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Abstract

In connection with an earlier paper on the exchange of live donor kidneys (Roth, Sönmez,
and Ünver 2004) the authors entered into discussions with New England transplant surgeons
and their colleagues in the transplant community, aimed at implementing a Kidney Exchange
program. In the course of those discussions it became clear that a likely Þrst step will be to
implement pairwise exchanges, between just two patient-donor pairs, as these are logistically
simpler than exchanges involving more than two pairs. Furthermore, the experience of these
surgeons suggests to them that patient and surgeon preferences over kidneys should be 0-1,
i.e. that patients and surgeons should be indifferent among kidneys from healthy donors whose
kidneys are compatible with the patient. This is because, in the United States, transplants of
compatible live kidneys have about equal graft survival probabilities, regardless of the closeness
of tissue types between patient and donor (unless there is a rare perfect match). In the present
paper we show that, although the pairwise constraint eliminates some potential exchanges,
there is a wide class of constrained-efficient mechanisms that are strategy-proof when patient-
donor pairs and surgeons have 0-1 preferences. This class of mechanisms includes deterministic
mechanisms that would accomodate the kinds of priority setting that organ banks currently use
for the allocation of cadaver organs, as well as stochastic mechanisms that allow considerations
of distributive justice to be addressed.
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1 Introduction

As of this writing, there are 58,480 kidney patients in the United States who are registered on

a waiting list for a transplant of a cadaver kidney. The median waiting time is 1,144 days (for

registrations in 1999), and in 2003, 4,233 patients died while on the waiting list, or were removed

from it after having become too ill for a transplant. In 2003 there were 8,665 transplants of cadaver

kidneys.1

Because healthy people have two kidneys (and can remain healthy on only one), it is also possible

for a kidney patient to receive a live-donor transplant. There were 6,464 live-donor transplants in

2003. However, a willing, healthy donor is not always able to donate to his intended patient, because

of blood type or immunological incompatibilities between them. In this case, most often, the donor

is sent home, and becomes once again invisible to the health care system.

However, in a few cases, an exchange has been arranged between one incompatible patient-donor

pair and another. In such an exchange, the donor from each pair gives a kidney to the patient from

the other pair. Since 2001, there have been 6 such paired exchanges in the fourteen transplant

centers that make up the New England region (Allen, 2004), and, in the United States, there have

even been two exchanges among three incompatible patient-donor pairs.2 These exchanges do not

violate the 1984 National Organ Transplant Act (NOTA), which prohibits the sale or purchase of

human organs.3

While there is a national database of tissue types of kidney patients, used for allocating cadaver

kidneys, there is no national (and few regional) databases of incompatible patient-donor pairs, despite

earlier proposals to set up such databases (Rapaport, 1986, Ross et al 1997).4 Nor is there a

systematic method used for arranging exchanges between incompatible pairs.

Roth, Sönmez, and Ünver (2004) showed how to identify efficient exchanges in a way that gave

patients and their surgeons dominant strategy incentives to straightforwardly reveal their preferences

(i.e. in a strategy-proof way). And, using tissue typing statistics from the Caucasian patient popu-

lation, Roth, Sönmez and Ünver (2004) showed that the beneÞts of such an exchange could be very

substantial, increasing live organ donations between unrelated donors from about 54% to as much as

91% if multiple-pair exchanges are feasible, and to as much as 75% even if only pairwise exchanges
1United Network for Organ Sharing (UNOS) - The Organ Procurement and Transplantation Network (OPTN)

national data, retrieved on 6/12/2004 from http://www.optn.org/data.
2As of this writing, both of these have been arranged at the Johns Hopkins Comprehensive Transplant Center in

Baltimore. Lucan et al (2003) also reports on three pair and four pair exchanges conducted in Romania.
3See the legal opinion to this effect obtained by the UNOS at http://asts.org/ezefiles/UNOSSection_301_NOTA_.pdf.
4Some hospitals have started to generate their own databases of incompatible patient-donor pairs, that could be

used for exchanges. We are aware of such databases in Alabama, Baltimore (Johns Hopkins) and Ohio (Medical
College of Ohio).
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are feasible.5

In subsequent discussions aimed at organizing such exchange in the New England region of the

transplant system, it became clear that a likely Þrst step will be to implement pairwise exchanges,

between just two patient-donor pairs, as these are logistically simpler than exchanges involving more

than two pairs. That is because, all transplantations in an exchange need to be carried out simulta-

neously, for incentive reasons, since otherwise a donor may withdraw her consent after her intended

recipient receives a transplanted kidney (and so even a pairwise exchange involves four simultaneous

surgical teams, operating rooms, etc.). Furthermore, the experience of American surgeons suggests to

them that patient and surgeon preferences over kidneys should be 0-1, i.e. that patients and surgeons

should be indifferent among kidneys from healthy donors that are blood type and immunologically

compatible with the patient.6 This is because, in the United States, transplants of compatible

live kidneys have about equal graft survival probabilities, regardless of the closeness of tissue types

between patient and donor (Gjertson and Cecka (2000) and Delmonico (2004)).7

The present paper explores how to organize such exchanges. While the constraint that only

pairwise exchanges be conducted means that the number of live donor transplants that can be

arranged by exchange is smaller than if larger exchanges are feasible, it is still substantial. And, in

the constrained problem, efficient and strategy-proof mechanisms will be shown to exist. This class

of mechanisms includes deterministic mechanisms that would accommodate the kinds of priority

setting that organ banks currently use for the allocation of cadaver organs, and which therefore may

be especially appealing to transplant organizations. Also included are randommatching mechanisms,

such as the egalitarian mechanism, a stochastic mechanism that arises in connection with elementary

notions of distributive justice. Interestingly, the constrained exchange problem is closely related

to elegant results from graph theory, which will prove very useful, in ways recently pioneered by

Bogomolnaia and Moulin (2004).
5Subsequent investigation of a database constructed by Dr. Susan Saidman of Massachusetts General Hospital, of

patients who had an incompatible donor (and who were consequently on the waiting list for a cadaver kidney), showed
that 18% of them could participate in live donor exchanges involving only paired exchanges among patient-donor pairs
in the database, and 27% could receive transplants if larger exchanges among them were feasible.

6Bogomolnaia and Moulin (2004), on whose work the present paper builds, refer to such preferences (in settings
quite different than kidney exchange) as dichotomous. That the surgeons with whom we are working on implementing
kidney exchange have dichotomous preferences was forcefully brought to our attention when we began to work with
Dr. Saidman�s database of current patients with incompatible donors.

7This is contrary to the �European� view which maintains that the graft survival rate increases as the tissue type
mismatch decreases. See Opelz (1997, 1998).
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1.1 Related Literature

This paper intersects with the literatures on transplantation, graph theory, and mechanism design.

The idea of paired kidney exchange between one incompatible patient-donor pair and another was

Þrst proposed by Rapaport (1986) and then again by Ross et al (1997). UNOS initiated pilot testing

of a paired kidney exchange program in 2000, and the same year the transplantation community

issued a consensus statement indicating that the paired kidney exchange program is considered to

be �ethically acceptable� (Abecassis et al 2000).

While the transplantation community approved the use of kidney exchanges to increase live kidney

donation, it has provided little guidance about how to organize such exchanges. Roth, Sönmez and

Ünver (2004) proposed an efficient and strategy-proof mechanism that uses both pairwise and larger

exchanges. The present paper differs from Roth, Sönmez and Ünver (2004) in two major ways:

1. Here we only consider exchanges involving two patients and their donors.

2. In the current paper we adopt the assumption of many American transplant surgeons (includ-

ing those we are working with in New England) that each patient is indifferent between all

compatible kidneys (cf. Gjertson and Cecka (2000) and Delmonico (2004)).

These two assumptions considerably change the mathematical structure of the kidney exchange

problem, and efficient exchange becomes an application of what is known in the graph theory lit-

erature as the cardinality matching problem (see for example Korte and Vygen (2002)).8 For

this purpose consider an undirected graph whose vertices each represent a particular patient and her

incompatible donor(s), and whose edges connect those pairs of patients between whom an exchange

is possible, i.e. pairs of patients such that each patient in the pair is compatible with a donor of the

other patient. Finding an efficient matching then reduces to Þnding a maximum cardinality matching

in this undirected graph (see Lemma 1), a problem well analyzed in this literature. More speciÞcally

the Gallai (1963,1964)-Edmonds (1965) Decomposition Lemma (henceforth GED Lemma) character-

izes the set of maximum cardinality matchings. Technical aspects of our contribution heavily build

on the GED Lemma.

We Þrst concentrate on deterministic outcomes, and show that there exists a wide class of efficient

and strategy-proof mechanisms that accommodate the kinds of priority setting that organ banks

currently use for the allocation of cadaver organs. We then allow stochastic outcomes as well,

and show that there exists an efficient and strategy-proof mechanism, the egalitarian mechanism,
8If we instead only consider exchanges involving two pairs (as in this paper) but assume strict preferences over

compatible kidneys (as in Roth, Sönmez and Ünver (2004)), the problem becomes an application of what is known as the
roommates problem (Gale and Shapley (1962)). See Abeledo and Rothblum (1994), Chung (2000), Diamantoudi,
Miyagawa and Xue (2004) and Teo and Sethuraman (2000).
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which equalizes as much as possible the individual probabilities of receiving a transplant. If stochastic

mechanisms can be accepted by the transplantation community, this mechanism can serve as a basis

for discussion of how to address equity issues while achieving efficiency and strategy-proofness.

Our paper builds on the closely related recent paper by Bogomolnaia and Moulin (2004). They

considered two-sided matching i.e. matching between two sets of agents that can be speciÞed exoge-

nously (e.g. Þrms and workers), such that an agent on one side of the market can only be matched

with an agent on the other side (cf. Roth and Sotomayor 1990), modeled as a bipartite graph, with

0-1 preferences. It was their paper that made us aware of some of the graph-theoretic results that

we also use here. Our results on the egalitarian mechanism generalize their corresponding results to

general, not necessarily bipartite graphs. Kidney exchange cannot be modelled as a two-sided mar-

ket, since any patient with incompatible donors can potentially be matched with any other.9 The

extensions to the general case are of interest not only because of the importance of the application,

but also because of the technical challenges that the generalization to arbitrary graphs presents.

2 Pairwise Kidney Exchange

Let N = {1, 2, ..., n} be a set of patients each of whom has one or more incompatible donors. Each

patient is indifferent between all compatible donors and between all incompatible donors, except she

strictly prefers her donor(s) to any other incompatible donor, and any compatible donor to her own

donor(s). Since we are considering only pairwise exchanges in this paper, the above assumptions

induce the following preference relation %i for patient i over the set of patients N :

1. For any patient j with a compatible donor for patient i we have j Âi i,

2. for any patient j without any compatible donor for patient i we have i Âi j,

3. for any patients j, h each of whom has a compatible donor for patient i we have j ∼i h,

4. for any patients j, h neither of whom has a compatible donor for patient i we have j ∼i h.

Here Âi denotes the strict preference relation and ∼i denotes the indifference relation induced by
%i. A (pairwise kidney exchange) problem is a pair (N,%) where %= (%i)i∈N denotes the list
of patient preferences.

9Note that, since each donor comes to the exchange in the company of his incompatible patient, there isn�t an
option of modeling a two-sided market in which the sides are donors and patients. There is a very small population
of undirected donors, who wish to donate but not to a speciÞc patient, and such a formulation might be applicable to
them, but we do not consider such unattached donors here.
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Throughout the paper with the exception of the proofs of the results on incentives, we Þx a

problem (N,%).
We consider the case in which an exchange can involve only two pairs. Patients i, j ∈ N are

mutually compatible if i Âj j and j Âi i. That is, two patients are mutually compatible if each
one has a donor whose kidney is compatible for the other patient.

A matching µ : N → N is a function such that:

µ(i) = j ⇐⇒ µ(j) = i for any pair of patients i, j ∈ N.

A matching µ is individually rational if for any patient i ∈ N

µ(i) 6= i⇒ µ(i) Âi i.

LetM be the set of individually rational matchings for the problem (N,%). Throughout the paper
we consider only individually rational matchings. That is, exchange is possible only between mutually

compatible patients. A matching denotes an individually rational matching throughout the rest of

the paper.

For each matching µ ∈ M and patient i ∈ N , µ(i) = i means that the patient i remains

unmatched.10 For any matching µ ∈M and pair of patients i, j ∈ N , µ(i) = j means that patient
i receives a compatible kidney from a donor of patient j and patient j receives a compatible kidney

from a donor of patient i. Since exchange is possible only among mutually compatible pairs, it is

sufficient for our purposes to keep track of the symmetric |N | by |N |mutual compatibility matrix
R = [ri,j]i∈N,j∈N deÞned by

ri,j =

(
1 if j Âi i and i Âj j
0 otherwise

for any pair of (not necessarily distinct) patients i, j ∈ N .
We will refer to the pair (N,R) as the reduced problem of (N,%). Occasionally it will be helpful

to think of the reduced problem as a graph G = (N,R) whose vertices N are the patients (and their

incompatible donors), and whose edges R are the connections between mutually compatible pairs of

patients; i.e. there is an edge (i, j) ∈ R if and only if ri,j = 1. (It will be clear from the context

whether R is the mutual compatibility matrix or the set of edges indicating mutual compatibility.)

A matching then can be thought of as a subset of the set of edges such that each patient can appear

in at most one of the edges. With this alternative representation
10A patient who is unmatched does not receive a live-donor transplant, nor does her donor donate a kidney. Such

a patient may wait for a cadaver kidney, or the patient and incompatible donor may participate in an exchange
arranged at a later date when other incompatibe patient-donor pairs have become available. Note that when a patient
is matched, only one of her donors donates a kidney (no matter how many incompatible donors the patient has).
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1. if (i, j) is an edge in the matching µ, patients i and j are matched by µ and,

2. if patient i does not appear in any edge in the matching µ, she remains unmatched.

A mechanism is a systematic procedure that selects a matching for each problem.

3 Efficient Exchange

A matching µ ∈M is Pareto-efficient if there exists no other matching η ∈M such that η(i) %i
µ(i) for all i ∈ N and η(i) Âi µ(i) for some i ∈ N . In the present setting, µ is Pareto efficient if and
only if the set Mµ = {i ∈ N : µ(i) 6= i} of patients matched by µ is maximal, i.e. if there does not
exist any other matching η ∈M such that Mη ⊃Mµ. Let E be the set of Pareto-efficient matchings
for the problem (N,%) .
A well known result from abstract algebra will help clarify the structure of the set of efficient

matchings (see e.g. Lovasz and Plummer, 1986 on matchings, and Korte and Vygen, 2002 on ma-

troids).

A matroid is a pair (X,I) such that X is a set and I is a collection of subsets of X (called the

independent sets) such that

M1 if I is in I and J ⊂ I then J is in I; and

M2 if I and J are in I and |I| > |J | then there exists an i ∈ I\J such that I ∪ {i} is in I.

Proposition 1 Let I be the sets of simultaneously matchable patients, i.e. I = {I ⊆ N : ∃µ ∈M
such that I ⊆Mµ}. Then (N,I) is a matroid.

For any matching µ ∈ M, let |µ| = |Mµ| = |{i ∈ N : µ(i) 6= i}| denote the number of patients
who are matched with another patient. The following well known property of matchings, which

follows immediately from the second property of matroids, states that the same number of patients

will receive a transplant at every Pareto-efficient matching.

Lemma 1 For any pair of Pareto-efficient matchings µ, η ∈ E, |µ| = |η|.

If exchange is possible among more than two pairs, the conclusion of Lemma 1 no longer holds.

Example 1 Let N = {1, 2, 3, 4} and suppose preferences are such that

2 ∼1 4 Â1 1 Â1 3
3 Â2 2 Â2 1 ∼2 4
1 Â3 3 Â3 2 ∼3 4
1 Â4 4 Â4 2 ∼4 3
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Consider the following two Pareto efficient trades:

� Patient 1 receives a kidney from a donor of Patient 4 and Patient 4 receives a kidney from a

donor of Patient 1. (This is the only possible pairwise trade, since only Patients 1 and 4 are

mutually compatible.)

� Patient 1 receives a kidney from a donor of Patient 2, Patient 2 receives a kidney from a donor
of Patient 3, and Patient 3 receives a kidney from a donor of Patient 1.

Two patients receive transplants if the Þrst trade is carried out whereas three patients receive

transplants if the second trade is carried out. ¥

3.1 Priority Mechanisms

Because there is presently no organized exchange of live-donor kidneys, the experience of transplant

centers is mostly with the priority allocation systems used to allocate cadaver organs. It is therefore

natural to consider how priority mechanisms would function in the context of live kidney exchange.

A priority ordering is a permutation of patients such that the kth patient in the permutation
is the patient with the kth priority. Without loss of generality let the priority ordering of patients be

the natural ordering (1, 2, ..., n), i.e. patient k is the kth priority patient for each k.

While we will concentrate on ordinal priorities here, priorities may depend on quantiÞable patient

characteristics such as the patient�s �percent reactive antibody� (PRA), which is correlated with how

difficult it will be to Þnd a compatible kidney for that patient. (So it might be desirable, for example,

for a high PRA patient to have a high priority for a compatible kidney in the relatively rare event

that one becomes available.) In general, we will say that a non-negative function π : N → R+ is a
priority function if it is increasing in priority, i.e. if π(i) ≥ π(i+ 1).
Consider a transplant center T whose decision makers wish to Þnd the set of exchanges that

maximizes a preference ÂT deÞned over matchings (more speciÞcally, over sets of matched patients).
We will say that ÂT is a priority preference if it is responsive to the priority ordering (Roth,
1985), i.e. if µ ÂT ν whenever Mµ ⊃ Mν , or when Mµ and Mν differ in only one patient, i.e.

Mµ\Mν = {i},Mν\Mµ = {j}, for some i, j ∈ N , and i < j. That is, whenever Mµ and Mν

differ in only one patient, the matching with the higher priority patient is preferred, and adding

additional matched patients to an existing matching always results in a preferred matching. (For a

given priority ordering of patients, there remain many possible priority preferences ÂT over sets of
matched patients.)

A priority mechanism produces a match as follows, for any problem (N,R) and priority ordering

(1, 2, ..., n) among the patients:
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� Let E0 =M (i.e. the set of all matchings).

� Let E1 ⊆ E0 be such that

E1 =
(
{µ ∈ E0 : µ (1) 6= 1} if ∃µ ∈ E0 s.t. µ (1) 6= 1

E0 otherwise

� In general for k ≤ n, let Ek ⊆ Ek−1 be such that

Ek =
( ©

µ ∈ Ek−1 : µ (k) 6= k
ª

if ∃µ ∈ Ek−1 s.t. µ (k) 6= k
Ek−1 otherwise

For a given problem (N,R) and priority ordering (1, 2, ..., n), we refer to each matching in En as a
priority matching, and a priority mechanism is a function which selects a priority matching for

each problem. A priority matching matches as many patients as possible starting with the patient

with the highest priority and following the priority ordering, never �sacriÞcing� a higher priority

patient because of a lower priority patient.

By construction, a priority matching is maximal, and hence Pareto-efficient, i.e. En ⊂ E . Propo-
sition 1 implies, through the second property of matroids, that the �opportunity cost� of matching a

higher priority patient will never be more than one lower priority patient who could otherwise have

been matched. (For example, there might be two patients each of whom is mutually compatible only

with the same third patient, and so matching the higher priority of the two patients will preclude

matching the lower priority patient. But it cannot happen that, by matching a higher priority pa-

tient, two lower priority patients are excluded who otherwise could both have been matched.) And

of course, by Lemma 1, the same total number of patients will be matched at each Pareto-efficient

matching, so there is no trade-off between priority allocation and the number of transplants that can

be arranged. In the matroid literature, a priority mechanism is called a greedy algorithm (since it

�greedily� takes the highest priority remaining patient at each stage). The following proposition by

Rado(1957) and Edmonds (1971) from the matroid literature will be helpful in understanding the

resulting priority matchings.

Proposition 2 For a matroid (N, I) and any priority function π on N , a priority matching µ
(obtained by a greedy algorithm with respect to π) identiÞes an element Mµ of I that maximizesP

i∈I π(i) over all I ∈ I.

Example 1 shows that if larger exchanges were permitted, the conclusions of Proposition 2 would

not carry over (e.g. suppose that patient 4 has the highest priority, so the priority mechanism chooses

the pairwise trade even if the 3-way trade has a higher sum of priorities).
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For ordinal priorities, Proposition 2 allows us to quickly prove the following corollary, which

helps explains the appeal that priority algorithms may have to transplant centers accustomed to

prioritizing their patients.

Corollary 1 For any priority preference ÂT a priority matching µ maximizes ÂT on the set of all
matchings, i.e. µ ºT ν for all ν ∈M.

3.1.1 Incentives in priority mechanisms

We turn next to consider the incentives facing patients (and the surgeons advocating for them) in

a priority matching mechanism. Two apparently different issues arise that, upon examination, turn

out to be closely related. The Þrst has to do with patients who have multiple incompatible donors

willing to donate on their behalf. We show that a patient maximizes her chance of being included

in an exchange by revealing all of her willing donors. The second issue involves revealing which

compatible kidneys the patient is willing to accept. Again, we show that a patient maximizes her

chance of being able to take part in an exchange by accepting her full set of compatible kidneys.

That is, we show that with respect to both donors and kidneys, priority mechanisms do not give

participants perverse incentives, but rather make it a dominant strategy to fully reveal which willing

donors are available, and which kidneys are acceptable.

These two conclusions have the same cause. A patient enlarges the set of other patients with

whom she is mutually compatible by coming to the exchange with more donors, and by being able

to accept a kidney from more of those other patients� donors. And a patient�s probability of being

included in an exchange is monotonic in the set of other patients with whom she is compatible.

For a given set of patients and their available donors, the basic data for the problem (N,R) is

determined by the tissue typing laboratory. So, once each patient has revealed a set of donors, the

tissue typing lab establishes for each patient i a set of compatible kidneys Ki = {j ∈ N : rij = 1}.
But a kidney exchange is a complicated event involving a patient and a donor on each side of the

exchange, and so there will be no way to prevent a patient from declining a medically compatible

kidney (e.g. for logistical reasons such as location of the other patient-donor pair, or, for that matter,

for unspeciÞed reasons related e.g. to the preferences of the patient�s donor). So the strategy set

of each agent (i.e. each patient and donor, or each surgeon acting on behalf of a patient) is the

set of all possible subsets of acceptable kidneys Ai ⊆ Ki that she might declare. (A kidney that is

declared not acceptable can be thought of as being incompatible for reasons not initially revealed

by the medical data.) A mechanism can only arrange exchanges between patient-donor pairs who

are willing to accept each other�s donor kidneys. A mechanism is strategy-proof in this dimension

if a patient�s probability of being included in an exchange with a compatible donor is maximized
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by declaring truthfully that Ai = Ki .11 That is, a patient would have an incentive to declare a

smaller acceptable set Ai ⊂ Ki only if this could cause the mechanism to include the patient in an

exchange when truthful revelation of preferences (Ai = Ki ) would not. The Þrst part of Theorem

1 states that a patient can never beneÞt by declaring a compatible kidney to be unacceptable under

a priority mechanism.12 The second part states the similar result for revelation of available donors.

Theorem 1 A priority mechanism makes it a dominant strategy for a patient to reveal both a) her

full set of acceptable kidneys; and b) her full set of available donors.

The proof of Theorem 1 a) is contained in the Appendix. The proof of part b) follows quickly from

the proof of part a). In particular, a mechanism is donor-monotonic if a patient never suffers from
the addition of one additional (incompatible) donor for her. The addition of one extra donor for a

patient has the effect of enlarging her set of mutually compatible patients. But the proof of part a) of

Theorem 1 shows that a patient never suffers from enlarging her set of mutually compatible patients

in a priority mechanism, which therefore implies that priority mechanisms are donor monotonic in

pairwise kidney exchange.

Corollary 2 A priority mechanism is donor-monotonic.

Looking ahead to implementation of actual kidney exchanges, it is worth emphasizing some

limits on what these results establish. The motivations for donating a kidney to a loved one may

be complex. When multiple potential donors prove to be incompatible, there may still be complex

family preferences involved in going forward with an exchange, e.g. a family might prefer to have

a sibling donate a kidney to its patient only after the possibility of a parent�s donation had been

exhausted, and such a family might prefer to initially look for an exchange by only revealing the

availability of the parent as a donor. Theorem 1 b) does not rule out this possibility. Similarly,

it might be that, even if a patient is willing to accept all compatible kidneys, her donor is for some

reason unwilling to donate a kidney to some of the patients who are compatible with him (i.e. with
11For simplicity here we assume that all compatible kidneys are in fact acceptable, i.e. that patients do not have

logistical or other concerns not already reßected in the mutual compatibility matrix R. More generally, we are
considering a system in which patients may freely indicate in advance that there are some kidneys that they will not
accept, but cannot back out of an exchange for a kidney that they have already indicated is acceptable without paying
an unacceptably high cost (e.g. because this would mean that they could not participate in the current exchange and
might receive very low priority for future exchanges). Consequently we do not consider any strategies at which a
patient declares unacceptable kidneys to be acceptable, but only strategies in which patients may choose which set of
acceptable kidneys to reveal.
12See Roth (1982a, 1982b), Svensson (1994, 1999), Abdulkadiroùglu and Sönmez (1999, 2003b), Bogomolnaia, Ehlers

and Deb (2000), Papai (2000), Ehlers (2002), Ehlers, Klaus and Papai (2002), and Ehlers and Klaus (2003), for
strategy-proofness in various related models with indivisibilities.
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his kidney), which would reduce the set of acceptable kidneys in a way not precluded by Theorem

1 a).13 What Theorem 1 does establish is that a priority mechanism introduces no new reasons for

available donors to be concealed, or compatible kidneys to be rejected.

3.2 Gallai-Edmonds Decomposition

The structure of Pareto-efficient pairwise matchings has been an active area of research in the com-

binatorial optimization literature. Understanding this structure will both enable us to gain added

insight into priority mechanisms and allow us to apply a central concept in distributive justice -

egalitarianism - to pairwise kidney exchange. The following partition of the set of patients is key to

the structure of the set of Pareto-efficient matchings. Partition N as {NU , NO, NP} such that

NU = {i ∈ N : ∃µ ∈ E s.t. µ(i) = i} ,
NO =

©
i ∈ N\NU : ∃j ∈ NU s.t. ri,j = 1

ª
, and

NP = N\
¡
NU ∪NO

¢
.

NU is the set of patients for each of whom there is at least one Pareto-efficient matching which leaves

her unmatched. NO is the set of patients each of whom is not in NU (i.e., each of whom is matched

with another patient at each Pareto-efficient matching) but is mutually compatible with at least one

patient in NU . NP is the set of remaining patients (i.e., the set of patients who are matched with

another patient at each Pareto-efficient matching and who are not mutually compatible with any

patient in in NU).

Consider the reduced problem (N,R). For I ⊂ N , let RI = [ri,j]i∈I,j∈I . We refer to the pair

(I, RI) as the reduced subproblem restricted to I.

A reduced subproblem (I, RI) is connected if there exists a sequence of patients i1, i2, ..., im
(possibly with repetition of patients) such that rik,ik+1 = 1 for all k ∈ {1, 2, ...,m− 1} and I =
{i1, i2, ..., im} .
A connected reduced subproblem (I, RI) is a component of (N,R) if ri,j = 0 for any i ∈ I and

j ∈ N\I.
We refer to a component (I,RI) as an odd component if |I| is odd and as an even component

if |I| is even. The following result due to Gallai (1963, 1964) and Edmonds (1965) is central to our
paper:

Lemma 2 (Gallai-Edmonds Decomposition Lemma) Let (I,RI) be the reduced subproblem
with I = N\NO and let µ be a Pareto-efficient matching for the original problem (N,R).
13Donations of cadaver organs are often carried out under a screen of anonymity. This will be more difficult in the

case of live donor exchange, since the full medical history of each donor will be an essential part of such exchange.
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1. For any patient i ∈ NO, µ(i) ∈ NU .

2. For any even component (J,RJ) of (I, RI) , J ⊆ NP and for any patient i ∈ J, µ(i) ∈ J\ {i}.

3. For any odd component (J,RJ) of (I,RI), J ⊆ NU and for any patient i ∈ J it is possible
to match all remaining patients in J with each other (so that any patient j ∈ J\ {i} can be
matched with a patient in J\ {i, j}).

Moreover for any odd component (J,RJ), either

(a) one and only one patient i ∈ J is matched with a patient in NO under the Pareto-efficient

matching µ whereas all remaining patients in J are matched with each other so that µ (j) ∈
J\ {i, j} for any patient j ∈ J\ {i}, or

(b) one patient i ∈ J remains unmatched under the Pareto-efficient matching µ whereas all
remaining patients in J are matched with each other so that µ (j) ∈ J\ {i, j} for any
patient j ∈ J\ {i} .

Based on the Gallai-Edmonds Decomposition Lemma (GED Lemma), we refer to NU as the set

of underdemanded patients, NO as the set of overdemanded patients and NP as the set of

perfectly matched patients.14

A Pareto-efficient matching matches each perfectly matched patient with another perfectly

matched patient in the same even component; each overdemanded patient is matched with an under-

demanded patient; and one patient in each odd component is either matched with an overdemanded

patient or remains unmatched, whereas the remaining underdemanded patients in the same odd

component are matched with one another. So each even component is self sufficient whereas the odd

components compete for the overdemanded patients.

Let D = {D1,D2, ..., Dp} be the partition of the set of underdemanded patients NU such that¡
Dk, RDk

¢
is an odd component of

³
N\NO, RN\NO

´
for all k ∈ {1, 2, ..., p} .

The following is an immediate implication of the GED Lemma:

Corollary 3 |D| >
¯̄
NO
¯̄
whenever NU is nonempty, and |µ| = |N |−

¡
|D|−

¯̄
NO
¯̄¢
for each Pareto-

efficient matching µ.

That is, the efficient matchings each leave unmatched |D|−
¯̄
NO
¯̄
patients, each one in a distinct

odd component. Note that Lemma 1 is an immediate corollary to the GED Lemma as well.
14Edmonds (1965) introduced the Þrst polynomial-time algorithm for construction of an efficient matching and

construction of partition {NU , NO, NP } of N . Faster algorithms were introduced in later dates. An excellent survey
of combinatorial matching theory including efficient matching algorithms are given in Lovász and Plummer (1986).
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3.3 The Induced Two-Sided Matching Market

Loosely speaking there is competition at two levels: At the Þrst level, odd components (of under-

demanded patients) compete for overdemanded patients. With the addition of an overdemanded

patient to an odd component, all the patients in the augmented odd component can be matched to

one another. The second level of competition is between the members of odd components that do

not secure an overdemanded patient. If the odd component is of size one, its member will remain

unmatched, but members of each larger odd component compete against each other not to be the

one patient in the component who remains unmatched.

In this subsection we focus on the Þrst level of competition, between odd components for overde-

manded patients. Since this competition does not involve perfectly matched patients (who are all

matched to one another at every efficient outcome), we will not need to consider them for this discus-

sion. Instead, we focus on an �induced� two-sided market, one side consisting of the overdemanded

patients, and the other side consisting of the (odd) components of underdemanded patients.15

For each odd component J ∈ D and overdemanded patient i ∈ NO, let

�ri,J =

(
1 if ∃ j ∈ J s.t. ri,j = 1
0 otherwise

and let �R = [�ri,J ]i∈NO,J∈D. Whenever �ri,J = 1 for i ∈ NO and J ∈ D, we say there is a link between
patient i and set J .

Given the problem (N,%) , we refer to the triple
³
NO,D, �R

´
as the induced two-sided match-

ing market.
A pre-matching is a function �µ : NO ∪D→ NO ∪D ∪ {∅} such that

1. �µ(i) ∈ D ∪ {∅} for any i ∈ NO,

2. �µ(J) ∈ NO ∪ {∅} for any J ∈ D,

3. �µ (i) = J ⇔ �µ (J) = i for any pair i ∈ NO, J ∈ D, and

4. �µ (i) = J ⇒ �ri,J = 1 for any pair i ∈ NO, J ∈ D.

Let fM denote the set of pre-matchings.

A pre-matching �µ ∈ fM is efficient if it assigns each overdemanded patient i ∈ NO to an odd

component J ∈ D. Let �E be the set of efficient pre-matchings. Note that �E is non-empty by the
GED Lemma.
15So the induced two-sided matching market differs from natural two-sided markets (such as the medical labor

market studied in Roth, 1984) in two ways. First, one of the sides is made up not of individual patients (and
their donors), but of groups (odd components) of patients (and their donors). Second, these sides aren�t speciÞed
exogenously, but are determined by the preferences (compatibilities) of the patients.
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3.4 Priority Mechanisms Revisited

The GED Lemma allows us to see in detail how competition for compatible kidneys plays out in

priority mechanisms. The outcome of a priority mechanism is Pareto-efficient and by the GED

Lemma, each overdemanded as well as each perfectly matched patient is matched at each Pareto-

efficient matching. So the competition in a priority mechanism is among the underdemanded patients.

Moreover, for any odd-component J and any patient j ∈ J , it is possible to match all patients in
J\ {j} among themselves. So a priority mechanism determines which odd components will be fully

matched (one member with an overdemanded patient and remaining patients with each other) and

which odd components will have all but one of its patients matched (all with each other). This will

depend on the relative priority ordering among the set of patients each of whom is the lowest priority

patient at an odd component.

For each odd component J ∈ D, let `J ∈ J be the lowest priority patient in J . Since if any patient
is unmatched the remaining patients in each odd component can be matched among themselves, all

patients in NU\ {`J : J ∈ D} will be matched at each priority matching (i.e. if a patient remains
unmatched at an odd component, she will be the lowest priority patient in the odd component).

Relabel odd components in D such that D1 ∈ D hosts the highest priority patient in {`J : DJ ∈ D},
D2 ∈ D hosts the second highest priority patient in {`J : DJ ∈ D}, and so on (i.e. the components
are ordered in priority order of their lowest priority patient). For each J ⊆ D and I ⊆ NO, deÞne

the neighbors of the set of odd components J among overdemanded patients in I as

C (J , I) = {i ∈ I : ∃J ∈ J with �ri,J = 1} .

That is, each overdemanded patient in C (J , I) is mutually compatible with at least one patient inS
J∈J J . Which odd components will be fully matched and which ones will have all but its lowest

priority member matched will be determined by the hierarchy among the odd components (where the

priority of an odd component is determined by the priority of its lowest priority member) together

with the following version of Hall�s Theorem (Hall (1935)):

Hall�s Theorem: Let J ⊆ D. There exists a pre-matching which matches all odd components in
J with a distinct overdemanded patient in NO if and only if

∀J 0 ⊆ J ,
¯̄
C
¡
J 0,NO

¢¯̄
≥ |J 0| .

Under the priority mechanism, odd components D1,D2, ...,Dp are considered one at a time and

the following iterative procedure will determine which odd components will have all its members

matched and which ones will have all but its lowest priority member matched.
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Step 1.

� If
¯̄
C
¡
{D1} , NO

¢¯̄
≥ |{D1}| = 1 then let J1 = {D1} and in this case all members of D1 will

be matched.

� If
¯̄
C
¡
{D1} , NO

¢¯̄
< |{D1}| = 1 then let J1 = ∅ and in this case all members of D1 except its

lowest priority patient `1 will be matched.

In general, at

Step k.

� If
¯̄
C
¡
J ∪ {Dk} , NO

¢¯̄
≥ |J ∪ {Dk}| for every J ⊆ Jk−1 then let Jk = Jk−1 ∪ {Dk} and in

this case all members of Dk will be matched.

� If
¯̄
C
¡
J ∪ {Dk} , NO

¢¯̄
< |J ∪ {Dk}| for some J ⊆ Jk−1 then let Jk = Jk−1 and in this case

all members of Dk but its lowest priority patient `k will be matched.

4 Stochastic Exchange

So far our emphasis has been on deterministic exchange. One important tool to achieve equity

in resource allocation problems with indivisibilities is using lotteries and allowing for stochastic

outcomes.16

A lottery λ = (λµ)µ∈M is a probability distribution over the set of matchings M. For each

matching µ ∈M, λµ ∈ [0, 1] is the probability of matching µ in lottery λ, and
P

µ∈M λµ = 1. Let L
be the set of lotteries for the problem (N,%).
A stochastic mechanism is a systematic procedure that selects a lottery for each problem.

Given a lottery λ ∈ L, the allocation matrix A (λ) = [ai,j (λ)]i∈N,j∈N summarizes the total

probability that patient i will be matched with patient j for any pair of patients i, j ∈ N . Note
that two distinct lotteries can induce the same allocation matrix. Let A be the set of all allocation
matrices for the problem (N,%) . That is, A = {A (λ)}λ∈L.
Each lottery (and hence each allocation matrix) speciÞes the probability that each patient will

receive a transplant. Given a lottery λ ∈ L, deÞne the utility of patient i to be the aggregate
probability that she receives a transplant. Given λ ∈ L, the induced utility proÞle is a non-
negative real vector u (λ) = (ui (λ))i∈N such that ui (λ) =

P
j∈N ai,j (λ) for any patient i ∈ N . Let

U be the set of all feasible utility proÞles for the problem (N,%) . That is, U = {u (λ)}λ∈L.
16For other discussions of stochastic matching, see Roth and Vande Vate (1990), Roth, Rothblum and Vande Vate

(1993), Roth and Xing (1997), Abdulkadiroùglu and Sönmez (1998, 2003a), Bogomolnaia and Moulin (2001), Cres and
Moulin (2001), and Sönmez and Ünver (2001).
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A lottery is ex-post efficient if its support is a subset of the set of Pareto-efficient matchings.
That is, lottery λ ∈ L is ex-post efficient if λµ > 0 implies µ ∈ E .
An allocation matrix A ∈ A is ex-ante efficient if there exists no allocation matrix B ∈ A such

that
P

j∈N bi,j ≥
P

j∈N ai,j for all i ∈ N and
P

j∈N bi,j >
P

j∈N ai,j for some i ∈ N .
A utility proÞle u ∈ U is efficient if there exists no other utility proÞle v ∈ U such that vi ≥ ui

for all i ∈ N and vi > ui for some i ∈ N .
An immediate implication of Lemma 1 (as well as the GED Lemma) is the �equivalence� of

ex-ante and ex-post efficiency in the present context. This result is also stated by Bogomolnaia and

Moulin (2004).

Lemma 3 An allocation matrix A ∈ A is ex-ante efficient if and only if there is an ex-post efficient
lottery λ ∈ L such that A(λ) = A.

The notions for the induced two-sided matching market
³
NO,D, �R

´
can be similarly extended

to allow for stochastic outcomes.

A pre-lottery �λ =
³
�λ�µ
´
�µ∈fM is a probability distribution over the set of pre-matchings fM. Let

�L be the set of all pre-lotteries.
A pre-allocation (matrix) �A=[�ai,J ]i∈NO,J∈D is a non-negative valued matrix such that

1.
P

J∈D �ai,J ≤ 1 for any i ∈ NO,

2.
P

i∈NO �ai,J ≤ 1 for any J ∈ D, and

3. �ai,J > 0⇒ �ri,J = 1 for any pair i ∈ NO, J ∈ D.

Let eA be the set of all pre-allocations.
A pre-lottery �λ ∈ �L induces the pre-allocation �A ∈ eA if for each pair i ∈ NO and J ∈ D, �ai,J is

the cumulative probability that patient i ∈ NO is matched with set J ∈ D under the pre-lottery �λ.

By Lemma 2.1 in Bogomolnaia and Moulin (2002), for each pre-allocation there is a pre-lottery that

induces it.

A pre-lottery �λ ∈ �L is ex-post efficient if its support is a subset of the set of efficient pre-
matchings. That is, pre-lottery �λ is ex-post efficient if

�λ�µ > 0⇒ �µ ∈ �E .

Pre-matchings, pre-lotteries and pre-allocations will be very useful in our analysis.
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4.1 The Egalitarian Mechanism

It is rare that a cardinal representation of preferences, i.e. a utility function, has a direct interpreta-

tion in a resource allocation problem. In the present context, however, a patient�s utility corresponds

to the probability that she receives a transplant, and thus equalizing utilities as much as possible be-

comes very plausible from an equity perspective. This approach is widely known as egalitarianism
in distributive justice.17 In this section we analyze the egalitarian mechanism. The GED Lemma

will be key to the construction of egalitarian utilities.

Recall that C (J , I) denotes the neighbors of the set of odd components J ⊆ D among overde-

manded patients I ⊆ NO. For each J ⊆ D and I ⊆ NO, deÞne a real-valued function f through

f (J , I) = |∪J∈J J |− (|J |− |C (J , I)|)
|∪J∈J J |

.

Recall that at most one patient in each odd component remains unmatched at every Pareto-efficient

matching and therefore no more than |J | patients among patients in
S
J∈J J can remain unmatched

at any Pareto-efficient matching. Consider a situation where only overdemanded patients in I ⊆ NO

are available to be matched with underdemanded patients in
S
J∈J J . By deÞnition of a neighbor,

underdemanded patients in
S
J∈J J can only be matched with overdemanded patients in C (J , I) ⊆ I

and therefore at least (|J |− |C (J , I)|) of these patients remain unmatched at a Pareto-efficient
matching (provided that |J | ≥ |C (J , I)|).18 Therefore if only overdemanded patients in I ⊆ NO

are available to be matched with patients in
S
J∈J J , the quantity f (J , I) is an upper-bound of

the utility (i.e. the probability of receiving a transplant) of the least fortunate patient in
S
J∈J J ,

and this upper-bound can only be reached if not only all underdemanded patients in
S
J∈J J receive

the same utility but also all overdemanded patients in C (J , I) are matched to patients in
S
J∈J J .

This motivates the following recursive construction that partitions D as {D1,D2, ...,Dq} and NO as©
NO
1 , N

O
2 , ..., N

O
q

ª
:

Step 1: Let19

D1 = arg minJ⊆D
f
¡
J , NO

¢
and NO

1 = C
¡
D1, NO

¢
.

In general, at
17The two most related economic applications of egalitarianism to our setup are Bogomolnaia and Moulin (2004)

and Dutta and Ray (1989).
18For the sets of odd components J that we consider below, |J | > |C (J , I)|.
19If there are multiple sets that minimizes f , their union minimizes f as well and we pick the largest such set as the

argmin. See Lemma 4 in the Appendix for a proof of this result.
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Step k: Let

Dk = arg min
J⊆D\Sk−1`=1 D`

f

Ã
J , NO

-
k−1[
`=1

NO
`

!
and NO

k = C

Ã
Dk, NO

-
k−1[
`=1

NO
`

!
.

For each j ∈ NU , let k(j) be the step at which the odd component that contains patient j leaves

the above procedure. That is, k(j) ∈ {1, 2, ..., q} is such that j ∈ J ∈ Dk(j).
We construct a vector uE =

¡
uEi
¢
i∈N as follows:

� uEi = 1 for each i ∈ N\NU , and

� uEi = f
³
Dk(i), NO

k(i)

´
for each i ∈ NU .

Theorem 2 The vector uE is a feasible utility proÞle.

Theorem 2 states that for each of the collections of under and overdemanded patients (Dk, NO
k )

in the above construction, the overdemanded patients can be probabilistically matched to all of

the indicated odd components of underdemanded patients, in lotteries that divide the resulting

probabilities equally among the underdemanded patients, and thus achieve the upper bound on the

utility of the least fortunate patients.

For any utility proÞle u ∈ U , re-order individual utilities in an increasing order as
¡
u(t)
¢
t∈{1,2,...,n}

such that u(1) ≤ u(2) ≤ ... ≤ u(n).
A utility proÞle u ∈ U Lorenz-dominates a utility proÞle v ∈ U if

1. for each t ∈ {1, 2, ..., n} we have
Pt

s=1 u
(s) ≥

Pt
s=1 v

(s), and

2. there is some t ∈ {1, 2, ..., n} such that
Pt

s=1 u
(s) >

Pt
s=1 v

(s).

A utility proÞle is Lorenz-dominant if and only if it Lorenz-dominates every other utility proÞle.
If it exists, a Lorenz-dominant utility proÞle is efficient and as �evenly� distributes the probability of

receiving a transplant among patients as possible constrained by the mutual compatibility constraints.

Theorem 3 The utility proÞle uE is Lorenz-dominant.

We refer to the utility proÞle uE as the egalitarian utility proÞle. We refer to any lottery that
induces the egalitarian utility proÞle as an egalitarian lottery. Similarly we refer to any allocation
matrix that induces the egalitarian utility proÞle as an egalitarian allocation matrix. We refer
to a stochastic mechanism that selects an egalitarian lottery for each problem as an egalitarian
mechanism.
Our next result states that, as for priority mechanisms, truthful revelation of private information

is a dominant strategy under an egalitarian mechanism.
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Theorem 4 An egalitarian mechanism makes it a dominant strategy for a patient to reveal both a)

her full set of acceptable kidneys; and b) her full set of available donors.

As discussed when we proved the similar result for the priority mechanisms, the second part of

the Theorem follows from the Þrst. Revelation of the full set of acceptable kidneys increases the set

of patients with whom a given patient is mutually compatible, and, for the same reason, a patient

never suffers because of an addition of one more incompatible donor. That is:

Corollary 4 An egalitarian mechanism is donor-monotonic.

5 Concluding Remarks

One of the most challenging steps in implementing new market designs is addressing the constraints

that arise in the Þeld. Because all surgeries in a kidney exchange must be done simultaneously,

even the simplest exchange, between two patient-donor pairs, requires four simultaneous surgeries

among the two donors and two recipients. It therefore seems overwhelmingly likely that, at least

initially, some transplant centers are correct in anticipating that they will only be able to proceed

with exchange among two pairs. Roth, Sönmez and Ünver (2004) showed that, even under this

constraint, implementing kidney exchange could substantially increase the number of live organ

kidney transplants. The present paper shows that when exchange is constrained in this way, and

when the 0-1 nature of American surgeons� preferences regarding compatible/incompatible kidneys

are taken into account, it is still possible to arrange exchange in an efficient and incentive compatible

manner.

Another challenge in implementing new market designs arises in meeting the perceived needs and

desires of the institutions, organizations, and individuals who must adopt and use the new design.

Here too, the results are encouraging, and we show that the kinds of priority allocation that already

govern the allocation of cadaver kidneys can be adapted to work effectively in organizing live donor

kidney exchange. Since there are virtually no constraints on the kinds of priorities that can be

used in an efficient and incentive compatible mechanism, we anticipate that priority mechanisms

may appeal to different transplant centers that do not necessarily agree on how patients should be

prioritized.

Indeed, there is lively discussion and disagreement about, and frequent revision of the priorities

that different kinds of patients should have for cadaver organs, and we don�t doubt that similar

discussions about live organ exchange will take place as exchange becomes more common. The debate

about cadaver organs frequently refers to considerations of distributive justice, and in this connection

we have discussed stochastic mechanisms of exchange, and the egalitarian mechanism in particular.
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We do not anticipate or propose that this be taken as the last word on distributive justice in kidney

exchange, but rather intend merely to show how the tools we assemble here can be used to address

the kinds of distributional questions that arise. An interesting area of future research might be the

extent to which egalitarian (and weighted-egalitarian) exchange mechanisms can be approximated

by priority mechanisms with appropriately chosen priorities, taking into account different patients�

likelihoods of Þnding compatible donors with whom to exchange, the size and frequency of exchanges,

etc., in the dynamic environment in which new patients and donors arrive, and exchanges are carried

out periodically.

More generally, as economists start to take a more active role in practical market design, we

often Þnd we have to deal with constraints, demands, and situations different than those that arise

in the simplest theoretical models of mechanism design.20 In the present paper we address some

of the issues that have arisen as we try to help surgeons implement an organized exchange of live-

donor kidneys among incompatible donor-patient pairs. Not only do these issues appear to allow

satisfactory practical solutions, they suggest new directions in which to pursue the underlying theory.

6 Appendix: Proofs

The proof of Proposition 1 is a standard exercise in combinatorial optimization theory, for example

see Gommens (2004). Proposition 2 is due to Rado (1957) and Edmonds (1971). Lemma 1 and

Lemma 3 are corollaries of the GED Lemma (Lemma 2) and see Lovász and Plummer (1986) for a

proof of the GED Lemma.

Proof of Theorem 1: First, we introduce some notation. For each reduced problem R, consider the

construction of a priority matching and sets of matchings E0(R), E1(R),...,En(R) under the natural
ordering; we deÞne sets of agents M0(R),M1(R), ...,Mn(R) as

M0(R) = ∅ and
Mk (R) =

©
i ∈ {1, 2, ..., k} : µ(i) 6= i for any µ ∈ Ek(R)

ª
for each k ∈ {1, 2, ..., n} .

Note that Mk−1(R) ⊆Mk (R) for any k ∈ {1, 2, ..., n}.
Without loss of generality, we will prove the strategy-proofness of a priority mechanism which

selects a priority matching under the natural ordering for each reduced problem. Let φ be a priority

mechanism for the natural ordering and R = [ri,h]i∈N,h∈N be a reduced problem. Construct sets of

matchings E0(R), E1(R),...,En(R) and sets of patients M0(R),M1(R), ...,Mn(R).
20See for instance Roth and Peranson (1999), Roth (2002), Wilson (2002), Abdulkadiroùglu and Sönmez (2003b),

Milgrom (2004), Niederle and Roth (2004) for some examples. Indeed, one of the principal motivations of Roth,
Sönmez and Ünver (2004) was to organize efficient kidney exchange under the social/ethical/legal prohibitions on
monetized markets.
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Any patient j ∈Mn(R) is matched at φ (R) ∈ En(R), hence she cannot possibly beneÞt by under-
reporting the set of her compatible patients under φ. Let j ∈ N\Mn (R) . Patient j is unmatched at

φ (R). We will prove that patient j cannot receive a transplant by declaring a mutually compatible

patient to be incompatible, and repeated application of this argument will conclude the proof.

Let j0 ∈ N\ {j} such that rj,j0 = 1. Let Q = [qi,h]i∈N,h∈N be the reduced problem obtained from

R by patient j declaring patient j0 to be incompatible. Note thatM (Q) = {µ ∈M (R) : µ (j) 6= j0}.
Construct sets of matchings E0(Q), E1(Q),...,En(Q) and sets of patients M0(Q),M1(Q), ...,Mn(Q).

We conclude the proof with a claim that implies Mn (Q) = Mn (R) and this together with

j /∈Mn (R) imply that j /∈Mn (Q).

Claim: For each k ∈ {0, 1, ..., n},

(i) Mk (Q) =Mk (R) and

(ii) Ek (Q) =
©
µ ∈ Ek (R) : µ (j) 6= j0

ª
.

Proof of Claim: We prove the Claim by induction.

� Let k = 0. By construction, M0 (Q) = ∅ = M0 (R). Since E0 (R) =M (R), E0 (Q) =M (Q)

andM (Q) = {µ ∈M (R) : µ (j) 6= j0}, we have

E0 (Q) =M (Q) = {µ ∈M (R) : µ (j) 6= j0} =
©
µ ∈ E0 (R) : µ (j) 6= j0

ª
.

� Let k > 0. For all ` with 0 ≤ ` < k assume that M ` (Q) = M ` (R) and E` (Q) =©
µ ∈ E` (R) : µ (j) 6= j0

ª
.

We will prove thatMk (Q) =Mk (R) and Ek (Q) =
©
µ ∈ Ek (R) : µ (j) 6= j0

ª
. Consider patient

k. We have either k ∈Mk (R) or k /∈Mk (R). We consider these two cases separately:

1. k 6∈ Mk (R) : We have Mk (R) =Mk−1 (R) and Ek (R) = Ek−1 (R). For all η ∈ Ek−1 (R) ,
η (k) = k. By the inductive assumption Ek−1 (Q) ⊆ Ek−1 (R), therefore for all η ∈
Ek−1 (Q) , we have η (k) = k; and hence, k 6∈ Mk (Q) and Ek (Q) = Ek−1 (Q). This

together with the inductive assumption imply

Mk (Q) = Mk−1 (Q) =Mk−1 (R) =Mk (R) and

Ek (Q) = Ek−1 (Q) =
©
µ ∈ Ek−1 (R) : µ (j) 6= j0

ª
=
©
µ ∈ Ek (R) : µ (j) 6= j0

ª
.

2. k ∈Mk (R) :We haveMk (R) =Mk−1 (R)∪{k} and Ek (R) =
©
µ ∈ Ek−1 (R) : µ (k) 6= k

ª
.

We prove the two statements separately:
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(i) Let η ∈ En (R). Since k ∈Mk (R) ⊆Mn (R), η (k) 6= k. Since j 6∈Mn (R), η (j) = j.

These together with the inductive assumption and En (R) ⊆ Ek−1 (R) imply that
η ∈

©
µ ∈ Ek−1 (R) : µ (j) 6= j0

ª
= Ek−1 (Q). This together with η(k) 6= k imply that

Ek (Q) =
©
µ ∈ Ek−1 (Q) : µ (k) 6= k

ª
(1)

and

Mk (Q) =Mk−1 (Q) ∪ {k} =Mk−1 (R) ∪ {k} =Mk (R) .

(ii) First let η ∈
©
µ ∈ Ek (R) : µ (j) 6= j0

ª
. Since η ∈ Ek (R) ⊆ Ek−1 (R) and η(j) 6= j0,

we have η ∈
©
µ ∈ Ek−1 (R) : µ (j) 6= j0

ª
= Ek−1 (Q) where the last equality follows

from the inductive assumption. Since k ∈Mk (R) and η ∈ Ek (R), we have η (k) 6= k.
These imply that η ∈

©
µ ∈ Ek−1 (Q) : η (k) 6= k

ª
= Ek (Q) by Eq 1.

Next let η ∈ Ek (Q) =
©
µ ∈ Ek−1 (Q) : µ (k) 6= k

ª
. Since Ek (Q) ⊆ Ek−1 (Q) ⊆

Ek−1 (R) where the last set inclusion follows from the inductive assumption,

we have η ∈ Ek−1 (R). This together with η (k) 6= k imply that η ∈©
µ ∈ Ek−1 (R) : µ (k) 6= k

ª
= Ek (R). Therefore Ek (Q) =

©
µ ∈ Ek (R) : µ (j) 6= j0

ª
completing the proof of the Claim as well as Theorem 1. ¤¥

The following Lemma is useful to construct the egalitarian utility proÞle:

Lemma 4 Fix G ⊆ D and I ⊆ NO. Suppose G1,G2 ∈ argminJ⊆G f (J , I) . Then G1 ∪ G2 ∈
argminJ⊆G f (J , I) as well.

Proof of Lemma 4: Fix G ⊆ D and I ⊆ NO. Suppose

G1,G2 ∈ argminJ⊆G
f (J , I) .

Let G3 = G1 ∩ G2 and G4 = G1 ∪ G2. For all i ∈ {1, 2, 3, 4} deÞne

ni =

¯̄̄̄
¯ [
J∈Gi

J

¯̄̄̄
¯ , Ci = C(Gi, I), and fi = f(Gi, I).

By deÞnition we have

|G1|+ |G2| = |G3|+ |G4| and n1 + n2 = n3 + n4.

Moreover

|C1|+ |C2| ≥ |C3|+ |C4|.
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That is because, in the LHS of the inequality not only the neighbors of G3 = G1 ∩ G2 (i.e. members
of C3) are counted twice but also there may be additional common neighbors of G1 and G2; RHS of
the inequality accounts for the double counting of members of C3 but not the remaining common

neighbors of G1 and G2.
Since G1, G2 each minimize the function f ,

(n1 − (|G1|− |C1|))
n1| {z }
=f1

=
(n2 − (|G2|− |C2|))

n2| {z }
=f2

≤ (n3 − (|G3|− |C3|))
n3| {z }
=f3

and hence

f1n1 = n1 − (|G1|− |C1|),
f1n2 = n2 − (|G2|− |C2|),
f1n3 ≤ n3 − (|G3|− |C3|).

Adding the Þrst two lines and subtracting the third line

f1(n1 + n2 − n3| {z }
=n4

) ≥ (n1 + n2 − n3| {z }
=n4

)− (|G1|+ |G2|− |G3|| {z }
=|G4|

) + (|C1|+ |C2|− |C3|| {z }
≥|C4|

)

and therefore

f1n4 ≥ n4 − |G4|+ C4

or equivalently

f1 ≥
(n4 − (|G4|− |C4|))

n4
= f4.

But since G1 minimizes f , we shall have f4 = f1 and hence G4 = G1 ∪ G2 minimizes f as well. ¥

We next present two lemmata that will be useful in our proofs for Theorem 2 and Theorem 3.

The following lemma is a part of Lemma 3.2.2 in Lovász and Plummer (1986) pp 95:

Lemma 5 For each i ∈ NO, the Gallai-Edmonds decomposition of the reduced subproblem³
N\ {i} , RN\{i}

´
is given by

©
NU , NO\ {i} , NP

ª
where NU is the set of underdemanded patients,

NO\ {i} is the set of overdemanded patients, and NP is the set of perfectly matched patients for the

reduced subproblem
³
N\ {i} , RN\{i}

´
.

Lemma 6 For each k ∈ {1, 2, ..., q}, we have

i. C
¡
Dk, NO

k

¢
= C

³
Dk, NO

/Sk−1
`=1 N

O
`

´
and f

¡
Dk, NO

k

¢
= f

³
Dk, NO

/Sk−1
`=1 N

O
`

´
,

ii. f
¡
Dk, NO

k

¢
< 1.
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Proof of Lemma 6: For any k ∈ {1, 2, ..., q}, let Jk =
S
J∈Dk J . Note that Jk is the set of patients in

sets of Dk. Pick k ∈ {1, 2, ..., q − 1}.

i. First observe that C
³
Dk, NO

/Sk−1
`=1 N

O
`

´
= C

³
Dk, C

³
Dk, NO

/Sk−1
`=1 N

O
`

´´
. This together

with NO
k = C

³
Dk, NO

/Sk−1
`=1 N

O
`

´
implies that C

¡
Dk, NO

k

¢
= C

³
Dk, NO

/Sk−1
`=1 N

O
`

´
. Fur-

thermore

f

Ã
Dk, NO

-
k−1[
`=1

NO
`

!
=

|Jk|−
³
|Dk|−

¯̄̄
C
³
Dk, NO

/Sk−1
`=1 N

O
`

´¯̄̄´
|Jk|

=
|Jk|−

¡
|Dk|−

¯̄
C
¡
Dk, NO

k

¢¯̄¢
|Jk|

= f
¡
Dk, NO

k

¢
.

ii. Consider the construction of the partition {D1,D2, ...,Dq} of D and
©
NO
1 , N

O
2 , ..., N

O
q

ª
of NO.

We prove Lemma 6 (ii) by iteration on steps k ∈ {1, 2, ..., q} of the construction.

� First consider k = 1. We have

f
¡
D1, NO

k

¢
= f

¡
D1, NO

¢
by Lemma 6 (i)

≤ f
¡
D, NO

¢
by construction of D1

=

¯̄
NU
¯̄
− (|D|−

¯̄
C(D, NO)

¯̄
)

|NU | by deÞnition of f

=

¯̄
NU
¯̄
− (|D|−

¯̄
NO
¯̄
)

|NU | by C(D, NO) = NO

< 1 since
¯̄
NO
¯̄
< |D| by Corollary 3

If D1 = D, then q = 1 and we are done. Otherwise we proceed with k = 2.

� Next consider k = 2. Consider the reduced subproblem
³
N\NO

1 , RN\NO
1

´
. Since NO

1 ⊆
NO, Lemma 5 implies that the Gallai-Edmonds decomposition for the reduced subproblem³
N\NO

1 , RN\NO
1

´
is given by

©
NU , NO\NO

1 , N
P
ª
. Since NO

1 = C(D1, NO), there is no

patient j ∈ J1 =
S
J∈D1 J who is mutually compatible with a patient in N\N

O
1 . Therefore,

(J,RJ) is a component of reduced subproblem
³
N\NO

1 , RN\NO
1

´
for each J ∈ D1, which in

turn implies
©
NU\J1, NO\NO

1 , N
P
ª
is the Gallai-Edmonds decomposition for the reduced

subproblem
µ
N\

¡
NO
1 ∪ J1

¢
, R

N\(NO
1 ∪J1)

¶
. Therefore, D\D1 is the set of odd components

of the reduced subproblem which is obtained by removing overdemanded patients from

the reduced subproblem
µ
N\

¡
NO
1 ∪ J1

¢
, R

N\(NO
1 ∪J1)

¶
.
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By Corollary 3 |D\D1| >
¯̄
N\NO

1

¯̄
and at this point the proof of f

¡
D2, NO

2

¢
< 1 follows

from the same sequence of arguments as in k = 1:

f
¡
D2, NO

2

¢
= f

¡
D2, NO

²
NO
1

¢
≤ f

¡
D\D1 , NO

²
NO
1

¢
=

¯̄
NU \J1

¯̄
− (|D\D1|−

¯̄
C(D\D1 , NO

²
NO
1 )
¯̄
)

|NU \J1 |

=

¯̄
NU \J1

¯̄
− (|D \D1 |−

¯̄
NO

²
NO
1

¯̄
)

|NU \J1 |
< 1

If D1∪D2 = D then q = 2 and we are done. Otherwise, we iteratively proceed in a similar
way with k = 3, and so on. ¥

Proof of Theorem 2: Let k ∈ {1, 2, ..., q} and J ∈ Dk. Recall that J is a set of underdemanded
patients and (J,RJ) is an odd component of

³
N\NO, RN\NO

´
. Under a Pareto-efficient matching,

at most one patient in J is matched with an overdemanded patient, and for each j ∈ J , it is possible
to match the remaining |J |−1 patients in J\ {j} with each other by the GED Lemma. Therefore the
set J , by itself, generates an aggregate utility of |J |− 1 for its members under each efficient utility
proÞle without any help of the overdemanded patients. Moreover |J | .f(Dk, NO

k ) is the aggregate

utility of patients in set J under uE and |J | .f(Dk, NO
k ) ≥ |J | − 1 by construction of f . Therefore,

if uE is a feasible utility proÞle, then patients in J should be matched with overdemanded patients

with a cumulative probability of |J | .f(Dk, NO
k )− (|J |− 1) under any lottery λ that induces uE. Let

αJ = |J | .f(Dk, NO
k )− (|J |− 1) .

Note that f(Dk, NO
k ) < 1 by Lemma 6 (ii), and therefore f(Dk, NO

k ) ≥ αJ . Also note that for

each k ∈ {1, 2, ..., q} and J ∈ Dk we have

αJ = |J | .f
¡
Dk, NO

k

¢
− (|J |− 1)

= |J | .
¯̄S

J 0∈Dk J
0
¯̄
−
¡
|Dk|−

¯̄
C
¡
Dk, NO

k

¢¯̄¢¯̄S
J 0∈Dk J

0
¯̄ − (|J |− 1)

=

¯̄S
J 0∈Dk J

0
¯̄
− |J | .

¡
|Dk|−

¯̄
C
¡
Dk, NO

k

¢¯̄¢¯̄S
J 0∈Dk J

0
¯̄ (2)

We will show that uE is a feasible utility proÞle in two major steps: In the Þrst step (Claim 1),

we will show that it is possible to assign overdemanded patients NO to odd components D such that
each odd component J ∈ D is assigned with an overdemanded patient with an aggregate probability
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of αJ . In the second step (Claim 2) we will show that for each odd component J ∈ Dk, it is possible
to evenly divide the aggregate utility αJ + (|J |− 1) among |J | members as f

¡
Dk, NO

k

¢
.

Claim 1: There exists a pre-allocation matrix �A ∈ eA such that
1. For each i ∈ NO,

P
J∈D �ai,J = 1, and

2. For each k ∈ {1, 2, ..., q} and J ∈ Dk

(a) �ai,J = 0 for all i ∈ N\NO
k , and

(b)
P

i∈NO
k
�ai,J=αJ .

Proof of Claim 1: Let k ∈ {1, 2, ..., q}. We will show that it is possible to share the aggregate
¯̄
NO
k

¯̄
units of �weight� of members of NO

k (1 unit weight from each member) among (only) members of

Dk such that the share of odd component J ∈ Dk is αJ . Formally, we will show that there exists a
non-negative valued matrix �Ak,k = [�ai,J ]i∈NO

k ,J∈Dk
such that

1.
P

J∈Dk �ai,J = 1 for all i ∈ N
O
k ,

2.
P

i∈NO
k
�ai,J=αJ for all J ∈ Dk, and

3. �ai,J > 0→ �ri,J = 1 for any pair i ∈ NO
k , J ∈ Dk.

We will show this by deÞning an auxiliary task assignment problem and applying Hall�s The-

orem to the auxiliary task assignment problem.21 Given NO
k and Dk, construct the task assignment

problem (X,T ,Γ) as follows:

� For each overdemanded patient i ∈ NO
k , introduce

¯̄S
J 0∈Dk J

0
¯̄
identical agents. Let Xi be the

set of the identical agents associated with patient i, and X =
S
i∈NO

k
Xi.

� For each odd component J ∈ Dk, introduce
¯̄S

J 0∈Dk J
0
¯̄
− |J | .

¡
|Dk|−

¯̄
C
¡
Dk, NO

k

¢¯̄¢
identical

tasks. Let TJ be the set of identical tasks associated with set J , and T =
S
J∈Dk TJ .

� Finally, introduce a matrix Γ =
¡
γx,T

¢
x∈X,T∈T such that γx,T = 1 if �ri,J = 1 for x ∈ Xi and

T ∈ TJ , and γx,T = 0 otherwise. Intuitively agent x is Þt to perform task T if and only if

patient i associated with agent x has a link with the odd component J that is associated with

task T in the induced two-sided matching market
³
NO,D, �R

´
.

21This can be interpreted as the proof of a continuous version of Hall�s theorem that deals with probabilistic
assignments.
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Given NO
k and Dk we refer to (X,T ,Γ) as the auxiliary task assignment problem. Note that

|T | =
X
J∈Dk

Ã¯̄̄̄
¯ [
J 0∈Dk

J 0

¯̄̄̄
¯− |J | . ¡|Dk|− ¯̄C ¡Dk, NO

k

¢¯̄¢!

= |Dk| .
¯̄̄̄
¯ [
J 0∈Dk

J 0

¯̄̄̄
¯−

¯̄̄̄
¯ [
J 0∈Dk

J 0

¯̄̄̄
¯ . ¡|Dk|− ¯̄C ¡Dk, NO

k

¢¯̄¢
=

¯̄̄̄
¯ [
J 0∈Dk

J 0

¯̄̄̄
¯ . ¯̄C ¡Dk, NO

k

¢¯̄
=

¯̄̄̄
¯ [
J 0∈Dk

J 0

¯̄̄̄
¯ . ¯̄NO

k

¯̄
by NO

k = C
¡
Dk, NO

k

¢
=

X
i∈NO

k

¯̄̄̄
¯ [
J 0∈Dk

J 0

¯̄̄̄
¯

= |X| .

An auxiliary task assignment is a bijection ν : X −→ T . An auxiliary task assignment ν is
feasible if and only if ν (x) = T implies that γx,T = 1.
Here is the point of introducing the above auxiliary task assignment problem: Each agent or task

inX∪T corresponds to a fraction 1

|SJ0∈Dk J 0| of its �owner� inNO
k ∪Dk. Therefore if we show that there

exists a feasible auxiliary task assignment ν, this would mean that it is possible to assign each agent in

X to a distinct compatible task in T , and therefore the aggregate
¯̄
NO
k

¯̄
.
¯̄S

J 0∈Dk J
0
¯̄
. 1

|SJ0∈Dk J 0| =
¯̄
NO
k

¯̄
weight of the patients in NO

k can be allocated among odd components of Dk such that the share of
the odd component J is

¡¯̄S
J 0∈Dk J

0
¯̄
− |J | .

¡
|Dk|−

¯̄
C
¡
Dk, NO

k

¢¯̄¢¢
. 1

|SJ0∈Dk J 0| = αJ .
We next prove that there exists a feasible auxiliary task assignment ν for the above task assign-

ment problem. Given τ⊆ T deÞne

C(τ , X) =
©
x ∈ X : ∃T ∈ τ with γx,T = 1

ª
That is, C(τ ,X) is the set of agents each of whom is Þt to perform at least one of the tasks in τ . By

Hall�s Theorem there exists a feasible auxiliary task assignment if and only if

|τ | ≤ |C(τ , X)| for every τ ⊆ T .

That is, no matter what subset of tasks is considered, the number of agents who are Þt for at least

one of these tasks should be no less than the number of the tasks in this subset. We will prove this

by contradiction.

Suppose there exists a subset τ ⊆ T of tasks such that |τ | > |C(τ ,X)|. Next construct the
following set of tasks τ ∗ ⊇ τ . For any task T ∈ τ , include all tasks which are identical to task T in
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set τ ∗. Note that since C(τ ∗, X) = C(τ , X), we have

|τ ∗| ≥ |τ | > |C(τ ,X)| = |C(τ ∗, X)| (3)

Let J ∗ ⊆ Dk be the set of odd components each of which is associated with a task in τ ∗. Note
that

S
J∈J ∗ TJ = τ ∗ and therefore

|τ ∗| =
X
J∈J ∗

Ã¯̄̄̄
¯ [
J 0∈Dk

J 0

¯̄̄̄
¯− |J | . ¡|Dk|− ¯̄C ¡Dk, NO

k

¢¯̄¢!

= |J ∗| .
¯̄̄̄
¯ [
J 0∈Dk

J 0

¯̄̄̄
¯−

¯̄̄̄
¯ [
J 0∈J ∗

J 0

¯̄̄̄
¯ . ¡|Dk|− ¯̄C ¡Dk, NO

k

¢¯̄¢
(4)

Moreover

|C(τ ∗,X)| =
¯̄̄̄
¯ [
J 0∈Dk

J 0

¯̄̄̄
¯ . ¯̄C(J ∗, NO

k )
¯̄

(5)

By Eq (3), Eq (4), and Eq (5)

|J ∗| .
¯̄̄̄
¯ [
J 0∈Dk

J 0

¯̄̄̄
¯−

¯̄̄̄
¯ [
J 0∈J ∗

J 0

¯̄̄̄
¯ . ¡|Dk|− ¯̄C ¡Dk, NO

k

¢¯̄¢
>

¯̄̄̄
¯ [
J 0∈Dk

J 0

¯̄̄̄
¯ . ¯̄C(J ∗, NO

k )
¯̄
;

rearranging the terms, we have

−
|Dk|−

¯̄
C
¡
Dk, NO

k

¢¯̄¯̄S
J 0∈Dk J

0
¯̄| {z }

=f(Dk,NO
k )−1

> −
|J ∗|−

¯̄
C(J ∗, NO

k )
¯̄¯̄S

J 0∈J ∗ J 0
¯̄| {z }

=f(J ∗,NO
k )−1

and therefore,

f
¡
Dk, NO

k

¢
> f

¡
J ∗, NO

k

¢
. (6)

However f
¡
Dk, NO

k

¢
= f

³
Dk, NO

/Sk−1
`=1 N

O
`

´
and f

¡
J ∗, NO

k

¢
= f

³
J ∗, NO

/Sk−1
`=1 N

O
`

´
by

Lemma 6, and this together with Eq (6) imply that

f

Ã
Dk, NO

-
k−1[
`=1

NO
`

!
> f

Ã
J ∗, NO

-
k−1[
`=1

NO
`

!

contradicting the deÞnition ofDk and showing that for each τ ⊆ T we have |τ | ≤ |C(τ ,X)|. Therefore
there exists a feasible auxiliary task assignment ν by Hall�s Theorem.

We next construct matrix �Ak,k = [�ai,J ]i∈NO
k ,J∈Dk

using the auxiliary task assignment ν. For each

J ∈ Dk and i ∈ NO
k , deÞne

νi,J = {x ∈ Xi : ν(x) = T for some T ∈ TJ} .

29



By deÞnition |νi,J | is the total number of tasks associated with odd component J each of which is
assigned to an agent associated with the overdemanded patient i. For each J ∈ Dk and i ∈ NO

k , let

�ai,J =
|νi,J |¯̄S
J 0∈Dk J

0
¯̄

and let �Ak,k = [�ai,J ]i∈NO
k ,J∈Dk

.

For each odd component J ∈ Dk, we haveX
i∈NO

k

�ai,J =

P
i∈NO

k
|νi,J |¯̄S

J 0∈Dk J
0
¯̄ = |TJ |¯̄S

J 0∈Dk J
0
¯̄

=

¯̄S
J 0∈Dk J

0
¯̄
− |J | .

¡
|Dk|−

¯̄
C
¡
Dk, NO

k

¢¯̄¢¯̄S
J 0∈Dk J

0
¯̄

= αJ by Eq (2) (7)

Moreover for each overdemanded patient i ∈ NO
k , we haveX

J∈Dk

�ai,J =

P
J∈Dk |νi,J |¯̄S
J 0∈Dk J

0
¯̄ = |Xi|¯̄S

J 0∈Dk J
0
¯̄ = ¯̄S

J 0∈Dk J
0
¯̄¯̄S

J 0∈Dk J
0
¯̄ = 1. (8)

We conclude the proof of Claim 1 by constructing a pre-allocation matrix �A ∈ A using the

matrices
n
�Ak,k
o
k∈{1,2,...,q}

constructed above.

For each k, k0 with k 6= k0, for each i ∈ NO
k and each J ∈ Dk0 let �ai,J = 0. Let �Ak,k

0
=

[�ai,J ]i∈NO
k ,J∈Dk0

Let �A =
h
�Ak,k

0
i
k∈{1,2,...,q},k0∈{1,2,...,q}

= [�ai,J ]i∈NO,J∈D.

For each k and each odd component J ∈ Dk, we have
P

i∈NO �ai,J =
P

i∈NO
k
�ai,J = αJ by Eq (7) and

for each overdemanded patient i ∈ NO
k , we have

P
J∈D �ai,J =

P
J∈Dk �ai,J = 1 by Eq (8) concluding

the proof of Claim 1. ¤

The next claim completes the proof of Theorem 2.

Claim 2: There exists an ex-post efficient lottery λE ∈ L such that u
¡
λE
¢
= uE.

Proof of Claim 2: By Claim 1 there exists a pre-allocation �A ∈ eA such that
1. For each i ∈ NO,

P
J∈D �ai,J = 1, and

2. For each k ∈ {1, 2, ..., q} and J ∈ Dk

(a) �ai,J = 0 for all i ∈ N\NO
k , and
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(b)
P

i∈NO
k
�ai,J=αJ .

For each k ∈ {1, 2, ..., q} and J ∈ Dk, we have
P

i∈NO
k
�ai,J = αJ and �ai,J = 0 for all i ∈ N\NO

k .

By Lemma 2.1 in Bogomolnaia and Moulin (2002) there exists an ex-post efficient pre-lottery �λ ∈ �L
that implements �A.

We will �build on� the pre-lottery �λ to construct the lottery λE. For each pre-matching �µ ∈ fM
in the support of pre-lottery �λ, partition set D as {Dm (�µ) ,Du (�µ)} where

� Dm (�µ) = {J ∈ D : �µ(J) 6= ∅} is the set of matched odd components, and

� Du (�µ) = D\Dm (�µ) is the set of unmatched odd components.

For each pre-matching �µ ∈ fM in the support of pre-lottery �λ construct
Q
J∈Du(�µ) |J | distinct

matchings as follows:

Pick one patient from each J ∈ Du (�µ). Note that there are
Q
J∈Du(�µ) |J | possible combinations.

For each combination construct a Pareto-efficient matching µ such that:

� each of the chosen patients is matched to herself,

� each remaining patient in each odd component J ∈ Du (�µ) is matched with another patient in
the same odd component J , and

� one patient in each odd component J ∈ Dm (�µ) is matched with an overdemanded patient
i ∈ NO whereas all other patients in each such odd component J is matched with another

patient in J .

By the GED Lemma, there exists at least one such matching. Pick one and only one such matching

for each of the
Q
J∈Du(�µ) |J | possible combinations. Let M(�µ) be the resulting set of matchings.

Clearly |M(�µ)| =
Q
J∈Du(�µ) |J | .

We are Þnally ready to construct a lottery λE which induces the utility proÞle uE. The lottery

λE is constructed from the pre-lottery �λ by simply replacing each pre-matching �µ in the support of
�λ with the uniform lottery overM(�µ). That is:

λEµ =

(
�λ�µ

|M(�µ)| if µ ∈M(�µ) and �λ�µ > 0

0 otherwise

Clearly, λE is a lottery:

X
µ∈M

λEµ =
X
�µ∈fM

 X
µ∈M(�µ)

λEµ

 =
X
�µ∈fM

 X
µ∈M(�µ)

�λ�µ
|M(�µ)|

 =
X
�µ∈fM

�λ�µ = 1
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Moreover by construction λE is an ex-post efficient lottery.

We conclude the proof of Claim 2 and Theorem 2 by showing that u(λE) = uE:

Each patient in N\NU is matched with another patient in every efficient matching by the GED

Lemma. Since λE is ex-post efficient, for each patient i ∈ N\NU we have ui
¡
λE
¢
= uEi = 1.

Consider a patient i ∈ NU . Let i ∈ J ∈ Dk for some k.
Let �µ ∈ fM be a pre-matching with �λ�µ > 0.

1. If J ∈ Dm (�µ) then all patients in J are matched under every matching µ ∈M (�µ).

2. If J ∈ Du (�µ) then |J | − 1 patients in J are matched under every matching µ ∈ M (�µ) and

patient i (just as any other patient in J) is matched with another patient in |J|−1
|J| |M (�µ)| of

these matchings.

Since
P

i∈NO
k
�ai,J = αJ is the probability that the odd component J is assigned a patient in NO

k

under the pre-lottery �λ, we haveX
�µ∈fM s.t. J∈Dm(�µ)

�λ�µ = αJ and
X

�µ∈fM s.t. J∈Du(�µ)

�λ�µ = 1− αJ (9)

Therefore

ui
¡
λE
¢
=

X
µ∈M s.t. µ(i)6=i

λEµ

=
X

�µ∈fM s.t. J∈Dm(�µ)

 X
µ∈M(�µ)

�λ�µ
|M(�µ)|

+ X
�µ∈fM s.t. J∈Du(�µ)

 X
µ∈M(�µ) s.t. µ(i)6=i

�λ�µ
|M(�µ)|


=

X
�µ∈fM s.t. J∈Dm(�µ)

�λ�µ +
X

�µ∈fM s.t. J∈Du(�µ)

|J |− 1
|J | .�λ�µ

= αJ + (1− αJ) .
|J |− 1
|J | by Eq 9

=
|J |− 1 + αJ

|J |

= 1−
|Dk|−

¯̄
C
¡
Dk, NO

k

¢¯̄¯̄S
J 0∈Dk J

0
¯̄ by Eq 2

= f
¡
Dk, NO

k

¢
= uEi

completing the proof of Claim 2 as well as the proof of Theorem 2. ¤¥
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Proof of Theorem 3: Let Jk be the set of patients in sets of Dk, i.e. Jk =
S
J∈Dk J for any k ∈

{1, 2, ..., q}. Construct uE and Þx a feasible utility proÞle v ∈ U .We prove Theorem 3 through three
claims.

Claim 1: f
¡
Dk, NO

k

¢
< f

¡
Dk+1, NO

k+1

¢
for each k ∈ {1, 2, ..., q − 1}.

Proof of Claim 1: Pick k ∈ {1, 2, ..., q − 1}. Let I = NO
/Sk−1

`=1 N
O
` . Consider the construction of

{D1,D2, ...,Dq} . Note that Dk ∪Dk+1 ⊆ D
/Sk−1

`=1 D` . Since

f (Dk, I) = min
J⊆D\Sk−1`=1 D`

f (J , I)

and Dk is the largest subset J ⊆ D
/Sk−1

`=1 D` of satisfying this equality, we have

f (Dk, I) < f (Dk ∪Dk+1, I)

=
|Jk ∪ Jk+1|− (|Dk ∪Dk+1|− |C (Dk ∪Dk+1, I)|)

|Jk ∪ Jk+1|

=
|Jk|+ |Jk+1|− (|Dk|+ |Dk+1|− |C (Dk ∪Dk+1, I)|)

|Jk|+ |Jk+1|
by Dk ∩Dk+1 = ∅

=
|Jk|+ |Jk+1|−

¡
|Dk|+ |Dk+1|− |C (Dk, I)|−

¯̄
C
¡
Dk+1, I\NO

k

¢¯̄¢
|Jk|+ |Jk+1|

by C (Dk ∪Dk+1, I) = C (Dk, I) ∪ C
¡
Dk+1, I\NO

k

¢
and C (Dk, I) ∩ C

¡
Dk+1, I\NO

k

¢
= ∅

=

|Jk|−(|Dk|−|C(Dk,I)|)
|Jk| |Jk|+

|Jk+1|−(|Dk+1|−|C(Dk+1,I\NO
k )|)

|Jk+1| |Jk+1|
|Jk|+ |Jk+1|

=
f (Dk, I) |Jk|+ f

¡
Dk+1, I\NO

k

¢
|Jk+1|

|Jk|+ |Jk+1|
by deÞnition of f

Rearranging the terms in this inequality, we Þnd

f (Dk, I) < f
¡
Dk+1, I\NO

k

¢
.

We conclude the proof of Claim 1 observing that f
¡
Dk, NO

k

¢
= f (Dk, I) and f

¡
Dk+1, NO

k+1

¢
=

f
¡
Dk+1, I\NO

k

¢
by Lemma 6 (i). ¤

Claim 2: For any k ∈ {1, 2, ..., q}, we have

(i)
kX
`=1

X
i∈J`

uEi =
kX
`=1

|J`|−
Ã

kX
`=1

|D`|−
¯̄̄̄
¯C
Ã

k[
`=1

D`, NO

!¯̄̄̄
¯
!
, and

(ii)
kX
`=1

X
i∈J`

uEi ≥
kX
`=1

X
i∈J`

vi.
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Proof of Claim 2:

i. For any k ∈ {1, 2, ..., q} , we haveX
i∈Jk

uEi = |Jk| .f
¡
Dk, NO

k

¢
= |Jk| .f

Ã
Dk, NO

-
k−1[
`=1

NO
`

!
by Lemma 6 (i)

= |Jk| .
|Jk|−

³
|Dk|−

¯̄̄
C
³
Dk, NO

/Sk−1
`=1 N

O
`

´¯̄̄´
|Jk|

= |Jk|−
Ã
|Dk|−

¯̄̄̄
¯C
Ã
Dk, NO

-
k−1[
`=1

NO
`

!¯̄̄̄
¯
!
. (10)

We prove part (i) by induction.

� For k = 1 :X
i∈J1

uEi = |J1|−
¡
|D1|−

¯̄
C
¡
D1, NO

¢¯̄¢
by Eq 10

� For k > 1 : For the inductive step assume that for each k0 < k we have

k0X
`=1

X
i∈J`

uEi =
k0X
`=1

|J`|−
Ã

k0X
`=1

|D`|−
¯̄̄̄
¯C
Ã

k0[
`=1

D`, NO

!¯̄̄̄
¯
!
.
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We have
kX
`=1

X
i∈J`

uEi =
k−1X
`=1

X
i∈J`

uEi +
X
i∈Jk

uEi

=
k−1X
`=1

|J`|−
Ã
k−1X
`=1

|D`|−
¯̄̄̄
¯C
Ã
k−1[
`=1

D`, NO

!¯̄̄̄
¯
!
+
X
i∈Jk

uEi by the inductive step

=
k−1X
`=1

|J`|−
Ã
k−1X
`=1

|D`|−
¯̄̄̄
¯C
Ã
k−1[
`=1

D`, NO

!¯̄̄̄
¯
!

+ |Jk|−
Ã
|Dk|−

¯̄̄̄
¯C
Ã
Dk, NO

-
k−1[
`=1

NO
`

!¯̄̄̄
¯
!

by Eq 10

=
kX
`=1

|J`|−
Ã

kX
`=1

|D`|−
¯̄̄̄
¯C
Ã
k−1[
`=1

D`, NO

!¯̄̄̄
¯−

¯̄̄̄
¯C
Ã
Dk, NO

-
k−1[
`=1

NO
`

!¯̄̄̄
¯
!

=
kX
`=1

|J`|−
Ã

kX
`=1

|D`|−
¯̄̄̄
¯C
Ã

k[
`=1

D`, NO

!¯̄̄̄
¯
!

by C
³Sk

`=1D`, NO
´
= C

³Sk−1
`=1 D`, NO

´
∪ C

³
Dk, NO

/Sk−1
`=1 N

O
`

´
and C

³Sk−1
`=1 D`, NO

´
∩ C

³
Dk, NO

/Sk−1
`=1 N

O
`

´
= ∅

concluding the proof Part (i).

ii. Fix k ∈ {1, 2, ..., q}. Consider the set of odd components
Sk
`=1D`. By the GED Lemma, at

most
¯̄̄
C(
Sk
`=1D`, NO)

¯̄̄
of these odd components can have all its members matched under a

Pareto-efficient matching. Therefore, the number of patients remaining unmatched in
Sk
`=1 J`

under a Pareto-efficient matching is bounded below by
¯̄̄Sk

`=1D`
¯̄̄
−
¯̄̄
C(
Sk
`=1D`, NO)

¯̄̄
. Hence,

the difference¯̄̄̄
¯
k[
`=1

J`

¯̄̄̄
¯−

Ã¯̄̄̄
¯
k[
`=1

D`

¯̄̄̄
¯−

¯̄̄̄
¯C(

k[
`=1

D`, NO)

¯̄̄̄
¯
!
=

kX
`=1

|J`|−
Ã

kX
`=1

|D`|−
¯̄̄̄
¯C
Ã

k[
`=1

D`, NO

!¯̄̄̄
¯
!

is an upper bound for the number of patients in
Sk
`=1 J` matched under a Pareto-efficient

matching and consequently the aggregate utility of patients in
Sk
`=1 J` under any ex-post effi-

cient lottery is bounded above by
kX
`=1

|J`|−
Ã

kX
`=1

|D`|−
¯̄̄̄
¯C
Ã

k[
`=1

D`, NO

!¯̄̄̄
¯
!

This together with Part (i) of Claim 2 and the equivalence of ex-post and ex-ante efficiency by

Lemma 3 imply
kX
`=1

X
i∈J`

uEi ≥
kX
`=1

X
i∈J`

vi
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for any feasible utility proÞle v completing the proof of Part (i). ¤

Claim 3: For any t ∈ {1, 2, ..., n} , we have

tX
s=1

¡
uE
¢(s) ≥ tX

s=1

v(s).

Proof of Claim 3:We use indices k, k0, and ` ∈ {1, 2, ..., q} to denote indexes of sets in {D1,D2, ...,Dq} ,
and indexes t, t0, t00, s ∈ {1, 2, ..., n} to denote the order statistics22 of a feasible utility proÞle. Let
nk =

Pk
`=1 |J`| for each k ∈ {1, 2, ..., q} and let n0 = 0.

Following equations will be useful in proving Claim 3:

By the deÞnition of order statistics, we have

1

t00 − t

t00X
s=t+1

v(s) ≥ 1

t0 − t

t0X
s=t+1

v(s) for all t00 > t0 > t. (11)

That is because, since t00 > t0, the average of (t+ 1)th through (t00)th lowest utilities cannot be less

than the average of (t+ 1)th through (t0)th lowest utilities.

By deÞnition of the order statistics, we also have

kX
`=1

X
i∈J`

vi ≥
nkX
s=1

v(s) for all k ∈ {1, 2, ..., q} . (12)

For all k, k0 ∈ {1, 2, ..., q} with k0 < k, and for all i ∈ Jk, j ∈ Jk0 we have uEi < uEj by Claim 1.

Moreover for all k ∈ {1, 2, ..., q}, and for all i, j ∈ Jk we have uEi = uEj by construction of uE. Hence,
the tth order statistic of uE is given by¡

uE
¢(t)

= uEi for every i ∈ Jk with k and t such that nk−1 < t ≤ nk. (13)

Fix k ∈ {1, 2, ..., q}. Fix t ∈ {1, 2, ..., n} such that nk−1 < t ≤ nk. We next show thatPt
s=1

¡
uE
¢(s) ≥Pt

s=1 v
(s):

22For a feasible utility proÞle v =
¡
v(t)
¢
t∈{1,2,...,q} , we refer to v

(t) (i.e. the tth smallest utility under v) as the tth

order statistic of v.
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tX
s=1

v(s) =

nk−1X
s=1

v(s) +
tX

s=nk−1+1

v(s)

≤
nk−1X
s=1

v(s) +
t− nk−1
|Jk|

nkX
s=nk−1+1

v(s) by |Jk| = nk − nk−1 and Eq 11

=
nk − t
|Jk|

nk−1X
s=1

v(s) +
t− nk−1
|Jk|

nkX
s=1

v(s) by |Jk| = nk − nk−1 and reorganizing the terms

≤ nk − t
|Jk|

k−1X
`=1

X
i∈J`

vi +
t− nk−1
|Jk|

kX
`=1

X
i∈J`

vi by Eq 12

≤ nk − t
|Jk|

k−1X
`=1

X
i∈J`

uEi +
t− nk−1
|Jk|

kX
`=1

X
i∈J`

uEi by Claim 2 (ii)

=
nk − t
|Jk|

nk−1X
s=1

¡
uE
¢(s)

+
t− nk−1
|Jk|

nkX
s=1

¡
uE
¢(s)

by Eq 13

=

nk−1X
s=1

¡
uE
¢(s)

+
t− nk−1
|Jk|

nkX
s=nk−1+1

¡
uE
¢(s)

by |Jk| = nk − nk−1 and reorganizing the terms

=

nk−1X
s=1

¡
uE
¢(s)

+
tX

s=nk−1+1

¡
uE
¢(s)

by Eq 13

=
tX
s=1

¡
uE
¢(s)

.

This concludes the proof of Claim 3 and Theorem 3. ¤¥

The next Lemma will be useful in proving Theorem 4.

Lemma 7 Let u, v ∈ U be such that u Lorenz-dominates v. Then for any α ∈ (0, 1), vector

αu+ (1− α) v Lorenz-dominates v.

Proof of Lemma 7: Let u, v ∈ U be such that u Lorenz-dominates v, let α ∈ (0, 1) and w =

αu+(1− α) v. Since u ∈ U there is a lottery λ ∈ L that induces u, and since v ∈ U there is a lottery
γ ∈ L that induces v. Let σ = αλ+ (1− α) γ. For each i ∈ N , we have

ui (σ) = αui (λ) + (1− α)ui (γ) = αui + (1− α) vi = wi.

This implies that σ induces w = (wi)i∈N ∈ U .
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Next, we show that w Lorenz-dominates v. By the deÞnition of order statistics, for any t ∈
{1, 2, ..., n} and any t member subset N 0 ⊆ N of patients we have

tX
s=1

v(s) ≤
X
i∈N 0

vi. (14)

Moreover since u Lorenz-dominates v,
Pt

s=1 v
(s) ≤

Pt
s=1 u

(s) for any t ∈ {1, 2, ..., n} and this inequal-
ity holds strictly for some t ∈ {1, 2, ..., n}. This together with the deÞnition of order statistics imply
that for any t ∈ {1, 2, ..., n} and any t member subset N 00 ⊆ N of patients we have

tX
s=1

v(s) ≤
tX
s=1

u(s) ≤
X
i∈N 00

ui (15)

where the second inequality holds strictly for some t ∈ {1, 2, ..., n}. We have
Pt

s=1w
(s) =

α
¡P

i∈N 0 vi
¢
+ (1− α)

¡P
i∈N 00 ui

¢
for some N 0, N 00 ⊆ N with |N 0| = |N 00| = t. Therefore Eq 14

and Eq 15 imply that

tX
s=1

v(s) = α

Ã
tX
s=1

v(s)

!
+ (1− α)

Ã
tX
s=1

v(s)

!
≤ α

ÃX
i∈N 0

vi

!
+ (1− α)

ÃX
i∈N 00

ui

!
=

tX
s=1

w(s).

where the inequality holds strictly for some t ∈ {1, 2, ..., n}, completing the proof of Lemma 7. ¥

Proof of Theorem 4: First we introduce some additional notation that we will use in the proof of

Theorem 4. Fix the set of agents N and hence each mutual compatibility matrix R deÞnes a distinct

reduced problem. For any reduced problem R, let

Jk (R) =
[

J∈Dk(R)

J and e (R) = max
µ∈M(R)

|µ| .

Recall that for any µ ∈M(R), we have µ ∈ E(R)⇐⇒ |µ| = e (R). For any reduced problem R and

any two sets I, J ⊆ N , deÞne neighbors of J among I as

C (J, I, R) = {i ∈ I \ J : ri,j = 1 for some j ∈ J} .

For a singleton set J = {j}, we slightly abuse the notation and use C(j, I, R) instead of C({j}, I, R).
Let φE denote an egalitarian mechanism and R = [ri,h]i∈N,h∈N be a reduced problem. Construct:

1. the Gallai-Edmonds Decomposition
©
NU (R) , NO (R) , NP (R)

ª
of the set of patients N ,

2. the partition D (R) of the set of underdemanded patients NU (R),

3. the partition
©
D1 (R) , . . . ,Dq(R) (R)

ª
of D (R) and the partition

n
NO
1 (R) , . . . , N

O
q(R) (R)

o
of

NO (R), and

38



4. the egalitarian utility proÞle uE (R).

Note that u
¡
φE (R)

¢
= uE (R).

For any patient j ∈ (NO(R)∪NP (R)) we have uEj (R) = 1 and therefore no patient in N
O (R)∪

NP (R) can possibly beneÞt by underreporting her set of compatible patients.

Let j ∈ NU (R) such that j ∈ J ∈ D (R). Note that uEj (R) < 1. We will prove that patient j
cannot increase her probability of receiving a transplant by declaring a mutually compatible patient

to be incompatible, and repeated application of this argument will conclude the proof.

Let j0 ∈ C (j,N,R). Either j0 ∈ J or j0 ∈ NO(R). Let Q = [qi,h]i∈N,h∈N be the reduced problem

obtained from R by patient j declaring patient j0 to be incompatible. Note that C (j,N,Q) =

C (j,N,R) \ {j0}, C (j0, N,Q) = C (j0, N,R) \ {j}, C (i,N,Q) = C (i,N,R) for all i ∈ N\ {j, j0},
andM (Q) = {µ ∈M (R) : µ (j) 6= j0}. Construct:

1. the Gallai-Edmonds Decomposition
©
NU (Q) , NO (Q) , NP (Q)

ª
of the set of patients N ,

2. the partition D (Q) of the set of underdemanded patients NU (Q),

3. the partition
©
D1 (Q) , . . . ,Dq(Q) (Q)

ª
of D (Q) and the partition

n
NO
1 (Q) , . . . , N

O
q(Q) (Q)

o
of

NO (Q), and

4. the egalitarian utility proÞle uE (Q).

Note that u
¡
φE (Q)

¢
= uE (Q). We will prove three claims that will be useful in our proof.

Claim 1:

(i) e (Q) = e (R),

(ii) E (Q) ⊆ E (R) and µ ∈ E (R) ∩M (Q)⇒ µ ∈ E (Q), and

(iii) j ∈ NU (Q).

Proof of Claim 1:

(i) SinceM (Q) ⊆M (R) we have e (Q) ≤ e (R). Since j ∈ NU (R), there exists a Pareto-efficient

matching µ ∈ E (R) such that µ (j) = j. We have |µ| = e (R) and µ ∈M (Q) which implies

e (Q) ≥ |µ| = e (R). Therefore e (Q) = e (R).
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(ii) First let µ ∈ E (Q). We have µ ∈M (Q) ⊆M (R). Moreover |µ| = e (Q) and e (Q) = e (R) by
Claim 1 (i) implying that |µ| = e (R). Therefore µ ∈ E (R).

Next let µ ∈ E (R) ∩M (Q). Since µ ∈ E (R), we have |µ| = e (R) = e (Q) and this together
with µ ∈M (Q) imply µ ∈ E (Q).

(iii) Since j ∈ NU (R), there exists a Pareto-efficient matching µ ∈ E (R) such that µ (j) = j.

We have µ ∈ M (Q) . Moreover |µ| = e(R) and e(R) = e(Q) by Claim 1 (i) implying that

µ ∈ E (Q). This together with µ (j) = j imply that j ∈ NU (Q). ¤

Claim 2:

(i) NO (R) ⊆ NO (Q) ∪NP (Q),

(ii) NU (R) ⊇ NU (Q) and for all I ∈ D (R) \{J}, either I ∈ D (Q) or I ⊆ NP (Q).

Proof of Claim 2:

(i) We prove Claim 2 (i) by contradiction. Suppose there exists a patient i ∈ NO (R) ∩ NU (Q).

Then there exists a Pareto-efficient matching µ ∈ E (Q) such that µ(i) = i. By Claim 1 (ii)

E (Q) ⊆ E (R), and therefore µ ∈ E (R). This together with µ (i) = i imply that i ∈ NU (R)

contradicting i ∈ NO (R). Therefore NO (R) ∩ NU (Q) = ∅ and hence NO (R) ⊆ NO (Q) ∪
NP (Q) .

(ii) We prove Claim 2 (ii) in four steps:

Step 1. We Þrst prove that NU (Q) ⊆ NU (R). Pick a patient i ∈ NU (Q). There exists a Pareto-

efficient matching µ ∈ E (Q) such that µ (i) = i. By Claim 1 (ii), E (Q) ⊆ E (R) and
therefore µ ∈ E (R). This together with µ (i) = i imply that i ∈ NU (R).

Step 2. Let I ∈ D (R) \{J}. Clearly I ⊆ NU (R). We will show that I ∩ NO (Q) = ∅ by
contradiction. Suppose there exists a patient i ∈ I ∩ NO (Q). Since i ∈ NO (Q), there

exists a patient h ∈ NU (Q) ∩ C (i, N,Q). Since i 6∈ J , we have i 6= j and since i 6∈ J
and i 6∈ NO(R) we have i 6= j0. Therefore C (i, N,Q) = C (i,N,R) and since I ∈ D (R),
we have C(i,N,R) = C (i, I, R)∪C

¡
i,NO (R) , R

¢
. These imply h ∈ C

¡
i, NO (R) , R

¢
or

h ∈ C (i, I, R). By Claim 2 (i), no overdemanded patient underR is underdemanded under
Q. Therefore h, who is underdemanded under Q, is not a member of C

¡
i, NO (R) , R

¢
⊆

NO (R), which in turn implies h ∈ C (i, I, R) ⊆ I. Since h ∈ NU(Q), there exists a Pareto-

efficient matching µ ∈ E (Q) such that µ(h) = h. By Claim 1 (ii), we have E (Q) ⊆ E (R)
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which in turn implies µ ∈ E (R). Since µ(h) = h and I ∈ D (R), we have µ (h0) ∈ I\ {h, h0}
for all h0 ∈ I\ {h} by the GED Lemma. Construct the following Pareto-efficient matching
ν ∈ E (R):
� ν(i) = i and ν (h0) ∈ I\ {i, h0} for all h0 ∈ I\ {i} , and
� ν (h0) = µ (h0) for all h0 ∈ N\I.

Such a Pareto-efficient matching ν ∈ E (R) exists by the GED Lemma. Since µ ∈ E(Q),
µ(j) 6= j0 and since j, j0 ∈ N\I, ν (j) 6= j0 either. Therefore ν ∈ M (Q) and hence

ν ∈ E (Q) by Claim 1(ii). This together with ν(i) = i imply i ∈ NU (Q) which in turn

contradicts i ∈ NO (Q). Therefore I ∩NO (Q) = ∅ as desired.
Step 3. Let I ∈ D (R) \{J}. We will show that I ∩ NU (Q) 6= ∅ implies I ⊆ NU (Q) . Let

i ∈ I ∩NU (Q). Then there is a Pareto-efficient matching µ ∈ E(Q) such that µ (i) = i.
By Claim 1 (ii) E (Q) ⊆ E (R), and therefore µ ∈ E (R). Since µ (i) = i and I ∈ D (R) ,
we have µ(h) ∈ I\ {i, h} for all h ∈ I\ {i} by the GED Lemma. Let h ∈ I. Construct the
following Pareto-efficient matching ν ∈ E (R):
� ν(h) = h and ν (h0) ∈ I\ {h, h0} for all h0 ∈ I\ {h} , and
� ν (h0) = µ (h0) for all h0 ∈ N\I.

Such a Pareto-efficient matching ν ∈ E (R) exists by the GED Lemma. Since µ ∈ E (Q),
µ (j) 6= j0 and since j, j0 ∈ N\I, ν (j) 6= j0 either. Therefore ν ∈ M (Q) and hence

ν ∈ E (Q) by Claim 1 (ii). This together with ν(h) = h imply h ∈ NU (Q) and since h ∈ I
was arbitrary, we have I ⊆ NU (Q) as desired.

Step 4. Let I ∈ D (R) \{J} such that I ⊆ NU (Q) .We will show that I ∈ D (Q). We need to show
that there is no patient i ∈ C (I,N,Q)∩NU (Q). Suppose there is such a patient i. Then

sinceNU (Q) ⊆ NU (R) by Step 1 and C (I,N,Q) = C (I,N,R) by I ⊆ N\ {j, j0}, we have
i ∈ C (I,N,R) ∩NU (R) contradicting I is an odd component of

¡
N\NO (R) , RN\NO(R)

¢
and completing the proof of Step 4. Recall that NO (Q) is the set of patients each of whom

is not underdemanded under Q and is a neighbor of an underdemanded patient under Q.

Since NO (R) ⊆ NO (Q) ∪ NP (Q) by Claim 2 (i), no patient in C
¡
I,NO (R) , Q

¢
⊆

NO(R) is underdemanded under Q. Since I ⊆ NU (Q) by assumption, no patients in

C
¡
I,NO (R) , Q

¢
are perfectly matched under Q either. Therefore, C

¡
I,NO (R) , Q

¢
⊆

NO (Q). This together with C (I,N,Q) = C
¡
I,NO (R) , Q

¢
imply that (I,QI) is an odd

component of
¡
N\NO (Q) , QN\NO(Q)

¢
.

We are ready to complete the proof of Claim 2(ii). By Step 1, NU (R) ⊇ NU (Q). Let

I ∈ D (R) \{J}. By Step 2, I ⊆ NU(Q)∪NP (Q). Therefore if I ∩NU(Q) = ∅ then I ⊆ NP (Q)

and if I ∩NU(Q) 6= ∅ then I ∈ D(Q) by Steps 3 and 4. ¤
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Claim 3: uEi (Q) ≥ uEj (Q) for any i ∈ J .

Proof of Claim 3: Recall that patient j0 is the patient who is declared to be incompatible by patient

j under Q, although they are mutually compatible under R. Also recall that either j0 ∈ NO (R) or

j0 ∈ J . We consider these two cases separately:

Case 1. j0 ∈ NO (R): In this case QJ = RJ . First, we will show that J ⊆ NU (Q). Recall that

J ∈ D (R). Let i ∈ J . Since i ∈ NU (R), there exists a Pareto-efficient matching µ ∈ E (R) such
that µ (i) = i. By the GED Lemma, µ (h) ∈ J\ {h, i} for all h ∈ J\ {i}. In particular µ (j) 6= j0 and
therefore µ ∈ M (Q) which in turn implies µ ∈ E(Q) by Claim 1(ii). This together with µ (i) = i

imply that i ∈ NU (Q) and since i ∈ J is arbitrary, J ⊆ NU (Q). Moreover since J was an odd

component under R and QJ = RJ , J remains part (or all) of an odd component under Q. Hence

by construction of uE (Q), all patients in J , including patient j, are assigned the same utility under

uE (Q).

Case 2. j0 ∈ J: Consider the support of lottery φE (Q). Since φE (Q) is ex-post efficient, the support
of φE (Q) is a subset of E (Q). We will prove that uEi (Q) ≥ uEj (Q) for all i ∈ J\ {j} by contradiction.
Suppose there exists a patient i ∈ J\ {i} such that uEi (Q) < uEj (Q). Since uEi (Q) < 1, there exists
a Pareto-efficient matching µ ∈ E (Q) with φEµ (Q) > 0 such that µ(i) = i. Since by Claim 1 (ii)

E (Q) ⊆ E (R), we have µ ∈ E (R). Since J ∈ D (R), by the GED Lemma there exists one and only
one patient h ∈ J such that µ(h) ∈ NO (R) ∪ {h}. Therefore since µ(i) = i, we have µ(j) ∈ J\ {j}.
Construct the following Pareto-efficient matching ν ∈ E (R):

� ν (j) = j and ν (h) ∈ J\ {j, h} for all h ∈ J\ {j}.

� ν (h) = µ (h) for all h ∈ N\J .

Such a matching ν exists by the GED Lemma. Moreover since ν (j) = j we have ν ∈M (Q) which

in turn implies ν ∈ E (Q) by Claim 1(ii). Let ε be such that 0 < ε ≤ min
n
φEµ (Q) ,

uEj (Q)−uEi (Q)
2

o
.

Let λ = (λη)η∈M(Q) ∈ L (Q) be such that

for all η ∈M (Q) , λη =


φEη (Q)− ε if η = µ

φEη (Q) + ε if η = ν

φEη (Q) otherwise

.

That is, lottery λ is constructed from lottery φE (Q) by subtracting εµ and adding εν. We have

uh (λ) =


uEh (Q)− ε if h = j
uEh (Q) + ε if h = i
uEh (Q) otherwise
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Since there is �utility transfer� from the higher utility patient j to the lower utility patient i, util-

ity proÞle u (λ) Lorenz-dominates the egalitarian proÞle uE (Q) under Q contradicting Theorem 3.

Therefore uEi (Q) ≥ uEj (Q) for all i ∈ J\ {j}. ¤

We are ready to complete the proof of Theorem 4. Suppose patient j strictly beneÞts from

declaring patient j0 incompatible. That is, suppose

uEj (Q) > u
E
j (R).

We will show that this will lead to a contradiction. Let J ∈ Dk (R). Since φE (Q) is an ex-post
efficient lottery under Q, φE (R) is an ex-post efficient lottery under R, and e (Q) = e (R) by Claim

1 (i), we have X
i∈N

uEi (Q) = e (Q) = e (R) =
X
i∈N

uEi (R) .

Therefore, since uEj (Q) > uEj (R), there exists a patient h ∈ N such that uEh (Q) < uEh (R). This

implies uEh (Q) < 1 which in turn implies h ∈ NU (Q). Since NU (Q) ⊆ NU (R) by Claim 2 (ii),

h ∈ NU (R) as well. In a way of speaking, the utility of patient j increases under φE (Q) with respect

to φE (R) at the expense of the utility of some other patients each of whom is underdemanded under

R. That is, some utility is transferred from some underdemanded patients under R to patient j. We

partition NU (R) as
nSk

`=1 J` (R) ,
Sq(R)
`=k+1 J` (R)

o
.

Consider patients in
Sq(R)
`=k+1 J` (R) . By the construction of u

E (R), at any matching µ ∈ E (R)
in the support of φE (R), any patient in

Sq(R)
`=k+1 J` (R) either remains unmatched or she is matched

with another underdemanded patient in
Sq(R)
`=k+1 J` (R) or is matched with an overdemanded patient

in
Sq(R)
`=k+1N

O
` (R). Since patients in

Sk
`=1 J` (R) are handled before patients in

Sq(R)
`=k+1 J` (R) during

the construction of uE (R), there is no patient in
Sk
`=1 J` (R) that is mutually compatible with any

patient in
Sq(R)
`=k+1N

O
` (R). Since any patient in

Sk
`=1 J` (R) and any patient in

Sq(R)
`=k+1 J` (R) are

in different odd components, there is no patient in
Sk
`=1 J` (R) that is mutually compatible with a

patient in
Sq(R)
`=k+1 J` (R), either. Therefore for any i ∈

Sk
`=1 J` (R) , we have

C (i,N,R) ∩
q(R)[
`=k+1

¡
NO
` (R) ∪ J` (R)

¢
= ∅.

Therefore, patients in
Sq(R)
`=k+1N

O
` (R) shall be committed for patients in

Sq(R)
`=k+1 J` (R) under the

proÞle Q as well, and therefore the aggregate utility of patients in
Sq(R)
`=k+1 J` (R) cannot decrease

under Q. Since aggregate utility remains constant at e (Q) = e (R), and since only patients in

NU (Q) ⊆ NU (R) can have a utility reduction,

∃ h ∈
k[
`=1

J` (R) s.t. uEh (Q) < u
E
h (R) .
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Since j ∈ Jk (R), we have uEh (R) ≤ uEj (R) by Claim 1 in the proof of Theorem 3. This together

with uEj (Q) > u
E
j (R) imply that

uEh (Q) < u
E
h (R) ≤ uEj (R) < uEj (Q) . (16)

Recall that patient j0 is the patient that j declared as incompatible under Q although they were

mutually compatible under R. Since j ∈ J ∈ D(R) and rj,j0 = 1, we have either j0 ∈ J\ {j} or j0 ∈
NO (R). If j0 ∈ J\ {j} then, uEj (Q) ≤ uEj0 (Q) by Claim 3. If j0 ∈ NO (R) then j0 ∈ NO (Q)∪NP (Q)

by Claim 2 (i) and we have uEj (Q) ≤ 1 = uEj0 (Q). These together with Eq 16 imply that

uEh (Q) < u
E
h (R) ≤ uEj (R) < uEj (Q) ≤ uEj0 (Q) . (17)

Let φ = φE (R) and ϕ = φE (Q). Given φ, construct lottery λ as follows: For any matching µ in

the support of φ,

1. If µ (j) 6= j0, then do not alter this �portion� of the lottery (i.e. let λµ = φµ for any µ in the
support of φ with µ (j) 6= j0).

2. If µ (j) = j0, then

(a) construct the matching µ−j,j0 from µ by �breaking� the match between j and j0 (leaving

each one unmatched) and preserving the rest of the matching µ; and

(b) replace matching µ with µ−j,j0 for each such matching in lottery φ (i.e. let λµ−j,j0 = λµ for

any µ in the support of φ with µ (j) = j0.

Note that λ is feasible under Q and ui (λ) = ui (φ) = uEi (R) for all i ∈ N\ {j, j0}. Given ε ∈ (0, 1),
let

γε = εφ+ (1− ε)ϕ and λε = ελ+ (1− ε)ϕ.

Note that ui (λε) = ui (γε) for all i ∈ N\ {j, j0} by construction of λ from φ.

Since ϕ is feasible under R, ϕ ∈ L (R). Therefore since φ is a Lorenz-dominant lottery for the
reduced problem R by Theorem 3, φ Lorenz-dominates ϕ which in turn implies γε Lorenz-dominates

ϕ by Lemma 7.

Pick ε ∈ (0, 1) small enough such that uj (λε) > uh (λε) = uh (γε) and uj0 (λε) > uh (λε) = uh (γε).
This can be done by Eq 17.

Let h be the patient with sth1 lowest utility under ϕ and sth2 lowest utility under γε. Let s =

min {s1, s2}.
Since γε Lorenz-dominates ϕ by Lemma 7,

tX
`=1

(u (γε))(`) ≥
tX
`=1

(u (ϕ))(`) for all t ≤ n.
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Since ε ∈ (0, 1) is such that uj (γε) > uj (λε) > uh (γε) and uj0 (γε) > uj0 (λε) > uh (γε), neither j
nor j0 is one of the s lowest utility agents under γε. Therefore, since only patients j,j0 are affected

between lotteries γε and λε,

tX
`=1

(u (λε))(`) ≥
tX
`=1

(u (ϕ))(`) for all t ≤ s. (18)

We will show that Inequality 18 holds strictly for some t ≤ s which in turn will contradict ϕ is Lorenz-
dominant under Q completing the proof. Suppose not. Then Inequality 18 holds with equality which

in turn implies

(u (λε))(t) = (u (ϕ))(t) for all t ≤ s. (19)

Observe that there is t ≤ s such that the tth smallest utility patient is different under these two

lotteries. In particular this is the case for t = s, because (1) uh (λ
ε) = uh (γ

ε) > uh (ϕ) and (2) h

is the sth smallest utility agent under one of the two lotteries λε,ϕ although not in both since that

would contradict Eq 19. Pick the smallest such t. That is under λε and ϕ, not only the �tth smallest

utility patient is the same patient for any �t < t, but she also has the same utility. On the other hand

the tth lowest utility patient differs under the two lotteries although they have the same utility by

Eq 19.

Now consider the lottery 1
2
λε+ 1

2
ϕ. Since λε and ϕ are both feasible under Q, the lottery 1

2
λε+ 1

2
ϕ

is feasible under Q as well. Under this lottery

� the smallest utility patient is the same patient as in both λε,ϕ and she has the same utility¡
u
¡
1
2
λε + 1

2
ϕ
¢¢(1)

= (u (λε))(1) = (u (ϕ))(1);

...
...

� the (t− 1)th smallest utility patient is the same patient as in both λε,ϕ and she has the same
utility

¡
u
¡
1
2
λε + 1

2
ϕ
¢¢(t−1)

= (u (λε))(t−1) = (u (ϕ))(t−1).

But the utility of the tth smallest utility patient under 1
2
λε + 1

2
ϕ is strictly larger than the utility

of the tth smallest utility patient under ϕ. That is because, whoever she is, her utility is no less

than (u (ϕ))(t) under both λε,ϕ by Eq 19 and strictly larger in at least one, since the tth smallest

utility patient differs under λε and ϕ. Hence ϕ does not Lorenz-dominate 1
2
λε+ 1

2
ϕ, a feasible lottery

under Q, a contradiction. Therefore Inequality 18 holds strictly for some t ≤ s. But then ϕ does not
Lorenz-dominate λε, a feasible lottery under Q, leading to another contradiction and completing the

proof. ¥
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