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Abstract

Patients needing kidney transplants may have willing donors who cannot donate to

them because of blood or tissue incompatibility. Incompatible patient-donor pairs can

exchange donor kidneys with other such pairs. The situation facing such pairs resem-

bles models of the �double coincidence of wants,� and relatively few exchanges have been

consummated by decentralized means. As the population of available patient-donor pairs

grows, the frequency with which exchanges can be arranged will depend in part on how

exchanges are organized. We study the potential frequency of exchanges as a function of

the number of patient-donor pairs, and the size of the largest feasible exchange. Devel-

oping infrastructure to identify and perform 3-way as well as 2-way exchanges will have

a substantial effect on the number of transplants, and will help the most vulnerable pa-

tients. Larger than 3-way exchanges have much smaller impact. Larger populations of

patient-donor pairs increase the percentage of patients of all kinds who can Þnd exchanges.

∗We thank Audrey Bohnengel, Kevin Cheung, Francis Delmonico, Michael Goemans, Selçuk Karabatõ,
Jonathan Kopke, Michael Rees, Susan Saidman, Jun Wako and Steve Woodle for discussions and comments, Rui
Dong for her research assistance, Hüseyin Çankaya for his assistance on drawing the Þgures. Sönmez acknowl-
edges the research support of KoçBank via the KoçBank scholar program and Turkish Academy of Sciences in
the framework of the Young Scientist Award Program via grant TS/TÜBA-GEBúIP/2002-1-19, and Roth and
Ünver acknowledge support from the NSF via grant no: 0338619. Any errors are our own.

�E-mail: al_roth@harvard.edu; address: Department of Economics, Harvard University, Cambridge, MA
02138 and Harvard Business School, Boston, MA 02163.

�E-mail: tsonmez@ku.edu.tr; address: Koç University, Department of Economics, College of Administrative
Sciences and Economics, Rumeli Feneri Yolu, Sarõyer, úIstanbul, 34450, Turkey and Harvard Business School,
Mellon Hall D2-4, Boston, MA 02163.

§E-mail: uunver@ku.edu.tr; address: Koç University, Department of Economics, College of Administrative
Sciences and Economics, Rumeli Feneri Yolu, Sarõyer, úIstanbul, 34450, Turkey.

1



1 Introduction

In 2003 there were 8,665 transplants of deceased donor kidneys for the approximately 60,000

patients waiting for such transplants in the U.S.. While waiting, 3,436 patients died. There

were also 6,464 kidney transplants from living donors.1

A patient is often unable to receive a willing live-donor�s kidney, because of blood-type

incompatibility or antibodies to one of the donor�s proteins (�positive crossmatch�). Recently

a few �paired kidney donations� have been performed between two such incompatible patient-

donor pairs: the donor in each pair gives a kidney to the other pair�s compatible patient.

The National Organ Transplant Act of 1984 makes it illegal to buy or sell a kidney, and so

incompatible patient donor pairs are faced squarely with Jevons� classic problem of the �double

coincidence of wants:�

Jevons (1876), Chapter 1: �The Þrst difficulty in barter is to Þnd two persons

whose disposable possessions mutually suit each other�s wants. There may be many

people wanting, and many possessing those things wanted; but to allow of an act of

barter, there must be a double coincidence, which will rarely happen. ... the owner

of a house may Þnd it unsuitable, and may have his eye upon another house exactly

Þtted to his needs. But even if the owner of this second house wishes to part with

it at all, it is exceedingly unlikely that he will exactly reciprocate the feelings of the

Þrst owner, and wish to barter houses. Sellers and purchasers can only be made to

Þt by the use of some commodity... which all are willing to receive for a time, so

that what is obtained by sale in one case, may be used in purchase in another. This

common commodity is called a medium, of exchange, because it forms a third or

intermediate term in all acts of commerce.�

Partly because of the difficulty of Þnding these double coincidences, there have been few such

exchanges: In the fourteen transplant centers in New England (The United Network for Organ

Sharing � UNOS � region 1), Þve such 2-way exchanges had been conducted as of December

2004 (cf. Delmonico, 2004). There have also been a very few 3-way exchanges (Lucan et al.

2003)2, two in the United States, by Dr. Robert Montgomery�s program at Johns Hopkins. All

surgeries in an exchange are done simultaneously (so 2-way exchange requires four simultaneous

surgeries, and 3-way requires six), and so larger exchanges pose more logistical difficulties.
1The U.S. ScientiÞc Registry of Transplant Recipients http://www.ustransplant.org/srtr.php. Live

donation of kidneys is possible because people have two kidneys, and because healthy people suffer little risk
from donating one.

2In a three-way exchange, the donor from one pair gives a kidney to the patient of a second pair, whose
donor gives to the patient in a third pair, whose donor gives to the patient in the Þrst pair.
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One theme of the present paper is that some of the difficulties that Jevons attributes to

the absence of a medium of exchange will also loom large whenever a thick market is lacking.

Even with a medium of exchange, Jevons� second house owner would be reluctant to part with

his house if no suitable third house could be found. And we will show that, even without a

medium of exchange, the problem of the coincidence of wants can be substantially ameliorated

by the presence of an appropriate market structure.

One reason there have been so few exchanges is that until recently there have been no

databases of incompatible patient-donor pairs: incompatible donors were simply not further

considered. This is starting to change. In September, 2004, the New England Program for

Kidney Exchange, proposed by Drs. Francis Delmonico, Susan Saidman, and the three authors

of this paper was approved by the Renal Transplant Oversight Committee of New England. (It

will be administered through the New England Organ Bank.) Databases for identifying kidney

exchanges have also been initiated in Ohio and Baltimore. As these centers start to open their

doors to patient-donor pairs, one of the primary tasks is to design a clearinghouse that can

identify efficient sets of feasible exchanges among incompatible patient-donor pairs (cf. Roth,

Sönmez, and Ünver, 2004a,b, 2005, Segev et al. 2005).

The �coincidence of wants� for kidney exchange has a structure determined in part by the

blood types of the patients and donors. Consequently it is possible to bring simple theory to

bear on the question of how efficient such exchange can be, operating just as a gift-exchange, in

the absence of any medium of exchange.3 Computational results on real and simulated patient

data (Saidman et al. 2005) suggest that as the available population of incompatible patient-

donor pairs grows, an increasing percentage of patients will be able to receive a transplant

via a two way exchange, that three-way exchanges will continue to be important for achieving

efficient exchange, and that most of the efficiency gains from exchanges larger than 2-way are

captured by including 3-way exchanges.4 In the present paper we explore why this is the case.

That is, we investigate the structure of efficient exchange, without a medium of exchange, when

supply and demand are mediated by blood types.

Furthermore, we will prove that, under the conditions of supply and demand that can

normally be expected in a population of incompatible patient-donor pairs available for exchange,

if we abstract away from tissue type incompatibilities and look at only the barriers to exchange
3There is also a literature devoted to the discussion of whether the ban on the buying and selling of kidneys

should be repealed. See e.g. Becker and Elias (2002), and the survey of this literature in Nadel and Nadel

(2005).
4We have recently been able to conÞrm this on a database of patient-donor pairs assembled in Ohio by

Dr. Steve Woodle, Dr. Michael Rees, Jonathan Kopke and their colleagues in the Paired Donation Kidney
Consortium.
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caused by blood-type incompatibilities, all efficient exchanges can be accomplished in exchanges

involving no more than four incompatible pairs.

2 Background

There are four blood types A, B, AB, and O (corresponding to the presence of proteins A or B,

or both together, or neither) and blood-type incompatibility has a very well-deÞned structure:

a patient may not receive the kidney of a donor whose blood contains one of the A,B proteins

that the patient does not have. Thus patients with blood type O can only receive a kidney from

an O donor, type A patients can receive A or O kidneys, B patients B or O kidneys, and AB

patients can receive a kidney from a donor of any blood type. Note that a patient with blood

type O has the most difficulty Þnding a compatible donor, while O donors will never have a

blood type incompatibility with any patient.

Tissue-type incompatibility (�positive crossmatch�) is much less structured and has to do

with the patient having preformed antibodies against one of the donor�s proteins. Antibodies

can arise from exposure to foreign proteins, e.g. through prior transplants, blood transfusions,

or even childbirth. (Consequently mothers are less likely to be compatible with a kidney from

the father of their children than from a random donor from the same population.)

An example helps illustrate why 3-way exchange is important. Consider a population of 9

incompatible patient-donor pairs. (A pair is denoted as type x-y if the patient and donor are

ABO blood-types x and y respectively.)

� Example: There are Þve pairs of patients who are blood-type incompatible with their
donors, of types O-A, O-B, A-B, A-B, and B-A; and four pairs who are incompatible

because of positive crossmatch, of types A-A, A-A, A-A and B-O. For simplicity in this

example there are no positive crossmatches between patients and other patients� donors.

Then 6 transplants can result from the three possible 2-way exchanges, namely (A-B,B-A);

(A-A,A-A); (B-O,O-B), where e.g. (A-B,B-A) denotes an exchange in which a pair of type

(A-B) donates a B kidney to the patient in the pair of type (B-A) and receives an A kidney

from the donor in that pair. When only 2-way exchanges are feasible, these three exchanges

constitute a maximal set of exchanges: no other way of arranging exchanges would result in

more than 6 transplants. But if 3-way exchanges are also feasible, then 8 transplants can be

arranged via one 2-way exchange and two 3-way exchanges: (A-B,B-A); (A-A,A-A,A-A); (B-

O,O-A,A-B). (In the 3-way exchanges, the donor in the Þrst pair donates to the patient in the
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second pair, the second donor donates to the third patient, and the third donor to the Þrst

patient. E.g. in the third exchange, the O donor from the B-O pair donates to the O patient

of the O-A pair, etc.)

The 3-way exchanges allow

1. an odd number of A-A pairs to be transplanted (instead of only an even number with

2-way exchanges), and

2. an O donor to facilitate three transplants rather than only two.

While the difference between even and odd numbers of pairs will become proportionately

smaller as the population of incompatible pairs grows, the importance of making good use

of O donors will remain. O donors will be relatively rare among incompatible patient-donor

pairs, because O donors are only incompatible with their intended recipient if there is a positive

crossmatch.

In this example the only positive crossmatches were between patients and their own donors,

but in actual populations there will be positive crossmatches between patients and other donors,

particularly since a patient with a positive crossmatch with his own donor is more likely than

average to be a highly sensitized patient who has antibodies to proteins in a high percentage of

potential donors. In such a case there may be more conÞgurations in which a 3-way exchange

will be helpful. For instance, suppose in our example the 2-way exchange (A-B, B-A) had

been infeasible because of a positive crossmatch between the A patient in the Þrst pair and

the A donor in the second pair. A 3-way exchange (A-B, B-A, A-A) might nevertheless be

possible, using one of the A-A pairs. However the case in which there are only blood-type

incompatibilities (and no positive crossmatches) between patients and donors other than their

own will allow us to establish an upper bound on the number of exchanges that are possible,

since the presence of positive crossmatches can only reduce the set of feasible exchanges.

3 The Model

There are a number of kidney patients, each with an incompatible living donor. The incompat-

ibility can be either a blood-type incompatibility or a tissue-type incompatibility (a positive

crossmatch).

A two-way kidney exchange involves two patients each of whom is incompatible with her
own donor but compatible with the other donor. When the two-way exchange is carried out,

both patients receive a kidney from other�s donor. A three-way kidney exchange involves
three patients i, j, k each of whom is incompatible with her own donor but such that patient i is
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compatible with the donor of patient j, patient j is compatible with the donor of patient k, and

patient k is compatible with the donor of patient i. As in the case of two-way exchange, each

patient involved in the trade receives a compatible kidney as a result of the three-way kidney

exchange. A four-way kidney exchange is deÞned similarly.
While patients can have tissue-type incompatibility with their own donors, to establish an

upper bound on the number of possible exchanges we will assume that:

Assumption 1 (Upper bound assumption). No patient is tissue-type incompatible
with another patient�s donor.5

We will derive analytical expressions for the maximum number of patients who can beneÞt

from a feasible set of kidney exchanges among a large population of incompatible pairs, when

the only constraints on exchange are imposed by

1. blood-type incompatibility, and

2. the number of patients allowed in each exchange.

Given the �upper bound� assumption, whether a patient can be part of a given exchange

depends on her own blood-type together with her donor�s blood-type. When we speak of a type

A-AB patient-donor pair, we mean a patient-donor pair in which the patient is of blood-type

A while her incompatible donor is of blood-type AB. The number of type A-AB patient-donor

pairs will be denoted by #(A-AB). We use analogous notation for all 16 types of patient-donor

pairs. We refer to type A-B pairs and type B-A pairs as opposite types, and use the same
terminology for other types as well.

Patients with blood type O will be incompatible with their donors unless the donor also

has blood type O, and donors with blood type AB will be incompatible with their intended

recipient unless she also is AB. So pairs of these types will be over-represented in populations

of incompatible patient-donor pairs. And, when exchanges are carried out, there will be higher

demand for O kidneys than A kidneys and higher demand for A kidneys than AB kidneys.

Similarly there will be higher demand for O kidneys than B kidneys and higher demand for B

kidneys than AB kidneys. This puts pairs of types O-A, O-B, O-AB, A-AB, and B-AB at a

disadvantage since they need a kidney that is in higher demand than the kidney they offer. So

these type pairs will both occur more frequently and wait longer for an exchange than other
5When we later dispense with this assumption to consider populations with the tissue type incompatibilities

found in the national patient population, we will see that, in large markets, this assumption isn�t very conse-

quential. The reason is that, although a patient who is tissue type incompatible with her own donor will likely
have positive crossmatches with some other patients� donors also, in a sufficiently large population there will
also be many donors with whom she has no tissue type incompatibility.
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types. Therefore the following is a natural assumption on any sufficiently large population of

incompatible patient-donor pairs.6

Assumption 2. (Large Population of Incompatible Patient-Donor Pairs) Regard-
less of the maximum number of pairs allowed in each exchange, pairs of types O-A, O-B, O-AB,

A-AB, and B-AB are on the �long side� of the exchange in the sense that at least one pair of

each type remains unmatched in each feasible set of exchanges.7

3.1 Maximal-Size Two-Way Exchange

For any non-negative number k, let [k] denote the integer part of k, ie. the greatest integer no

larger than k.

Proposition 1. For any patient population obeying Assumptions 1 and 2, the maximum
number of patients who can be matched with only two-way exchanges is:

2 (#(A-O)+#(B-O)+#(AB-O)+#(AB-A)+#(AB-B))

+ (#(A-B)+#(B-A)− |#(A-B)−#(B-A)|)
+2

Ã"
#(A-A)
2

#
+

"
#(B-B)
2

#
+

"
#(O-O)
2

#
+

"
#(AB-AB)

2

#!

Proof : Each pair of type A-O is compatible with each pair of type O-A by Assumption 1, and

types O-A are on the long side of the exchange by Assumption 2. Therefore each pair of type

A-O (demanding a kidney that is less sought after than the one they provide) makes a two-way

exchange possible. Moreover since only two-way exchanges are allowed, matching the A-O pair

with a pair of a type other than O-A does not increase the size of the maximal set of exchanges.

The same argument follows for each pair of types B-O, AB-O, AB-A, AB-B as well, explaining

the term

2 (#(A-O)+#(B-O)+#(AB-O)+#(AB-A)+#(AB-B)) .

Now consider any maximal size match in which every pair of types A-O, B-O, AB-O, AB-A,

AB-B is matched with a pair of the opposite type. In the absence of any remaining types A-O,
6In particular, this assumption is met on each of the real and simulated populations of incompatible patient-

donor pairs that we have examined that contain at least 25 pairs.
7It is worth emphasizing that this assumption will characterize large populations of incompatible patient-

donor pairs, not patient-donor pairs in general. When we look at the whole population of patient-donor pairs
(including the compatible pairs) there will in general be as many O donors as O patients. Note also that,
in populations in which Assumption 2 is met, there will always be difficult choices to make about which O
patients should receive the scarce O kidneys, even when attention is conÞned to maximal sets of exchanges.

In game-theoretic terms, the strong core (the core deÞned by weak domination) of this market in which many
kidneys are equally desirable, is empty (cf. Shapley and Scarf, 1974, Roth and Postlewaite, 1977, Quint and
Wako, 2004).
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B-O, AB-O, AB-A, AB-B, pairs of types A-B and B-A can only be matched with a pair of

the opposite type. Therefore, unless the two types have the same number of pairs, the longer

side will have some pairs that remain unmatched. Since each pair on the shorter side can be

matched with a pair on the longer side, |#(A-B) − #(B-A)| pairs of types A-B, B-A remain
unmatched under this maximal size set of exchanges, explaining the second term

(#(A-B)+#(B-A)− |#(A-B)−#(B-A)|) .
Finally when pairs of types A-O, B-O, AB-O, AB-A, AB-B are each matched with a pair of the

opposite type, each pair of types A-A, B-B, AB-AB, O-O can only be matched with a pair of

the same type. Therefore since only 2-way exchanges are allowed, all pairs of type A-A can be

matched whenever #(A-A) is even and all but one can be matched whenever #(A-A) is odd.

The same argument follows for pairs of types B-B, AB-AB, O-O as well, explaining the last

term

2

Ã"
#(A-A)
2

#
+

"
#(B-B)
2

#
+

"
#(O-O)
2

#
+

"
#(AB-AB)

2

#!
.

3.2 Maximal-Size Two-Way and Three-Way Exchange

The logistics of kidney exchange get harder as the number of patients in each exchange increases.

Therefore one important question is how much of the gains from kidney exchange can be

captured through two-way exchanges, and what are the marginal efficiency gains of three-way,

four-way, and larger exchanges.

We will denote a three-way exchange as an ordered list of three patient-donor pairs, in which

the donor of the Þrst pair donates to the second patient, the donor of the second pair donates

to the third patient, and the donor of the third pair donates to the Þrst patient. We use similar

terminology for four-way and larger exchanges.

While two-way kidney exchanges can capture most of the gains from exchange, they cannot

capture all potential gains; at least some three-way exchanges are needed. There are several

reasons for this:

1. Recall that when only two-way exchanges are allowed, one pair of type A-A remains

unmatched if #(A-A) is odd. There is a similar potential efficiency loss for each of the

types B-B, AB-AB, and O-O. For almost all patient populations, that efficiency loss can

be avoided once three-way exchanges are allowed. For example, unless there is only one

type A-A pair, all type A-A pairs can be matched with each other through one three-way

exchange and two-way exchanges for the others. Even when there is only one type A-A

pair, she can be �appended� to a two-way exchange between an A-B pair and a B-A pair

to form a three-way (B-A, A-A, A-B) exchange.
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Figure 1: When three-way exchanges are feasible, each type AB-O pair can form a three-way

exchange with two pairs on the long side.

2. With only two-way exchanges, under a maximal size match each type AB-O pair (with

a rare O donor) is matched with a pair of one of the types O-AB, O-A, or O-B each of

which is on the long side by Assumption 2. If three-way exchanges are allowed, each type

AB-O pair can trade with not one but two pairs on the long side through either a (AB-O,

O-A, A-AB) exchange or (AB-O, O-B, B-AB) exchange. That increases the size of the

maximal-size matching by one for each type AB-O pair (See Figure 1).

3. With only two-way exchanges, pairs of types A-B and B-A can be matched with each

other, but |#(A-B)−#(B-A)| pairs on the longer side remain unmatched. With three-
way exchanges available, part or all of these |#(A-B) − #(B-A)| pairs on the long side
can also be matched, increasing the size of the maximal-size set of exchanges.

Terasaki, Gjertson and Cecka (1998) report that the frequency of types A-B and B-A are

0.05 and 0.03 respectively. So w.l.o.g. assume that:

Assumption 3. #(A-B) > #(B-A).

Consider a type B-O pair. In the absence of three-way exchanges, each such pair can be

matched with one pair on the long side (such as a pair of the opposite type). However

when three-way exchanges are available, a type B-O pair can form a three-way (B-O, O-A,
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Figure 2: When three-way exchanges are feasible and #(A-B) > #(B-A), each type B-O pair

can form a three-way exchange with two pairs on the long side. The same is also true for each

type AB-A pair.

A-B) exchange together with two pairs each of which is on the long-side by Assumptions

2 and 3. Similarly while a type AB-A pair can be matched with one pair on the long side

when only two-way exchanges are available, it can form a three way (AB-A, A-B, B-AB)

exchange together with two pairs each of which is on the long-side by Assumptions 2 and

3 (See Figure 2).8

So of |#(A-B)−#(B-A)| type A-B pairs who remain unmatched under two-way exchanges,
as many as (#(B-O)+#(AB-A)) can be matched through three-way exchanges. Therefore

such three-way exchanges increases the size of the maximal-size matching by

min{(#(A-B)−#(B-A)), (#(B-O)+#(AB-A))}.

To simplify the formula for the size of the maximal set of exchanges, we assume that none

of the types A-A, B-B, AB-AB and O-O have only one pair. As we have already argued, when

only one pair is present for any of these types it can be appended to a two-way exchange, but

that considerably complicates the description of the size of the maximal-size set of exchanges.
8In case #(B-A) > #(A-B) instead, type A-O pairs and AB-B pairs become critical and each such pair can

form a three-way exchange with two pairs on the long side.
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Assumption 4. There is either no type A-A pair or there are at least two of them. The
same is also true for each of the types B-B, AB-AB, and O-O.

We are ready to summarize these observations in a proposition.

Proposition 2. For any patient population for which Assumptions 1-4 hold, the maximum
number of patients who can be matched with two-way and three-way exchanges is:

2 (#(A-O)+#(B-O)+#(AB-O)+#(AB-A)+#(AB-B))

+ (#(A-B)+#(B-A)− |#(A-B)−#(B-A)|)
+ (#(A-A)+#(B-B)+#(O-O)+#(AB-AB))

+#(AB-O)+min{(#(A-B)−#(B-A)), (#(B-O)+#(AB-A))}

To summarize, the marginal effect of three-way kidney exchanges is:

#(A-A)+#(B-B)+#(O-O)+#(AB-AB)− 2
Ã"
#(A-A)
2

#
+

"
#(B-B)
2

#
+

"
#(O-O)
2

#
+

"
#(AB-AB)

2

#!
+#(AB-O)+min{(#(A-B)−#(B-A)), (#(B-O)+#(AB-A))}

For large patient populations, the second line, that is the aggregate frequency of types AB-

O, B-O and AB-A, account for essentially all gains from three-way exchanges (through the

exchanges diagrammed in Figures 1 and 2). In small populations the Þrst term, that is one

additional patient matched for each of the types A-A, B-B, AB-AB and O-O with an odd size,

might account for a substantial part of the gains.

3.3 Maximal-Size Two-Way, Three-Way and Four-Way Exchange

We have already shown that each type AB-O can form a three-way exchange with two patients

on the long side. In case four-way exchanges are allowed and if three-way exchanges cannot

handle the entire difference between types A-B and B-A, a type AB-O patient can be matched

with three patients on the long side to form a four-way exchange. So if #(A-B) > #(B-A) as

we assumed in Assumption 3, a type AB-O patient can form a four-way (AB-O, O-A, A-B,

B-AB) exchange with three patients on the long side increasing the size of the maximal-size

match by one (See Figure 3).

Proposition 3. For any patient population in which Assumptions 1-4 hold, the maximum
number of patients who can be matched with two-way, three-way and four-way exchanges is:

2 (#(A-O)+#(B-O)+#(AB-O)+#(AB-A)+#(AB-B))

+ (#(A-B)+#(B-A)− |#(A-B)−#(B-A)|)
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Figure 3: When four-way exchanges are feasible, each type AB-O pair can form a four-way

exchange with three pairs on the long side.

+(#(A-A)+#(B-B)+#(O-O)+#(AB-AB))

+#(AB-O)+min{(#(A-B)−#(B-A)), (#(B-O)+#(AB-A)+#(AB-O))}

Therefore in the absence of tissue-type incompatibilities between patients and other patients�

donors, the marginal effect of four-way kidney exchanges is bounded above by the rate of the

very rare AB-O type.

3.4 Sufficiency of Two-Way, Three-Way and Four-Way Exchange

So far we have derived analytical expressions for the maximum number of patients who can

beneÞt from kidney exchange when the number of patients allowed in each exchange is no more

than two, three, and four. We will next show that given Assumptions 1, 2, and 4, the number

of patients who can beneÞt from exchange does not further increase when Þve-way or larger

exchanges are feasible. We need a little additional notation to present this result.

Until now we described an exchange through the blood-types of the patients and their

incompatible donors. In this section it will be useful to describe an exchange through the

identities of the patients and their donors. For example when we speak of a three-way exchange

E = (P1 −D1, P2 −D2, P3 −D3)

12



that means donor D1 donates a kidney to patient P2, donor D2 donates a kidney to patient P3,

and donor D3 donates a kidney to patient P1. We will refer to any size exchange in a similar

way.

An exchange is feasible if each donor in an exchange is compatible (both blood-type com-
patible and tissue-type compatible) with the patient to whom she donates. A matching is
a collection of feasible exchanges such that no pair is part of more than one exchange. A

maximal matching is one that includes as many patient-donor pairs as is feasible, i.e. it is a
maximal-size matching.

Our next result indicates that, in the simple environments in which Assumptions 1, 2, and

4 apply, exchanges involving more than four pairs are never needed to achieve an efficient

outcome.

Theorem (4-way exchange suffices): Consider a patient population for which Assump-
tions 1, 2, 4 hold and let µ be any maximal matching (when there is no restriction on the size

of the exchanges that can be included in a matching). Then there exists a maximal matching

ν which consists only of two-way, three-way, and four-way exchanges, under which the same

set of patients beneÞt from exchange as in matching µ.

Proof : Consider a patient population and a maximal matching µ as in the statement of the

theorem. If µ is made of four-way or smaller exchanges then we are done. Otherwise we will

construct a matching ν which is made of four-way or smaller exchanges and matches the same

set of patients as matching µ.

To simplify the exposition we will prove the theorem for the case in which the largest

exchange in matching µ is Þve-way. In general the same proof can be used to show that given

any maximal matching in which the largest exchange is of size k > 4, there exists another

matching which matches the same set of patients through (k − 1)-way or smaller exchanges;
and repeated application of this argument implies the desired result.

Let

E = (P1 −D1, P2 −D2, P3 −D3, P4 −D4, P5 −D5)
be any Þve-way exchange in µ. We will complete the proof by showing that all patient-donor

pairs in this exchange can be matched via smaller exchanges without changing the set of patients

who beneÞt from exchange.

Since there are four blood-types, there are at least two patients in exchange E who have

the same blood-type. Pick any two such patients. We have two cases to consider:

Case 1 . Neither of the these patients receive a kidney from the incompatible donor of the

other under exchange E.

13



W.l.o.g. suppose these patients are P1 and P3. Under exchange E patient P1 receives

a kidney from donor D5 and patient P3 receives a kidney from donor D2. Since these two

patients are of the same blood-type, by Assumption 1 donors D2 and D5 are compatible with

both patients and hence the following two exchanges are feasible �dividing� exchange E into

two smaller exchanges:

E0 = (P1 −D1, P2 −D2), E00 = (P3 −D3, P4 −D4, P5 −D5)

Case 2 . One of these two patients receive a kidney from the incompatible donor of the

other under exchange E.

W.l.o.g. suppose these patients are P1 and P2. Since P1 receives a kidney from D5, by

Assumption 1 patient P2 is also compatible with donor D5 and hence the four-way exchange

E∗ = (P2 −D2, P3 −D3, P4 −D4, P5 −D5)

is feasible. We will complete the proof by showing that the remaining pair (P1 −D1) can be
included in an exchange without having an adverse impact on any patient who receives a kidney

in the matching µ.

Observe that while patients P1 and P2 are of the same blood-type, P2 is compatible with

donor D1 and yet patient P1 is incompatible. Therefore while P1 is blood-type compatible with

her donor D1, she is tissue-type incompatible. We have two cases to consider:

Case 2a. Pair (P1 −D1) is one of the types A-O, B-O, AB-O, AB-A, or AB-B.
In this case pair (P1 −D1) is on the short side of the exchange and by Assumption 2 there

exists a pair of the opposite type that is unmatched. By Assumption 1 pair (P1−D1) can form
a two-way exchange with this pair, increasing the total number of patients beneÞtting from

exchange and contradicting that µ is of maximal-size. Hence this case cannot hold.

Case 2b. Pair (P1 −D1) is one of the types A-A, B-B, AB-AB, or O-O.
By Assumption 4 there is at least one other pair (P6 −D6) with the same type (and thus

patients P1, P6 and donors D1,D6 all have the same blood-type). This pair is part of an

exchange �E under µ for otherwise pair (P1 −D1) can form a two-way exchange with them by

Assumption 1 and this would contradict the maximality of matching µ. If �E is a two-way or

three-way exchange then by Assumption 1 pair (P1−D1) can be �appended� to this exchange
(right before or right after pair (P6 −D6)). If, on the other hand, �E is a larger exchange, then
pair (P6−D6) can be removed from �E to form a two-way exchange with pair (P1−D1) which
is feasible by Assumption 1. Moreover since P6 and D6 are of the same blood type, the donor

who donates a kidney to patient P6 under �E can instead donate a kidney to the patient who

receives a kidney from D6 under �E and hence the remaining pairs in �E can form an exchange

with one less pair.
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Looking at the role that the Assumptions 1, 2, and 4 play in the theorem, we can restate it as

follows. In a sufficiently large population of incompatible patient donor pairs, the only reasons

that efficient exchange may require exchanges involving more than four pairs are idiosyncratic

tissue type incompatibilities, and the presence of singleton patient-donor pairs with the same

blood type. We next consider how much deviation from the above results we should expect in

patient populations having the incidence of tissue type incompatibilities we see in the national

patient population.

4 Simulations using national patient characteristics

In this section we dispense with the simplifying assumptions made so far, and turn to simulated

data reßecting national patient characteristics. SpeciÞcally, we now look at populations in which

a patient may have tissue type incompatibilities with many donors. This will allow us to see how

good are the approximations derived above under the assumption that exchange was limited

only by blood type incompatibilities.

The simulations reported here basically follow those of Saidman et. al 2005, with the

addition that, for each simulated population we not only compute the actual maximal number

of exchanges, but we also compute the predicted (upper bound) number based on the formulas

derived above.9 (These formulas depend on the details of the simulation, insofar as they depend

on the number of pairs of each type present in each simulated population.) We will see that the

formulas predict the actual number of exchanges surprisingly well. That is, the upper bounds on

the maximal number of exchanges when exchange is limited only by blood type incompatibility

are not far above the numbers of exchanges that can actually be realized. In addition, only a

small number of exchanges involving more than four pairs are needed to achieve efficiency in

the simulated data.

4.1 Patient and Donor Characteristics

We consider samples of non-blood related patient-donor pairs in order to avoid the complications

due to the impact of genetics on immunological incompatibilities. The characteristics such as

the blood-types of patients and donors, the PRA (Percent Reactive Antibody) distribution of

the patients, donor relation of patients, and the gender of the patients are generated using the

empirical distributions of the U.S. Organ Procurement and Transplantation Network (OPTN)

and the ScientiÞc Registry of Transplant Recipients (SRTR) data (see Table 1). We consider

all ethnicities in the data.
9Unlike in Saidman et al. we also consider four-way exchange.
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4.2 Tissue-Type Incompatibility

Tissue-type incompatibility (a positive crossmatch) is independent of blood-type incompat-
ibility and arises when a patient has preformed antibodies against a donor tissue-type.

Patients in the OPTN/SRTR database are divided into the following three groups based on

the odds that they have a crossmatch with a random donor:

1. Low PRA patients: Patients who have a positive crossmatch with less than 10% of the

population.

2. Medium PRA patients: Patients who have a positive crossmatch with 10-80% of the

population.

3. High PRA patients: Patients who have a positive crossmatch with more than 80% of the

population.

Frequencies of low, medium, and high PRA patients reported in the OPTN/SRTR database

are given in Table 1. Since a more detailed PRA distribution is unavailable in the medical

literature, we will simply assume that:

� each low PRA patient has a positive crossmatch probability of 5% with a random donor,

� each medium PRA patient has a positive crossmatch probability of 45% with a random

donor, and

� each high PRA patient has a positive crossmatch probability of 90% with a random donor.

We have already indicated that when a patient is female and the potential donor is her

husband, it is more likely that they have a positive crossmatch due to pregnancies. Zenios,

Woodle, and Ross (2001) indicate that while positive crossmatch probability is 11.1% between

random pairs, it is 33.3% between female patients and their donor husbands. Equivalently,

female patients� negative crossmatch probability (i.e. the odds that there is no tissue-

type incompatibility) with their husbands is approximately 75% of the negative crossmatch

probability with a random donor. Therefore we accordingly adjust the positive crossmatch

probability between a female patient and her donor husband using the formula

PRA∗ = 100− 0.75(100− PRA)

and assume that
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� each low PRA female patient has a positive crossmatch probability of 28.75% with her

husband,

� each medium PRA female patient has a positive crossmatch probability of 58.75% with

her husband, and

� each high PRA female patient has a positive crossmatch probability of 92.25% with her

husband.

4.3 Patient-Donor Population Construction

In our simulations, we randomly simulate a series of patient-donor pairs using the population

characteristics explained above. Whenever a pair is compatible (both blood-type compatible

and tissue-type compatible), the donor can directly donate to the intended recipient and there-

fore we do not include them in our sample. Only when they are either blood-type or tissue-type

incompatible do we keep them, until we reach a sample size of n incompatible pairs. We use a

Monte-Carlo simulation size of 500 random population constructions for three population sizes

of 25, 50 and 100.

4.4 Outline of the Simulations

For each sample of n incompatible patient-donor pairs, we Þnd the maximum number of patients

who can beneÞt from an exchange when both blood-type and tissue-type incompatibilities are

considered, and

a. only two-way exchanges are allowed,

b. two-way and three-way exchanges are allowed,

c. two-way, three-way, and four-way exchanges are allowed, and

d. any size exchange is allowed.

In our simulations, to Þnd the maximal number of patients who can beneÞt from an exchange

when only two-way exchanges are allowed, we use a version of Edmonds� (1965) algorithm (see

Roth, Sönmez, and Ünver, 2004b), and to Þnd the maximal number of patients who can beneÞt

from an exchange when larger exchanges are allowed, we use various integer programming

techniques.

We compare these numbers with those implied by the analytical expressions we developed

in order to see whether these formulae can be seen as close approximations or whether they
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merely represent crude upper-bounds. Since many high PRA patients cannot be part of any

exchange due to tissue-type incompatibilities, we report two sets of upper-bounds induced by

the formulae we developed:

1. For each sample we use the formulae with the raw data, and

2. for each sample we restrict our attention to patients each of whom can participate in at

least one feasible exchange.

That is, in Table 2, �Upper bound 1� for each maximal allowable size exchange is the average

over all simulated populations of the realization of the formula developed above for that size

exchange (i.e. Propositions 1, 2, and 3 for maximal exchange sizes 2, 3, or 4 pairs) with the

population size of n = 25, 50, or 100. However in a given sample of size n=25, for example,

there may be some patients who have no compatible donor with whom they can complete a

feasible exchange, because of tissue type incompatibilities. So, for each size k exchange that

we consider, we look at the population of n0(k) < n of patient-donor pairs who can participate

in a k-way or smaller exchange, and �Upper bound 2� in Table 2 reports the average over all

populations for the realizations of the formulas using this smaller population of incompatible

patient-donor pairs. Clearly Upper bound 2 provides a more precise (i.e. lower) upper bound

to the number of exchanges that can be found. The fact that the difference between the two

upper bounds diminishes as the population size increases reßects that, in larger populations,

even highly sensitized patients are likely to Þnd a compatible donor.

4.5 Discussion of the Simulation Results

The simulation results (which include tissue type incompatibilities) are very similar to the

theoretical upper bounds we develop for the case with only blood type incompatibilities. While

two-way exchanges account for most of the potential gains from exchange (74%, 78%, 82% for

population sizes of 25, 50, and 100 pairs respectively), the number of patients who beneÞt from

exchange signiÞcantly increases when three or more pair exchanges are allowed. Consistent

with the theory, three-way exchanges account for a large share of the remaining potential gains

(77%, 87%, 94% for a population sizes of 25, 50 and 100 pairs respectively). The theory that

we developed in the absence of crossmatches is still predictive when there are crossmatches:

virtually all possible gains from trade are achieved with two-way, three-way and four-way

exchanges, especially when the population size is large (See Table 2).10

10When the population size is 100 incompatible pairs, in 485 of the 500 simulated populations the maximum
possible gains from trade are achieved when no more than four pairs are allowed to participate in an exchange.
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5 Concluding remarks

This paper has two themes. The Þrst is intensely practical, and concerns the infrastructure that

needs to be prepared to efficiently conduct kidney exchange among incompatible patient-donor

pairs. The second is more general, and concerns the role of markets in facilitating exchange

even in the absence of a medium of exchange.

On the practical side, we have shown why it will be important to develop the infrastructure

to identify and to perform three-way as well as two-way kidney exchanges, since the efficient

utilization of O donors often requires three-way exchanges. Although the identiÞcation of max-

imal two and three-way exchanges is a computationally hard problem (unlike the identiÞcation

of maximal two-way exchanges; Roth, Sönmez, and Ünver, 2004b), it appears that instances

of practical size can be readily solved with conventional integer programming software. And,

while performing three-way exchanges requires six simultaneous surgeries, this will often be

feasible, particularly when the patients are at different transplant centers. It seems likely that

the most usual logistical arrangement will be for the donor to travel to the designated patient�s

transplant center. So, for example, in the case of a three way exchange in which each patient

is at a different hospital, this means that each of three hospitals will only be performing two

surgeries, which they would be required to perform in any live-donor kidney transplant.11 As

Proposition 2 explains, and Table 2 demonstrates, the gains from including the possibility of

three-way exchange are substantial, and substantially greater than the further marginal gains

from four-way exchange (Proposition 3 and Table 2). Thus, at least initially we will be searching

for two and three-way exchanges.

5.1 M&M�s: Money and Markets

More generally, this paper is about how markets facilitate exchange. Jevons (1876) famously

suggests that the primary difficulties with barter arise from the absence of, and can be solved by

the introduction of, a medium of exchange. We argue that many of the problems that Jevons

identiÞes as resulting from an absence of money would continue to be problems (even with

money) in the absence of a sufficiently thick market, and that many of the beneÞts Jevons sees

as ßowing from the presence of money result at least in part from the presence of a market.

Kidney exchange allows us to see which of the market effects can still be achieved in the absence

of money.
11The logistics of three-way exchanges will remain more difficult than two-way exchanges, even when three

hospitals are involved. A three way exchange involves scheduling surgery for six patients, all of whom must be
ready for surgery at the same time, and will consequently have higher probability of being delayed or cancelled
due to changing health conditions than a two-way exchange that involves only four patients.
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In the absence of a thick market, only a very small number of kidney exchanges have so

far been accomplished. We show that a thick market organized by a clearinghouse provides

many of the beneÞts that Jevons attributed to the presence of a medium of exchange. If we

conÞne our attention narrowly to a sufficiently large population of patient-donor pairs, all of

the efficiencies of exchange can be achieved without money, primarily in exchanges involving

no more than three pairs. Table 2 shows that about 60% of the incompatible pairs can beneÞt

in this way, with those that cannot being the pairs on the long side of the market, primarily

O blood type patients with A or B donors. To beneÞt these patients it would be necessary to

increase the supply of O type donors.

Two thought experiments about how to do this help illustrate the parallel roles of money

and markets. Suppose that instead of conÞning our attention to incompatible patient-donor

pairs, we considered exchange among the entire population of patient-donor pairs, i.e. suppose

we also included in the pool of potential exchangers those pairs in which the donor could give

a kidney to the intended recipient directly.12 In that case there would no longer be a shortage

of O donors, and simulations show that, in populations of 100 (compatible and incompatible)

patient-donor pairs, it would be possible to arrange transplants for over 90% of the patient-

donor pairs (Roth, Sönmez, and Ünver 2005). Of course, these beneÞts, achieved without the

use of money, accrue only to those patients who have a willing kidney donor. In contrast, if

the legal/ethical/social objections to a fully monetized market were to be resolved, and money

could be exchanged to recruit donors from the general population, then it would presumably

be possible to arrange transplants for a high percentage of all patients in need of one.

While we are on the subject of the parallel roles of money and markets, the structure of

efficient exchange in the case of kidneys allows us to address, without the use of money, another

of money�s traditional roles.

�A second difficulty arises in barter. At what rate is any exchange to be made?

If a certain quantity of beef be given for a certain quantity of corn, and in like

manner corn be exchanged for cheese, and cheese for eggs, and eggs for ßax, and so

on, still the question will arise�How much beef for how much ßax, or how much of

any one commodity for a given quantity of another?� Jevons (1876, Chapter 1)
12At present in New England, only incompatible pairs may be registered for exchange. As we noted in Roth,

Sönmez, and Ünver (2005): �It seems likely that until exchange becomes well established, only incompatible

patient-donor pairs will be included, as surgeons will be reluctant to advise compatible pairs not to proceed with
their own transplant. However, as exchange becomes more routine, there will be opportunities for mutually
beneÞcial exchange between e.g. a 25-year-old patient with a compatible 50-year-old donor and a 50-year-old
patient with an incompatible 25-year-old donor.�
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As we have seen, if the object is to facilitate as many transplants as possible among in-

compatible patient-donor pairs, then we can determine the rates of exchange. For example a

(B-O) pair on the short side of the market can exchange with two pairs on the long side of the

market (Figure 2), while an even rarer (AB-O) pair can exchange with three pairs on the long

side (Figure 3).13

5.2 Practical Market Design

As economists are more frequently called upon to design markets,14 and not merely to study

them at arms length, there will be new opportunities for understanding how markets work, and

what obstacles they face in achieving efficient allocation.

Kidney exchange, in the context of the legal/social/ethical prohibitions on the buying and

selling of organs, gives us a chance to look closely at the exchange of indivisible goods, without

a medium of exchange, in an environment in which the structure of efficient exchange can

be analyzed. One of the main contributions that a centralized clearinghouse can make in this

context is to establish a sufficiently thick market so that double and triple coincidences of wants

can be identiÞed and consummated.

In general, clearinghouses seem to be in most demand in markets that have suffered failures

with respect to the thickness of the market, or congestion in making and processing enough of-

fers, or that have incentive problems that make it unsafe for participants to provide information

needed for efficient allocation. For example, clearinghouses recently designed for other markets

in which monetary transfers are considered inappropriate have involved the allocation of public

school places in New York City (where the clearinghouse solved a congestion problem), and in

Boston, where the existing allocation system had an incentive problem (see Abdulkadiroùglu and

Sönmez 2003, Abdulkadiroùglu, Pathak, and Roth, 2005, and Abdulkadiroùglu, Pathak, Roth,

and Sönmez, 2005). Clearinghouses are also used in markets in which monetary wages are

entirely appropriate, such as the labor markets for new doctors (see e.g. Roth, 1984, Roth and

Peranson, 1999), and for medical specialists of various sorts (see e.g. Niederle and Roth, 2005).

And there has been recent attention to how decentralized markets deal well or badly with some

of the same problems that clearinghouses can be used to solve (in e.g. the markets for college

admissions and Þnancial aid, law clerks, psychologists, gastroenterologists, collectables, etc.,

see e.g. Avery et al. 2001, 2003, Niederle and Roth, 2003, 2004, Ockenfels and Roth 2004,
13Note that if the objective is to maximize the total number of transplants, then patient-donor pairs of type

O-AB may be adversely affected, if the AB-O types are used in four way exchanges. Matching O-AB pairs will
therefore often require reducing the total number of patients who can be matched.
14cf. e.g. Milgrom (2004), Roth (2002), Wilson (2002).
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Roth and Xing 1997).

All of these markets, like kidney exchange, arematching markets, in the sense that it matters

who transacts with whom (in contrast to anonymous commodity markets). And the fact that

some of these markets can do much of their work without money at all supports the view that

many matching markets in which money is freely available nevertheless do not clear by price

adjustments alone. (Departments of economics don�t hire professors by announcing a price and

seeing who comes...)

Viewed in this light, the present study is part of the growing investigation into how markets

are and need to be designed to achieve efficiency, taking into account the particular obstacles

that they encounter. This line of work, which is given focus by the demand for practical

designs for particular markets, directs our attention to the many still poorly understood details

of market clearing, in a way that can in the long term only deepen our understanding of how

markets work in general.
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Table 1: Patient and living donor distributions used in simulations based on OPTN/SRTR

Annual Report in 2003, for the period 1993-2002, retrieved from http://www.optn.org on

11/22/2004. Patient characteristics are obtained using the new waiting list registrations data,

and living donor relatinal type distribution is obtained from living donor transplants data.
A. Patient ABO Blood Type Frequency

O 48.14%

A 33.73%

B 14.28%

AB 3.85%

B. Patient Gender Frequency
Female 40.90%

Male 59.10%

C. Unrelated Living Donors Frequency
Spouse 48.97%

Other 51.03%

E. PRA Distribution Frequency
Low PRA 70.19%

Medium PRA 20.00%

High PRA 9.81%
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Table 2: Simulation results about average number of patients actually matched and predicted by

the formulae to be matched. The standard errors of the population are reported in parantheses.

The standard errors of the averages are obtained by dividing population standard errors by

square root of the simulation number, 22.36.
Type of Exchange

Pop.
Size

Method Two-way
Two-way,
Three-way

Two-way,
Three-way,
Four-way

No
Constraint

Simulation 8.86 11.272 11.824 11.992
(3.4866) (4.0003) (3.9886) (3.9536)

n=25 Upper bound 1 12.5 14.634 14.702
(3.6847) (3.9552) (3.9896)

Upper bound 2 9.812 12.66 12.892
(3.8599) (4.3144) (4.3417)

Simulation 21.792 27.266 27.986 28.09
(5.0063) (5.5133) (5.4296) (5.3658)

n=50 Upper bound 1 27.1 30.47 30.574
(5.205) (5.424) (5.4073)

Upper bound 2 23.932 29.136 29.458

(5.5093) (5.734) (5.6724)

Simulation 49.708 59.714 60.354 60.39
(7.3353) (7.432) (7.3078) (7.29)

n=100 Upper bound 1 56.816 62.048 62.194
(7.2972) (7.3508) (7.3127)

Upper bound 2 53.496 61.418 61.648
(7.6214) (7.5523) (7.4897)
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