(H0 + δη,G0 + �τ , λ)

∂δ

y
�=0,δ=0

(17)

= −
Z
[R(v, z, w)−H0 (vG0(z), w)] η (vG0(z), w) fX(v, z, w)dvdzdw

0 =
∂L(H0 + δη,G0 + �τ)

∂�

y
�=0,δ=0

(18)

= −
Z
[R(v, z, w)−H0 (vG0(z), w)]

∂H0

∂γ
(vG0(z), w) vτ(z)fX(v, z, w)dvdzdw + λ

Z
τ(z)fZ(z)dz,

for all measurable and smooth test functions η, τ for which these expectations are well-defined,

which is a necessary condition for a local minimum, see Sagan (1969), Theorem 1.7 for example.

By invoking the Euler-Lagrange theorem and using the law of iterated expectation we obtain the

necessary condition

LH(H0, G0)(s, u) = −E [{R(V, Z,W )−H0(V G0(Z),W )} | V G0(Z) = s,W = u] fvG0(z),w(s, u) = 0

(19)

corresponding to (17), where fvG0(z),w(s, u) is the density function of the random variable (V G0(Z),W )

[heuristically, this can be seen by setting the directions to be the Dirac deltas τ(z) = 1(z = t) and

η (vG0(z), w) = 1 (vG0(z) = s, w = u)]. For equation (18), we obtain the necessary condition that

E

·
{R(V, Z,W )−H0 (V G0(Z),W )} ∂H0

∂γ
(V G0(Z),W )V | Z = t

¸
fZ(t) = λfZ(t) (20)
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for all t. The equations (19) and (20) and the constraint
R
G0(z)fZ(z)dz = 1 determine the system.

Multiplying (20) by G0(t) and integrating over t and using the law of iterated expectations we obtain

λ = E

·
[R(V, Z,W )−H0 (V G0(Z),W )]

∂H0

∂γ
(V G0(Z),W )V G0(Z)

¸
.

Then substituting into (20) and dividing through by fZ(t) we obtain the equation (for all t):

E

·
[R(V,Z,W )−H0 (V G0(Z),W )]

∂H0

∂γ
(V G0(Z),W )V | Z = t

¸
(21)

−E
·
[R(V, Z,W )−H0 (V G0(Z),W )]

∂H0

∂γ
(V G0(Z),W )V G0(Z)

¸
= 0.

Equation (19) is linear inH0 givenG0, and we obtainH0(s, u) = E [R(V,Z,W ) | V G0(Z) = s,W = u] .

Equation (21) is non-linear in G0 even given H0; also the second term makes (21) an integral equa-

tion in G0(·). One could try to solve empirical versions of (19) and (21). See for comparison Linton
and Mammen (2005) who work only with linearized integral equations around an initial consistent

estimator. Instead we shall pursue a strategy that makes use of the preliminary estimators obtained

previously and does not require the solution of an integral equation.

Letting ζi(Γ) = [R(Vi, Zi,Wi) − H (ViΓ,Wi)](∂H/∂γ)(viG0(Zi),Wi)Vi, the conditions (21) can

be represented as E[ζi(G0(Zi))|Zi = t] − E[ζi(G0(Zi))G0(Zi)] = 0. Denote consistent estimators of

G0, H0, and ∂H0/∂γ by bG, bH, and ∂ bH/∂γ respectively. Let tni denote a trimming sequence that is

needed to ensure that bH and ∂ bH/∂γ are computed at interior points. Define the sample moment

function bm4(Γ; z) =
1

nbdZ1

nX
i=1

Kz

µ
z − Zi

b1

¶"bζi(Γ)− 1n
nX
i=1

bζi( bG(Zi)) bG(Zi)

#
(22)

bζ i(Γ) = h bR(Vi, Zi,Wi)− bH (ViΓ,Wi)
i ∂ bH
∂γ

³
Vi bG(Zi),Wi

´
Vitni,

where b1 is a bandwidth and Kz is a dZ-dimensional kernel. Define the estimator eG(z) for each z to

be any value such that

|bm4( eG(z); z)| ≤ inf
Γ∈G

|bm4(Γ; z)|+ op(n
−1/2), (23)

where the set G can be chosen to be a small or even shrinking neighborhood of bG(z). The moment
condition bm4(Γ; z) is like the numerator of a regression smooth of bζi(Γ)−n−1Pn

i=1
bζi( bG(Zi)) bG(Zi) on

Zi, in this case a kernel regression smooth; it can be considered as an approximation to (21) multiplied

by fZ(z). This approximation to (21) is chosen for convenience. In particular, we replace Γ by the

preliminary estimator everywhere except inside the basic residual bR(Vi, Zi,Wi)− bH (ViΓ,Wi) , as in

Hastie and Tibshirani (1990). Note that if Yi were observed and R(Vi, Zi,Wi) = E[Yi|Vi, Zi,Wi], then
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one can replace bR(Vi, Zi,Wi) in bζi(Γ) by Yi. The bandwidth b1 does not play a big role in the sequel
and we shall assume as above that it is smaller in magnitude than the other smoothing parameters.

Given eG, we then compute eH as the nonparametric regression of bRi on Vi eG(Zi).We still call the

estimators eG and eH simultaneous because they are based on the simultaneous definition of G0,H0

given above, in particular, the estimator eG(z) makes use of information about H0(·).

4.3 Discussion

Our estimators require selection of sets Ψ∗z and A (or more generally Ψv,w|z,z0), that is, the sets to

use for matching and averaging. For efficiency of the sequential estimator it is desirable to average

over large sets, but this is of less importance if they are just being used to generate starting values

for the simultaneous estimator.

One procedure for selecting these sets is to search over the data to find observations j and k such

that, for each observation i, there exists a nonzero match Ui where bR(Vj, Zi,Wj) = bR(VjUi, Zk,Wj)

and both Vj, Zi,Wj and VjUi, Zk,Wj are in neighborhoods of observed data. One could then take

Ψ∗z to be a neighborhood of the union of all such Zk and A to be a neighborhood of the union of

all such Vj,Wj. Alternatively, one could just search for a single observation k such that, for each

i, bR(Vi, Zi,Wi) ' bR(ViUi, Zk,Wi) and ViUi, Zk,Wi is in a neighborhood of observed data, then take

Ψ∗z to be a neighborhood of zk and let Ψv,w|Zi,z0 be a neighborhood of Vi,Wi. Consistency of the

initial bG(Zi) estimator doesn’t require these sets to have positive measure, e.g., they could just be

the singletons Ψ∗z = {Zk} and Ψv,w|Zi,z0 = {Vi,Wi}.
If matching on w is a problem then one could first replace bR(v, z, w) with n−1

Pn
i=1

bR(v, z,Wi)

and, in the theorems, replace R(v, z, w) with E[R(V, Z,W ) | V,Z] obtaining the estimator bU with

the result, as if there were no w. Then, once the initial consistent bG is obtained from this bU , go back
to using the original bR for estimating bH and for the simultaneous estimator.

5 Distribution Theory

In the working paper version of this article, Lewbel and Linton (2005), we provide the pointwise

asymptotic distribution of our estimators bU(z, z0), bG(z), bH(v bG(z), w), eG(z) and eH(v eG(z), w). Our
strategy is to write the estimators as solving a sample first order condition and then to employ a

general theory we develop for this type of procedure. We now summarize without proof the limiting

distributions of the sequential estimators.

We assume that our estimator bR(·) of R(·) satisfies an asymptotic expansion but are not more
specific about how the estimator is defined. This generality is useful because the target function R(·)

10



could be a variety of things depending on the application and a variety of estimation strategies could

be employed for bR(·). Define for any vector α = (α1, . . . , αd)
> and function f : Rd → R

Dαf(x) =
∂|α|f(x)

∂xα11 · · · ∂xαdd
with |α| =

dX
j=1

αj.

Assumption B.

B1. The random variables (Vi, Zi,Wi), i = 1, . . . , n are independent and identically distributed.

Let x = (v, z, w) ∈ Rd and let fX(x) be the joint density function of Xi = (Vi, Zi,Wi) with support

ΨX = Ψv ×Ψz ×ΨW a compact subset of Rd. We assume without loss of generality that Vi ≥ 0.
B2. (a) The functions H0 and G0 are p-times continuously partially differentiable in all argu-

ments, which implies that DαR(x) exists and is continuous on ΨX for all α with |α| ≤ p; (b) The

function H satisfies infγ∈Ψγ ,w∈ΨW
|∂H(γ, w)/∂γ| > 0, where Ψγ = {γ = vG0(z) : (v, z) ∈ Ψv ×Ψz};

(c) The function G0 satisfies infz∈Ψz |G0(z)| > 0.
B3. The estimator bR(x) satisfies the uniform asymptotic expansion as n→∞

bR(x)−R(x) =
1

nbdG

nX
i=1

"
JX

j=1

anj(x)Kj

µ
x−Xi

bG

¶#
ui + bpGβR(x) +Rn(x), (24)

where the components of (24) have the following properties: (a) The random variables (ui, Xi) are

i.i.d. with E(ui|Xi) = 0 a.s. and supx∈ΨX
E(|ui|κ|Xi = x) < ∞ for some κ > 2. The function

σ2(x) = var(ui|Xi = x) is continuous a.s.; (b) The deterministic functions anj(x), j = 1, . . . , J,

satisfy for all vectors α with |α| ≤ 1 : limn→∞ supx∈ΨX
|Dαanj(x)−Dαaj(x)| = 0, where Dαaj(x) are

bounded and continuous on ΨX . The non-random functions aj(x) = ajf
−1
X (x), where aj are constants

depending only on K1, . . . ,KJ ; (c) The functions Kj take the product form Kj (u) = kj1(u1)× · · · ×
kjd(ud) = Kv

j (uv)K
z
j (uz)K

w
j (uw), grouping terms in an obvious way. Here, kjl have compact support

and are twice continuously differentiable; (d) (i) The bandwidth satisfies bG = λGn
−1/(2p+dZ) for some

λG with 0 < λG <∞; (ii) p > dW + 5/2; (e) The non-random function βR(·) is continuous on ΨX ;

(f) The remainder term satisfies

sup
x∈ΨX

|Rn(x)| = op(b
p
G) +Op

µ
log n

nbdG

¶
. (25)

B4. The weight functions π,' are continuous on their supports. The set A has non-zero Lebesgue

measure.

The working paper version of this article discusses this and other assumptions in detail. For

now we simply note that these assumptions allow bR(x) to be a nonparametric kernel regression
or kernel density estimator, or a local polynomial nonparametric regression estimator as in Fan and
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Gijbels (1996) and Masry (1996), or a local nonlinear least squares estimator as in Gozalo and Linton

(2000), or a conditional cumulative distribution function estimator of, say, Pr(Y ≤ y|X = x) at some

point y. There is no requirement that bR(x) is smooth or even continuous in x, only that it is well

approximated by a function (the left hand side of (24)) that is smooth.

Assumption B is sufficient to ensure that supx∈Ψx
| bR(x)− R(x)| = Op((log n/nb

d
G)
1/2) + Op(b

p
G),

and Assumptions A and B suffice for deriving a limiting normal distribution for the matching esti-

mators bU(z, z0) and bG(z). The estimators bU(z, z0) and bG(z) converge to U0(z, z0) and G0(z) at a rate

np/(2p+dZ) under our assumptions and this is the optimal pointwise rate of convergence for nonpara-

metric functions of dimension dZ and smoothness p, Stone (1980), and so would be the optimal rate

for G0 when H0 is known.

Assumption C. 1. Let fγ,z,W be the density of (γi, Zi,Wi) with marginal density fC the density

of Ci = (γi,Wi) with support ΨC , where Ci = (γi,Wi), and γi = ViG0(Zi). Suppose that c =

(vG0(z), w) is an interior point of ΨC for which fC(c) > 0. 2. The kernel k has compact support,

is twice continuously differentiable, and is of order p, that is,
R
tjk(t)dt = 0 for all j ≤ p. 3. The

bandwidth bH = λHn
−1/(2p+dW+1) for some λH with 0 < λH < ∞. 4. b0/min{bG, bH} → 0 and

np+min{dW+1,dZ}bd0/(log n)
2 →∞.

For some constants κ2, κ3 depending on K1, . . . ,KJ , and λG, λH (these are defined in the working

paper version), define:

Ω2(z) =
κ2
R π2(v,w)σ2(v,z,w)

fX(v,z,w)
dvdw³R

∂H0

∂γ
(vG0(z), w)vπ(v, w)dvdw

´2 (26)

Ω3(c) =

·
∂H0

∂γ
(c)v

¸2
Ω2(z)1(dW + 1 ≥ dZ) +

κ3E [σ
2(Z)|C = c]

ψ0 (0)2 fC(c)
1(dW + 1 ≤ dZ).

Theorem 2. Suppose that assumptions A and B hold and that z is an interior point of ΨZ.

Then, there exists a bounded continuous function β2(z) such that as n→∞ with δnG = np/(2p+dZ),

δnG
h bG(z)−G0(z)− bpβ2(z)

i
=⇒ N(0,Ω2(z)).

Suppose that also assumption C holds. Then, there exists bounded continuous functions β3G(c), β3H(c)

such that as n→∞ with δnH = min{np/(2p+dZ), np/(2p+dW+1)},

δnH
h bH(bc)−H0(c)− bpGβ3G(c)− bpHβ3H(c)

i
=⇒ N(0,Ω3(c)).

To save space we have omitted explicit expressions for the bias terms in Theorem 2. These are

in general quite complicated, although they simplify when the first stage estimates bG and bH are

12



undersmoothed. Consistent standard errors can be obtained by an obvious plug-in method, which is

defined explicitly in the working paper.

The limiting distribution for bg(z) = B−13 [ bG(z)] is immediately obtained from Theorem 2 using the
delta method, and for bH[B1(vG(z)), w] = h(vG(z), w) by redefining γ as B1[vG(z)], or equivalently

by the same derivation as in Theorem 2, defining bH as the regression smooth of bR on B1[v bG(z)], w.
5.1 Efficiency

We give the distribution theory for the efficient estimators eG(z) and eH(ec) in the working paper.
Additional conditions are required on the trimming, and on the kernel Kz and bandwidth b1 in (22).

One obtains pointwise asymptotic normality for the centred estimators at the same rates δnG and

δnH as in Theorem 2 with asymptotic variances:

Ω4(z) =
κ2
R
σ2(v, z, w)

h
∂H0

∂γ
(vG0(z), w)

i2
v2fX(v, z, w)dvdwµR h

∂H0

∂γ
(vG0(z), w)

i2
v2fX(v, z, w)dvdw

¶2
Ω5(c) =

·
∂H0

∂γ
(c)v

¸2
Ω4(z)1(dW + 1 ≥ dZ) +

κ3E [σ
2(Z)|C = c]

ψ0 (0)2 fC(c)
1(dW + 1 ≤ dZ).

By the Cauchy-Schwarz inequality, the simultaneous estimators eG(z) and eH(ec) are at least as ef-
ficient under homoskedasticity, i.e., σ2(v, z, w) = σ2, as the sequential estimators bG(z) and bH(bc).
Furthermore, they can be oracle efficient, Linton (1996), as we next discuss. Suppose that G0(·) was
defined as the minimizer (for known H0(·)) of E[{R(V, Z,W ) − H0(V G(Z),W )}2] with respect to
G(·) subject to the constraint that E[G(Z)] = 1. This leads to the sample moment condition for

each z em4(Γ; z) =
1

n

nX
i=1

Kz

µ
z − Zi

b

¶
{Yi −H0 (ViΓ,Wi)}∂H0

∂γ
(ViG0(Zi),Wi)Vi,

where Kz and b are a generic kernel and bandwidth. Let G(z) be the estimator that is any ap-

proximate zero of em4(Γ; z). This estimator is a natural benchmark against which to measure the

performance of our estimators. The distribution theory for G(z) follows from arguments of Gozalo

and Linton (2000), and to first order, the distribution of our feasible estimator eG(z) is equivalent to
the distribution of G(z). When first stage estimates are undersmoothed, the bias terms in the limit

distributions of eG(z) and G(z) are also the same.

We now turn to the estimation ofH0 or rather the full regression functionR(v, z, w) = H0(vG0(z), w).

When dW + 1 > dZ , the rate of convergence of bH(bc) and eH(ec) is optimal because it is the same as
the rate of convergence of the infeasible regression estimator based on knowing G0(·). Furthermore,
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eH(ec) has the oracle property that it achieves the same asymptotic variance as the infeasible regres-
sion estimator. When dW + 1 ≤ dZ , the benchmark rate of convergence is provided by an estimator

that makes use of known H0, for example H0(bc), say, and our estimator indeed has the optimal rate
in this case.

In the presence of heteroskedasticity, i.e., σ2(v, z, w) 6= σ2 for some v, z, w, one could alter the

criterion in (16) from least squares to weighted least squares; the resulting estimator will involve an

additional weighting factor due to the heteroskedasticity. Although weighting for heteroskedasticity

can improve efficiency, it may result in more cumbersome procedures. Even in the homoskedastic

case, the sequential bG and bH are simpler to compute and entail fewer assumptions (e.g., they don’t

require trimming) and so could be considered more robust in this regard.

6 Extensions and Conclusions

We proposed estimators of equation (1), simplifying without loss of generality to R = H[vG(z), w]

for unknown H and G. Important special cases include homothetically separable models which fit

immediately in this form, and r(v, z, w) = h[v+ g(z), w]. Instead of transforming the latter case into

H and G, one could directly estimate h and g using our methodology by matching additively instead

of multiplicatively, finding u such that r(v, z, w) = r(v+u, z0, w), making u = u(z, z0) = g(z)− g(z0).

Further results appear in the working paper version of this article, including detailed proofs,

consistent standard errors, a Monte Carlo simulation that shows small sample results in general

accord with our asymptotic theory, and an empirical application to estimation of a value added

homothetic production function for industrial firms in mainland China.

7 Appendix

We sketch the arguments used to establish Theorem 2. More detail and formal proofs are in the

working paper version. The first step is to establish the consistency of bU(z, z0) uniformly over z0. It
suffices to show that

sup
z,z0∈Ψz

sup
U∈bU |bm1(U ; z, z

0)−m1(U ; z, z
0)| P−→ 0, (27)

where bU is the set for which bm1(U ; z, z
0) is well-defined. We show that this set bU converges to U , which

is non-empty by assumption A. The result (27) follows from the expansion in assumption B using

the triangle inequality and a ULLN of Andrews (1987). The identification argument in Theorem

1 implies that bU(z, z0) is consistent, and indeed uniformly consistent. We next obtain a uniform
asymptotic expansion for bU(z, z0) that implies pointwise asymptotic normality, but also establishes
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uniform rates on the remainder term. This is done using a general theory we develop based on a

modification of the framework of Pakes and Pollard (1989). First, one extends the result in (27)

to allow for a rate δn = b−1G . Under our conditions, the population moment function m1(U ; z, z
0)

is several times continuously differentiable in U with non-zero first derivative. These conditions

ensure that the uniform rate for bm1(U ; z, z
0)−m1(U ; z, z

0) translates into the same uniform rate forbU(z, z0)−U0(z, z
0). Second, we establish a stochastic equicontinuity condition that holds for U close

to U0(z, z0). For every sequence of positive numbers {�n} that converges to zero
sup

z,z0∈ΨZ

sup
δn|U−U0(z,z0)|≤�n

δnG |bm1(U ; z, z
0)−m1(U ; z, z

0)− bm1(U0(z, z
0); z, z0)| P−→ 0. (28)

This is established by taking derivatives of the leading term of (24) rather than bR itself. Third, one

obtains an expansion for bm1(U0(z, z
0); z, z0),

bm1(U0(z, z
0); z, z0)−m1(U0(z, z

0); z, z0)

= κ
1

n

nX
i=1

ui
π(Vi,Wi)

fX(Vi, z,Wi)

JX
j=1

1

bdZ
Kz

j

µ
z − Zi

b

¶
+

−κ1
n

nX
i=1

ui
π(Vi/U0(z, z

0),Wi)

U0(z, z0)fX(Vi, z0,Wi)

JX
j=1

1

bdZ
Kz

j

µ
z0 − Zi

b

¶
+ (29)

+bpGβU(z, z
0) + op(δ

−1
nG),

where βU(z, z
0) is a bounded continuous function and κ is a kernel related constant. The remain-

der terms are uniformly small by some arguments based on U-statistics and an exponential in-

equality. The non-zero first derivative on m1 ensures that the expansion for bm1(U0(z, z
0); z, z0) −

m1(U0(z, z
0); z, z0) translates into an expansion for bU(z, z0) to U0(z, z0) after dividing through by the

‘Hessian’, ∂m1(U0(z, z
0); z, z0)/∂U .

To obtain the asymptotics for bG(z) we use the expansion for bU(z, z0) to U0(z, z0) and the standard
approach to dealing with the integration type of estimators, Linton and Nielsen (1995), which here

is based on U-statistic arguments. In this case, the second stochastic term in (29) ‘integrates out’,

i.e., is of smaller order after integration over z0. The bias of bG(z) is the integrated bias of bU(z, z0).
To obtain the asymptotic distribution of bH(bc), we use the uniform asymptotic expansion for bG(·).

Write bH(bc)−H0(c) = bH(bc)−H(bc)+H(bc)−H0(c).We apply the delta method to obtainH(bc)−H0(c) '
[∂H0(γ,w)/∂γ](bγ − γ) = [∂H0(γ,w)/∂γ]v[ bG(z) − G(z)], and the asymptotic distribution of this

term follows from the expansion of bG(z) − G(z). The tedious part is to obtain the distribution ofbH(bc)−H0(bc), since this involves the generated regressors. This analysis involves a Taylor expansion
of the kernel out to second order and then application of U-statistic techniques.

The asymptotics for eG(z) and eH(ec) involve similar arguments. The difficult part here is that
to obtain the full efficiency it is necessary to obtain expansions for bG(·), bH(·), and ∂ bH(·)/∂γ over a
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set that expands to cover the whole support. Related recent work of Horowitz and Mammen (2005)

proposes using series estimates of these preliminary quantities.
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