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Abstract

This paper proposes a new method of obtaining identi�cation in mismeasured regres-
sor models, triangular systems, and simultaneous equation systems. The method may
be used in applications where other sources of identi�cation such as instrumental vari-
ables or repeated measurements are not available. Associated estimators take the form
of two stage least squares or generalized method of moments. Identi�cation comes from
a heteroskedastic covariance restriction that is shown to be a feature of many models of
endogeneity or mismeasurement. Identi�cation is also obtained for semiparametric partly
linear models, and associated estimators are provided. Set identi�cation bounds are de-
rived for cases where point identifying assumptions fail to hold. An empirical application
estimating Engel curves is provided.
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1 Introduction
This paper provides a new method of identifying structural parameters in models with endoge-
nous or mismeasured regressors. The method may be used in applications where other sources
of identi�cation such as instrumental variables, repeated measurements, or validation studies
are not available. The identi�cation comes from having regressors uncorrelated with the prod-
uct of heteroskedastic errors, which is shown to be a feature of many models in which error
correlations are due to an unobserved common factor, such as unobserved ability in returns
to schooling models, or the measurement error in mismeasured regressor models. Even when
this main identifying assumption does not hold, it is still possible to obtain set identi�cation,
speci�cally bounds, on the parameters of interest.
For the main model, estimators take the form of modi�ed two stage least squares or gen-

eralized method of moments. Identi�cation of semiparametric partly linear triangular and
simultaneous systems are also considered. In an empirical application, this paper's methodol-
ogy is applied to deal with measurement error in total expenditures, resulting in Engel curve
estimates that are similar to those obtained using a more standard instrument. A literature
review shows similarly satisfactory empirical results obtained by other researchers using this
paper's methodology, based on earlier working paper versions of this paper.
Let Y1 and Y2 be observed endogenous variables, let X be a vector of observed exogenous

regressors, and let " D ."1, "2/ be unobserved errors. For now consider structural models of
the form

Y1 D X 0�1 C Y2
 1 C "1 (1)

Y2 D X 0�2 C Y1
 2 C "2 (2)

Later the identi�cation results will be extended to cases where X 0�1 and X 0�2 are replaced by
unknown functions of X .
This system of equations is triangular when 
 2 D 0, otherwise it is fully simultaneous (if

it is known that 
 1 D 0, then renumber the equations to set 
 2 D 0). The errors "1 and "2 may
be correlated with each other.
Assume E."X/ D 0, which is the standard minimal regression assumption for the ex-

ogenous regressors X . This permits identi�cation of the reduced form, but is of course not
suf�cient to identify the structural model coef�cients. Typically, structural model identi�ca-
tion is obtained by imposing equality constraints on some coef�cients, such as assuming that
some elements of �1 or �2 are zero, which is equivalent to assuming the availability of in-
struments. This paper instead obtains identi�cation by restricting correlations of ""0 with X .
The resulting identi�cation is based on higher moments, and so is likely to provide less reli-
able estimates than identi�cation based on standard exclusion restrictions, but may be useful
in applications where traditional instruments are not available, or could be used along with
traditional instruments to increase ef�ciency.
Restricting correlations of ""0 with X does not automatically provide identi�cation. In par-

ticular, the structural model parameters remain unidenti�ed under the standard homoskedas-
ticity assumption that E.""0 j X/ is constant, and more generally are not identi�ed when "
and X are independent.
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However, what this paper shows is that the model parameters may be identi�ed given some
heteroskedasticity. In particular, identi�cation is obtained by assuming that Cov.X; "2j / 6D 0
for j D 2 in a triangular system (or for both j D 1 and j D 2 in a fully simultaneous system)
and assuming that Cov.Z ; "1"2/ D 0 for an observed Z , where Z can be a subset of X .
If Cov.Z ; "1"2/ 6D 0 then set identi�cation, speci�cally, bounds on parameters, can still be
obtained as long as this covariance is not too large.
The remainder of this section provides examples of models where these identifying as-

sumptions hold, and comparisons to related results in the literature

1.1 Independent Errors
For the simplest possible motivating example, let equations (1) and (2) hold. Suppose "1
and "2 have the standard model error property of being mean zero and are conditionally in-
dependent of each other, so "1 ? "2 j Z and E."1/ D 0. It would then follow immedi-
ately that the key identifying assumption cov.Z ; "1"2/ D 0 holds, because then E."1"2Z/ D
E."1/E."2Z/ D 0. This, along with ordinary heteroskedasticity of the errors "1 and "2 then
suf�ces for identi�cation.
More generally, independence or uncorrelatedness of "1 and "2 is not required, e.g., it is

shown below that the identifying assumptions still hold if "1 and "2 are correlated with each
other through a factor structure, and they hold in a classical measurement error framework.

1.2 Classical Measurement Error
Consider a standard linear regression model with a classically mismeasured regressor. Sup-
pose we do not have an outside instrument that correlates with the mismeasured regressor,
which is the usual method of identifying this model. It is shown here that we can identify the
coef�cients in this model just based on heteroskedasticity. The only nonstandard assumption
that will be needed for identi�cation is the assumption that the errors in a linear projection of
the mismeasured regressor on the other regressors be heteroskedastic, which is more plausible
than homoskedasticity in most applications.
The goal is estimation of the coef�cients �1 and 
 1 in

Y1 D X 0�1 C Y �2 
 1 C V1

where the regression error V1 is mean zero and independent of the covariates X; Y �2 . However
the scalar regressor Y �2 is mismeasured, and we instead observe Y2 where

Y2 D Y �2 CU , E.U / D 0; U ? X; Y1; Y �2 .

Here U is classical measurement error, so U is mean zero and independent of the true model
components X; Y �2 , and V1, or equivalently, independent of X; Y

�
2 , and Y1. So far all of these

assumptions are exactly those of the classical linear regression mismeasured regressor model.
De�ne V2 as the residual from a linear projection of Y �2 on X , so by construction

Y �2 D X
0�2 C V2, E.XV2/ D 0
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Substituting out the unobservable Y �2 yields the familiar triangular system associated with
measurement error models

Y1 D X 0�1 C Y2
 1 C "1, "1 D �
 1U C V1
Y2 D X 0�2 C "2, "2 D U C V2

where the Y1 equation is the structural equation to be estimated, the Y2 equation is the instru-
ment equation, and "1 and "2 are unobserved errors.
The standard way to obtain identi�cation in this model is by an exclusion restriction, that

is, by assuming that one or more elements of �1 equal zero and that the corresponding el-
ements of �2 are nonzero. The corresponding elements of X are then instruments, and the
model is estimated by linear two stage least squares, with Y2 D X 0�2C "2 being the �rst stage
regression and the second stage is the regression of Y1 on bY2 and the subset of X that has
nonzero coef�cients.
Assume now that we have no exclusion restriction and hence no instrument, so there is no

covariate that affects Y2 without also affecting Y1. In that case, the structural model coef�cients
cannot be identi�ed in the usual way, and so for example are not identi�ed when U , V1, and
V2 are jointly normal and independent of X .
However, in this mismeasured regressor model, there is no reason to believe that V2, the

error in the Y2 equation, would be independent of X , because the Y2 equation (what would be
the �rst stage regression in two stage least squares) is just the linear projection of Y2 on X , not
a structural model motivated by any economic theory.
The perhaps surprising result, which follows from Theorem 1 below, is that if V2 is het-

eroskedastic (and hence not independent of X as expected), then the structural model coef�-
cients in this model are identi�ed and can be easily estimated. The above assumptions yield a
triangular model with E.X"/ D 0, Cov.X; "22/ 6D 0, and Cov.X; "1"2/ D 0, and hence satisfy
this paper's required conditions for identi�cation.
The classical measurement error assumptions are used here by way of illustration. They are

much stronger than necessary to apply this paper's methodology. For example, identi�cation
is still possible when the measurement error U is correlated with some of the elements X and
the error independence assumptions given above can be relaxed to restrictions on just a few
low order moments.

1.3 Unobserved Single Factor Models
A general class of models that satisfy this paper's assumptions are systems in which the corre-
lation of errors across equations are due to the presence of an unobserved common factor U ,
that is

Y1 D X 0�1 C Y2
 1 C "1, "1 D �1U C V1 (3)

Y2 D X 0�2 C Y1
 2 C "2, "2 D �2U C V2 (4)

where U , V1, and V2 are unobserved variables that are uncorrelated with X and are condition-
ally uncorrelated with each other, conditioning on X . Here V1 and V2 are idiosyncratic errors
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in the equations for Y1 and Y2, respectively, whileU is an omitted variable or other unobserved
factor that may directly in�uence both Y1 and Y2.
Examples:
MEASUREMENT ERROR. The mismeasured regressor model described above yields equa-

tion (3) with �1 D �
 1 and equation (4) with 
 2 D 0 and �2 D 1. The unobserved common
factor U is the measurement error in Y2.
SUPPLY AND DEMAND. Equations (3) and (4) are supply and (inverse) demand functions,

with Y1 being quantity and Y2 price. V1 and V2 are unobservables that only affect supply
and demand, respectively, while U denotes an unobserved factor that affects both sides of the
market, such as the price of an imperfect substitute.
RETURNS TO SCHOOLING. Equations (3) and (4) with 
 2 D 0 are models of wages Y1

and schooling Y2, withU representing an individual's unobserved ability or drive (or more pre-
cisely the residual after projecting unobserved ability on X ), which affects both her schooling
and her productivity (Heckman 1974, 1979).
In each of these examples, some or all of the structural parameters are not identi�ed with-

out additional information. Typically, identi�cation is obtained by imposing equality con-
straints on the coef�cients of X . In the measurement error and returns to schooling examples,
assuming that one or more elements of �1 equal zero permits estimation of the Y1 equation
using two stage least squares with instruments X . For supply and demand, the typical identi-
�cation restriction is that each equation possess this kind of exclusion assumption.
Assume we have no ordinary instruments and no equality constraints on the parameters.

Let Z be a vector of observed exogenous variables, in particular, Z could be a subvector
of X , or Z could equal X . Assume X is uncorrelated with .U , V1, V2/. Assume also that
Z is uncorrelated with .U 2, UV j , V1V2/ and that Z is correlated with V 22 . If the model is
simultaneous assume that Z is also correlated with V 21 . An alternative set of stronger but
more easily interpreted suf�cient conditions are that one or both of the idiosyncratic errors
V j be heteroskedastic, cov.Z ; V1V2/ D 0, and that the common factor U be conditionally
independent of Z . These are all standard assumptions, except that one usually either imposes
homoskedasticity or allows for heteroskedasticity, rather than requiring heteroskedasticity.
Given these assumptions,

cov.Z ; "1"2/ D cov.Z ; �1�2U 2 C �1UV2 C �2UV1 C V1V2/ D 0

cov.Z ; "22/ D cov.Z ; �
2
2U

2 C 2�2UV2 C V 22 / D cov.Z ; V
2
2 / 6D 0

which are the requirements for applying this paper's identi�cation theorems and associated
estimators.
To apply this paper's estimators it is not necessary to assume that the errors are actually

given by a factor model like " j D � jU C V j . In particular, third and higher moment implica-
tions of factor model or classical measurement error constructions are not imposed. All that is
required for identi�cation and estimation are the moments

E.X"1/ D 0, E.X"2/ D 0, Cov.Z ; "1"2/ D 0: (5)

along with some heteroskedasticity of " j . The moments (5) provide identi�cation whether or
not Z is subvector of X .
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1.4 Empirical examples
Based on earlier working paper versions of this paper, a number of researchers apply this
paper's identi�cation strategy and associated estimators to a variety of settings where ordinary
instruments are either weak or dif�cult to obtain.
Giambona and Schwienbacher (2007) apply the method in a model relating the debt and

leverage ratios of �rms' to the tangibility of their assets. Emran and Hou (2008) apply it to
a model of household consumption in China based on distance to domestic and international
markets. Sabia (2007) uses the method to estimate equations relating body weight to academic
performance, and Rashad and Markowitz (2007) use it in a similar application involving body
weight and health insurance. Finally, in a later section of this paper I report results for a model
of food Engel curves where total expenditures may be mismeasured. All of these studies
report that using this paper's estimator yields results that are close to estimates based on tradi-
tional instruments (though Sabia 2007 also notes that his estimates are closer to ordinary least
squares). Taken together, these studies provide evidence that the methodology proposed in this
paper may be reliably applied in a variety of real data settings where traditional instrumental
variables are not available.

1.5 Literature Review
Surveys of methods of identi�cation in simultaneous systems include Hsiao (1983), Haus-
man (1983), and Fuller (1987). Roehrig (1988) provides a useful general characterization
of identi�cation in situations where nonlinearities contribute to identi�cation, as is the case
here. Particularly relevant for this paper is previous work that obtains identi�cation based on
variance and covariance constraints. With multiple equation systems, various homoskedastic
factor model covariance restrictions are used along with exclusion assumptions in the LISREL
class of models (Joreskog and Sorbom 1984). The idea of using heteroskedasticity in some
way to help estimation appears in Wright (1928), and so is virtually as old as instrumental
variables itself. Recent papers that use general restrictions on higher moments instead of out-
side instruments as a source of identi�cation include Dagenais and Dagenais (1997), Lewbel
(1997), Cragg (1997), and Erickson and Whited (2002).
A closely related result to this paper's is Rigobon (2002, 2003), which uses heteroskedas-

ticity based on discrete, multiple regimes instead of regressors. Some of Rigobon's identi�ca-
tion results can be interpreted as special cases of this paper's models in which Z is a vector
of binary dummy variables that index regimes and are not included amongst the regressors X .
Sentana (1992) and Sentana and Fiorentini (2001) employ a similar idea for identi�cation in
factor models. Hogan and Rigobon (2003) propose a model that, like this paper's, involves
decomposing the error term into components, some of which are heteroskedastic.
Klein and Vella (2003) also use heteroskedasticity restrictions to obtain identi�cation in

linear models without exclusion restrictions (an application of their method is Rummery, Vella
and Verbeek 1999), and their model also implies restrictions on how "21, "

2
2, and "1"2 depends

on regressors, but not the same restrictions as those used in the present paper. The method
proposed here exploits a different set of heteroskedasticity restrictions from theirs, and as a
result this paper's estimators have many features that Klein and Vella (2003) do not, includ-
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ing the following: This paper's assumptions nest standard mismeasured regressor models and
unobserved factor models, unlike theirs. This paper's estimator extends to fully simultaneous
systems, not just triangular systems, and extends to a class of semiparametric models. Their
paper assumes a multiplicative form of heteroskedasticity that imposes strong restrictions on
how all higher moments of errors depend on regressors, while this paper's model places no
restrictions on third and higher moments of " j conditional on X; Z . Finally this paper pro-
vides some set identi�cation results, yielding bounds on parameters, that hold when point
identifying assumptions are violated.
The assumption used here that a product of errors be uncorrelated with covariates has

occasionally been exploited in other contexts as well, e.g., to aid identi�cation in a correlated
random coef�cients model, Heckman and Vytlacil (1998) assume covariates are uncorrelated
with the product of a random coef�cient and a regression model error.
Some papers have exploited GARCH system heteroskedastic speci�cations to obtain iden-

ti�cation, including King, Sentana, and Wadhwani (1994) and Prono (2008). Other papers
that exploit heteroskedasticity in some way to aid identi�cation include Leamer (1981) and
Feenstra (1994).
Variables that in past empirical applications have been proposed as instruments for identi�-

cation might more plausibly be used as this paper's Z . For example, in the returns to schooling
model Card (1995, 2002) and others propose using measures of access to schooling, such as
distance to or cost of colleges in one's area, as wage equation instruments. Access measures
may be independent of unobserved ability (though see Carneiro and Heckman 2002) and af-
fect the schooling decision. However, access may not be appropriate as an excluded variable
in wage (or other outcome) equations because access may correlate with the type or quality of
education one actually receives, or may be correlated with proximity to locations where good
jobs are available. See, e.g., Hogan and Rigobon (2003). Therefore, instead of excluding
measures of access to schooling or other proposed instruments from the outcome equation, it
may be more appropriate to include them as regressors in both equations, and use them as this
paper's Z to identify returns to schooling, given by 
 1 in the triangular model where Y1 is
wages and Y2 is schooling.
The next section describes this paper's main identi�cation results for triangular and then

fully simultaneous systems. This is followed by a description of associated estimators and an
empirical application to Engel curve estimation. Later sections provide extensions, including
set identi�cation (bounds) for when the point identi�cation assumptions do not hold, and
identi�cation results for nonlinear and semiparametric systems of equations.

2 Point Identi�cation
For simplicity it is assumed that the regressors X are ordinary random variables with �nite
second moments, so results are easily stated in terms of means and variances. However, it
will be clear from the resulting estimators that this can be relaxed to handle cases such as time
trends or deterministic regressors by replacing the relevant moments with probability limits of
sample moments and sample projections.
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2.1 Triangular Model Identi�cation
First consider the linear triangular model

Y1 D X 0�10 C Y2
 10 C "1 (6)

Y2 D X 0�20 C "2 (7)

Here �10 indicates the true value of �1, and similarly for the other parameters. Traditionally,
this model would be identi�ed by imposing equality constraints on �10. Alternatively, if the
errors "1 and "2 were uncorrelated, this would be a recursive system and so the parameters
would be identi�ed. Identi�cation conditions are given here that do not require uncorrelated
errors or restrictions on �10. Example applications include unobserved factor models such as
the mismeasured regressor model and the returns to schooling model described in the intro-
duction.

ASSUMPTION A1: Y D .Y1; Y2/0 and X are random vectors. E.XY 0/, E.XY1Y 0/,
E.XY2Y 0/, and E.XX 0/ are �nite and identi�ed from data. E.XX 0/ is nonsingular.

ASSUMPTIONA2: E.X"1/ D 0, E.X"2/ D 0, and, for some random vector Z , cov.Z ; "1"2/ D
0.

The elements of Z can be discrete or continuous, and Z can be a vector or a scalar. Some
or all of the elements of Z can also be elements of X . Sections 1.1, 1.2, and 1.3 provide
examples of models satisfying these assumptions.
De�ne matrices 9Z X and 9Z Z by

9Z X D E
��

X
[Z � E.Z/]"2

��
X
Y2

�0�
, 9Z Z D E

��
X

[Z � E.Z/]"2

��
X

[Z � E.Z/]"2

�0�
and let 9 be any positive de�nite matrix that has the same dimensions as 9Z Z .

THEOREM 1. Let Assumptions A1 and A2 hold for the model of equations (6) and (7).
Assume cov.Z ; "22/ 6D 0. Then the structural parameters �10, �20, 
 10, and the errors " are
identi�ed, and

�20 D E.XX 0/�1E.XY2/�
�10

 10

�
D
�
9 0Z X99Z X

��1
9 0Z X9E

��
X

[Z � E.Z/]"2

�
Y1
�

(8)

Proofs are in the Appendix. For 9 D 9�1Z Z , Theorem 1 says that the structural parameters
�10 and 
 10 are identi�ed by an ordinary linear two stage least squares regression of Y1 on
X and Y2 using X and [Z � E.Z/]"2 as instruments. The assumption that Z is uncorrelated
with "1"2 means that

�
Z � Z

�
"2 is a valid instrument for Y2 in equation (6) since it is uncor-

related with "1, with the strength of the instrument (its correlation with Y2 after controlling for
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the other instruments X ) being proportional to the covariance of
�
Z � Z

�
"2 with "2, which

corresponds to the degree of heteroskedasticity of "2 with respect to Z .
Taking 9 D 9�1Z Z corresponds to estimation based on ordinary linear two stage least

squares. Other choices of 9 may be preferred for increased ef�ciency, accounting for error
heteroskedasticity. Ef�cient GMM estimation of this model is discussed later.
The requirement that cov.Z ; "22/ be nonzero can be empirically tested, because this co-

variance can be estimated as the sample covariance between Z and the squared residuals from
linearly regressing Y2 on X . For example, we may apply a Breusch and Pagan (1979) test for
this form of heteroskedasticity to equation (7). Also, if cov.Z ; "22/ is close to or equal to zero,
then

�
Z � Z

�
"2 will be a weak or useless instrument, and this problem will be evident in the

form of imprecise estimates with large standard errors. Hansen (1982) type tests of GMM
moment restrictions can also be implemented to check validity of the model's assumptions,
particularly Assumption A2.

2.2 Fully Simultaneous Linear Model Identi�cation
Now consider the fully simultaneous model

Y1 D X 0�10 C Y2
 10 C "1 (9)

Y2 D X 0�20 C Y1
 20 C "2 (10)

where the errors "1and "2 may be correlated, and again no equality constraints are imposed on
the structural parameters �10, �20, 
 10, and 
 20.
In some applications it is standard or convenient to normalize the second equation so that,

like the �rst equation, the coef�cient of Y1 is set equal to one and the coef�cient of Y2 is to be
estimated. An example is supply and demand, with Y1 being quantity and Y2 price. The iden-
ti�cation results derived here immediately extend to handle that case, because identi�cation
of 
 20 implies identi�cation of 1=
 20 and vice versa when 
 20 6D 0, which is the only case in
which one could normalize the coef�cient of Y1 to equal one in the second equation.
Some assumptions in addition to A1 and A2 are required to identify this fully simultaneous

model. Given Assumption A2, reduced form errors W j are

W j D Y j � X 0E.XX 0/�1E.XY j / (11)

ASSUMPTION A3: De�ne W j by equation (11) for j D 1; 2. The matrix 8W , de�ned as
the matrix with columns given by the vectors cov.Z ;W 2

1 / and cov.Z ;W
2
2 /, has rank two.

Assumption A3 requires Z to contain at least two elements (though sometimes one element
of Z can be a constant; see Corollary 1 later). If E."1"2 j eZ/ D E."1"2/ for some scalar eZ ,
as would arise if the common unobservable U is independent of eZ , then Assumptions A2 and
A3 might be satis�ed by letting Z be a vector of different functions of eZ , for example de�ning
Z as the vector of elements eZ and eZ2 (as long as eZ is not binary).
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Assumption A3 is testable, because one may estimate W j as the residuals from linearly
regressing Y j on X , and then use Z and the estimated W j to estimate cov.Z ;W 2

j /. A Breusch
and Pagan (1979) test may be applied to each of these reduced form regressions. An estimated
matrix rank test like Cragg and Donald (1996) could be applied to the resulting estimated
matrix 8W , or perhaps more simply test if the determinant of 80W8W is zero, since rank two
requires that 80W8W be nonsingular.

ASSUMPTION A4: Let 0 be the set of possible values of .
 10,
 20/. If .
 1,
 2/ 2 0, then
.
�12 ; 


�1
1 / =2 0.

Given any nonzero values of .
 10,
 20/, solving equation (9) for Y2 and equation (10) for
Y1 yields another representation of the exact same system of equations, but having coef�cients
.
�120 ,


�1
10 / instead of .
 10,
 20/. As long as .
 10,
 20/ 6D .1; 1/ and no restrictions are placed

on �10 and �20, Assumption A4 simply says that we have chosen (either by arbitrary con-
venience or external knowledge) one of these two equivalent representations of the system.
Assumption A4 is not needed for models that break this symmetry either by being triangular
as in Theorem 1, or through an exclusion assumption as in Corollary 2 below. In other models
the choice of 0 may be determined by context, e.g., many economic models (like those re-
quiring stationary dynamics or decreasing returns to scale) require coef�cients like 
 1 and 
 2
to be less than one in absolute value, which then de�nes a set 0 that satis�es Assumption A4.
In a supply and demand model 0 may be de�ned by downward sloping demand and upward
sloping supply curves, since in that case 0 only includes elements 
 1,
 2 where 
 1 � 0 and

 2 � 0, and any values that violate Assumption A4 would have the wrong signs. This is
related to Fisher's (1976) �nding that sign constraints in simultaneous systems yield regions
of admissible parameter values.

THEOREM 2. Let Assumptions A1, A2, A3, and A4 hold in the model of equations (9)
and (10). Then the structural parameters �10, �20, 
 10, 
 20, and the errors " are identi�ed.

2.3 Additional Simultaneous Model Results
LEMMA 1: De�ne 8" to be the matrix with columns given by the vectors cov.Z ; "21/ and
cov.Z ; "22/. Let Assumptions A1 and A2 hold, and assume j
 10
 20j 6D 1. Then Assumption
A3 holds if and only if 8" has rank two.

Lemma 1 assumes 
 10
 20 6D 1 and 
 10
 20 6D �1. The case 
 10
 20 D 1 is ruled out
by Assumption A4 in Theorem 2. This case cannot happen in the returns to schooling or
measurement error applications because triangular systems have 
 20 D 0. Having 
 10
 20 D 1
also cannot occur in the supply and demand application, because the slopes of supply and
demand curves make 
 10
 20 � 0. As shown in the proof of Theorem 2, the case of 
 10
 20 D
�1 is ruled out by Assumption A3, because it causes8W to have rank less than two. However,
Theorem 1 can be relaxed to allow 
 10
 20 D �1, by replacing Assumption A3 with the
assumption that 8" has rank two, because then equation (27) in the proof still holds and
identi�es 
 10=
 20, which along with 
 10
 20 D �1 and some sign restrictions could identify
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 10 and 
 20 in this case. However, Assumption A3 has the advantage of being empirically
testable.
In either case, Theorem 2 requires both "1 and "2 to be heteroskedastic with variances

that depend upon Z , since otherwise the vectors cov.Z ; "21/ and cov.Z ; "
2
2/ will equal zero.

Moreover, the variances of "1 and "2 must be different functions of Z for the rank of 8" to be
two.

COROLLARY 1. Let Assumptions A1, A2, A3, and A4 hold in the model of equations (9)
and (10), replacing cov.Z ; "1"2/ in Assumption A2 with E.Z"1"2/ and replacing cov.Z ;W 2

j /

with E.ZW 2
j / in Assumption A3, for j D 1; 2. Then the structural parameters �10, �20, 
 10,


 20, and the errors " are identi�ed.

Corollary 1 can be used in applications where E."1"2/ D 0. Theorem 2 could also be
used in this case, but Corollary 1 provides additional moments. In particular, if only a scalareZ is known to satisfy cov.eZ ; "1"2/ D 0, then identi�cation by Theorem 2 will fail because
the rank condition in Assumption A3 is violated with Z D eZ , but identi�cation may still be
possible using Corollary 1 because there we may let Z D .1;eZ/.
COROLLARY 2. Let Assumptions A1 and A2 hold for the model of equations (9) and

(10). Assume cov.Z ; "22/ 6D 0, that some element of �20 is known to equal zero and the
corresponding element of �10 is nonzero. Then the structural parameters �10, �20, 
 10, 
 20,
and the errors " are identi�ed.

Corollary 2 is like Theorem 1, except that it assumes an element of �20 is zero instead
of assuming 
 20 is zero to identify equation (10). Then, as in Theorem 1, Corollary 2 uses
cov.Z ; "1"2/ D 0 to identify equation (9) without imposing the rank two condition of As-
sumption A3 and the inequality constraints of Assumption A4. Only a scalar Z is needed for
identi�cation using Theorem 1 or Corollaries 1 or 2.

3 Estimation

3.1 Simultaneous System Estimation
Consider estimation of the structural model of equations (9) and (10) based on Theorem 2.
De�ne S to be the vector of elements of Y , X , and the elements of Z that are not already
contained in X , if any.
Let � D E.Z/ and let � denote the set of parameters f
 1; 
 2; �1; �2; �g. De�ne the vector

valued functions
Q1.�; S/ D X .Y1 � X 0�1 � Y2
 1/

Q2.�; S/ D X .Y2 � X 0�2 � Y1
 2/

Q3.�; S/ D Z � �

Q4.�; S/ D .Z � �/ .Y1 � X 0�1 � Y2
 1/.Y2 � X 0�2 � Y1
 2/

11



De�ne Q.�; S/ to be the vector obtained by stacking the above four vectors into one long
vector.

COROLLARY 3: Assume equations (9) and (10) hold. De�ne � , S, and Q.�; S/ as above.
Let Assumptions A1, A2, A3, and A4 hold. Let2 be the set of all values � might take on, and
let �0 denote the true value of � . Then the only value of � 2 2 that satis�es E [Q.�; S/] D 0
is � D �0:

A simple variant of Corollary 3 is that if E."1"2/ D 0 then � can be dropped from � , with
Q3 dropped from Q, and the Z � � term in Q4 replaced with just Z .
Given Corollary 3, GMM estimation of the model of equations (9) and (10) is completely

straightforward. With a sample of n observations S1,...,Sn , the standard Hansen (1982) GMM
estimator is b� D argmin

�22

nX
iD1

Q.�; Si /0��1n
nX
iD1

Q.�; Si / (12)

for some sequence of positive de�nite�n . If the observations Si are independently and identi-
cally distributed and if �n is a consistent estimator of �0 D E

�
Q.�0; S/Q.�0; S/0

�
, then the

resulting estimator is ef�cient GMM with

p
n.b� � �0/!d N

�
0; E

�
@Q.�0; S/
@� 0

�
��10 E

�
@Q.�0; S/
@� 0

�0�
(13)

More generally, with dependent data, standard time series versions of GMMwould be directly
applicable. Alternative moment based estimators with possibly better small sample properties,
such as Generalized Empirical Likelihood, could be used instead of GMM. See, e.g., Newey
and Smith (2004). Also, if these moment conditions are weak (as might occur if the errors
are close to homoskedastic), then alternative limiting distribution theory based on weak in-
struments, such as Staiger and Stock (1997), would be immediately applicable. See Stock,
Wright, and Yogo (2002) for a survey of such estimators.
The standard regularity conditions for the large sample properties of GMM impose com-

pactness of 2. When 
 20 6D 0 this must be reconciled with Assumption A4 and with Lemma
1. For example, in the supply and demand model we might de�ne2 so that the product of the
�rst two elements of every � 2 2 is �nite, nonpositive, and excludes an open neighborhood
of minus one. This last constraint could be relaxed as discussed after Lemma 1.
If one wished to normalize the second equation so that the coef�cient of Y1 equaled one, as

might be more natural in a supply and demand system, then the same GMM estimator could
be used just by replacing Y2�X 0�2�Y1
 2 in the Q2 and Q4 functions with Y1�X 0�2�Y2
 2,
rede�ning �2 and 
 2 accordingly.
Based on the proof of Theorem 2, a numerically simpler but possibly less ef�cient estima-

tor would be the following. First, let bW j be the vector of residuals from linearly regressing Y j
on X . Next, let bC jkh be the sample covariance of bW j bWk with Zh , where Zh is the h0th element
of the vector Z . Assume Z has a total of K elements. Based on equation (27), estimate 
 1

12



and 
 2 by

.b
 1;b
 2/ D arg min
.
 1
 2/20

KX
hD1

�
.1C 
 1
 2/bC12h � 
 1bC22h � 
 2bC11h�2

where 0 is a compact set satisfying Assumption A4. The above estimator for 
 1 and 
 2 is
numerically equivalent to an ordinary nonlinear least squares regression over K observations,
where K is the number of elements of Z . Finally, �1 and �2 may be estimated by linearly
regressing Y1�Y2b
 1 and Y2�Y1b
 2 on X , respectively. The consistency of this procedure fol-
lows from the consistency of each step, which in turn is based on the steps of the identi�cation
proof of Theorem 1 and the consistency of regressions and sample covariances.
In practice, this simple procedure might be useful for generating consistent starting values

for ef�cient GMM.

3.2 Triangular System Estimation
The GMM estimator used for the fully simultaneous system can be applied to the trian-
gular system of Theorem 1 by setting 
 2 D 0. De�ne S and � as before, and now let
� D f
 1; �1; �2; �g and

Q1.�; S/ D X .Y1 � X 0�1 � Y2
 1/

Q2.�; S/ D X .Y2 � X 0�2/
Q3.�; S/ D Z � �

Q4.�; S/ D .Z � �/ .Y1 � X 0�1 � Y2
 1/.Y2 � X 0�2/:
Let Q.�; S/ be the vector obtained by stacking the above four vectors into one long vector,
and we immediately obtain

COROLLARY 4: Assume equations (6) and (7) hold. De�ne � , S, and Q.�; S/ as above.
Let Assumptions A1 and A2 hold with cov.Z ;W 2

2 / 6D 0. Let 2 be the set of all values �
might take on, and let �0 denote the true value of � . Then the only value of � 2 2 that satis�es
E [Q.�; S/] D 0 is � D �0:

The GMM estimator (12) and limiting distribution (13) then follow immediately.
Based on Theorem 1, a simpler estimator of the triangular system of equations (6) and (7)

is as follows. With 
 20 D 0, �20 can be estimated by linearly regressing Y2 on X . Then, lettingb"2i be the residuals from this regression, �10 and 
 10 can be estimated by an ordinary linear
two stage least squares regression of Y1 on Y2 and X , using X and .Z � Z/b"2 as instruments,
where Z is the sample mean of Z . Letting overbars denote sample averages, the resulting
estimators are b�2 D XX 0�1XY2, b"2 D Y2 � X 0b�20@ b�1

b
 1
1A D �b9 0Z Xb9�1Z Zb9Z X��1 b9 0Z Xb9�1Z Z

0@ XY1

.Z � Z/b"2Y1
1A (14)
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where b9Z X replaces the expectation de�ning 9Z X with a sample average, and similarly forb9, in particular, for ordinary two stage least squares b9 would be a consistent estimator ofb9�1Z Z . The limiting distribution forb�2 is standard ordinary least squares. The distribution forb�1 and b
 1 is basically that of ordinary two stage least squares, except account must be taken
of the estimation error in the instruments .Z � Z/b"2. Using the standard theory of two step
estimators (see, e.g., Newey and McFadden 1994), with independent, identically distributed
observations this gives

p
n
�� b�1b
 1

�
�

�
�10

 10

��
!d N

�
0;
�
9 0Z X99Z X

��1
9 0Z X9var

�
X"1
R

�
99Z X

�
9 0Z X99Z X

��1�
where

R D [Z � E.Z/]"2"1 � cov.Z ; X 0/E.XX 0/�1X"2

is the in�uence function associated with .Z � Z/b"2"1.
While numerically simpler, since no numerical searching is required, this two stage least

square estimator could be less ef�cient than GMM. It will be numerically identical to GMM
when the parameters are exactly identi�ed rather than overidenti�ed, that is, when Z is a
scalar. More generally this two stage least squares estimator could be used for generating
consistent starting values for ef�cient GMM estimation.

3.3 Extension: Additional Endogenous Regressors
We consider two cases here: additional endogenous regressors for which we have ordinary
outside instruments, and additional endogenous regressors to be identi�ed using heteroskedas-
ticity.
In the triangular system, the estimator can be described as a linear two stage least squares

regression of Y1 on X and on Y2, using X and an estimate of [Z � E.Z/]"2 as instruments.
Suppose now that, in addition to Y2, one or more elements of X are also endogenous. Suppose
for now that we also have a set of ordinary instruments P (so P includes all the exogenous
elements of X , and enough additional outside instruments so that P has at least the same
number of elements as X ). It then follows that estimation could be done by a linear two stage
least squares regression of Y1 on X and on Y2, using P and an estimate of [Z � E.Z/]"2 as
instruments. Note however that it will now be necessary to also estimate the Y2 equation by
two stage least squares, that is, we must �rst regress Y2 on X by two stage least squares using
instruments P to obtain the estimated coef�cient b�2, before constructingb"2 D Y2 � X 0b�2.
Then as before the estimate of [Z�E.Z/]"2 is

�
Z � Z

�b"2. Alternatively, the GMM estimator
now has Q1.�; S/ and Q2.�; S/ given by Q1.�; S/ D P.Y1 � X 0�1 � Y2
 1/ and Q2.�; S/ D
P.Y2 � X 0�2/, while Q3.�; S/ and Q4.�; S/ are the same as before.
Similar logic extends to the case where we have more than one endogenous regressor to

be identi�ed from heteroskedasticity. For example, suppose we have the model

Y1 D X 0�10 C Y2
 10 C Y3�10 C "1

Y2 D X 0�20 C "2, Y3 D X 0�30 C "3

14



So now we have two endogenous regressors, Y2 and Y3, with no available outside instruments
or exclusions. If our assumptions hold both for "2 and for "3 in place of "2, then the model for
Y1 can be estimated by two stage least squares, using as instruments X and estimates of both
[Z � E.Z/]"2 and [Z � E.Z/]"3 as instruments

4 Engel Curve Estimates
An Engel curve for food is empirically estimated, where total expenditures may be mismea-
sured. Total expenditures are subject to potentially large measurement errors, due in part
to infrequently purchased items. See, e.g., Meghir and Robin (1992). The data consist of the
same set of demographically homogeneous households that were used to analyze Engel curves
in Banks, Blundell and Lewbel (1997). These are all households in the United Kingdom Fam-
ily Expenditure Survey 1980-1982 composed of two married adults without children, living
in the Southeast (including London). The dependent variable Y1 is the food budget share
and the possibly mismeasured regressor Y2 is log real total expenditures. Sample means are
Y 1 D :285 and Y 2 D :599. The other regressors X are a constant, age, spouse's age, squared
ages, seasonal dummies, and dummies for spouse working, gas central heating, ownership of
a washing machine, one car, and two cars. There are 854 observations.
The model is Y1 D X 0�1 C Y2
 1 C "1. This is the Working (1943) and Leser (1963)

functional form for Engel curves. Nonparametric and parametric regression analyses of this
data show that this functional form �ts food (though not other) budget shares quite well. See,
e.g., Banks, Blundell and Lewbel (1997), �gure 1A.
Table 2 summarizes the empirical results. Ordinary least squares, which does not account

for mismeasurement, has an estimated log total expenditure coef�cient ofb
 1 D �:127. Ordi-
nary two stage least squares, using log total income as an instrument, substantially reduces the
estimated coef�cient to b
 1 D �:086. This is model TSLS 1 or equivalently GMM 1 in Table
2. TSLS1 and GMM 1 are exactly identi�ed, and so are numerically equivalent.
If we did not observe income for use as an instrument, we might instead apply the GMM

estimator based on Corollary 4, using the moments cov.Z ; "1"2/ D 0. As discussed in the
introduction, with classical measurement error we may let Z equal all the elements of X
except the constant. The result is model GMM 2 in Table 2, which yields b
 1 D �:078. This
is relatively close to the estimate based on the external instrument log income, as would be
expected if income is a valid instrument and if this paper's methodology for identi�cation and
estimation without external instruments is also valid. The standard errors in GMM 2 are a
good bit higher than those of GMM 1, suggesting that not having an external instrument hurts
ef�ciency.
The estimates based on Corollary 4 are overidenti�ed, so the GMM 2 estimates differ

numerically from the two stage least squares version of this estimator, reported as TSLS 2,
which uses .Z � Z/b"2 as instruments (equation 14). The GMM 2 estimates are closer than
TSLS 2 to the income instrument based estimates GMM 1, and have smaller standard errors,
which shows that the increased asymptotic ef�ciency of GMM is valuable here. A Hansen
(1982) test fails to reject the overidentifying moments in this model at the 5% level, though
the p-value of 6.5% is close to rejecting.
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Table 2 also reports estimates obtained using both moments based on the external instru-
ment, log income, and on cov.Z ; "1"2/ D 0. The results, in TSLS 3 and GMM 3, are very
similar to TSLS 1 and GMM 1, which just use the external instrument. This is consistent
with validity of both sets of identifying moments, but with the outside instrument being much
stronger or more informative, as expected. The Hansen test also fails to reject this joint set of
overidentifying moments, with a p-value of 12.5%.
To keep the analysis simple, possible mismeasurement of the food budget share arising

from mismeasurement of total expenditures, as in Lewbel (1996), has been ignored. This
is not an uncommon assumption, e.g., Hausman, Newey, and Powell (1995) is a prominent
example of Engel curve estimation assuming that budget shares are not mismeasured and
log total expenditures suffer classical measurement error (though with the complication of
a polynomial functional form). However, as a check the Engel curves were reestimated in
the form of quantities of food regressed on levels of total expenditures. The results were
more favorable than those reported in Tables 1 and 2. In particular, the ordinary least squares
estimate of the coef�cient of total expenditures was .124, the two stage least squares estimate
using income as an instrument was .172, and the two stage least squares estimate using this
paper's moments was .174, nearly identical to the estimate based on the outside instrument.
One may question the validity of the assumptions for applying Theorem 1 in this applica-

tion. Also, although income is commonly used as an outside instrument for total expenditures,
it could still have �aws as an instrument (e.g., it is possible for reported consumption and in-
come to have common sources of measurement errors). In particular, the estimates show a
reversal of the usual attenuation direction of measurement error bias, which suggests some vi-
olation of the assumptions of the classical measurement error model, e.g., it is possible that the
measurement error could be negatively correlated with instruments or with other covariates.
Still, it is encouraging that this paper's methodology for obtaining estimates without ex-

ternal instruments yields estimates that are close to (though not as statistically signi�cant as)
estimates that are obtained by using an ordinary external instrument, and the resulting overi-
dentifying moments are not statistically rejected.
In practice, this paper's estimators will be most useful for applications where external

instruments are either weak or unavailable. The reason for applying it here in the Engel curve
context, where a strong external instrument exists, is to verify that the method works in real
data, in the sense that this paper's estimator, applied without using the external instrument,
produces estimates that are very close to those that were obtained when using the outside
instrument. The fact that the method is seen to work in this context where the results can be
checked should be encouraging for other applications where alternative strong instruments are
not available.

5 Set Identi�cation Relaxing Identifying Assumptions
This paper's methodology is based on three assumptions, namely, regressors X uncorrelated
with errors ", heteroskedastic errors ", and cov.Z ; "1"2/ D 0. As shown earlier, this last
assumption arises from classical measurement error and omitted factor models, but one may
still question whether it holds exactly in practice. Theorem 3 below shows that one can still
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identify sets, speci�cally interval bounds, for the model parameters when this assumption is
violated, by assuming this covariance is small rather than zero. Small here means that this
covariance is small relative to the heteroskedasticity in "2, speci�cally, Theorem 3 below
assumes that the correlation between Z and "1"2 is smaller (in magnitude) than the correlation
between Z and "22.
For convenience, Theorem 3 is stated using a scalar Z , but given a vector Z one could

exploit the fact that Theorem 3 would then hold for any linear combination of the elements
of Z , and one could choose the linear combination that minimizes the estimated size of the
identi�ed set.
De�ne W j by equation (11) for j D 1; 2. Given a random scalar Z and a scalar constant �

de�ne 01 as the set of all values of 
 1 that lie in the closed interval bounded by the two roots
(if they are real) of the quadratic equation

[cov .W1W2; Z/]2�
cov

�
W 2
2 ; Z

��2 �var .W1W2/var
�
W 2
2
� � 2C2 cov �W1W2;W 2

2
�

var
�
W 2
2
� � 2 �

cov .W1W2; Z/
cov

�
W 2
2 ; Z

� !

 1C

�
1� � 2

�

 21 D 0

(15)
Also, de�ne B1 as the set of all value of �1 D E.XX 0/�1E[X .Y1�Y2
 1/] for each 
 1 2 01.

THEOREM 3. Let Assumption A1 hold for the model of equations (6) and (7). As-
sume E.X"1/ D 0, E.X"2/ D 0, and, for some observed random scalar Z and some non-
negative constant � < 1, jcorr.Z ; "1"2/j � � jcorr.Z ; "22/j. Then the structural parame-
ters 
 10 and �10 are set identi�ed by 
 10 2 01, �10 2 B1, and �20 is point identi�ed by
�20 D E.XX 0/�1E.XY2/.

Note that an implication of Theorem 3 is that equation (15) has real roots whenever
jcorr.Z ; "1"2/j < jcorr.Z ; "22/j, and � is de�ned as an upper bound on the ratio of these
two correlations. The smaller the value of � is, the smaller will be the identi�ed sets 01 and
B1, and hence the tighter will be the bounds on 
 10 and �10 given by Theorem 3. One can
readily verify that the sets 01 and B1 collapse to points, corresponding to Theorem 1, when
� D 0.
An obvious way to construct estimates based on Theorem 3 is to substitute W j D Y j �

X 0E.XX 0/�1E.XY j / into equation (15), replace all the expectations in the result with sample
averages, and then solve for the two roots of the resulting quadratic equation given � . These
roots will then be consistent estimates of the boundary of the interval that brackets 
 10.
To illustrate the size of the bounds implied by Theorem 3, consider the model

Y1 D �11 C X�12 C Y2
 1 C "1, "1 D U C eX S1 (16)

Y2 D �21 C X�22 C "2, "2 D U C e�X S2 (17)
where X , U , S1, and S2 are independent standard normal scalars, Z D X , and �11 D �12 D
�21 D �22 D 
 1 D 1. A supplemental appendix to this paper includes a Monte Carlo analysis
of the estimator using this design. It can be shown by tedious but straightforward algebra that
for this design, equation (15) reduces to

1�
12C 12e2 � e4 C 3e8

2C 4e2 � e4 C 3e8
� 2C2

�
5C 7e2 � e4 C 3e8

2C 4e2 � e4 C 3e8
� 2 � 1

�

 10C

�
1� � 2

�

 210 D 0 (18)
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Evaluating these equations for various values of � shows that the identi�ed region 01 for 
 10
is quite narrow unless � is very close to its upper bound of one. In this design, the true value
is 
 10 D 1, which equals the identi�ed region when � D 0: For � D :1 the identi�ed interval
based on equation (18) is [0:995; 1:005] and for � D :5 the identi�ed interval is [0:973; 1:023].
Even for the loose bound on cov.Z ; "1"2/ given by � D :9 the identi�ed interval is still the
rather narrow range [0:892; 1:084].

6 Nonlinear Model Extensions
This section considers extending the model to allow for nonlinear functions of X . Details
regarding regularity conditions and limiting distributions for associated estimators are not
provided, because they are immediate applications of existing estimators once the required
identifying moments are established.

6.1 Semiparametric Identi�cation
Consider the model

Y1 D g1.X/C Y2
 10 C "1 (19)

Y2 D g2.X/C Y1
 20 C "2 (20)

where the functions g j .X/ are unknown. In this simultaneous system, each equation is partly
linear as in Robinson (1988).

ASSUMPTION B1: Y D .Y1; Y2/0, where Y1 and Y2 are random variables. For some
random vector X , the functions E.Y j X/ and E.YY 0 j X/ are �nite and identi�ed from data.

Given a sample of observations of Y and X , the conditional expectations in Assumption
B1 could be estimated by nonparametric regressions, and so would be identi�ed. These con-
ditional expectations are the reduced form of the underlying structural model.

ASSUMPTION B2: E."1 j X/ D 0, E."2 j X/ D 0, and for some random vector Z ,
cov.Z ; "1"2/ D 0.

As before, the elements of Z can all be elements of X also, so no outside instruments are
required. No exclusion assumptions are imposed, so all of the same regressors X that appear
in g1 can also appear in g2, and vice versa. If " j D U� j C V j , where U , V1, and V2 are
mutually uncorrelated (conditioning on Z ), cov.Z ; "1"2/ D 0 if Z is uncorrelated with U 2.

ASSUMPTION B3: De�ne W j D Y j � E.Y j j X/ for j D 1; 2. The matrix 8W , de�ned
as the matrix with columns given by the vectors cov.Z ;W 2

1 / and cov.Z ;W
2
2 /, has rank two.

Assumption B3 is analogous to Assumption A3, but employs a different de�nition of W j .
These de�nitions will coincide if the conditional expectation of Y given X is linear in X .
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Lemma 1 continues to hold with this new de�nition of W j and hence of 8W , and more gener-
ally heteroskedasticity of W1 and W2 implies heteroskedasticity of ".

THEOREM 4: Let equations (19) and (20) hold. If Assumptions B1 and B2 hold, cov.Z ; "22/ 6D
0, and 
 20 D 0 then the structural parameter 
 10, the functions g1.X/ and g2.X/, and the vari-
ance of " are identi�ed. If Assumptions B1, B2, B3, and A4 hold then the structural parameters

 10 and 
 20, the functions g1.X/ and g2.X/, and the variance of " are identi�ed.

An immediate corollary of Theorem 4 is that the partly linear simultaneous system

Y1 D h1.X1/C X2�10 C Y2
 10 C "1 (21)

Y2 D h2.X1/C X2�20 C Y1
 20 C "2 (22)

where X D .X1; X2/ will also be identi�ed, since g j .X/ D h j .X1/C X2� j0 is identi�ed.

6.2 Nonlinear Model Estimation
Consider the model

Y1 D G1.X; �0/C Y2
 10 C "1 (23)

Y2 D G2.X; �0/C Y1
 20 C "2 (24)

where the functions G j .X; �0/ are known and the parameter vector �0, which could include

 1 and 
 2, is unknown. This generalizes equations (3) and (4) by allowing nonlinear functions
of X . Letting g j .X/ D G j .X; �0/, Theorem 4 provides suf�cient conditions for identi�cation
of this model, assuming that �0 is identi�ed given identi�cation of the functions g j .X/ D
G j .X; �0/. The immediate analog to Corollary 3 is then that �0, 
 10, 
 20, and �0 can be
estimated from the moment conditions

E[.Y1 � G1.X; �0/� Y2
 10/ j X ] D 0

E[.Y2 � G2.X; �0/� Y1
 20/ j X ] D 0
E.Z � �0/ D 0

E[
�
Z � �0

�
[Y1 � G1.X; �0/� Y2
 10][Y2 � G2.X; �0/� Y1
 20] D 0

For ef�cient estimation in this case where some of the moments are conditional see, e.g.,
Chamberlain (1987), Newey (1993), and Kitamura, Tripathi, and Ahn (2003). Ordinary GMM
can be used for estimation by replacing the �rst two conditional moments above with uncon-
ditional moments

E[� .X/.Y1 � G1.X; �0/� Y2
 10/] D 0
E[� .X/.Y2 � G2.X; �0/� Y1
 20/] D 0

For some chosen vector valued function � .X/. Asymptotic ef�ciency may be obtained by
using an estimated optimal � .X/; see, e.g., Newey (1993) for details.
As in the linear model, some of these moments may be weak, which would suggest the

use of weak instrument limiting distributions in the GMM estimation. See Stock, Wright, and
Yogo (2002) for a survey of applicable weak moment procedures.
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6.3 Semiparametric Estimation
Consider estimation of the partly linear system of equations (19) and (20), where the functions
g j .X/ are not parameterized. We now have identi�cation based on the moments

E[Y1 � g1.X/� Y2
 10 j X ] D 0

E[Y2 � g2.X/� Y1
 20 j X ] D 0

E.Z � �0/ D 0

E[
�
Z � �0

�
.Y1 � g1.X/� Y2
 10/.Y2 � g2.X1/� Y1
 20/] D 0

These are conditional moments containing unknown parameters and unknown functions, and
so general estimators for these types of models may be applied. Examples include Ai and
Chen (2003), Otsu (2003), and Newey and Powell (2003).
Alternatively, the following estimation procedure could be used, analogous to the numer-

ically simple estimator for linear simultaneous models described earlier. Assume we have n
independent, identically distributed observations. Let bH j .X/ be a uniformly consistent esti-
mator of H j .X/ D E.Y j j X/, e.g., a kernel or local polynomial nonparametric regression of
Y j on X . Now, as de�ned by Assumption B3, W j D Y j � H j .X/, so let bW j i D Y j i � bH j .X i /
for each observation i . Next, let bC jkh be the sample covariance of bW j bWk with Zh , where Zh
is the h0th element of the vector Z . Assume Z has a total of K elements. Based on equation
(27), estimate 
 1 and 
 2 by

.b
 1;b
 2/ D arg min
.
 1;
 2/20

KX
hD1

�
.1C 
 1
 2/bC12h � 
 1bC22h � 
 2bC11h�2

where 0 is a compact set satisfying Assumption A4. The above estimator for 
 1 and 
 2 is
numerically equivalent to an ordinary nonlinear least squares regression over K observations
of data, where K is the number of elements of Z . In a triangular system, that is, with 
 2 D 0,
this step reduces to a linear regression for estimating 
 1. Finally, estimates of the functions
g1.X/ and g2.X/ are obtained by nonparametrically regressing Y1 � Y2b
 1 and Y2 � Y1b
 2 on
X , respectively. The consistency of this procedure follows from the consistency of each step,
which in turn is based on the steps of the identi�cation proof of Theorem 4.
This estimator of b
 1 and b
 2 is an example of a semiparametric estimator with nonpara-

metric plug-ins. See, e.g., section 8 of Newey and McFadden (1994). Unlike Ai and Chen
(2003), this numerically simple procedure might not yield ef�cient estimates of b
 1 and b
 2.
However, assuming that b
 1 and b
 2 converge at a faster rate than nonparametric regressions,
the limiting distributions of the estimates of the functions g1.X/ and g2.X/ will be the same
as for ordinary nonparametric regressions of Y1 � Y2
 10 and Y2 � Y1
 20 on X , respectively.
Further extension to estimation of the partly linear system of equations (21) and (22) is

immediate. For this model the Assumption B2 moments E."1 j X/ D 0, E."2 j X/ D 0, and
cov.Z ; "1"2/ D 0 are

E[Y1 � h1.X1/� X2�10 � Y2
 10 j X ] D 0
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E[Y2 � h2.X1/� X2�20 � Y1
 20 j X ] D 0

E.Z � �0/ D 0

E[
�
Z � �0

�
[Y1 � h1.X1/� X2�10 � Y2
 10][Y2 � h2.X1/� X2�20 � Y1
 20] D 0

which could again be consistently estimated by the above described procedure, replacing the
nonparametric regression steps with partly linear nonparametric regression estimators such as
Robinson (1988), or by directly applying an estimator such as Ai and Chen (2003) to these
moments.

7 Conclusions
This paper describes a new method of obtaining identi�cation in mismeasured regressor mod-
els, triangular systems, simultaneous equation systems, and some partly linear semiparametric
systems. The identi�cation comes from observing a vector of variables Z (which can equal
or be a subset of the vector of model regressors X ) that are uncorrelated with the covariance
of heteroskedastic errors. The existence of such a Z is shown to be a feature of many models
in which error correlations are due to an unobserved common factor, including mismeasured
regressor models. Associated two stage least squares and GMM estimators are provided.
The proposed estimators appear to work well in both a small Monte Carlo study (provided

as a supplemental appendix to this paper) and in an empirical application. Citing working
paper versions of the present paper, some papers by other researchers listed earlier include
empirical applications of the proposed estimators, and �nd them to work well in practice.
Unlike ordinary instruments, identi�cation is obtained even when all the elements of Z are

also regressors in every model equation. However, Z shares many of the convenient features of
instruments in ordinary two stage least squares models. As with ordinary instrument selection,
given a set of possible choices for Z , the estimators remain consistent if only a subset of the
available choices are used, so variables that one is unsure about can be safely excluded from
the Z vector, with the only loss being ef�ciency. Similarly, as with ordinary instruments,
if some variable eZ satis�es the conditions to be an element of Z , but is only observed with
classical measurement error, then this mismeasured eZ can still be used as an element of Z .
If Z has more than two elements (or more than one element in a triangular system) then the
model parameters are overidenti�ed and standard tests of overidentifying restrictions, such as
Hansen's (1982) test, can be applied.
The identi�cation here is based on higher moments, and so is likely to give noisier, less re-

liable estimates than identi�cation based on standard exclusion restrictions, but may be useful
in applications where traditional instruments are weak or nonexistent. This paper's moments
based on cov.Z ; "1"2/ D 0 can be used along with traditional instruments to increase ef�-
ciency and provide testable overidentifying restrictions.
This paper also shows that bounds on estimated parameters can be obtained when the

identifying assumption cov.Z ; "1"2/ D 0 does not hold, provided that this covariance is not
too large relative to the heteroskedasticity in the errors. In a numerical example these bounds
appear to be quite narrow.
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The identi�cation scheme in the paper requires the endogenous regressors to appear ad-
ditively in the model. A good direction for future research would be searching for ways to
extend the identi�cation method to allow for including the endogenous regressors nonlinearly.
Perhaps it would be possible to replace linearity in endogenous regressors with local linearity,
applying this paper's methods and assumptions to a kernel weighted locally linear representa-
tion of the model.
It would also be worth considering whether additional moments for identi�cation could

be obtained by allowing for more general dependence between Z and "22 and corresponding
zero higher moments. One simple example is to let the assumptions of Theorems 1 and 2 hold
using $ .Z/ in place of Z for different functions $ , such as higher moments of Z , thereby
providing additional instruments for estimation.

8 Appendix
PROOF OF THEOREM 1: De�ne W j by equation (11) for j D 1; 2. These W j are identi�ed
by construction. Using the Assumptions, substituting equations (6) and (7) for Y1 and Y2 in
the de�nitions of W1 and W2 shows that W1 D "1C "2
 10 and W2 D "2, so cov.Z ; "1"2/ D 0
is equivalent to cov[Z ; .W1 � 
 10W2/W2] D 0. Solving for 
 10 shows that 
 10 is identi�ed
by 
 10 D cov.Z ;W1W2/=cov.Z ;W 2

2 /. Given identi�cation of 
 10, the coef�cients �10 and
�20 are identi�ed by �10 D E.XX 0/�1E[X .Y1 � Y2
 10/] and �20 D E.XX 0/�1E.XY2/,
which follow from E.X" j / D 0. Also, " is identi�ed by "1 D Y1 � X 0�10 � Y2
 10 and
"2 D Y2 � X 0�20. Finally, to show equation (8), observe that 9Z X simpli�es to

9Z X D

�
E.XX 0/ E.XX 0/�20
E.Z X"2/ E.Z X"2/�20 C cov.Z ; "22/

�
which spans the same column space as�

E.XX 0/ 0
E.Z X"2/ cov.Z ; "22/

�
and so has rank equal to the number of columns, which makes 9Z X99Z X nonsingular. Also

E
��

X
[Z � E.Z/]"2

�
Y1
�
D 9Z X

�
�10

 10

�
C

�
0

cov.Z ; "1"2/

�
which then gives equation (8).

PROOF OF THEOREM 2: Substituting equations (9) and (10) for Y1 and Y2 in the de�ni-
tions of W1 and W2 shows that

W1 D
"1 C "2
 10
1� 
 10
 20

, W2 D
"2 C "1
 20
1� 
 10
 20

(25)

and solving these equations for " yields

"1 D W1 � 
 10W2, "2 D W2 � 
 20W1 (26)
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Note that 
 10
 20 6D 1 by Assumption A4. Using equation (26), the condition cov.Z ; "1"2/ D
0 is equivalent to

cov[Z ; .W1 � 
 10W2/.W2 � 
 20W1/] D 0

.1C 
 10
 20/cov.Z ;W1W2/� 
 10cov.Z ;W 2
2 /� 
 20cov.Z ;W

2
1 / D 0 (27)

Now 1C 
 10
 20 6D 0, since otherwise it would follow from equation (27) that the rank of8W
is less than two. De�ne

�1 D

 10

1C 
 10
 20
, �2 D


 20
1C 
 10
 20

(28)

and � D .�1; �2/0 We then have

cov.Z ;W1W2/ D �1cov.Z ;W 2
2 /C �2cov.Z ;W

2
1 / D 8W� (29)

so � is identi�ed by
� D .80W8W /

�180W cov.Z ;W1W2/

and 80W8W is not singular because 8W is rank two. Solving equation (28) for 
 10 gives

0 D �2
 210 � 
 10 C �1
The above quadratic in 
 10 has at most two roots, and for each root the corresponding value
for 
 20 is given by 
 20 D 
 10�2=�1. Let .
 �1, 


�
2/ denote one of these solutions. It can be

seen from

�1 D

�
1

 10

C 
 20

��1
, �2 D

�
1

 20

C 
 10

��1
that the other solution must be .
 ��12 , 
 ��11 /, since that yields the same values for �1 and �2.
One of these solutions must be .
 10, 
 20/, and by Assumption A4 the other solution is not an
element of 0, so .
 10, 
 20/ is identi�ed. Note that the conditions required for the quadratic
to have real rather than complex or imaginary roots are automatically satis�ed, because .
 10,

 20/ is real.
Given identi�cation of 
 10 and 
 20, the coef�cients �10 and �20 are identi�ed by �10 D

E.XX 0/�1E[X .Y1 � Y2
 10/] and �20 D E.XX 0/�1E[X .Y2 � Y1
 20/], which follow from
E.X" j / D 0. Finally " is now identi�ed by "1 D Y1� X 0�10�Y2
 10 and "2 D Y2� X 0�20�
Y1
 20.

PROOF OF LEMMA 1: Equation (25) in Theorem 2 was derived using only Assumptions
A1 and A2. Evaluating cov.Z ;W 2

j / using equation (25) and the assumption that cov.Z ; "1"2/ D
0 gives, for each element Zk of Z ,�

cov.Zk;W 2
1 /

cov.Zk;W 2
2 /

�
D

�
1

1� 
 10
 20

�2 � 1 
 210

 220 1

��
cov.Zk; "21/
cov.Zk; "22/

�
(30)

So 8W is rank two if and only if 8" is rank two and the matrix relating the two above is
nonsingular, which requires j
 10
 20j 6D 1.
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PROOF OF COROLLARY 1: Using equation (26) and following the same steps as the
proof of Theorem 2, the condition E.Z"1"2/ D 0 yields

E.ZW1W2/ D �1E.ZW 2
2 /C �2E.ZW

2
1 / D 8W�

instead of equation (29). This identi�es � and the rest of the proof is the same.

PROOF OF COROLLARY 2: �20 and 
 20, and hence "2, are identi�ed from the usual
moments that permit two stage last squares estimation. Each W j is identi�ed as in Theorem 1,
and by equation (25), cov.Z ; "1"2/ D 0 implies cov

�
Z ; .W1 � 
 10W2/"2

�
D 0, which when

solved for 
 10 gives

 10 D cov.Z ;W1"2/=cov.Z ;W2"2/

and cov.Z ;W2"2/ D cov.Z ; "22/ 6D 0, so 
 10 is identi�ed. The rest of the proof is the same as
the end of the proof of Theorem 2.

PROOF OF COROLLARIES 3 and 4: By equations (9) and (10), Q1 D X"1, Q2 D X"2
and Q4 D .Z � �/"1"2, and E.Q3/ D 0 makes � D E.Z/, so E.Q/ D 0 is equivalent to
E.X"1/ D 0, E.X"2/ D 0, and cov.Z ; "1"2/ D 0. It then follows from Theorem 2, or from
Theorem 1 when 
 20 D 0, that the only � 2 2 that satis�es E [Q.�; S/] D 0 is � D �0:

PROOF OF THEOREM 3: First observe that if cov
�
Z ; "22

�
D 0, then this fact along

with the other assumptions would imply that the conditions of Theorem 1 hold, giving point
identi�cation, which is a special case of the statement of Theorem 3. So for the remainder of
the proof, assume the case in which cov

�
Z ; "22

�
6D 0. Note this means also that var

�
"22
�
6D 0

and var .Z/ 6D 0, because var
�
"22
�
D 0 or var .Z/ D 0 would imply cov

�
Z ; "22

�
D 0. These

inequalities will ensure that the denominators in the fractions given below are nonzero.
By the de�nition of � h

corr ."1"2; Z/ =corr
�
W 2
2 ; Z

�i2
� � 2

[cov ."1"2; Z/]2

var ."1"2/ var .Z/
var

�
W 2
2
�
var .Z/�

cov
�
W 2
2 ; Z

��2 � � 2

[cov ."1"2; Z/]2�
cov

�
W 2
2 ; Z

��2 � var ."1"2/
var

�
W 2
2
� � 2

Now by Assumption A1 and equation (11) "1 D W1 �W2
 10 and W2 D "2 so�
cov

�
W1W2 �W 2

2 
 10; Z
��2�

cov
�
W 2
2 ; Z

��2 �
var

�
W1W2 �W 2

2 
 10
�

var
�
W 2
2
� � 2

�
cov .W1W2; Z/� cov

�
W 2
2 ; Z

�

 10

�2�
cov

�
W 2
2 ; Z

��2 �
var .W1W2/� 2cov

�
W1W2;W 2

2 
 10
�
C var

�
W 2
2 
 10

�
var

�
W 2
2
� � 2
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[cov .W1W2; Z/]2 � 2cov .W1W2; Z/ cov
�
W 2
2 ; Z

�

 10 C

�
cov

�
W 2
2 ; Z

��2

 210�

cov
�
W 2
2 ; Z

��2
�

var .W1W2/� 2cov
�
W1W2;W 2

2
�

 10 C var

�
W 2
2
�

 210

var
�
W 2
2
� � 2

 
cov .W1W2; Z/
cov

�
W 2
2 ; Z

� !2
� 2

cov .W1W2; Z/
cov

�
W 2
2 ; Z

� 
 10 C 
 210
�

var .W1W2/
var

�
W 2
2
� � 2 � 2cov �W1W2;W 2

2
�

var
�
W 2
2
� � 2
 10 C �

2
 210

and moving all the terms to the left gives

cov .W1W2; Z/2

cov
�
W 2
2 ; Z

�2 �var .W1W2/var
�
W 2
2
� � 2C2"cov �W1W2;W 2

2
�

var
�
W 2
2
� � 2 �

cov .W1W2; Z/
cov

�
W 2
2 ; Z

� #

 10C

�
1� � 2

�

 210 � 0.

For 0 � � < 1, the coef�cient of 
 210 is positive, so this inequality holds for all 
 1 that lie
between the roots of the corresponding equality given by equation (15).

PROOF OF THEOREM 4: Like Theorem 1, substituting equations (19) and (20) for Y1
and Y2 in the Assumption B3 de�nitions of W1 and W2 shows that equations (25) and (26)
hold in this model. Identi�cation of 
 10 and 
 20 then follows exactly as in the Proof of
Theorem 1. Given identi�cation of 
 10 and 
 20, the functions g1.X/ and g2.X/ are identi�ed
by g1.X/ D E.Y1 j X/ � E.Y2 j X/
 10 and g2.X/ D E.Y2 j X/ � E.Y1 j X/
 20, both of
which follow from E." j j X/ D 0. Finally " is now identi�ed by "1 D Y1 � g1.X/ � Y2
 10
and "2 D Y2 � g2.X/� Y1
 20.
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Table 1. Engel Curve Estimates

OLS TSLS 1 TSLS 2 TSLS 3 GMM 1 GMM 2 GMM 3
�11 0.361 0.336 0.318 0.336 0.336 0.332 0.337

(.0056) (0.012) (0.035) (0.011) (0.012) (0.028) (0.011)

 1 -0.127 -0.086 -0.055 -0.086 -0.086 -0.078 -0.087

(.0083) (0.020) (0.058) (0.018) (0.020) (0.047) (0.018)
�2 18.8 17.7
d.f. 11 12

p-value 0.065 0.125

Notes: OLS is an ordinary least squares regression of food share Y1 on household charac-
teristics X and log total expenditures Y2. TSLS 1 is this regression estimated using two stage
least squares with log real income as an ordinary external instrument. TSLS 2 is this paper's
heteroskedasticity based estimator, equation (14), which uses .Z�Z/b"2 as instruments, where
Z is all the regressors X except the constant. TSLS 3 uses both .Z � Z/b"2 and the outside
variable log real income as instruments. GMM 1, GMM 2, and GMM 3 are the same three
models estimated by ef�cient GMM, based on Corollary 4.
Reported above are �11 D X 0�, which is the Engel curve intercept at the mean of the X

regressors, and 
 1, which is the Engel curve slope coef�cient of Y2. Standard errors are in
parentheses. Also reported is the Hansen (1982) speci�cation test chi squared statistic for the
overidenti�ed GMM models 2 and 3, along with its degrees of freedom and p-value.
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Abstract

This supplemental appendix to the paper contains a Monte Carlo analysis of the pro-
posed estimators.

Monte Carlo simulations draw data from the reduced form of the structural model

Y1 D �11 C X�12 C Y2
 1 C "1, "1 D U C eX S1 (1)

Y2 D �21 C X�22 C Y1
 2 C "2, "2 D U C e�X S2 (2)

where X , U , S1, and S2 are independent standard normal scalars and �11 D �12 D �21 D
�22 D 
 1 D 1. The triangular design sets 
 2 D 0 and Z D X . The fully simultaneous
design sets 
 2 D �:5 and Z D .X; X2/. With these choices of Z the model parameters in
each design are exactly identi�ed by Theorems 1 and 2. The parameters in equation (1) for
the triangular design, and all of the parameters in both equations in the simultaneous design,
are not identi�ed using traditional exclusion assumptions. Table 1 reports results of 10; 000
simulations of each design, with sample size n D 500.
The triangular design is estimated using the two stage least squares estimator

b�2 D XX 0�1XY2, b"2 D Y2 � X 0b�20@ b�1
b
 1

1A D �b9 0Z Xb9�1Z Zb9Z X��1 b9 0Z Xb9�1Z Z
0@ XY1

.Z � Z/b"2Y1
1A

as described in the paper, which is numerically identical to GMM because the model is exactly
identi�ed. The simultaneous system design is estimated using the GMM estimator based on

�Arthur Lewbel, Department of Economics, Boston College, 140 Commonwealth Ave., Chestnut
Hill, MA, 02467, USA. (617)-552-3678, lewbel@bc.edu, http://www2.bc.edu/~lewbel/
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Corollary 3 in the paper. Ignoring Assumption A4, no inequality constraints on the parameters
were imposed on the estimates, though for GMM the true values of the parameters were used
as starting values for the optimizing iterations in each simulation.
The triangular model estimates are quite accurate, with less than one percent mean bias

and root mean squared errors under .275. The simultaneous system parameters have biases of
a few percent, but much larger root mean squared errors. These are largely due to a very small
number of extreme estimates, as can be seen by median absolute errors that are only modestly
larger than in the triangular model case, and virtually the same interquartile ranges.

Table 1. Simulation Results

Triangular Model Two Stage Least Squares

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
�11 1:00 1:00 :134 :915 1:00 1:09 :134 :105 :087
�12 1:00 1:01 :273 :835 1:00 1:17 :273 :209 :168

 1 1:00 :999 :036 :980 1:00 1:02 :036 :026 :019
�21 1:00 1:00 :129 :917 1:00 1:08 :129 :102 :084
�22 1:00 1:00 :275 :830 :996 1:17 :275 :209 :168

Simultaneous System GMM

TRUE MEAN SD LQ MED UQ RMSE MAE MDAE
�11 1:00 1:03 2:75 :918 1:00 1:09 2:75 :130 :085
�12 1:00 :999 :667 :833 1:00 1:17 :667 :218 :170

 1 1:00 1:01 1:26 :974 :999 1:02 1:26 :047 :025
�21 1:00 1:02 3:55 :913 1:00 1:09 3:55 :162 :090
�22 1:00 1:05 6:53 :830 :998 1:17 6:53 :299 :172
�
 2 :500 :504 1:63 :527 :501 :477 1:63 :059 :025

Notes: The reported statistics are as follows. TRUE is the true value of the parameter,
MEAN and SD are the mean and standard deviation of the estimates across the simulations.
LQ, MED, and UQ are the 25% (lower) 50% (median) and 75% (upper) quartiles. RMSE,
MAE, and MDAE are the root mean squared error, mean absolute error and median absolute
error of the estimates.
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