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1 Introduction

Over time, Stata has come to incorporate more and more features for effective analysis
of time series data, either pure time series or panel data with emphasis placed on the
time series dimension of the panel. In this context, ‘time series modeling’ should be
taken in the broad sense, referring to multivariate models built with data organized as
time series, rather than the narrow sense of “Box–Jenkins” or ARIMA univariate time
series models. This paper considers modeling performed in only the time domain rather
than in the frequency domain.

Prior to Stata 6, support for time series analysis was weak, as Stata lacked the notion
of a time series calendar. In working with time series data, the researcher wants to refer
to observations in terms of calendar time and see dates displayed on the statistical output
and in graphs. Stata 6 incorporated a time series calendar and added a lengthy list of
date functions which, if properly employed, can decompose dates into their components
(e.g., the calendar month associated with a particular date) and translate dates between
the supported data frequencies.

At the same time, the time series operators (L., D., F.) were introduced, bringing
a tremendous simplification to any programming involving time series, and a built–
in mechanism ensuring that only appropriate computations are made. For instance,
x[ n-1] will always refer to the previous observation on x, which may or may not
belong to the prior period and may even refer to a different individual’s observation in
a panel context. In contrast, L.x will unambiguously refer to the prior period’s value.
One may succinctly refer to a set of lagged (or led) values with a numlist: L(1/4).x to
specify that four lags are to be included in a regressor list. One may even combine the
operators: e.g., the lagged second difference in x is denoted LD2.x, while the second lag
of ∆x is L2D.x.

Reliance on these housekeeping details becomes overwhelmingly important in work-
ing with panel data, in which one must always be concerned with staying within bounds
of an individual unit’s time series. In the context of an unbalanced panel, Stata’s ap-
proach to housekeeping is far superior to that of a matrix language such as GAUSS
or MATLAB, and places much less of a burden on the researcher’s keeping track of
those details. Stata refers to observations by their associated date (once a time se-
ries calendar has been established by tsset) rather than by their number; therefore,
users’ references to the data may be in the more natural context of specifying calendar
dates rather than calculating observation numbers: e.g., regress inv L(1/4).gdp if
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tin(1968q4,1979q3) will restrict the sample to that range of dates.

A second advantage from the programmer’s standpoint is that the nature of Stata’s
data transformation commands (generate, replace, egen) makes it feasible in many
instances to perform a transformation over the individual time series of a panel with
little overhead. In a number of routines discussed below this feature has been used to
advantage to greatly simplify the code and make a routine more generally useful.

Although a number of useful features have been added, Stata’s current facilities for
the management of time series data have their limitations. It appears to be difficult
for many users to transform dates generated in some other software (e.g., Excel) to
the Stata date format without dealing with substrings, wrangling with two–digit vs.
four–digit years, et cetera. Stata does not support business–daily data, and for those in
economics and finance, it is most unfortunate to give up the advantageous features of
Stata’s calendar and time series operators when working with this common data format.

In this paper, I will discuss a number of Stata’s capabilities in the area of time
series modeling, including data management and graphics. I will focus on a number
of user–contributed routines, some of which have found their way into official Stata,
with others likely to follow. For brevity, there are some areas I will not cover in this
discussion: vector autoregressions and structural VARs, ARCH and GARCH modeling,
cointegration tests (now available in official Stata’s July 2004 update) and panel unit
root tests. I concentrate on a number of features and capabilities that may not be so
well known, and present some new methodologies for time–series data analysis.

2 Data management and graphics

2.1 tsmktim

First, let us consider some useful data management features. One often imports a time
series, perhaps with a spreadsheet–formatted date variable and wants to establish a
time series calendar for these data. One must work with the existing date to bring it
into a proper Stata date variable using the date() or mdy() functions, assign a proper
format to the variable (e.g., %ty for annual, %tm for monthly, etc.) and then use tsset

to define the time series calendar with that nicely formatted date variable. Some time
ago, Vince Wiggins and the author (2000a) wrote a utility that handles those three
steps in one straightforward command: tsmktim, in which one need only specify the
name of a new time series calendar variable and its start date:

tsmktim datevar, start(1970)

tsmktim datevar, start(1970q2)

tsmktim datevar, start(1970m5)

tsmktim datevar, start(1jul1970)

tsmktim datevar, start(1970q2) seq(ind)
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This routine will extract the date from the start argument, classify the data
frequency, generate the appropriate series, assign that frequency’s format and per-
form tsset datevar. The last example handles the case when there are some non–
consecutive observations, as identified by the ind series, which will then be used to
place the proper gaps in the data.

But what if we have a panel, and want to identify each unit’s timeseries as beginning
in 1970? A revision of tsmktim in June 2004 brought that capability: one may now
command

tsmktim datevar, start(1970) i(country)

in order to achieve that goal, having the result of tsset country datevar to define
both a panel variable and a time variable. Like most of the routines discussed here,
tsmktim is available from the SSC archive via official Stata’s ssc command and may
be located with findit.

2.2 egen functions for time series

There are also a number of egen functions which prove very useful with time series data.
Official Stata’s egen contains the ma() function, which computes k–period centered
moving averages (where k must be odd). This is of little use if one wants a one–sided
moving average. For example, we might want a weighted moving average of four prior
values, with arithmetic weights 0.4(0.1)0.1. That construct can be viewed as a filter
applied to a series in the time domain, and computed with egen, filter from Nick
Cox’s egenmore package. That routine has the flexibility to compute any linear filter
(including two–sided filters) with the option of automatically scaling the weights to
unity. For instance,

egen filty = filter(y), l(-2/2) c(1 4 6 4 1) n

specifies that a two–sided centered/centred moving average be computed, with weights
1/16, 4/16, 6/16, 4/16, 1/16. The n option specifies that the weights are to be normal-
ized/normalised (dividing by their sum of 16). As an illustration of Stata’s flexibility
with time series data, note that egen, filter may readily be applied to panel data:
those which have been defined as a panel to Stata via tsset panelvar datevar. This
same egen command could be employed in that context, and the filter would then be
automatically applied separately to each timeseries within the panel.

Several other functions in Nick Cox’s egenmore package provide useful housekeeping
tools: eom(), for instance, will generate a new variable with the date of the End of
Month for a given month and year (which may be specified to be a weekday) and bom()

provides the same functionality for the Beginning of Month. Both functions allow
specification of lags and leads: e.g., adding lag(3) to the eom() function will return
the Stata date for the last day of the third month prior. These functions are often
very useful in working with financial data, and analogues could readily be constructed
to provide similar functionality with quarterly or weekly data. Another function often
useful in working with individual panel data is the record function; i.e.
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egen maxtodate = record(wage), by(id) order(year)

egen hiprice = record(share price), by(firm) order(quote date)

where the first example identifies the highest wage to date in a worker’s career (related,
perhaps, to her “reservation wage”), while the second identifies the highest price received
to date for each firm’s shares.

2.3 tsspell

A last utility routine that might be just the trick for many users’ needs is Nick Cox’s
tsspell. Beyond the notion of spells of illness, spells of unemployment, etc., we often
wish to identify spells in which some characteristic is present: e.g., a period during
which a share price does not decline. Spells may be used to advantage when defined
on the presence of changes in a variable (e.g., the Bank of England changing the base
rate); by the occurrence of a particular event (such as a general election, or a natural
phenomenon such as an earthquake); or by the presence of some condition (e.g., the
period during which Labour forms the government, or those quarters in which the sign
of the change in real GDP is positive). Like the current version of tsmktim, tsspell
will automatically handle data which have been defined as a panel, generating spells for
each unit in the panel.

2.4 tsgraph

Let us now consider a graphics tool of primary interest to those still relying on Stata
version 7. In the days of Stata 7, it seemed overly tedious to produce a “time-series
line graph”: a simple line plot of one or more time series on the y axis versus time,
appropriately labeled, on the x axis. Those of us who work with time series data find
this to be a rather common task, and Nick Cox and the author wrote tsgraph as an
answer to that need. The routine will automatically produce a line graph with connected
points, no markers, and by default (for use on the printed page) will select up to four
different line styles, enabling the legend to be more useful than the default multi–colored
graph. Considerable effort was also made in this routine to generate “nice” time–axis
labels; that is, those which correspond to natural units, such as quinquennia for annual
data, first quarters for quarterly data, etc. The routine will also intelligently consider
that if the data are tsset as a panel, up to four units’ timeseries of a single varname
will be automatically plotted when that single varname is specified as the y variable.

The new graphics command tsline, added to Stata after the release of version 8.0, is
capable of doing all this and no doubt a great deal more. Indeed, using the Stata Manual
Dataset invest2.dta, one can argue that tsline investment income consumption

eventually produces a more stylish graph than tsgraph investment income consumption.
The graph produced by tsline will contain dashed line types if a monochrome style is
chosen, and it appears to construct “nice” date labels automatically. If one uses Stata
8, tsline is probably a more useful tool than tsgraph. For those using Stata 7, and
those interested in dissecting a simple Stata program to determine how the code has
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been written, tsgraph might be of some interest. As an illustration:

* tsgraph_X.do 07sep2004 CFBaum

* Program illustrating use of tsgraph v tsline

use http://www.stata-press.com/data/r8/invest2.dta, clear

* In Stata 8, could do

* webuse invest2, clear

tsset company time

drop if company>4

tsgraph invest market stock if company==1

more

tsline invest market stock if company==1

more

* illustrate automatic use on panel

tsgraph invest, ti("Investment expenditures by firm")

I turn now to discussion of a number of statistical / econometric capabilities for
time series modeling. Some additional examples of time series modeling are provided in
Baum (2004).

3 Statistics/econometrics

3.1 Capabilities of arima

A frequent participant in the Statalist listserv will appreciate that Reading the Fine

Manuals is a rarely practiced art. One of those gems that can only be gleaned by
RTFM, though, is a proper appreciation of one of Stata’s most powerful time series
commands, arima. The difficulty here is actually semantic in nature. Given Stata’s late
arrival in the domain of econometric software for time series analysis (vs. TSP, RATS,
eViews, PC-GIVE, and the like), researchers in this area imagine that a command named
arima does exactly that, providing for the estimation of univariate ARIMA(p,d,q) mod-
els or “Box–Jenkins” models with an AR(p) autoregressive component, a MA(q) moving
average component, and requiring dth order differencing to achieve covariance station-
arity. Naturally, Stata’s arima command performs that estimation. However, it is not
widely appreciated that Stata’s arima command does this and much more. I can appre-
ciate the difficulty of documenting such a wide array of features (arima is perhaps one
of Stata’s most complex commands in terms of its user interface), and the desire to have
a single command that opens the door to estimating a wide range of models rather than
a long list of alternative commands. This logic is the same rationale underlying many
of the xt commands, such as xtreg or xtgee. It should be noted that the use of the
term arima for this command seems to result in many users overlooking its potential
usefulness for a wide variety of time series modeling tasks.

For instance, the arima command may be used to fit an ordinary regression model—
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of y on a set of regressors X—in which the disturbances are modeled as an ARMA(p,q)
process. Unlike prais, which only fits a regression model with AR(1) errors, arima
is capable of fitting a general error structure to any regression model, including those
containing one or more lags of the dependent variable, via maximum likelihood and the
Kalman filter.

Also worthy of note is that arima provides the ability to compute dynamic forecasts
of a regression model that contains a lagged dependent variable. In the context of a
regression model with strictly exogenous regressors (that is, those whose distributions
are independent of the error process), ex ante or out–of–sample predictions may be
calculated via predict for any post–sample period for which the regressors are available.
If the regression model contains a lagged dependent variable, an ex ante prediction may
only be made for the period for which the dependent variable is available, and predict

will compute a one–step–ahead static forecast: that is, ŷτ = Xτ β̂, where one of the
columns of X is yτ−1. For many purposes, a sequence of static forecasts is appropriate.
For instance, if we want to mimic the decisions of economic agents at each point in
time over the forecast horizon where their information set contains all variables dated
T + τ and earlier, we should forecast yT+τ+1. However, if we are building a dynamic
model for y, we may want to simulate the performance of that model over a horizon
(T +1) . . . (T +κ), where the initial conditions include information dated T and earlier,
and the further evolution of y over the forecast period is purely determined by the
model (possibly inclusive of stochastic shocks in a stochastic simulation). To construct
the dynamic, or recursive forecasts of y implied by this mechanism, we must estimate the
model with arima—even if we do not wish to specify an ARMA(p,q) error structure—
and use the dynamic() option on the subsequent predict command. To compare the
two forecasting strategies, consider:

* arima_X.do 10sep2004 CFBaum

use http://www.stata-press.com/data/r8/friedman2.dta, clear

* in Stata 8, could do

webuse friedman2, clear

arima pc92 L.pc92 L(0/1).m2 if tin(,1981q4)

* static (one-step-ahead) 20-quarter forecast

predict consump_st if tin(1982q1,1986q4)

* dynamic (recursive) 20-quarter forecast

predict consump_dyn if tin(1982q1,1986q4), dynamic(q(1982q1))

label var pc92 "Actual"

label var consump_st "one-step forecast"

label var consump_dyn "dynamic forecast"

* graphics could be produced in Stata 7 via tsgraph

tsline pc92 consump_st consump_dyn if tin(1982q1,1986q4), ///

ti("Actual and Predicted Real Consumption")

graph display, xsize(4) ysize(3) scheme(s2mono)

yielding the estimated equation and figure:
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. arima pc92 L.pc92 L(0/1).m2 if tin(,1981q4)

(setting optimization to BHHH)
Iteration 0: log likelihood = -392.09822
Iteration 1: log likelihood = -392.09822

ARIMA regression

Sample: 1959q2 to 1981q4 Number of obs = 91
Wald chi2(3) = 58210.57

Log likelihood = -392.0982 Prob > chi2 = 0.0000

OPG
pc92 Coef. Std. Err. z P>|z| [95% Conf. Interval]

pc92
pc92

L1 1.01849 .0134459 75.75 0.000 .992137 1.044844
m2

-- 1.022222 .378699 2.70 0.007 .2799852 1.764458
L1 -1.074798 .3888382 -2.76 0.006 -1.836906 -.3126889

_cons .8652995 20.18578 0.04 0.966 -38.6981 40.4287

/sigma 17.99031 .9378816 19.18 0.000 16.15209 19.82852

28
00

30
00

32
00

34
00

36
00

38
00

1982q1 1983q1 1984q1 1985q1 1986q1 1987q1
time

Actual one−step forecast
dynamic forecast

Actual and Predicted Real Consumption

Figure 1: Static and dynamic forecasts with arima.

In this example, it may be seen that although the model generates reasonable one–
step–ahead forecasts (underpredicting slightly), the dynamic, or recursive form of the
model is quite unsatisfactory, leading over a 20–quarter forecast horizon to an unrea-
sonably low level of predicted real personal consumption expenditure.
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3.2 ivreg2

There are a number of features in the latest version of ivreg2 (Baum, Schaffer and Still-
man, 2003, 2004) that are relevant for the analysis of time series and panel data models.
The version of ivreg2 published in the Stata Journal and presented by Mark Schaffer
at the 2003 UK Stata Users Group meetings implemented instrumental variables and a
Generalized Method of Moments (GMM) estimator that efficiently estimated IV–style
models with arbitrary heteroskedasticity. In the latest update of the software (available
from SSC), we have added a number of features: notably, the ability to utilize GMM
estimation to deal with arbitrary departures from independence of the errors (e.g., serial
correlation), both in conjunction with the heteroskedasticity–robust (“White”) compo-
nent and in stand–alone form. The former capability allows ivreg2 to efficiently esti-
mate models with HAC (heteroskedasticity– and autocorrelation–consistent) standard
errors. In fact, since ivreg2 can estimate models without any instrumental variables,
it may be used to reproduce any model estimable with official Stata’s newey.

Two aspects of these extended ivreg2 capabilities are worth mention. In com-
puting a robust covariance matrix, one may want the robust–to–AC correction without
applying the robust–to–H correction. The computation of the “White piece” of a robust
covariance matrix involves estimation of fourth moments of the estimated residuals, and
if there is no cause to question the assumption of homoskedasticity, one should apply the
“Newey–West” component without the “White” or “sandwich” correction for arbitrary
heteroskedasticity. The new version of ivreg2 allows for that by decoupling those as
separate options, which is something that newey cannot do. Indeed, although “HAC
standard errors” computed by the Newey–West formula are routinely reported in the
literature, it must be noted that the choice of the Bartlett kernel in that formula is an
arbitrary smoothing of the empirical autocorrelation function. All that is required is an
empirical autocovariance matrix that is guaranteed to be positive definite, and a num-
ber of kernels can achieve that goal. Just as with any application of kernel estimation,
one may want to choose a different kernel. The new version of ivreg2 allows for the
specification of the kernel from a list of eight choices (with Bartlett, à la Newey–West,
as default). Because some of those kernels do not involve an integer truncation point,
ivreg2 uses a bandwidth (bw()) option rather than the lag() option of newey. For
kernels with an integer truncation point (such as Bartlett), the bandwidth is one greater
than the number of lags (thus bw(1) specifies that no lagged values of the residuals are
to be included; bw(2) = lag(1), et cetera). Of course, the use of kernel() and bw()

options allows ivreg2 to be used to estimate instrumental variables models with AC or
HAC errors, which cannot be achieved with newey.

The revised ivreg2 also contains a number of other new features: the ability to
estimate LIML (limited–information maximum likelihood) models, perform general k–
class estimation, and compute a number of diagnostics for “weak instruments”. A
pscore() option has been added to maintain comparability with official ivreg.
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3.3 Unit root tests

dfgls

The dfgls command, a user–written routine in Stata 7 (Baum and Sperling, 2000),
was adopted by StataCorp developers and is now part of official Stata. Indeed, its
methodology, the “DF–GLS”, Dickey–Fuller Generalised Least Squares, approach of
Elliott, Rothenberg, and Stock (1996) is preferred by many time series econometricians
to the “first–generation” more widely–known tests of Dickey and Fuller (dfuller) or
Phillips and Perron (pperron). Inferences drawn from the DF–GLS test are likely to be
more robust than those based on the first–generation tests, and dfgls should be your
unit root test of choice.

kpss and other fractional integration tests

As an interesting alternative to the Dickey–Fuller style methodology underlying the
first generation tests as well as dfgls, we might consider the KPSS test (Kwiatkowski,
Phillips, Schmidt and Shin, 1992). This test, implemented some time ago for Stata
(Baum, 2000), utilizes the perhaps more natural null hypothesis of stationarity, or I(0),
rather than the Dickey–Fuller style null hypothesis of I(1) or nonstationarity in levels
(difference stationarity). The dfgls and KPSS tests may both be applied, with hopes
that the verdict of one will confirm that of the other. The KPSS test (command kpss) is
also often used (in conjunction with, e.g., dfgls) to detect “long memory” or fractional
integration: a non–integer value of the integration parameter which implies that the
series is neither I(0) nor I(1), but I(d), 0 < d < 1. A number of other user–written
routines examine this prospect for single (and in some cases multiple) time series: e.g.,
gphudak, modlpr and roblpr (Baum and Wiggins, 2000b). Full details are available
from the STB articles cited.

Unit root tests allowing for structural change

A well–known weakness of the “Dickey–Fuller” style unit root test with I(1) as a null
hypothesis is its potential confusion of structural breaks in the series as evidence of
nonstationarity. Many econometricians have attempted to deal with this confusion by
devising unit root tests that allow for some sort of structural instability in an otherwise
deterministic model. As an illustration, consider a timeseries driven by a deterministic
trend (perhaps subject to breaks in the mean of the series, or breaks in trend) rather
than following the stochastic trend of a unit root process.

One test of this nature was devised by Andrews and Zivot (1992) and presented in
their article analysing the “Great Crash” of the 1930s and oil price shocks of the 1970s in
terms of their effects on unit–root test behavior. This test allows for a single structural
break in the intercept and/or the trend of the series, as determined by a grid search
over possible breakpoints. Subsequently, the procedure conducts a Dickey–Fuller style
unit root test conditional on the series inclusive of the estimated optimal breaks. The
author has made the zandrews test, translated from RATS code, available in Stata. By
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default, the test allows for a break in intercept. Alternatively, a trend break or both
intercept and trend breaks may be considered by employing the break(string) option.
As in all Dickey–Fuller style tests, the degree of augmentation with additional lags of
the dependent variable may have an impact on the power of the test by ensuring that
the residuals are sufficiently whitened. zandrews provides four different methods for lag
selection in the lagmethod(string) option. For example, one may specify the number
of lags desired, rely on the AIC or BIC criteria, or allow for a sequential t–test to
detect the optimal lag, similar to the method implemented in dfgls. A graph option
is also provided to allow visual scrutiny of the unit root test statistics for alternative
breakpoints. The zandrews routine may be applied to single time series within panel
data. It requires Stata 8.0 or better.

As an illustration:

* zandrews_X.do 16jul2004 CFBaum

webuse turksales,clear

* contrast with Dickey-Fuller test

dfuller sales

zandrews sales, graph

zandrews sales, break(trend)

zandrews sales, break(both) trim(0.10)

zandrews sales, lagmethod(BIC)

zandrews D.sales, graph

* work with single timeseries of panel

webuse grunfeld, clear

zandrews invest if company==3, break(trend) graph

One obvious weakness of the Zivot–Andrews strategy, relating as well to similar tests
proposed by Perron and Vogelsang (1992), is the inability to deal with more than one
break in a time series. For instance, the trade–weighted value of the US dollar versus
trading partners’ currencies followed a V –shaped pattern over the 1980s and 1990s, so
that a single break in intercept and trend could not have dealt satisfactorily with the
evolution of this series. Addressing this problem, Clemente, Montañés and Reyes (1998)
proposed tests that would allow for two events within the observed history of a time
series, either additive outliers (the AO model, which captures a sudden change in a
series) or innovational outliers (the IO model, allowing for a gradual shift in the mean
of the series). This taxonomy of structural breaks follows from Perron and Vogelsang’s
work (1992). However, in that paper the authors only dealt with series including a
single AO or IO event. The double–break additive outlier AO model as employed in
Baum, Barkoulas and Caglayan (1999) involves the estimation of

yt = µ + δ1DU1t + δ2DU2t + ỹt

where DUmt = 1 for t > Tbm and 0 otherwise, for m = 1, 2. Tb1 and Tb2 are the
breakpoints, to be located by grid search. The residuals from this regression, ỹt, are
then the dependent variable in the equation to be estimated. They are regressed on
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their lagged values, a number of lagged differences and a set of dummy variables needed
to make the distribution of the test statistic tractable:

ỹt =

k∑

i=1

ω1iDTb1,t−i +

k∑

i=1

ω2iDTb2,t−i + αỹt−i +

k∑

i=1

θi∆ỹt−i + et

where DTbm,t = 1 for t = Tbm + 1 and 0 otherwise, for m = 1, 2. No intercept is
necessary as ỹt is mean zero. This regression is then estimated over feasible pairs of
Tb1 and Tb2, searching for the minimal t–ratio for the hypothesis α = 1; that is, the
strongest rejection of the unit root null hypothesis. The value of this minimal t–ratio is
compared with critical values provided by Perron and Vogelsang (1992), as they do not
follow the standard “Dickey–Fuller” distribution.

The equivalent model for the innovational outlier (gradual change) model expresses
the shocks to the series (the effects of δ1, δ2 above) as having the same ARMA repre-
sentation as other shocks to the model, leading to the formulation

yt = µ + δ1DU1t + δ2DU2t + φ1DTb1,t + φ2DTb2,t + αyt−1 +

k∑

i=1

θi∆yt−i + et

where again an estimate of α significantly less than unity will provide evidence against
the I(1) null hypothesis.

In each of these models, the breakpoints Tb1, Tb2 and the appropriate lag order k are
unknown. The breakpoints are located by a two–dimensional grid search for the maximal
(most negative) t–statistic for the unit root hypothesis (α=1), while k is determined by
a set of sequential F–tests.

The Stata routines clemao2 and clemio2 implement the AO and IO models for
two structural breaks, respectively. If their estimates show that there is no evidence
of a second break in the series, the original Perron–Vogelsang techniques should be
used to test for a unit root in the presence of one structural break. For convenience,
the single–break routines are also provided in this package as routines clemao1 and
clemio1. In applying Dickey–Fuller tests in time series that may exhibit structural
breaks, one should consider the results forthcoming from the clem AO or IO routines.
If these estimates provide evidence of significant additive or innovational outliers in the
time series, then results derived from dfuller, pperron or dfgls are placed in doubt,
as this is evidence that the model excluding structural change is clearly misspecified
by the omission of relevant explanatory variables. Like zandrews, the clem AO or IO
routines may be applied to single time series within panel data. They require Stata 8.2.

To illustrate:

* clem_X.do 16jul2004 CFBaum

* Program illustrating use of Clemente, Montanes, Reyes

* structural break unit root tests

webuse m1gdp, clear
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label var ln_m1 "log(M1), SA"

label var t "calendar quarter"

clemao1 ln_m1, graph

more

clemio1 D.ln_m1, graph

more

clemao2 ln_m1 if tin(1959q1,2002q3), trim(0.10) maxlag(6) graph

We reproduce the output and graph below from the first test conducted in the pro-
gram above: that for the (log) level of M1, the U.S. money supply. We note that the
break detected by the test roughly corresponds to the timing of the 1987 U.S. stock-
market crash. Despite the structural break, we are unable to reject the null hypothesis
of a unit root in this series.

. clemao1 ln_m1, graph

Clemente-Monta~nés-Reyes unit-root test with single mean shift, AO model

ln_m1 T = 157 optimal breakpoint : 1987q3

AR( 1) du1 (rho - 1) const

Coefficient: 1.32622 -0.04842 5.58624
t-statistic: 20.073 -2.530
P-value: 0.000 -3.560 (5% crit. value)

3.4 Calculating statistics from moving–window samples

A natural concern in the presence of structural change might be the degree to which
descriptive statistics of a particular series are time–dependent. Covariance stationarity
of a time series requires that the mean and variance of the series are time–invariant
and that the remaining elements of the autocovariance function of the time series are
constant over time. A strict notion of stationarity requires that the entire distribution
function is time–invariant: e.g., the degree of skewness or kurtosis present in the series
should also be fixed over time.

Although Stata contains a command to compute statistics for subsamples—tabstat—
it cannot deal with overlapping subsamples. That is, tabstat works like any Stata
command prefixed with by:, so that if one defines each twelve months of a monthly
series as one element of a by–group, tabstat will handle the task of computing annual
statistics very nicely. On the other hand, it will not deal with computing statistics from
a sequence of by–groups that are formed by a “moving window” with, for example,
eleven months overlap. The mvsumm routine of Baum and Cox deals with this task. It
will compute any of the univariate statistics available from summ, detail and generate
a time series containing that statistic over the defined time series sample (requiring prior
use of tsset). One may specify the window width (the number of periods included in
the statistic’s computation) as an option, as well as the alignment of the resulting statis-
tic with the original series. This routine is especially handy for many tasks in financial
research, in which some measure of recent performance—the average share price over
the last twelve months, or the standard deviation (volatility) of the share price over
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Figure 2: Unit root test with additive outliers.

that interval—is often needed as a regressor. The mvsumm routine automatically will
operate separately on each time series of a panel if it detects that a panel calendar has
been established by tsset. This added flexibility was incorporated in its logic in a June
2004 update.

Similar to the underlying summarize, mvsumm will handle only a single time–series.
How might a moving correlation be generated? By a trivial set of modifications to
mvsumm, producing mvcorr. This routine allows one to compute a moving–window cor-
relation between two series; useful in finance, where the computation of an optimal
hedge ratio involves the computation of just such a correlation. For instance, we might
want to calculate the moving correlation between spot and futures prices of a particular
commodity. The mvcorr routine requires tsset, thus supporting time–series operators,
and it will allow the computation of moving autocorrelations. For example, mvcorr
invest L.invest, win(5) gen(acf) end will specify that the first sample autocorre-
lation of an investment series should be computed from a five–period window, aligned
with the last period of the window (via option end) and placed in the new variable
acf. Like mvsumm, mvcorr will operate automatically on each time series of a panel. It
requires Stata 8.2.
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As an example of its use:

* mvcorr_X.do 24jun2004 CFBaum

* Program illustrating use of mvcorr

webuse grunfeld, clear

drop if company>4

mvcorr invest mvalue, win(5) gen(rho)

forv i=1/4 {

tsline rho if company==‘i’, nodraw ti("Firm ‘i’") name(comp‘i’,replace)

local g "‘g’ comp‘i’"

}

graph combine ‘g’, ti("Investment vs Market Value: Moving Correlations by Firm")

3.5 Moving–window regression estimates

Last, we consider the creation of a Stata time–series routine to compute moving–window
regression estimates. Parallel to the rationale for mvsumm, one may indeed compute
regression estimates for non–overlapping subsamples via official Stata’s statsby. How-
ever, that command is not capable of dealing with overlapping subsamples, as that
would correspond to the same observation being a member of several by–groups.

The challenge in devising such a routine is not in the necessary computations, nor
even in the programming. Rather, it lies in providing a user interface that will allow the
researcher to specify, in some comprehensible form, what she or he would like calculated
for each crank of the window. The new routine rollreg provides that functionality with
logic borrowed heavily from a RATS routine originally authored by Simon van Norden at
the Bank of Canada (and available from the web–based SSC archive in RATS format).

The first concern with a moving–window estimation routine: how should the window
be designed? One obvious scheme would mimic mvsumm and allow for a window of fixed
width that is to be passed through the sample, one period at a time: the move(#)

option. (One could imagine something like a 12–month window that is to be advanced
to end–of–quarter months, but that could be achieved by merely discarding the interme-
diate window estimates). There are also applications in which an “expanding window”
is desired: that is, starting with the first τ periods, compute a set of estimates that
consider observations 1 . . . (τ + 1), 1 . . . (τ + 2), and so on. This sort of window corre-
sponds to the notion of the information set available to an economic agent at a point in
time (and to the scheme used to generate instruments in a dynamic panel data model
(cf. xtabond). Thus, rollreg also offers that functionality via its add(τ) option. For
completeness, the routine also offers the drop(τ) option, which implements a window
that initially takes into account the last τ periods, and then expands the window back
toward the beginning of the sample. This sort of moving–window estimate is useful in
considering the usefulness of past information in generating an ex ante forecast, using
a greater or lesser amount of that information in the computation. One of these three
options must be provided when executing rollreg.
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A further choice need be made: a moving–window regression will generate sequences
of results corresponding to each estimation period. From the design standpoint, should
those sequences be stored in columns of a matrix (which perhaps make them easier
to present in tabular format) or as additional variables in the current dataset (which
perhaps make them easier to include in computations, or in graphical presentations à
la tsgraph or tsline)? The latter, on balance, seems handier, and is implemented
in rollreg via the mandatory stub(string) option, which specifies that new variables
should be created with names beginning with string.

As an illustration:

* rollreg_X.do 07sep2004 CFBaum

* Program illustrating use of rollreg

webuse wpi1, clear

g t2 = t^2

rollreg D.wpi t t2, move(24) stub(wpiM) graph(summary)

more

rollreg D.wpi t t2, add(24) stub(wpiA) graph(summary)

more

rollreg D2.wpi LD.wpi LD2.wpi t, move(48) stub(wpiM2) robust graph(full)

All of the features of rollreg are accessible in a panel–data context when applied
to a single time series within the panel via an if or in qualifier. However, rolling
regressions certainly have their uses in a panel context. For instance, a finance researcher
may want to calculate a “CAPM beta” for each firm in a panel using a moving window
of observations, simulating the information set utilized by the investor at each point in
time. Therefore, rollreg has been enhanced to operate properly on a panel of time
series, where the same sequence of rolling regressions are computed for each time series
within the panel. In this context, graphical output is not available. Although rollreg

does not produce graphics when multiple time series are included from a panel, it is
straightforward to generate graphics using the results left behind by the routine. For
instance, we may use the following code to produce Figure 3:

* rollreg_X2.do 09sep2004 CFBaum

* Program illustrating use of rollreg on panels

webuse invest2, clear

tsset company time

rollreg market L(0/1).invest time, move(8) stub(mktM)

local dv ‘r(depvar)’

local rl ‘r(reglist)’

local stub ‘r(stub)’

local wantcoef invest

local m "‘r(rolloption)’(‘r(rollobs)’)"

forv i=1/4 {

qui reg ‘dv’ ‘rl’ if company==‘i’

local cinv = _b[‘wantcoef’]
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tsline ‘stub’_‘wantcoef’ if company==‘i’ & ‘stub’_‘wantcoef’<., ///

ti("company ‘i’") yli(‘cinv’) yti("moving beta") ///

name(comp‘i’,replace) nodraw

local all "‘all’ comp‘i’ "

}

graph combine ‘all’, ti("‘m’ coefficient of ‘dv’ on ‘wantcoef’") ///

ysize(4) xsize(4) col(2) ///

t1("Full-sample coefficient displayed") saving("‘wantcoef’.gph",replace)
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Figure 3: Rolling regression estimates.

It is interesting to note that companies 1 and 2 have broadly similar trajectories, as
do companies 3 and 4: and quite different from the former pair. A clear understanding
of the temporal stability of the coefficient estimates is perhaps more readily obtained
graphically.
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4 Final thoughts

The question I posed in the title of this paper, could Stata be considered the language of
choice for time series analysis?, remains an open question. Relative to more specialized
time series packages, Stata lacks some very useful features such as nonlinear systems
estimation, multivariate GARCH and simulation of a nonlinear model, as well as some
of the graphics tools useful for time series work (such as likelihood profile plots from
a model estimated via maximum likelihood). On the other hand, most users find it
difficult to work effectively in several packages’ differing syntax, and competing packages
generally do not possess Stata’s flexibility in handling non–time series applications,
data management, and the like. The most encouraging trend, in my mind, is that
official Stata’s developers have committed significant resources toward making Stata
a competitive time series package, and that many user–programmers have chosen to
develop and share their Stata code implementing a number of useful tools for time
series tasks lacking from official Stata. The last several years of development and the
rapid pace of innovation in the Stata community bode well for those who would like to
rely on Stata for a very sizable fraction of their research computing in the analysis of
time series and panel data.
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