
Course Bidding at Business Schools∗

Tayfun Sönmez

Koç University

and

M. Utku Ünver
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Abstract

Mechanisms that rely on course bidding are widely used at Business Schools in order to

allocate seats at oversubscribed courses. Bids play two key roles under these mechanisms:

Bids are used to infer student preferences and bids are used to determine who have bigger

claims on course seats. We show that these two roles may easily conßict and preferences

induced from bids may signiÞcantly differ from the true preferences. Therefore while these

mechanisms are promoted as market mechanisms, they do not necessarily yield market out-

comes. The two conßicting roles of bids is a potential source of efficiency loss part of which

can be avoided simply by asking students to state their preferences in addition to bidding and

thus �separating� the two roles of the bids. While there may be multiple market outcomes

under this proposal, there is a market outcome which Pareto dominates any other market

outcome.
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1 Introduction

Allocation of course seats to students is one of the major tasks of registrar�s offices at most uni-

versities. Since demand exceeds supply for many courses, it is important to design mechanisms to

allocate course seats equitably and efficiently. Many business and law schools rely on mechanisms

based on course bidding to serve this purpose. The following statement is from Kellogg Course

Bidding System Rules:1

The bidding is designed to achieve an equitable and efficient allocation of seats in

classes when demand exceeds supply.

While not all schools use the same version, the following simplest version captures the main

features of a vast majority of these mechanisms:

1. Each student is given a positive bid endowment to allocate across the courses he considers

taking.

2. All bids for all courses and all students are ordered in a single list and processed one at a

time starting with the highest bid. When it is the turn of a bid, it is honored if and only if

the student has not Þlled his schedule and the course has not Þlled all its seats.

When the process terminates, a schedule is obtained for each student. Similarly a market-

clearing �price� is obtained for each course which is simply the lowest honored bid unless the

course has empty seats and in that case the price is zero. The version we describe is closest to

the version used by the University of Michigan Business School and thus we refer it as UMBS

course-bidding mechanism. Schools that rely on this mechanism and its variants include Columbia

Business School, Haas School of Business at UC Berkeley, Kellogg Graduate School of Management

at Northwestern, Princeton University, and Yale School of Management.

UMBS course-bidding mechanism is inspired by the market mechanism and schools that rely

on this mechanism promote it as a market mechanism. Consider the following question and its

answer borrowed from University of Michigan Business School, Course Bidding Tips and Tricks:2

Q. How do I get into a course?

A. If you bid enough points to make market clear, a seat will be reserved for you in

that section of the course, up to class capacity.

In this paper we show that, UMBS course-bidding mechanism does not necessarily yield a

market outcome and this is a potential source of efficiency loss part of which can be avoided by an

1See http://www.kellogg.nwu.edu/script html/CBSDEMO/cbs demo.htm.
2See http://webuser.bus.umich.edu/Departments/Admissions/AcademicServices/CurrentUpdates/BiddingTipsTricks.htm.
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appropriate choice of a market mechanism. While UMBS course-bidding mechanism �resembles�

the market mechanism, there is one major aspect that they differ: Under UMBS course-bidding

mechanism, students do not provide direct information on their preferences and consequently

their schedules are determined under the implicit assumption that courses with higher bids are

necessarily preferred to courses with lower bids. For example consider the following statement

from the guidelines for Allocation of Places in Oversubscribed Courses and Sections at the School

of Law, University of Colorado at Boulder:3

The second rule is that places are allocated by the bidding system. Each student has

100 bidding points for each semester. You can put all your points in one course, section

or seminar, or you can allocate points among several. By this means, you express the

strength of your preferences.

The entire strategic aspect of course bidding is overseen under this interpretation of the role

of the bids. While the choice of bids is clearly affected by the preferences, it is not adequate to

use them as a proxy for the strength of the preferences. For example, if a student believes that

the �market clearing� price of a course will be low, it is suboptimal for him to bid highly for that

course regardless of how much he desires to be assigned a seat at that course. Indeed this point is

often made by the registrar�s offices. The following statement appears in the Bidding Instructions

of both Columbia Business School and Haas School of Business at UC Berkeley:4

If you do not think a course will Þll up, you may bid a token point or two, saving the

rest for courses you think will be harder to get into.

Here is the crucial mistake made under the UMBS course-bidding mechanism: Bids play two

important roles under this mechanism.

1. Bids are used to infer student preferences, and

2. bids are used to determine who has a bigger claim on each course seat and therefore choice

of a bid-vector is an important strategic tool.

These two roles may easily conßict: For example a student may be declined a seat at one

of his favorite courses, despite clearing the market, simply because he clears the market in �too

many� other less favorite courses. Indeed such bidding behavior is consistent with expected utility

maximization and thus it cannot be considered to be a mistake.

Once we understand what is wrong with UMBS course-bidding mechanism, it is relatively easy

�Þxing� it: The key is �separating� the two roles of the bids and asking students to

3See http://www.colorado.edu/law/wait list.html.
4See www.gsb.columbia.edu/students/biddinginstructionssummer.html and http://web.haas.berkeley.edu/Registrar.
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1. submit their preferences, in addition to

2. allocating their bid endowment across the courses.

In this way the registrar�s office no longer needs to �guess� what student preferences are. While

there may be several market outcomes in the context of course bidding, choosing the �right� one

is easy because there is a market outcome which Pareto-dominates any other market outcome. We

show this by relating course bidding to two-sided matching markets (Gale and Shapley [1962]). The

Pareto-dominant market outcome can be obtained via an extension of the celebrated Gale-Shapley

student-proposing deferred acceptance algorithm.

The mechanism design approach has recently been very fruitful in similar real-life resource

allocation problems. Two important examples are the design of FCC spectrum auctions (see

McMillan [1994], Cramton [1995], McAfee and McMillan [1996], Milgrom [2000]) and the re-

design of US hospital-intern market (see Roth and Peranson [1999], Roth [2002]). This approach

also has potential to inßuence policies on other important resource allocation problems. For

example, Abdulkadiroùglu and Sönmez [2003] show how ideas in two-sided matching literature can

be utilized to improve allocation of students to schools by school choice programs.5 This paper, to

the best of our knowledge, is the Þrst paper to approach course bidding from a mechanism design

perspective.6 We believe this approach may be helpful in improving course-bidding mechanisms

in practice.

The organization of the rest of the paper is as follows: In Section 2 we introduce the model and

in Section 3 we introduce course bidding as well as UMBS course-bidding mechanism. We devote

Section 4 to market equilibria and explain why UMBS course-bidding mechanism is not a market

mechanism. We devote Section 5 to Gale-Shapley Pareto-dominant market mechanism, Section

6 to interview-bidding , and conclude in Section 7. Finally in the Appendix we present all proofs

and describe some speciÞc versions of UMBS course-bidding mechanism which are currently used

at some leading schools.

2 Assignment of Course Seats to Students

There are a number of students each of whom should be assigned seats at a number of courses.

Let I = {i1, i2, . . . , in} denote the set of students and C = {c1, c2, . . . , cm} denote the set of
courses. Each course has a maximum capacity and similarly each student has a maximum number

of courses that he can take. Without loss of generality we assume that the maximum number of

5In Fall 2003 and in consultation with Alvin Roth, New York City Department of Education decided to use

Gale-Shapley student-optimal stable mechanism for allocation of nineth graders to public schools.
6Prior to our paper, Brams and Kilgour [2001] study allocation of course seats to students via a mechanism

which does not rely on course-bidding.
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courses that each student can take is the same.7 Let qI denote the maximum number of courses

that can be taken by each student and let qc denote the capacity of course c. We refer any set

of at most qI courses as a schedule, any schedule with qI courses as a full schedule, and any

schedule with less than qI courses as an incomplete schedule. Note that ∅ is also a schedule
and we refer it as the empty schedule. Each student has strict preferences over all schedules

including the empty schedule. We refer a course c to be desirable if the singleton {c} is preferred
to the empty schedule. Let Pi denote the strict preferences of student i over all schedules and Ri

denote the induced weak preference relation.

Assigning a schedule to each student is an important task faced by the registrar�s office. A

matching is an assignment of courses to students such that

1. no student is assigned more courses than qI , and

2. no course is assigned to more students than its capacity.

Equivalently a matching is an assignment of a schedule to each student such that no course

is assigned to more students than its capacity. Given a matching µ, let µi denote the schedule of

student i under µ and let µc denote the set of students enrolled in course c under µ. Different

registrar�s offices rely on different methods to assign course seats to students. However methods

based on course bidding is commonly used at business schools and law schools in order to assure

that the assignment process is fair and course seats are assigned to students who value them most.

3 Course Bidding

At the beginning of each semester, each student is given a bid endowment B > 0. In order to

keep the notation at a minimum we assume that the bid endowment is the same for each student.

Each student is asked to allocate his bid endowment across all courses. Let bi = (bic1 , bic2 , . . . , bicm)

denote the bid vector of student i where

1. bic ≥ 0 for each course c, and

2. Σc∈C bic = B.

Course bidding is inspired by the market mechanism and hence student bids are used

7It is straightforward to extend the model as well as the results

1. to the more general case where the maximum number of courses that can be taken by different students are

possibly different, and

2. to the case where each student can take a maximum number of credits.
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� to determine the market clearing bid for each course, and

� to determine a schedule for each student.

More speciÞcally consider the following mechanism which can be used to determine market

clearing bids as well as student schedules:

1. Order all bids for all courses and all students from highest to smallest in a single list.

2. Consider one bid at a time following the order in the list. When it is the turn of bid bic,

the bid is successful if student i has unÞlled slots in his schedule and course c has unÞlled

seats. If the bid is successful, then student i is assigned a seat at course c (i.e. the bid is

honored) and the process proceeds with the next bid in the list. If the bid is unsuccessful

then proceed with the next bid in the list without an assignment.

3. When all bids are handled, no student is assigned more courses than qI and no course is

assigned to more students than its capacity. Hence a matching is obtained. The market

clearing bid of a course is the lowest successful bid in case the course is full, and zero

otherwise.

Variants of this mechanism is used at many schools including University of Michigan Business

School, Columbia Business School, Haas School of Business at UC Berkeley, Kellogg School of

Management at Northwestern University, Princeton University, and Yale School of Management.

The most basic version described above is closest to the version used at University of Michigan

Business School and we refer it asUMBS course-bidding mechanism. While each of the above

schools use their own version, the points we make in this paper carry over. See the Appendix

for a description of how these versions differ. We next give a detailed example illustrating the

dynamics of the UMBS course-bidding mechanism.

Example 1: There are Þve students i1−i5 each of whom should take two courses and four courses
c1 − c4 each of which has three seats. Each student has 1000 bid points to allocate over courses
c1 − c4 and student bids are given in the following matrix:

bic c1 c2 c3 c4

i1 600 375 25 0

i2 475 300 225 0

i3 450 275 175 100

i4 200 325 350 125

i5 400 250 170 180
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Positive bids are ordered from highest to smallest as follows:

bi1c1−bi2c1−bi3c1−bi5c1−bi1c2−bi4c3−bi4c2−bi2c2−bi3c2−bi5c2−bi2c3−bi4c1−bi5c4−bi3c3−bi5c3−bi4c4−bi3c4−bi1c3
We next process each bid, one at a time, starting with the highest bid:

bi1c1 = 600: The bid is successful, student i1 is assigned a seat at course c1.

bi2c1 = 475: The bid is successful, student i2 is assigned a seat at course c1.

bi3c1 = 450: The bid is successful, student i3 is assigned a seat at course c1.

bi5c1 = 400: Course c1 has no seats left, the bid is unsuccessful.

bi1c2 = 375: The bid is successful, student i1 is assigned a seat at course c2.

bi4c3 = 350: The bid is successful, student i4 is assigned a seat at course c3.

bi4c2 = 325: The bid is successful, student i4 is assigned a seat at course c2.

bi2c2 = 300: The bid is successful, student i2 is assigned a seat at course c2.

bi3c2 = 275: Course c2 has no seats left, the bid is unsuccessful.

bi5c2 = 250: Course c2 has no seats left, the bid is unsuccessful.

bi2c3 = 225: Student i2 has a full schedule, the bid is unsuccessful.

bi4c1 = 200: Student i4 has a full schedule and course c1 has a full class, the bid is unsuccessful.

bi5c4 = 180: The bid is successful, student i5 is assigned a seat at course c4.

bi3c3 = 175: The bid is successful, student i3 is assigned a seat at course c3.

bi5c3 = 170: The bid is successful, student i5 is assigned a seat at course c3.

bi4c4 = 125: Student i4 has a full schedule, the bid is unsuccessful.

bi3c4 = 100: Student i3 has a full schedule, the bid is unsuccessful.

bi1c3 = 25: Student i1 has a full schedule and course c3 has a full class, the bid is unsuccessful.

The outcome of UMBS course-bidding mechanism isÃ
i1 i2 i3 i4 i5

c1, c2 c1, c2 c1, c3 c2, c3 c3, c4

!
with a market-clearing price-vector of (450,300,170,0).

Under the UMBS course-bidding mechanism, there can be two kinds of ties:

1. Bids of two or more students may be the same for a given course, and

2. a student may bid the same for two or more courses.

In practice, the Þrst kind of ties is broken based on a previously determined lottery and the

second kind of ties is broken based on the order student submits his bids. Based on this observation

and in order to simplify the analysis, throughout the paper we assume that there are no ties. That

is:

for all distinct i, j ∈ I and c ∈ C, if bic = bjc then bic = bjc = 0, and

for all distinct i ∈ I and c, d ∈ C, if bic = bid then bic = bid = 0.
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4 Market Mechanism

Schools that rely on UMBS course-bidding mechanism promote it as a market mechanism. In this

section we will explore to what extent this is appropriate.

In the context of course bidding, bids are the means to �buy� course seats. Therefore given a

bid matrix b = [bic]i∈I,c∈C and a list of preferences P = (Pi)i∈I , a market equilibrium can be

deÞned as a pair (µ, p) where

� µ is a matching and it is interpreted as a market outcome, and

� p = (pc)c∈C ∈ IRm+ is a price vector

such that

1. for any student i and any course c ∈ µi,

bic ≥ pc,

2. for any student i and any schedule s 6= µi,

if bic ≥ pc for all c ∈ s, then µiPis,

3. for any course c, if |µc| < qc then pc = 0.

Here (1) states that student i can afford any course in his schedule, (2) states that his schedule

µi is better than any other schedule he could afford, and (3) states that the market-clearing price

of a course is zero if it has empty seats.

We refer a mechanism to be a market mechanism if it always selects a market outcome.

4.1 Is UMBS Course-Bidding Mechanism a Market Mechanism?

Given that UMBS course-bidding mechanism is widely used in real-life implementation and given

that it is promoted as a market mechanism, it is important to understand whether this mechanism

indeed yields a market outcome. There is one major difficulty in this context: While the market

equilibrium depends on bids as well as student preferences, UMBS course-bidding mechanism

merely depends on bids. Business and law schools which use UMBS course-bidding mechanism

implicitly assume that bids carry sufficient information to infer the student preferences and thus

it is not necessary to inquire student preferences. Since higher bids are processed before lower

bids, they implicitly assume that

1. for any student i and any pair of courses c, d,

bic > bid if and only if {c}Pi{d}, and
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2. (a) for any student i, any course c, and any incomplete schedule s with c 6∈ s,

{c}Pi∅ if and only if (s ∪ {c})Pis, and

(b) for any student i, any pair of courses c, d, and any incomplete schedule s with c, d 6∈ s,

{c}Pi{d} if and only if (s ∪ {c})Pi(s ∪ {d}).

That is,

1. whenever a student bids higher for a course c than another course d, he necessarily prefers

a seat at c to a seat at d, and

2. this preference ranking is independent of the rest of his schedule.

The Þrst assumption relates bids to preferences over courses and we refer it as bid-

monotonicity. The second assumption relates preferences over schedules to preferences over

courses and it is known as responsiveness (Roth [1985]) in the matching literature. We are now

ready to relate UMBS course-bidding mechanism to market equilibria.

Proposition 1 Suppose the bid matrix b and the preference proÞle P satisfy bid-monotonicity

and responsiveness. Furthermore given b, let µ be the matching and p be the vector of market

clearing bids obtained via UMBS course-bidding mechanism. Then

1. the pair (µ, p) is a market equilibrium of the �economy� (b, P ) and

2. the matching µ is the unique market outcome of the �economy� (b, P ).

Therefore if bids are monotonic and preferences are responsive, then not only UMBS course-

bidding mechanism is a market mechanism but also it gives the unique market outcome. So a key

issue is whether it is appropriate to assume that bids are monotonic and preferences are responsive.

4.2 Are Bids Monotonic?

It turns out that bid-monotonicity is not a realistic assumption. In order to make this point, we

shall model how students choose their bids.

Most business and law schools provide data on market-clearing bids of previous years. Based

on recent years� bid-data and possibly some private information, students try to guess which

market-clearing bids they will face. Strictly speaking, it is possible that a student can inßuence

the market-clearing bids. However since there are hundreds of students in most applications, this

is rather unlikely. Throughout the paper we assume that students are price-takers and they
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do not try to inßuence the market clearing bids. Each student rather forms a belief on market-

clearing bids based on recent years� bid-data possibly together with some private information and

chooses an optimal-bid.

If a student believes that the market-clearing price of a course will be low, it is sub-optimal

for him to bid highly for that course regardless of how much he desires to be assigned a seat at

this course. Indeed, this point is often made by the registrar�s office. This not only violates bid-

monotonicity, but more importantly may result in a non-market outcome as well as in efficiency

loss. The following example is built on this simple intuition.

Example 2: Consider a student i who shall register up to qI = 5 courses and suppose there are

six courses. His utility for each individual course is given in the following table

Course c1 c2 c3 c4 c5 c6

Utility 150 100 100 100 100 100

and his utility for a schedule is additively-separable

Ui(s) = Σc∈sUi(c).

Student i has a total of B = 1001 points to bid over courses c1 − c6 and the minimum acceptable

bid is 1. Based on previous years� bid-data, student i has the following belief on the market

clearing bids:

� Market clearing bid for course c1 will be 0 with probability 1.

� Market clearing bids for the courses in c2−c6 have independent identical cumulative distribu-
tion functions and for any of these courses c, the cdf F ic is strictly concave with F

i
c(200) = 0.7,

F ic(250) = 0.8, and F
i
c(1001) = 1. That is, for each of the courses c2 − c6, student i believes

that the market-clearing bid will be no more than 200 with 70% probability and no more

than 250 with 80% probability.

Assuming that he is an expected utility maximizer, we next Þnd the optimal bid-vector for

student i: By Þrst order necessary conditions and symmetry, student i

� shall bid 1 for course c1, and

� the same value for each course c ∈ {c2, c3, c4, c5, c6} for which he devotes a positive bid.

Therefore the optimal bid-vector is in the form: bic1 = 1, bic = 1000/k for any k of courses

c2 − c6. We next derive the expected utility of each such possibility.
Case 1 : b1ic1 = 1, b

1
ic2
= b1ic3 = b

1
ic4
= b1ic5 = b

1
ic6
= 200.
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u1 = Pr{pc2 ≤ 200, pc3 ≤ 200, pc4 ≤ 200, pc5 ≤ 200, pc6 ≤ 200} × Ui({c2, c3, c4, c5, c6})
+ 5Pr {pc2 > 200, pc3 ≤ 200, pc4 ≤ 200, pc5 ≤ 200, pc6 ≤ 200} × Ui({c1, c3, c4, c5, c6})
+ 10Pr{pc2 > 200, pc3 > 200, pc4 ≤ 200, pc5 ≤ 200, pc6 ≤ 200} × Ui({c1, c4, c5, c6})
+ 10Pr{pc2 > 200, pc3 > 200, pc4 > 200, pc5 ≤ 200, pc6 ≤ 200} × Ui({c1, c5, c6})
+ 5Pr{pc2 > 200, pc3 > 200, pc4 > 200, pc5 > 200, pc6 ≤ 200} × Ui({c1, c6})
+ Pr{pc2 > 200, pc3 > 200, pc4 > 200, pc5 > 200, pc6 > 200} × Ui({c1})

= 0.75 × 500 + 5× 0.74(1− 0.7)× 550 + 10× 0.73(1− 0.7)2 × 450
+ 10× 0.72(1− 0.7)3 × 350 + 5× 0.7(1− 0.7)4 × 250 + (1− 0.7)5 × 150

= 474.79

Case 2 : b2ic1 = 1, b
2
ic2
= b2ic3 = b

2
ic4
= b2ic5 = 250, b

2
ic6
= 0.

u2 = Pr{pc2 ≤ 250, pc3 ≤ 250, pc4 ≤ 250, pc5 ≤ 250} × Ui({c1, c2, c3, c4, c5})
+ 4Pr {pc2 > 250, pc3 ≤ 250, pc4 ≤ 250, pc5 ≤ 250} × Ui({c1, c3, c4, c5})
+ 6Pr {pc2 > 250, pc3 > 250, pc4 ≤ 250, pc5 ≤ 250} × Ui({c1, c4, c5})
+ 4Pr {pc2 > 250, pc3 > 250, pc4 > 250, pc5 ≤ 250} × Ui({c1, c5})
+ Pr {pc2 > 250, pc3 > 250, pc4 > 250, pc5 > 250} × Ui({c1})

= 0.84 × 550 + 4× 0.83 × (1− 0.8)× 450 + 6× 0.82 × (1− 0.8)2 × 350
+ 4× 0.8× (1− 0.8)3 × 250 + (1− 0.8)4 × 150

= 470.0

Since expected utility of bidding for three or less of courses c2 − c6 can be no more than
150 + 3× 100 = 450, the optimal bid vector for student i is b1i with an expected utility of 474.79.
There are two important observations we shall make. The Þrst one is an obvious one: The optimal

bid for the most deserved course c1 is the smallest bid violating bid-monotonicity. The second

point is less obvious but more important: Under the optimal bid b1i , student i is assigned the

schedule s = {c2, c3, c4, c5, c6} with probability 0.75 = 0.168. So although the bid b1ic1 = 1 is high
enough to claim a seat at course c1, since it is the lowest bid, student i is not assigned a seat

in an available course under UMBS course-bidding mechanism. Therefore the outcome of UMBS

course-bidding mechanism cannot be supported as a market outcome and this weakness is a direct

source of efficiency loss. To summarize:

1. how much a student bids for a course under UMBS course-bidding mechanism is not neces-

sarily a good indication of how much a student wants that course,
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2. as an implication the outcome of UMBS course-bidding mechanism cannot always be sup-

ported as a market outcome, and

3. UMBS course-bidding mechanism may result in unnecessary efficiency loss due to not seeking

direct information on student preferences.

5 Gale-Shapley Pareto-Dominant Market Mechanism

While UMBS course-bidding mechanism is very intuitive, it makes one crucial mistake: Bids play

two possibly conßicting roles under this mechanism:

1. Bids are used to determine who has a bigger claim on each course seat and therefore choice

of a bid-vector is an important strategic tool.

2. Bids are used to infer student preferences.

As Example 1 clearly shows, these two roles can easily conßict. Fortunately it is possible to

�Þx� this deÞciency by utilizing the theory on two-sided matching markets developed by David

Gale, Lloyd Shapley, Alvin Roth and their followers. The key point is �separating� the two roles of

the bids. Under the proposed two-sided matching approach, students are not only asked to allocate

their bid endowment over courses but also to indicate their preferences over schedules. In order to

simplify the exposition, we initially assume that preferences over schedules are responsive. Recall

that under responsiveness students can simply reveal their preferences over individual courses and

the empty schedule. Later on we will show to what extent responsiveness can be relaxed.

We are now ready to adopt a highly inßuential mechanism in two-sided matching literature to

course bidding.

Gale-Shapley Pareto-Dominant Market Mechanism:

1. Students are ordered with an even lottery to break ties.

2. Each student strictly ranks the courses in order to indicate his preferences. It is sufficient

to rank only desirable courses.

3. Each student chooses a bid-vector.

4. Based on stated preferences, bids, and the tie-breaking lottery, a matching is obtained in

several steps via the following student-proposing deferred acceptance algorithm.

Step 1 : Each student proposes to his top qI courses based on his stated preferences. Each

course c rejects all but the highest bidding qc students among those who have proposed.
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Those who are not rejected are kept on hold. In case there is a tie, the tie-breaking lottery

is used to determine who is rejected and who will be kept on hold.

In general, at

Step t : Each student who is rejected from k > 0 courses in Step (t-1) proposes to his

best remaining qI − k courses based on his stated preferences. In case less than qI − k
courses remain, he proposes all remaining courses. Each course c considers the new proposals

together with the proposals on hold and rejects all but the highest bidding qc students. Those

who are not rejected are kept on hold. In case there is a tie, the tie-breaking lottery is used

to determine who is rejected and who will be kept on hold.

The procedure terminates when no proposal is rejected and at this stage course assignments

are Þnalized.

Let µGS denote the outcome of Gale-Shapley Pareto-dominant market mechanism and let a

price-vector p be determined as follows: For each course c with full capacity, pc is the lowest

successful bid and for each course c with empty seats, pc = 0.

Let P = (Pi)i∈I be the proÞle of (true) student preferences over schedules. Under respon-
siveness, for each student i the preference relation Pi induces a strict ranking of all courses.

We already assumed that students are price takers and thus they do not try to inßuence the

market-clearing bids. Therefore under price-taking behavior, the stated preferences of students

over individual courses are their true preferences.8 We are now ready to show that Gale-Shapley

Pareto-dominant market mechanism is indeed a market mechanism.

Proposition 2 Let P denote the list of responsive student preferences over schedules, b denote

the bid-matrix, µGS be the outcome of Gale-Shapley Pareto-dominant market mechanism, and p be

the induced price-vector. The pair (µGS, p) is a market equilibrium of the economy (b, P ) provided

that students are price-takers.

It is easy to show that in general there can be several market outcomes. Consider the following

simple example.

Example 3: There are two students i1, i2 each of whom should take one course and two courses c1,

c2 each of which has one seat. The bid endowment of each student is 1000 and student preferences

as well as bids are as follows:

8While natural, price-taking behavior is indeed stronger than what we need to assure that students state their

preferences over courses truthfully: Even if students attempt to inßuence the market-clearing bids, a natural

attempt under Gale-Shapley Pareto-dominant market mechanism is via carefully choosing their bids and not by

misrepresenting their preferences.
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Pi1 : {c1}− {c2}− ∅
bi1 : (200, 800)

Pi2 : {c2}− {c1}− ∅
bi2 : (700, 300)

Here the pair (µ, p) and the pair (ν, q) are both market equilibria where

µ =

Ã
i1 i2

c1 c2

!
, p = (200, 300) and ν =

Ã
i1 i2

c2 c1

!
, q = (800, 700).

Nevertheless the outcome of Gale-Shapley Pareto-dominant market mechanism is the �right�

one: Thanks to its direct relation with two-sided matching markets, the outcome of this mechanism

Pareto dominates any other market outcome.

Proposition 3 Let P denote the list of responsive student preferences over schedules, b denote

the bid-matrix, and µGS be the outcome of Gale-Shapley Pareto-dominant market mechanism.

Matching µGS Pareto-dominates any other matching µ that is a market outcome of economy (b, P ).

5.1 Gale-Shapley Pareto-Dominant Market Mechanism and Efficiency

Replacing UMBS course-bidding mechanism with Gale-Shapley Pareto-dominant market mecha-

nism eliminates inefficiencies that result from registrar�s offices using bids as a proxy of the strength

of the preferences. However Gale-Shapley Pareto-dominant market mechanism does not eliminate

all inefficiencies in general. While this mechanism Pareto dominates any other market mechanism,

there may be situations where all market outcomes are Pareto inefficient. The following example,

which is inspired by a similar example in Roth [1982], makes this point.9

Example 4: There are three students i1, i2, i3 each of whom should take one course and three

courses c1, c2, c3 each of which has one seat. The bid endowment of each student is 1000 and

student preferences as well as bids are as follows:

Pi1 : {c1}− {c2}− {c3}− ∅
bi1 : (300, 500, 200)

Pi2 : {c2}− {c1}− {c3}− ∅
bi1 : (400, 350, 250)

Pi3 : {c1}− {c3}− {c2}− ∅
bi3 : (360, 310, 330)

Let (µ, p) be a market equilibrium of this economy. If pc1 ≤ 300 then both students i1, i3

demand a seat at course c1 causing excess demand; hence pc1 > 300 and the best student i1 can

hope is a seat at his second choice course c2. Given this, if pc2 ≤ 350 then both students i1, i2

demand a seat at course c2 causing excess demand; hence pc2 > 350. But then the best student i2

can hope is a seat at his second choice course c1 and if pc1 ≤ 360 then both students i2, i3 demand
9See also Balinski and Sönmez [1999], Ergin [2002], and Abdulkadiroùglu and Sönmez [2003] for similar examples

in the context of school-student matching.

14



a seat at course c1 causing excess demand; hence pc1 > 360. Given pc1 > 360 and pc2 > 350, the

matching

µ =

Ã
i1 i2 i3

c2 c1 c3

!
is the only matching which can be supported as a market outcome. This matching can be sup-

ported with the price-vector p = (400, 500, 330) among other price-vectors. Nevertheless this

unique market outcome is Pareto dominated by the matching

ν =

Ã
i1 i2 i3

c1 c2 c3

!
.

5.2 To What Extent Responsiveness Assumption Can Be Relaxed?

Responsiveness is a very convenient assumption because it simpliÞes the task of indicating pref-

erences over schedules to the much simpler task of indicating preferences over courses. However

in practice it may be violated because of many reasons. For instance:

1. A student may wish to bid for different sections of the same course. More generally a student

may bid for two courses he considers to be �substitutes� and may wish to take one or other

but not both.

2. There can be additional difficulties due to timing of courses. A student may bid for two

courses meeting at the same time and hence it may not be possible to assign him seats in

both courses due to scheduling conßicts.

Therefore it is important to understand to what extent responsiveness assumption can be

relaxed so that Gale-Shapley Pareto-dominant market mechanism is still well-deÞned. We need

further notation in order to answer this question.

Given a preference relation Pi over schedules (not necessarily responsive) and given a subset

of courses D ⊆ C, let Chi(D) denote the best schedule from D. A preference relation Pi is

substitutable (Kelso and Crawford [1982]) if for any set of courses D ⊆ C and any pair of

courses c, d ∈ D,
c, d ∈ Chi(D) implies c ∈ Chi(D \ {d}).

Substitutability condition simply states that if two courses are both in the best schedule from a

set of available courses and if one of the courses becomes unavailable, then the other one is still

in best schedule from the smaller set of available courses. Substitutability is a milder assumption

on schedules than responsiveness and complications due to bidding for several alternate courses

or courses with conßicting schedules are easily handled under substitutability. That is because,

one can easily extend Gale-Shapley Pareto-dominant market mechanism when preferences are

substitutable.
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Gale-Shapley Pareto-Dominant Market Mechanism under Substitutable Preferences:

1. Students are ordered with an even lottery to break ties.

2. Each student strictly ranks the schedules in order to indicate his substitutable preferences.10

3. Each student chooses a bid-vector.

4. Based on stated preferences, bids and the tie-breaking lottery a matching is obtained in

several steps via the following student-proposing deferred acceptance algorithm.

Step 1 : Each student proposes to courses in his best schedule out of all courses. Each course

c rejects all but the highest bidding qc students among those who have proposed. Those

who are not rejected are kept on hold. In case there is a tie, the tie-breaking lottery is used

to determine who is rejected and who will be kept on hold.

In general, at

Step t : Each student who is rejected from one or more courses in Step (t-1) proposes to

courses in his best schedule out of those courses which has not rejected him. By substi-

tutability this will include all courses for which he is on hold. Each course c considers the

new proposals together with the proposals on hold and rejects all but the highest bidding qc

students. Those who are not rejected are kept on hold. In case there is a tie, the tie-breaking

lottery is used to determine who is rejected and who will be kept on hold.

The procedure terminates when no proposal is rejected and at this stage course assignments

are Þnalized.

Thanks to the corresponding results in two-sided matching markets, Proposition 2 and Propo-

sition 3 immediately extends: The outcome of Gale-Shapley Pareto-dominant market mechanism

under substitutable preferences is a market outcome and it Pareto dominates any other market

outcome. In the Appendix we prove these results for this more general case with substitutable

preferences.

What if preferences are not substitutable? For instance what happens if there are complemen-

tarities and a student wishes to take two courses together but does not wish to take either one

in case he cannot take the other? Recent literature on related models with indivisibilities such as

Gul and Stacchetti [1999], Milgrom [2000,2003] suggest that such complementarities might be bad

news. Our next result is inspired by the similar negative results in these papers and it shows that

the course-bidding approach for individual courses collapses unless preferences are substitutable.

10If only violation of responsiveness is due to conßicting schedules or bidding for alternate courses, simply

indicating preferences over courses and indicating the constraints is sufficient.
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More speciÞcally we show that a market equilibrium may not exist unless preferences are sub-

stitutable.11 Before we formally state our result, we present a detailed example which illustrates

why the lack of substitutability might be bad news.

Example 5: Let C = {c1, c2, c3, c4, c5} be the set of courses, qI = 2 for each student, and qc = 1
for each course c. Suppose the preferences of student i1 is such that

Pi1 : {c1, c2}− {c1, c3}− {c1, c4}− {c3, c4}− {c2, c3}− {c2, c4}− {c1}− {c2}− {c3}− {c4}−∅− s
where s is any schedule that includes course c5. Preference relation Pi1 is not substitutable:

Chi1 (C) = {c1, c2} and yet c2 /∈ Chi1 (C\{c1}) = {c3, c4}.
We will construct a student set J , responsive preferences for each j ∈ J and a bid matrix b

such that the resulting economy does not have a market equilibrium.

Let J = {i2} and let Pi2 be any responsive preference relation where c2, c5, c1 are the only
desirable courses with c2Pi2c5Pi2c1. Let I = {i1, i2} be the entire set of students and let the bid
matrix b = [bic]i∈I,c∈C be as follows:

bi2c1 = bi2c5 > bi1c1 = bi1c2 = bi1c3 = bi1c4 > bi2c2 > bi1c5 = bi2c3 = bi2c4 = 0.

We next show that the resulting economy does not have a market equilibrium. Suppose on

the contrary, (µ, p) is a market equilibrium of the resulting economy.

First, observe that c5 ∈ µi2: Since Pi2 is responsive, student i2 prefers any schedule s containing
course c5 to any other schedule s

0 obtained from s by replacing c5 by any other course. Moreover

he is the highest bidder for course c5 and therefore he shall be assigned a seat at course c5 at any

market outcome.

Next, observe that c3, c4 /∈ µi2: This is simply because dropping either of these courses will
improve his schedule and since he can afford the schedule µi2, he can afford any subset of µi2 as

well.

Therefore, we are left with three possibilities: µi2 = {c5}, or µi2 = {c1, c5}, or µi2 = {c2, c5}.
We will show that none of the three can be the case at a market equilibrium.

Case 1. µi2 = {c5}: Since µ is a market outcome, pc5 ≤ bi2c5. If c1 ∈ µi1 then pc1 ≤ bi1c1 < bi2c1.
Otherwise, c1 has an empty seat and pc1 = 0. In either case, bi2c1 ≥ pc1 . By responsiveness we

have {c1, c5}Pi2µi2 contradicting (µ, p) is a market equilibrium.
Case 2. µi2 = {c1, c5}: Since µ is a market outcome, pc1 ≤ bi2c1 and pc5 ≤ bi2c5. Suppose c2 /∈ µi1.
Then course c2 has an empty seat, and hence pc2 = 0. But then student i2 prefers replacing course

c1 with course c2 by responsiveness contradicting that (µ, p) is a market equilibrium. Hence

c2 ∈ µi1. Since c1, c5 ∈ µi2 , there are three possibilities:
11Intuitively bidding for individual courses is not appropriate when preferences have complementarities and

instead one may consider course allocation mechanisms which rely on bidding for schedules (instead of courses).

University of Chicago Business School uses one such mechanism. Analysis of schedule-bidding mechanisms is very

important but it is beyond the scope of our paper.
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a. µi1 = {c2}: In this case each of the courses c3, c4 has an empty seat and therefore pc3 =
pc4 = 0.

b. µi1 = {c2, c3}: In this case pc3 ≤ bi1c3 and since course c4 has an empty seat, pc4 = 0.

c. µi1 = {c2, c4}: In this case pc4 ≤ bi1c4 and since course c3 has an empty seat, pc3 = 0.

In any of these cases, student i1 not only affords the schedule {c3, c4} but also prefers it to his
schedule µi1 contradicting (µ, p) is a market equilibrium.

Case 3. µi2 = {c2, c5}: Since µ is a market outcome, pc2 ≤ bi2c2 Therefore bi1c2 > bi2c2 implies

bi1c2 > pc2 . Moreover if c1 ∈ µi1 , then pc1 ≤ bi1c1 and otherwise course c1 has an empty seat and
pc1 = 0. In either case student i1 can afford a seat at course c1. But then, student i1 can afford

his top schedule {c1, c2} contradicting (µ, p) is a market equilibrium.
We next generalize this observation.

Proposition 4 Let C be the set of courses and suppose there is an agent i whose preferences Pi

over schedules is not substitutable. If the number of courses in C is high enough, there exists a

bid vector bi for student i and a set of students J with responsive preferences such that for some

bids (bj)j∈J of these students there is no market equilibrium.

6 Interview Bidding

In many business schools (such as Michigan, UCLA, Yale, etc.) while part of the interview slots are

closed and candidates are invited by companies, the remaining slots are open and candidates are

selected through a bidding procedure which is very much like UMBS course-bidding mechanism.

There is, however, one important difference: In interview-bidding, students do not have capacity

constraints and they can be scheduled as many interviews as their bids allow. A very natural

question is whether this UMBS interview-bidding mechanism suffers the same difficulties

as its course-bidding version. The answer turns out to be negative, provided that no less than

qa students bid for the interview slots of each Þrm a and student preferences satisfy a minimal

monotonicity condition: Suppose for any student i, any company a, and any schedule s with

a 6∈ s,
(s ∪ {a})Pis.

This condition simply states that having additional interviews is good news! We are ready to

present our Þnal result.

Proposition 5 Let P be a list of monotonic preferences over schedules and suppose the bid matrix

b is such that
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1. for any distinct pair of students i, j and any company a, if bia = bja then bia = bja = 0,
12

and

2. for any company a, |{i ∈ I : bia > 0}| ≥ qa.

Then the outcome of UMBS interview-bidding mechanism gives the unique market outcome of

economy (P, b).

7 Conclusion

Mechanisms that rely on course bidding are widely used at Business Schools and Law Schools

in order to allocate seats at oversubscribed courses. Bids play two important roles under these

mechanisms:

1. Bids are used to infer student preferences over schedules, and

2. bids are used to determine who has a bigger claim on each seat.

We have shown that these two roles may easily conßict and the preferences induced from bids

may signiÞcantly differ from the true preferences. Therefore, while these mechanisms are promoted

as market mechanisms, they are not truly market mechanisms. The two conßicting roles of the

bids may easily result in efficiency loss due to inadequately using bids as a proxy for the strength

of the preferences. We have shown that under a �true� market mechanism the two roles of the

bids shall be separated and students should state their preferences in addition to bidding over

courses. In this way, registrar�s offices no longer need to �guess� student preferences and they can

directly use the stated preferences. This will also give registrar�s offices a more reliable measure of

underdemanded courses and in case this measure is used in policy decisions, more solid decisions

can be given.13

One possible appeal of inferring preferences from bids is that there is a unique market outcome

of the induced economy. On the contrary, once students directly submit their preferences in

addition to allocating their bids, there may be several market outcomes. Fortunately there exists

a market outcome which Pareto dominates any other market outcome and therefore multiplicity

12Recall that in practice such ties are broken with a lottery and two identical bids are treated differently.

Therefore for practical purposes our assumption is without loss of generality.
13For example, the following statement from the Bidding Instructions at Haas School of Business, UC Berkeley

shows that low bids may result in cancellation of courses:

Bidding serves three functions. First, it allows us to allocate seats fairly in oversubscribed classes.

Second, it allows us to identify and cancel courses with insufficient demand. Third, . . . .
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of market outcomes is not a serious drawback for our proposal. It is important to emphasize that

although relying on the Pareto-dominant market mechanism eliminates inefficiencies based on

�miscalculation� of student preferences, it does not eliminate all inefficiencies. There is a potential

conßict between Pareto efficiency and market equilibria in the context of course bidding and

even the Pareto-dominant market equilibria cannot escape from �market failure.� Furthermore if

student preferences do not satisfy a condition known as substitutability, then course bidding loses

much of its appeal as a market equilibrium may seize to exist.

A Appendix: Variants of UMBS Course-Bidding Mecha-

nism

University of Michigan Business School: The real-life version slightly differs from the version

described in the main body of the paper. In the real-life version, students can bid for multiple

sections of the same course or several courses that meet at the same time. In the real-life mecha-

nism, once a bid of a student is successful for a course, the remaining bids of this student for any

other course with such scheduling conßicts is dropped.

Yale School of Management: Uses the same mechanism with the University of Michigan

Business School except students cannot bid for more than Þve and less than four courses (where

the normal course load is four courses).

Columbia Business School:

� The real-life version of UMBS course-bidding mechanism is used for two rounds.

� The Þrst round is the �main� round whereas in Round 2 students are expected to Þll the
gaps in their Þrst round schedule.

� Unsuccessful bids from Round 1 are returned to students to be used in Round 2.

� Students can only bid for undersubscribed courses in Round 2.

Haas School of Business, UC Berkeley: Uses the same two-round version with the Columbia

Business School except students cannot bid for more than a Þxed number of units.

Kellogg School of Management, Northwestern University:

� The bid endowment should be used over two quarters by Þrst year MBA students and over
three quarters by second year MBA students. Points not used in Þrst year do not carry over

to second year.
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� Each quarter there are two rounds of bidding similar to the bidding at Columbia Business
School, except

� students can bid for at most Þve courses (where the normal course load is four courses),

� students are charged for the market clearing bids, not their own bids, and

� bids from the second rounds carry over to the next quarter unless bidding is for the

last quarter of the year.

� Hence bidding for the second quarter of the Þrst year and the third quarter of the second
year is analogous to course bidding at Columbia and Haas.

Princeton University:

� Undergraduate students cluster alternate courses together and strictly rank the courses
within each cluster. Students will be assigned no more than one course from each cluster.

� Students allocate their bid endowment over clusters (as opposed to individual courses). The
bid for each course in a cluster is equated to the bid for the cluster. Based on these bids,

course allocation is implemented via a variant of UMBS course-bidding mechanism where

� the bids of a student for courses in a cluster are ordered subsequently based on the

ranking within the cluster, and

� once a bid of a student is successful for a course in a cluster, his bids for all lower

ranked courses in the same cluster are dropped.

B Appendix: Proofs of Propositions

Proof of Proposition 1 : Suppose the bid matrix b and the preference proÞle P satisfy bid-

monotonicity and responsiveness. Furthermore given b, let µ be the matching and p be the vector

of market clearing bids obtained via UMBS course-bidding mechanism.

1. We Þrst show that the pair (µ, p) is a market equilibrium of the economy (b, P ). Market-

clearing bid of a course is the lowest successful bid in case the course is full and zero otherwise.

Hence (a) for any student i and any course c ∈ µi, we have bic ≥ pc, and (b) for any course
c with |µc| < qc we have pc = 0. All that remains is showing each student is assigned the
best schedule he can afford. Take any student i. By construction of matching µ via UMBS

course-bidding mechanism, if there is a course c such that bic ≥ pc and yet c 6∈ µi then
not only µi is a full schedule but also bid > bic for any course d ∈ µi. Therefore if there is
any course c student i affords but not assigned, then he has a full schedule and course c is
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worse than any of the courses he is assigned by bid-monotonicity. Therefore responsiveness

implies, for any student i and any schedule s 6= µi,

if bic ≥ pc for all c ∈ s, then µiPis

showing that (µ, p) is a market equilibrium.

2. We next show that µ is the only market outcome of the economy (b, P ). Suppose not and let

(ν, r) be a market equilibrium where ν 6= µ. As in UMBS course-bidding mechanism, order
all bids for all courses in a single list starting with the highest bid. Let bic be the highest

bid such that c ∈ µi ∪ νi and yet c 6∈ µi ∩ νi. Loosely speaking, bic is the highest bid that
is �accommodated� under one of the matchings µ, ν but not both. Since ν 6= µ, such a bid
exists. We have two cases to consider.

Case 1 : c ∈ νi, c 6∈ µi (i.e. while bic is an unsuccessful bid under the UMBS course-bidding
mechanism, student i is assigned a seat at course c under ν.)

Why was bid bic unsuccessful under the UMBS course-bidding mechanism at the Þst place?

There are two possibilities.

(a) Student i Þlled his capacity under µ: Since bic is the highest bid such that c ∈ µi ∪ νi
and yet c 6∈ µi ∩ νi, we have µi ⊆ νi. But since c ∈ νi, c 6∈ µi we have |νi| > |µi|. This
contradicts student i Þlled his capacity by bid bic.

(b) Course c Þlled its capacity under µ: The argument is very similar to argument in part

(a). Since bic is the highest bid such that c ∈ µi ∪ νi and yet c 6∈ µi ∩ νi, each student
with a successful bid for c under UMBS course-bidding mechanism is assigned a seat

at course c under ν as well. But in addition student i is also assigned a seat at course

c under ν contradicting course c Þlled its capacity under µ.

Case 2 : c 6∈ νi, c ∈ µi (i.e. bic is a successful bid under the UMBS course-bidding mechanism
but student i is not assigned a seat at course c under ν.)

Again there are two possibilities.

(a) rc ≤ bic: Since bids are monotonic and since bic is the highest bid such that c ∈ µi ∪ νi
and yet c 6∈ µi ∩ νi, there is no course d such that d ∈ νi, d 6∈ µi, and dPic. Therefore
either student i has an incomplete schedule under ν or there is a course e such that

e ∈ νi, e 6∈ µi, and cPie. Since rc ≤ bic, student i can afford a seat at course c and

therefore in either case νi cannot be the best schedule by responsiveness: If νi is an

incomplete schedule then (νi∪{c})Piνi and if there is a course e such that e ∈ νi, e 6∈ µi,
and cPie then [(νi \ {e}) ∪ {c}]Piνi both contradicting (ν, r) is a market equilibrium.
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(b) rc > bic: No agent j with bjc < rc is assigned a seat at course c under ν by deÞnition

of a market equilibrium. Furthermore any agent k whose bid bkc for course c is higher

than bic and who is assigned a seat at course c under µ is assigned a seat at course c

under ν as well. That is because, bic is the highest bid such that c ∈ µi ∪ νi and yet
c 6∈ µi∩νi. Therefore c 6∈ νi implies course c Þlls strictly more seats under µ than under
ν. Hence course c does not have a full class under ν contradicting rc > bic ≥ 0.

Therefore for any market equilibrium (ν, r), we have ν = µ completing the proof. ♦

Course Bidding and Two-Sided Matching Markets: We next relate course bidding with

two-sided matching markets in order to prove Propositions 2 and 3.

Let I be the set of students, C be the set of courses, qI be the maximum number of courses

each student can take, qC = (qc)c∈C be the list of course capacities, and b = [bic]i∈Ic∈C be the bid

matrix. Let PI = (Pi)i∈I be the list of student preferences over schedules and suppose preferences

are substitutable. We simply refer each six-tuple (I, C, qI , qC , PI , b) as a problem.

Given a problem, construct a two-sided matching market as follows: In addition to students

who have preferences over schedules (i.e. sets of courses of size at most qI), pretend as if each

course c is also an agent who has strict preferences Pc over groups of students of size at most qc.

Furthermore suppose that preferences of courses are responsive and based on student bids. That

is, for each college c,

1. for any pair of students i, j, {i}Pc{j} if and only if bic > bjc,

2. for any student i, and any group of students J with |J | < qc, i 6∈ J ,

(J ∪ {i})PcJ,

3. for any pair of students i, j, and any group of students J with i, j 6∈ J as well as |J | < qc,

(J ∪ {i})Pc(J ∪ {j}) if and only if {i}Pc{j}.

Let PC = (Pc)c∈C be the list of course preferences. Given a problem (I, C, qI , qC , PI , b) we refer
the six-tuple (I, C, qI , qC , PI , PC) as an induced two-sided matching market.

For a problem, the central concept is a market equilibrium. For a two-sided matching market

the central concept is pairwise stability: A matching µ is pairwise stable if there is no unmatched

student-course pair (i, c) such that

1. (a) student i has an incomplete schedule and (µi ∪ {c})Piµi or
(b) student i has a course d in his schedule such that [(µi \ {d}) ∪ {c}]Piµi
and
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(a) course c has an empty slot under µ or

(b) course c has a student j in its class such that [(µc \ {j}) ∪ {i}]Pcµc.

The following well-known result is due to Blair [1988].

Proposition 6 Suppose both students and courses have substitutable preferences over other side

of the market. Then

1. student-proposing deferred acceptance algorithm yields a pairwise stable matching, and

2. this pairwise stable matching is at least as good as any pairwise stable matching for any

student.

Proposition 6 together with the following lemma will be key to prove Propositions 2 and 3.

Lemma 1 Let (I, C, qI , qC , PI , b) be a problem and (I, C, qI , qC , PI , PC) be any of its induced two-

sided matching markets. A matching µ is a market outcome of the problem (I, C, qI , qC , PI , b) if

and only if it is a pairwise stable matching of the two-sided matching market (I, C, qI , qC , PI , PC).

Proof of Lemma1 : Let (µ, p) be a market equilibrium of the problem (I, C, qI , qC , PI , b) and

suppose µ is not pairwise stable for the two-sided matching market (I, C, qI , qC , PI , PC). There

are four possibilities.

Case 1 : There exists an unmatched student-course pair (i, c) such that

� student i has an incomplete schedule and (µi ∪ {c})Piµi, and

� course c has an empty slot.

Since c has an empty slot, pc = 0. But then whenever student affords schedule µi he can afford

schedule s = µi ∪ {c} as well and hence sPiµi for an affordable schedule s contradicting (µ, p) is
a market equilibrium.

Case 2 : There exists an unmatched student-course pair (i, c) such that

� student i has a course d in his schedule such that [(µi \ {d}) ∪ {c}]Piµi, and

� course c has an empty slot.

Since student i can afford schedule µi, he can afford schedule s = µi\{d} as well. Moreover since
c has an empty slot, pc = 0 and hence he can also afford schedule s

0 = s∪ {c} = [(µi \ {d})∪ {c}].
Therefore s0Piµi for an affordable schedule s0 contradicting (µ, p) is a market equilibrium.

Case 3 : There exists an unmatched student-course pair (i, c) such that
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� student i has an incomplete schedule and (µi ∪ {c})Piµi, and

� course c has a student j in its class such that [(µc \ {j}) ∪ {i}]Pcµc.

Since |µi| < qI , we have |(µi ∪ {c})| ≤ qI and therefore s = µi ∪ {c} is a schedule. Moreover
(µ, p) being a market outcome with c ∈ µj and [(µc \ {j}) ∪ {i}]Pcµc imply bic ≥ bjc ≥ pc and

therefore since student i can afford µi, he can afford s = µi ∪ {c} as well. Hence sPiµi for an
affordable schedule s contradicting (µ, p) is a market equilibrium.

Case 4 : There exists an unmatched student-course pair (i, c) such that

� student i has a course d in his schedule such that [(µi \ {d}) ∪ {c}]Piµi, and

� course c has a student j in its class such that [(µc \ {j}) ∪ {i}]Pcµc.

Since (µ, p) is a market outcome with c ∈ µj, [(µc \ {j}) ∪ {i}]Pcµc implies bic ≥ bjc ≥ pc and
therefore student i can afford a seat at course c. Moreover since he can afford schedule µi, he

can afford schedule s = µi \ {d} as well. Therefore he can also afford schedule s0 = s ∪ {c} =
[(µi \ {d}) ∪ {c}] and hence s0Piµi for an affordable schedule s0 contradicting (µ, p) is a market
equilibrium.

These four cases exhaust all possibilities and hence µ shall be pairwise stable for the two-sided

matching market (I, C, qI , qC , PI , PC).

Conversely let µ be a pairwise stable matching for the two-sided matching market

(I, C, qI , qC , PI , PC). Construct the price vector p = (pc)c∈C as follows:

1. If c has a full class then pc = bic where student i is the least desirable student who is assigned

a seat at course c under µ.

2. If c has an empty slot then pc = 0.

We will show that (µ, p) is a market equilibrium of the problem (I, C, qI , qC , PI , b):

1. By construction, bic ≥ pc for any student i and any course c ∈ µi.

2. Again by construction, if |µc| < qc then pc = 0.

3. Finally suppose there exists a student i and a schedule s 6= µi that he could afford such that
sRiµi. Since preferences are strict, sPiµi and therefore there is a course c student i could

afford such that c ∈ s, c 6∈ µi, and either

� student i has an incomplete schedule µi with (µi ∪ {c})Piµi, or
� there is a course d ∈ µi such that [(µi \ {d}) ∪ {c}]Piµi.
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Moreover since student i can afford a seat at course c either

� course c has an empty seat under µ or
� there exists a student j ∈ µc such that [(µc \ {j}) ∪ {i}]Pcµc.

Existence of the pair (i, c) contradicts pairwise stability of matching µ and therefore for any

schedule s 6= µi student i can afford, µiPis.

Hence (µ, p) is a market equilibrium. ♦
Proof of Proposition 2 and Proposition 3 : We prove the stronger versions of the proposi-

tions for substitutable student preferences. Let I be the set of students, C be the set of courses,

qI be the maximum number of courses each student can take, qC = (qc)c∈C be the list of course

capacities, b = [bic]i∈Ic∈C be the bid matrix and PI = (Pi)i∈I be the list of substitutable stu-
dent preferences. Let µGS be the outcome of Gale-Shapley Pareto-dominant market mechanism.

Since students are price-takers, they will truthfully reveal their preferences. Given the problem

(I, C, qI , qC , PI , b), let (I, C, qI , qC , PI , PC) be an induced two-sided matching market. By Propo-

sition 6, µGS is a pairwise stable matching for the two-sided matching market (I, C, qI , qC , PI , PC)

and it is at least as good as any pairwise stable matching for any student. Therefore by Lemma

1, µGS is a market outcome for the problem (I, C, qI , qC , PI , b) and it Pareto dominates any other

market outcome. ♦
Proof of Proposition 4 : Let C = {c1, ..., cm} be the set of courses, qC = (qc1, qc2 , ..., qcm) be
the vector of course capacities and qI be the maximum number of courses each student can take.

Suppose there is a student i whose preferences are not substitutable. Relabel the students so that

i1 is this student. Since Pi1 is not substitutable, for some C
0 ⊆ C there are two distinct courses

� without loss of generality � c1, c2 ∈ Chi1 (C 0) such that c2 /∈ Chi1(C 0\{c1}). We will construct
a set of students J , a bid vector b and a list of responsive preferences PJ = (Pi)i∈J such that the

resulting economy has no market equilibrium.

Let I = J ∪ {i1} denote the set of all students. For each course c ∈ C, deÞne

J(c) = {i ∈ I\ {i1, i2} : bic > max {bi1c, bi2c}} and

K(c) = {i ∈ I\ {i1, i2} : c ∈ Chi(C)} .

That is, J(c) is the set of students each of whom bids more than students i1, i2 for course c, and

K(c) is the set of students other than i1, i2 each of whom has course c in his best schedule. Also

deÞne

C∗ = Chi1(C
0) ∪ Chi1(C 0\{c1}).

Note that

c1, c2 ∈ C∗ and Chi1 (C
∗) = Chi1 (C

0) .
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Relabel courses so that

C∗ ∩ {c3, c4, ..., cqI+1} = ∅.
This can be done, provided that the number of courses is high enough. Construct the set of

students J , the bid matrix b and the list of responsive preferences PJ = (Pi)i∈J such that:

1. bi2c < bi1c for all c ∈ C∗\ {c1},

2. bi1c < bi2c for all c ∈ {c1, c3, c4, ..., cqI+1},

3. there is no student i ∈ J such that bi1c1 < bic1 < bi2c1 or bi2c2 < bic2 < bi1c2,

4. K(c) = J(c) for all c ∈ {c1, c2, c3, ..., cqI+1} ∪ C∗,

5. |K(c)| = |J(c)| = qc − 1 for all c ∈ {c1, c2, c3, ..., cqI+1} ∪ C∗,

6. courses c1, c2, ..., cqI+1 are the only desirable courses for i2 with

{c2}Pi2 {c3}Pi2 {c4}Pi2 ...Pi2 {cqI+1}Pi2 {c1} , and

7. |J(c) ∩K(c)| ≥ qc for all c /∈ {c1, c2, c3, ..., cqI+1} ∪ C∗.

We will show that there is no market equilibrium of the resulting economy. On the contrary,

suppose (µ, p) is a market equilibrium.

Claim 1: For all c ∈ {c1, c2, c3, ..., cqI+1} ∪ C∗ and for all i ∈ J(c), we have c ∈ µi.
Proof of Claim 1 : Suppose that there is a student i ∈ J(c) such that c ∈ {c1, c2, c3, ..., cqI+1}∪C∗
and yet c 6∈ µi. By Condition (4), i ∈ K(c). There are two possible cases:
Case 1. pc ≤ bic: By responsiveness and Condition (4), c ∈ Chi(µi ∪ {c}). Moreover student

i can afford the schedule s = Chi(µi ∪ {c}) and therefore sPiµi for an affordable schedule s
contradicting (µ, p) is a market equilibrium.

Case 2. pc > bic: Since i ∈ J(c), we have bi1c < bic < pc and bi2c < bic < pc. Therefore by

Condition (5), no more than qc − 2 students can afford a seat at course c and hence course c has
an empty seat contradicting pc > bic. ♠
Claim 2: {c3, c4, . . . , cqI+1} ⊆ µi2 .
Proof of Claim 2 : Suppose that there is a course c ∈ {c3, c4, ..., cqI+1} such that c 6∈ µi2. By
responsiveness and Condition (6), c ∈ Chi2(µi2 ∪ {c}). Therefore since (µ, p) is a market equi-
librium, pc > bi2c. But then the deÞnition of J(c) together with Conditions (2), (5) imply only

qc−1 students can afford a seat at course c and therefore course c has an empty seat contradicting
pc > bi2c. ♠
Claim 3: µi1 ⊆ C∗.
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Proof of Claim 3 : Suppose that there is a course c ∈ µi1 such that c ∈ (C\C∗) . There are two
possible cases:

Case 1. c ∈ {c3, c4, ..., cqI+1}: By assumption, c ∈ µi1 and by Claim 2, c ∈ µi2 . By Conditions
(4), (5), there is a student j ∈ J(c) ∩K(c) such that c /∈ µj.
Case 2. c /∈ {c3, c4, ..., cqI+1}: By Condition (7), there is a student j ∈ J(c) ∩K(c) such that

c /∈ µj.
In either case, (µ, p) being a market equilibrium together with j ∈ J(c) implies bjc > bi1c ≥ pc,

and this together with j ∈ K(c) and responsiveness of Pj implies c ∈ Chj(µj ∪ {c}) contradicting
(µ, p) is a market equilibrium. ♠
We now have the machinery to execute the Þnal part of the proof. Since only courses

c1, c2, c3, . . . , cqI+1 are desirable for student i2, Claim 2 leaves us with three possibilities: µi2 =©
c3, c4, ..., cq

I+1

ª
, or µi2 =

©
c1, c3, c4, ..., cq

I+1

ª
, or µi2 =

©
c2, c3, c4, ..., cq

I+1

ª
. We will show that

none of the three can be the case at a market equilibrium.

Case 1. µi2 =
©
c3, c4, ..., cq

I+1

ª
: Since (µ, p) is a market equilibrium and since (µi2∪{c1})Pi2µi2

by responsiveness, we have pc1 > bi2c1 . However by Conditions (2), (3), (5), there are only qc1 − 1
students whose bids for course c1 are higher than the bid of student i2. Therefore course c1 has

an empty seat under µ contradicting pc1 > bi2c1 .

Case 2. µi2 =
©
c1, c3, c4, ..., cq

I+1

ª
: By assumption, c1 ∈ µi2 and by Claim 1, each one of the

qc1 − 1 students in J(c1) is assigned a seat at course c1; therefore

c1 6∈ µi1.

By Conditions (1), (3), (5), there are exactly qc2 students, including student i1, whose bids for

course c2 are higher than the bid of student i2. Therefore, since [(µi2 \ {c1}) ∪ {c2}]Pi2µi2 by
responsiveness, each one of these students should be assigned a seat at course c2 for otherwise

pc2 = 0 and student i2 affords the better schedule [(µi2 \ {c1}) ∪ {c2}]. Hence

c2 ∈ µi1.

By Conditions (1), (5) exactly qc − 1 students bid more than student i1 for each course c ∈
Chi1(C

0 \ {c1}) ⊆ C∗ \ {c1} and since (µ, p) is a market equilibrium, student i1 can afford the
schedule Chi1(C

0 \ {c1}). Moreover by Claim 3, µi1 ⊆ C∗ ⊆ C 0 and we have already shown

that c1 6∈ µi1. Therefore µi1 = Chi1(C
0 \ {c1}). However the preferences of student i1 are not

substitutable and in particular c2 6∈ Chi1(C 0 \ {c1}) and therefore c2 6∈ µi1 directly contradicting
c2 ∈ µi1.
Case 3. µi2 =

©
c2, c3, c4, ..., cq

I+1

ª
: By assumption, c2 ∈ µi2 and by Claim 1, each one of the

qc2 − 1 students in J(c2) is assigned a seat at course c2; therefore c2 6∈ µi1 . Since c2 ∈ Chi1(C 0),

µi1 6= Chi1(C 0).
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Consider course c1. While bi2c1 > bi1c1 , by assumption c1 6∈ µi2 and by Conditions (4), (5), exactly
qc1 − 1 other students bid higher than student i1 for course c1. Therefore, since (µ, p) is a market
equilibrium, student i1 can afford a seat at course c1. Next consider any course c ∈ C∗ \ {c1}.
By Conditions (1) and (5), qc − 1 students bid higher than student i1 for each such course c.
Therefore student i1 can afford each course in C

∗. Moreover by Claim 3, µi1 ⊆ C∗ and therefore
µi1 = Chi1(C

∗) = Chi1(C
0) directly contradicting µi1 6= Chi1(C 0) and completing the proof. ♦

Proof of Proposition 5 : Let P be a list of monotonic preferences over schedules and suppose

the bid matrix b is such that

1. for any distinct pair of students i, j and any company a, if bia = bja then bia = bja = 0,
14

and

2. for any company a, |{i ∈ I : bia > 0}| ≥ qa.

Since students do not have capacity constraints in the context of interview bidding, assignment

of interview slots for two distinct Þrms do not interfere under UMBS interview-bidding mechanism

and this mechanism simply assigns the interview slots of each company a to highest bidding qa

students. Let µ denote the outcome of UMBS interview-bidding mechanism and let pa > 0 be the

lowest successful bid for each company a. Let A denote the set of companies and p = (pa)a∈A.

We Þrst show that (µ, p) is a market equilibrium: By construction, bia ≥ pa for any student

i and any company a ∈ µa. Moreover by assumption |{i ∈ I : bia > 0}| ≥ qa for any company

a. Therefore, since students do not have capacity constraints, |µa| = qa which in turn implies

pa > 0 for any company a. All that remains is showing that under µ each student is assigned the

best schedule he can afford given p. By construction of the pair (µ, p), each student is assigned

an interview slot at each company a with bia ≥ pa and this is the best schedule he can afford by
monotonicity.

We next show that µ is the only market outcome: Suppose not and let (ν, r) be a market

equilibrium where ν 6= µ. Since |µa| = qa for each company a, there is a student i and a company
a such that a ∈ µi and yet a 6∈ νi. Moreover since i is one of the highest bidding qa students for
company a, either

� not all interview slots of company a are Þlled under ν, or

� there is a student j whose bid for company a is less than the bid of student i and yet who
is assigned an interview slot with company a under ν.

In either case we have bia > ra and by monotonicity (νi ∪ {a})Piνi for an affordable schedule
(νi ∪ {a})Piνi contradicting (ν, r) is a market equilibrium. ♦
14Recall that in practice such ties are broken with a lottery and two identical bids are treated differently.

Therefore for practical purposes our assumption is without loss of generality.
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