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Abstract
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icy. It is shown that in both cases a unique rational expectations equilibrium
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1 Introduction

Long-term interest rates play a central and potentially important role in the conduct

of monetary policy. On the one hand, the transmission mechanism of monetary policy

is traditionally perceived as going from a short-term nominal interest rate, assumed in

general to be the instrument of monetary policy, to a long-term real interest rate that

influences aggregate demand. On the other hand, there have been proposals involving

the explicit use of nominal long-term interest rates for the conduct of monetary policy.

The goal of this paper is to study two potential ways in which central banks can use

long-term nominal interest rates to implement monetary policy: a) reacting to long-

term rates, and b) setting long-term rates.

a) Reacting to long-term rates.

Federal Reserve policy-makers have recently come to rely on long-term nominal in-

terest rates to measure the private sector’s long-term inflationary expectations. The

Fisher decomposition reveals that two terms are crucial for the equilibrium determina-

tion of nominal interest rates: an expected real rate and an expected inflation term.

Hence, a monetary authority that desires to keep inflation under control might be in-

terested in the use of reaction functions for monetary policy that incorporate long-term

yields as arguments, as long as the predominant force moving long-term yields is the

expected inflation term. In fact, Ireland’s (1996) statistical results suggest that this is

the main force responsible for most of the movements observed in U.S. long-term yields.

Therefore, monetary policy makers are well justified to interpret movements in long-

term rates as reflecting underlying movements in long-term inflationary expectations.

Goodfriend (1993) has convincingly argued that in order to establish and maintain

credibility during the period 1979 to 1992, the Federal Reserve reacted to the infor-
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mation in long-term nominal interest rates about long-term inflationary expectations.

Additionally, McCallum (1994) has shown that a monetary policy rule that responds

to the prevailing level of the spread between a long-term rate and a short-term rate

can rationalize an important empirical failure of the expectations hypothesis.1 Mehra

(1996) and Mehra (1999) econometric results reveal that the federal funds rate re-

acted to movements in a long-term bond yield in the 1979-1997 period.2 The fact that

changes in long-term yields help explain movements in the federal funds rate raises two

important questions.

First, one can shown that the theory of the term structure that emerges from op-

timizing behavior is the expectations hypothesis. A monetary policy reaction function

that includes a long-term rate immediately raises the question of whether or not a

unique rational expectations equilibrium (REE) exists in this case. The question is

important since the combined power of the expectations hypothesis and the proposed

monetary policy rule might give rise to self-fullfiling prophecies in the determination of

the yield curve. What are the conditions that guarantee uniqueness of the REE when

the central bank’s actions depend on the level of a long-term interest rate?

Second, assuming that the conditions that ensure a unique REE exist, is such an

interaction between short-term and long-term interest rates desirable according to a

standard loss function criterion? Which is the best maturity length for the monetary

authority to react to?

1This failure is related to the magnitude of the slope coefficients in regressions of the short rate on
long-short spreads. A partial equilibrium interpretation of the expectations hypothesis implies that
the slope coefficient, b, in a regression of the form, 12(R1,t − R1,t−1) = a + b(Ri,t − R1,t−1) + shock,
should have a probability limit of 1. Many empirical findings in the literature yield a value for b
considerably below 1. As shown by McCallum (1994) the expectations hypothesis is consistent with
these findings if it is recognized that the term premium follows an exogenous random process and
monetary policy involves smoothing of the instrument as well as a response to the level of the spread.

2Mehra (1999) measures the long-term bond rate by the nominal yield on 10-year U.S. Treasury
bonds.
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To study these questions I propose a modification of a standard Taylor rule that

adds a long-term rate as an additional variable to which the central bank adjusts its

short-term rate. In the context of a standard New Keynesian model, I show that

there are large and empirically plausible regions of the policy-parameter space where

a unique REE exists when the central bank conducts policy in this manner. However,

a sufficiently strong reaction to the level of a long-term rate might raise the important

problem of indeterminacy. In addition, I find that reacting to movements in long-term

rates does not improve the performance of the central bank, regardless of the maturity

length in question.

b) Setting long-term rates.

Another potential use for long-term nominal interest rates is the possibility of using

them as instruments of monetary policy. The current low levels of inflation experi-

enced by developed economies in recent years have raised an important number of

new challenges for the conduct of macroeconomic policy. Among these is the problem

of whether long-run rates of inflation and levels of short-term nominal interest rates

can get sufficiently low that monetary policy becomes ineffective in its attempts to

combat an economic recession. This problem might occur if the instrument of mone-

tary policy, assumed in general to be a short-term nominal interest rate, hits its lower

bound of zero. Japan’s recent economic downturn, in which overnight money-markets

interest rates were virtually zero, together with the recently low levels of the federal

funds rate in the U.S. has motivated an interest in the study of alternative monetary

policy actions. Clouse et. al. (2003) review a number of alternative actions that the

monetary authority might take in this case. Among the candidates is the possibility

that the monetary authority intervenes in longer-term treasury securities markets. It
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is a well known stylized fact that the yield curve is usually upward sloping, suggesting

the possibility of further stimulating aggregate demand through longer-term rates once

short-term rates hit their zero bound.3 Additionally, intervention in long-term bond

markets might influence expectations about the path of the short-term rate, and hence

the path of future traditionally perceived policy.

Regardless of the zero bound problem, the possibility of using long-term rates as

instruments of monetary policy in a formal monetary model has received surprisingly

little attention in the literature, and this analysis seems interesting in its own right.

In this paper, I study equilibrium determinacy under policy rules that set a nominal

interest rate other than the short-term rate, and show that, for reasonable parameter

values, a unique REE exists. The normative results reveal that when the central bank

is mainly concerned with inflation volatility, long-term rates perform better than the

traditional short-term rate in the class of Taylor-type rules.4

McGough et. al. (2005) analyze related problems of the possibility of using a

long-term interest rate as the policy instrument in a similar New Keynesian model.5

However, this paper is different in important ways. First, I address the properties of

policy rules that incorporate long-term rates as additional variables to which the central

bank can react to. Second, the analysis of determinacy focuses on more elaborate

rules which make the derivation of analytical results infeasible, but which adds to our

3In fact, Hicks (1937, p. 155) states:
"In an extreme case, the shortest short-term rate may perhaps be nearly zero. But if so, the long-

term rate must lie above it, for the long rate has to allow for the risk that the short rate may rise
during the currency of the loan, and it should be observed that the short rate can only rise, it cannot
fall."
However, it is not clear in practice if further stimulation of aggregate demand would be possible

through long-term rates at the zero bound.
4The analysis is done on a normal environment as opposed to a liquidity trap setting. A formal

study of the possibility of getting around a liquidity trap by using long-term rates is outside the scope
of this paper, and is left as a topic for future research.

5My analysis is independent and contemporaneous to their own.
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understanding of long-term interest rate instruments. Third, I conduct a normative

evaluation of these policy proposals.

One might initially suspect that a unique REE will not arise if the central bank

decides to set, for instance, a two-period nominal interest rate. The reason is that, if

the central bank wishes to set the two-period interest rate in a context in which the

expectation hypothesis holds true, then there will exist infinite combinations for the

one-period interest rate that satisfy the central bank’s setting of the two-period rate.

Notice that abstracting from a term premium and default risk, the two-period rate is

an average of today’s one-period rate and today’s expectation of the one-period rate

tomorrow. Interestingly, as shown below, this suspicion turns out to be incorrect.

In the context of the New Keynesian model the long-term real interest rate matters

through the influence it exerts on aggregate demand. Under these two potential uses

for long-term nominal rates, the long-term real rate continues to be the relevant rate

for aggregate demand, but longer-term nominal interest rates now have an effect on

the way shocks are propagated throughout the economy.

The rest of the paper is organized as follows. Section 2 presents the version of the

standard New Keynesian model used here. Section 3 discusses determinacy of the REE

under the proposed monetary policy rules as well as their implications for the dynamic

behavior of the economy. Section 4 studies the problem of optimal monetary policy and

establishes whether or not, under the proposed calibrations, long-term rates should be

used. Section 5 summarizes the main results of the paper and concludes by suggesting

potential avenues for future research.
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2 The New Keynesian Model

The model presented here is a standard New Keynesian model with an extended set

of equilibrium conditions in order to allow for an explicit consideration of the term

structure of interest rates. Instead of working through the details of the derivation, I

present the key aggregate relationships.6

If we let xt stand for the output gap, then the aggregate demand curve makes the

current level of the output gap depend on the expected future level of the output gap

and the one-period real interest rate.

xt = −(R1,t −Etπt+1) + Etxt+1 + μg(1− φ)gt − (1− ρ)at (1)

In the equation above, R1,t stands for the one-period nominal interest rate, πt stands

for the inflation rate during period t, at is a technology shock with persistence governed

by ρ, and gt is a preference shock with persistence governed by φ and size μg.

It can be shown that the theory of the term structure of interest rates that emerges

from optimizing behavior in the context of this model is the expectations hypothesis.

The nominal interest rate at t associated with a zero-coupon bond that promises to

pay one dollar at the end of period t+ i− 1 is given by,

Ri,t =
1

i
Et

iX
k=1

R1,t+k−1 ,∀i ≥ 2 (2)

Firms are assumed to operate in an environment characterized by monopolistic

competition in the goods market and by price stickiness. Factor markets are assumed

6See Clarida, Gali and Gertler (1999), Ireland (2004), Woodford (2003) and Yun (1996) for a more
detailed discussion of the New Keynesian model.
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to be competitive and goods are produced with a constant returns to scale technology.

Following Calvo (1983), it can then be shown that the above assumptions produce the

log-linear New Phillips curve given by,

πt = λxt + βEtπt+1 + μvvt (3)

where vt is a cost-push shock with size μv and with persistence given by θ. The pa-

rameter λ > 0 governs how inflation reacts to movements of output from its natural

level. A larger value of λ implies that there is a greater effect of output on inflation. In

this sense, prices may be viewed as adjusting faster. The household’s discount factor

β is restricted to lie between 0 and 1.

Finally to close the model, we need assumptions about the behavior of the monetary

authority. The standard case characterizes monetary policy as a commitment to the

following Taylor-type rule,

R1,t = τR1,t−1 + απt + δxt + μb bt (4)

where bt is a monetary policy shock whose size is governed by μb.

In the case in which the monetary authority adds a long-term rate as an additional

variable to which it reacts, policy is characterized by,

R1,t = τR1,t−1 + απt + δxt + γRi,t + μb bt (5)

Throughout the paper, policy rules that allow a reaction to long-term rates will be

called type-1 rules. I study policy rules of type-1 for maturities 2, 4, 12, 20 and 40,

which for a quarterly frequency, corresponds to a term structure composed of bonds
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with maturities 6 months, 1 year, 3 years, 5 years and 10 years respectively.

When the central bank uses a long-term rate as the operating instrument, monetary

policy follows a rule of the form,

Ri,t = τRi,t−1 + απt + δxt + μb bt (6)

Policy rules for which the instrument of monetary policy is other than the short-term

rate will be labeled type-2 rules. Notice that the equation above is similar to a standard

Taylor-rule except for the interest rate that is being set by the central bank. As before,

the selected term structure for type-2 rules is 2, 4, 12, 20 and 40.

Notice that as interest rates of various maturities are linked by the expectations

hypothesis, whatever outcome a type-1 or type-2 rule produces, it could alternatively

be obtained using some given rule for the short-term rate. For example, the central

bank could achieve the same equilibrium allocation either by using a type-2 rule for

R2,t, or by using a rule for the short-term of the form,

R1,t = τR1,t−1 + τEt−1R1,t − EtR1,t+1 + 2απt + 2δxt + 2μb bt (7)

Hence, one could view the exercise as an analysis of different policy rules for the

short rate, or as a comparison of Taylor-type rules involving longer-term rates.
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Finally the stochastic block of the model is assumed to behave as given by,

at = ρat−1 + �at (8)

bt = �bt

gt = φgt−1 + �gt

vt = θvt−1 + �vt

where the parameters are restricted as follows: |ρ| < 1, |φ| < 1, |θ| < 1, and the shocks

�at , �
b
t , �

g
t and �vt are assumed to be i.i.d. with normal distributions, zero mean and

standard deviations given by, σ�a, σ�b, σ�g , and σ�v respectively.

The model is calibrated as follows. The parameters β and λ are fixed throughout

the study. These parameters are set to 0.99 and 0.14 respectively, as usually done in

the literature. The value for λ implies an expected price-contract length of one year.7

The parameters governing the behavior of the exogenous variables, ρ, φ, θ, μb, μg and

μv are not relevant for assuring a unique equilibrium.
8 However the dynamics and

volatility of the economy are in fact affected by the size and persistence of the shocks

that hit the system. Following Cooley and Prescott (1995), ρ is set equal to 0.95 and

the standard deviation of the technology shock, σ�a , is set to 0.7 expressed in percentage

terms. The shocks associated with the parameters φ and θ are known in the literature

7It can be shown using the full blown model that λ = (1 − ϕ)(1 − βϕ)(1 + η)/ϕ. Here ϕ is the
parameter that governs the degree of price stickness and η the parameter that governs the elasticity of
labor supply. The value of η is set to 0.6 as suggested by Greenwood, Hercowitz and Huffman (1988)
so as to match microeconometric estimates of labor supply elasticities. An expected price-contract
length of one year implies a value of 0.75 for ϕ.

8Since these parameters do not enter the K matrix, the eigenvalues of K are not functions of their
values. Strictly speaking, it is required that expectations of vt+k (the vector of exogenous variables) do
not grow exponentially or explode too fast. My calibration satisfies this requirement. See Blanchard
and Kahn (1980) for details.
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to be highly persistent innovations.9 For this reason their values will be set to 0.95 and

0.95 respectively. Finally the parameters that control the size or standard deviation

of the remaining shocks are calibrated as follows: in the standard case with τ = 0.5,

α = 0.6 and δ = 0.0009, the values of μb, μg and μv are chosen so as to match the

volatility of the output gap, the interest rate and inflation in the data.10 The output

gap is constructed as the log difference between the seasonally adjusted quarterly real

GDP and real potential quarterly GDP taken from the U.S. Congress: Congressional

Budget Office. Inflation is measured as the quarterly change of the GDP Implicit Price

Deflator and the interest rate is taken to be the 3-month Fama and Bliss zero-coupon

bond yield from the CRSP data.

3 Equilibrium Determinacy

Under appropiate identifications, the model could be written in matrix form as,

Etst+1 = Kst + Lvt (9)

where: st = ( z0t p0t )
0, z is an (m × 1) vector of predetermined variables at t; p is

an (n × 1) vector of non-predetermined at t; and v is an (k × 1) vector of exogenous

variables.

Let n̄ be the number of eigenvalues of K outside the unit circle. We then have the

following three cases. If n̄ = n then there is a unique equilibrium solution. If n̄ > n

then an equilibrium solution does not exist, and if n̄ < n then there is an infinity of

9See Ireland (2004).
10Hence σ�b , σ�g , and σ�v are set to 1.
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equilibrium solutions.11

As the reader might appreciate, the study of uniqueness becomes analytically in-

tractable, specially as we move towards larger maturities. For this reason, I resort to

a numerical study of the problem. Nevertheless, as shown below, interesting numerical

patterns emerge from this study.

3.1 Type-1 Rules: Reacting to long-term rates

In this subsection I study the conditions that support a unique REE for the class of

type-1 rules given by R1,t = τR1,t−1 + απt + δxt + γRi,t. Figure 1 shows the regions

of uniqueness for given values of τ and δ in α - γ space.12 A number of interesting

features of this type of policy rule are worth highlighting. Notice that the critical

contour, for which the crucial eigenvalue of the K matrix is one, has a downward and

an upward sloping part in each case. The downward sloping portion of the contour

reveals that there is a substitution, in terms of assuring a unique equilibrium, between

the reaction to current inflation, α, and the reaction to the long-term nominal interest

rate, γ. Further numerical exploration shows that in the downward sloping part of the

contour, a condition of the form (τ+α+γ > 1) is necessary for determinacy, regardless

of the maturity length in question. Note that the Taylor-principle (α + τ > 1), that

the short-term rate must rise in the long-run sufficiently in response to movements in

inflation to increase real rates, no longer holds in this case. The upward sloping section

of contour shows that as γ becomes ’too large’, the policy rule is unable to produce

a unique outcome. The intuition behind this result is the following. For simplicity

11See Blanchard and Kahn (1980) for a detailed presentation.
12Figure 1 shows regions of uniqueness for R4, R12, R20, and R40. The regions for R2 are not much

different and were left out due to the usual limitations. An earlier version of the paper contains figures
for R2 as well.
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take the two-period rate and notice that it could be written, according to the Fisher

decomposition, as follows

R2,t =
1

2
Et(xt+2 − xt +

2X
k=1

πt+k)

The above expression shows that by reacting to the two-period rate, the monetary

authority is implicitly reacting to the average expected path of inflation in the following

two periods. This explains why the Taylor-principle is modified to a condition of the

form (α+τ +γ > 1) in the downward sloping part of the contour. In this sense there is

a substitution for assuring a unique equilibrium between the reaction to the long-term

rate and current inflation.

To gain intuition about the upward sloping portion of the contour, recall that,

according to the expectations hypothesis, we may alternatively write R2,t as,

R2,t =
1

2
(R1,t +EtR1,t+1)

The problem is that a ’too large’ value of γ allows self-fulfilling expectations to take

place. To see why, observe that expectations that interest rates will be high become

self-fulfilling, because the expectations of high short-term rates in the future causes

long-term rates to rise, leading the monetary authority to raise short-term rates. Thus,

in this case the monetary authority validates the initial expectation that short-term

rates will be high. The upward sloping part of the contour shows that there is a

complementarity between α and γ. In this region, a higher value of γ requires a stronger

connection between the short-term rate and inflation in order to avoid self-fulfilling

expectations from happening. It is precisely in this respect that the Taylor-principle
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breaks down for type-1 rules.

Further numerical exploration shows that in the upward sloping part of the contour,

higher values of τ and δ permit, for a given value of α, a higher value of γ. Notice that

the Fisher decomposition implies without loss of generality that reacting positively to

R2 is equivalent to an implicit negative reaction to the current output gap. To see this

consider (5), the type-1 policy rule with i equal to 2 and rewrite it with the help of the

Fisher decomposition as,

R1,t = τR1,t−1 + απt +
γ

2

2X
k=1

Etπt+k + (δ −
γ

2
)xt +

γ

2
Etxt+2

Hence, higher values of δ allow for higher values of γ without implying a negative

reaction to the current output gap.13

Figures 1 reveals that as we move towards policy rules that involve larger maturity

rates, the upward sloping region of the critical contour increases its slope. So, for

a given value of α it is necessary a higher value of γ, the longer the interest rate, to

produce multiple solutions. The fact that the interest rates in the policy rule are further

apart in terms of maturity explains this result. Recall that expectations that short-

term interest rates will be high become self-fulfilling, because the expectation of high

short-term rates in the future causes long-term rates to rise. When monetary policy

reacts to very long-term rates, self-fulfilling expectations require that the response of

the short-term rate to this movement be sufficiently strong so as to feed through the

term structure with enough strength to move this very long-rate in a self-validating

manner. So, as a stylized numerical observation, if the condition τ + α + γ > 1 is

13It can be shown in the context of the standard case (i.e with a policy rule of the form R1,t =
τR1,t−1 + απt + δxt) that under the proposed calibration of the model, in particular λ = 0.14, for
α > 1, there are multiple solutions so long as δ < 0.
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satisfied, for given values of the other parameters, the larger the maturity of the long-

term rate in a type-1 rule, the larger the value of γ that supports a unique solution of

the system. Mehra’s (1999) GMM estimates yield a value of γ of 0.46 in the case of the

10 year bond for the 1979-1998 period. Together with the other parameter estimates,

the numerical exercise here suggests that monetary policy in the U.S. has not reacted

to movements in the long-term rate so as to give rise to self-fullfilling fluctuations.

Up to this point I have shown that there are large and empirically plausible regions

of the parameter space for which type-1 rules yield a unique REE. Why should unique-

ness be a desirable property of any policy rule? Rules that support multiple solutions

are problematic. The mere fact that such a rule may be consistent with a potentially

desirable equilibrium is of little importance if it is also equally consistent with other,

much less desirable equilibria. A rule that implies indeterminacy is consistent with

a large set of equilibria, including ones in which the fluctuations in endogenous vari-

ables are arbitrarily large relative to the size of fluctuations in the exogenous shocks.14

In general, the variables for which there may be arbitrarily large fluctuations due to

self-fulfilling expectations include those that enter the loss function of the monetary

authority. Hence at least some of the equilibria consistent with the rule are less desir-

able, in terms of the loss function, than the unique equilibrium associated with any rule

that guarantees a unique solution. For these reasons, the normative analysis restricts

its attention to rules that imply a unique equilibrium. The question of whether or not

type-1 rules that yield a unique solution are at all desirable is taken up in section 4.

14See Bernanke and Woodford (1997) for a formal description of a "sunspot" equilibrium. See also
Woodford (2003, chapter 4).
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3.2 Type-2 Rules: Long-term rates as instruments

Here I study the conditions under which a unique REE exists for the class of rules

given by Ri,t = τRi,t−1+απt+ δxt. Recall that in this case, a longer term interest rate

is treated as the instrument set by the monetary authority.

Figure 2 shows the regions in α - δ space in which a unique REE exists for τ = 1/2.

As can be observed, significantly large regions of the parameter space exist that pro-

duce a unique REE.15 Notice that the regions of determinacy in the positive quadrants

remain unchanged whatever the term of the interest rate chosen as instrument. In-

terestingly, Figure 2 also shows that, in the positive quadrants, the Taylor-principle

holds for the selected value of τ . Notice that α + τ > 1 is required for determinacy in

these cases. Although the numerical exercise so far suggests that the Taylor-principle

generalizes to maturities other than one, this is true only in some regions of the policy-

parameter space. Further exploration in α - τ space shows that the Taylor-principle

eventually breaks down for longer term instruments, by displaying an upward sloping

section of the critical contour. This complementarity between α and τ shows up for

sufficiently positive values of δ. Interestingly, in the standard case in which the policy

instrument is the short-term rate, the critical contour’s slope is always negative one

with its equation given by τ = 1− α.16

The general result that a unique REE exists when the monetary authority sets an

interest rate of maturity other than one is surprising in light of the intuition previously

mentioned. Consider for example the case in which the central bank decides to set the

two-period interest rate. One might initially believe that a unique equilibrium would

15McGough, Rudebusch, and Williams (2004) too found regions of uniqueness for a simple policy
rule with a long-term rate instrument in a relatively similar environment.
16An earlier version of the paper contains figures in α− τ space that illustrate this result.
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not arise in this case since the expectations hypothesis of the term structure suggests

that infinite combinations of the short-term rate would satisfy the bank’s setting of

R2. In fact recall that the expectations hypothesis says that the two-period rate is

determined by R2,t = 1
2
(R1,t +EtR1,t+1) . At first sight, one chosen value for R2,t could

be achieved by infinitely many paths for R1, so that uniqueness could not be achieved.

Clearly the results show that this is not the case in large and plausible regions of

the parameter space. To gain intuition why a unique outcome can obtain even when

the central bank decides to set a longer term rate consider the following. Loosely

speaking, the expectations hypothesis of the term structure says that long-term rates

are determined by the expected future path of the short-term rate during the maturity

horizon in question. Thus, we generally think that short-term rates determine the level

of long-term rates. However, it is important to realize that the expectations hypothesis

works in the opposite direction as well. In fact, it does not place a restriction as to a

direction of determination for interest rates. To see this formally consider the equation

for R2 and rewrite as a first order stochastic difference equation in R1,

R1,t = −EtR1,t+1 + 2R2,t

Advance the equation one period and substitute it back to obtain,

R1,t = 2R2,t − 2EtR2,t+1 +EtR1,t+2

Repeating this operation many times and using the fact that limj→∞EtR1,t+j = 0

yields,

R1,t = 2
∞X
j=0

(−1)jEtR2,t+j (10)
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Equation (10) uncovers why the previous intuition is incorrect. A uniquely expected

path for the two-period rate, as given by (10), determines in a unique manner the

current level of the one-period rate. It can be shown that the general expression of the

relevant path to be followed for an interest rate of maturity i in order to determine the

current level of the one-period nominal rate is given by,

R1,t = i

Ã ∞X
j=0

EtRi,t+ij −
∞X
j=0

EtRi,t+ij+1

!
(11)

Equation (11) generalizes the argument for interest rates of any term. Thus, whatever

the maturity of the interest rate chosen as instrument, if the monetary policy rule

implies a unique outcome, then the uniquely expected path of the instrument uniquely

determines the current level of interest rates of longer as well as shorter maturities.

The result that uniqueness arises even when the central bank decides to use an

interest rate other than the short-term rate for a policy rule of the Taylor-type is im-

portant for several reasons. On a somewhat subtle level, it provides support for the

theoretical study of macro-monetary models at various frequencies without implying

any kind of hidden inconsistency. Without taking a stand on whether time is continuos

or discrete, it should almost go without saying that real world economics occurs at (at

least) a daily frequency. Discrete models in monetary economics are generally studied

at a quarterly frequency without an explicit concern on whether or not the theoretical

short-term rate (a 3-month rate), would imply a unique level of the current overnight

rate. Although models are usually studied at a quarterly frequency, sometimes cali-

bration is done at a monthly or annual frequency. The result presented here provides

a theoretical foundation for such frequency choices.

This result might also be of practical importance in light of the zero-bound prob-
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lem. The fact that a unique equilibrium exists for longer term rate as instruments of

policy, suggests an interesting potential solution. Since the level of long-term rates is

generally above the level of short-term rates monetary policy might be able to further

stimulate aggregate demand through longer term rates once short-term rates hit their

zero bound.17 However, this is only potentially so, and further research would be nec-

essary to address this possibility.18 In the context of the model used here interest rates

are linked mechanically through the pure expectations hypothesis. If monetary policy

is not constrained to a parametric set of rules, then any interest rate could achieve

the same outcome as any other. However, in practice I would suspect that additional

complexities might make long-term rates useful instruments at the zero-bound. In par-

ticular, altering the level of longer-term rates might have an impact on the composition

of risk premia which may directly influence private sector decisions in long-term inter-

est rate sensitive sectors of the economy. However this is mere speculation since little is

known about the precise way in which monetary policy interplays with the composition

and distribution of risk.

Without any reference to the zero-bound problem, the result opens up a new dimen-

sion of analysis for monetary policy rules that is interesting in its own right. Namely,

which interest rate, among a given class of rules, performs best? Which interest rate

instrument gets closer to the robustly optimal monetary policy rule in the sense of

Giannoni and Woodford (2002)? The next section addresses these questions.

17In fact, Fed Chairman Alan Greenspan said (in a context in which the federal funds rate was at a
41-year low of 1.25%) that in addition to pushing the funds rate, the interest rate that banks charge
each other on overnight loans, closer to zero, the Fed can simply begin buying longer-term Treasury
securities to drive longer-term interest rates lower. -Associated Press Newswires, May 21, 2003.
18See Woodford (2005) for a discussion of additional complications that might arise when using

long-term rates as instruments of policy.
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3.3 Dynamics

I have previously shown that large regions of uniqueness exist for type-1 and type-2

rules. Given this fact, what are the dynamic implications associated with these rules?

In other words, it seems interesting to study the way in which the economy responds

to shocks under representative type-1 and type-2 rules versus a standard Taylor rule.

Figures 3 illustrates this comparison by displaying the impulse responses of inflation

and output to a monetary-shock and a cost-push shock for a standard Taylor rule,

and for type-1 and type-2 rules involving R12 and R40 respectively. Notice that the

parameters remain fixed across rules in order to capture the effects implied by the

maturity dimension of the problem. A number of interesting features arise from this

comparison. In the first place, notice that the signs of the responses do not change

across policies. The qualitative responses of inflation and the output gap are the same

as those generated by a standard Taylor rule. A contractionary monetary policy shock

reduces on impact both inflation and the output gap for all rules considered, while

an adverse cost-push shock increases inflation and decreases output on impact for all

rules as well. These results suggest that type-1 and type-2 rules do not imply ’strange’

responses to the disturbances that hit the economy. Secondly, observe that the size

of the responses is significantly affected by the type of policy rule. In fact, notice

that in the case of type-1 rules in response to a cost-push shock, inflation deviates less

than in the standard case while output suffers a bigger contraction. A similar result

shows up in the case of type-2 rules in response to an adverse cost-push shock. In this

case, note that the maturity length of the instrument matters for the determination of

the trade-off between output and inflation deviations from the steady state. Finally,

Figure 3 shows that a contractionary monetary shock implies a bigger contraction for
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inflation and output the longer the maturity of the instrument interest rate. This arises

because the size of the monetary shock in fact changes across policy rules. That is,

a one-standard deviation of bt attached to a type-2 rule for R40 raises the one-period

nominal interest rate by more than a one-standard deviation of bt in a standard Taylor

rule. For this reason the size of the monetary policy shock, μb, is set to zero in all

policy rules for the normative analysis.19

As shown, the impulse responses suggest that the dynamic behavior of the economy

is significantly affected by the choice of policy rule. In fact, different rules imply a

distinct trade-off between inflation and output deviations in response to a cost-push

shock. This shock plays a key role in the conduct of monetary policy. It presents the

monetary authority with a trade-off between output and inflation stabilization. The

fact that quantitatively different responses are observed under different rules motivates

the question of what monetary policy rule does best for the central bank. The next

section addresses this question.

4 Optimal Monetary Policy Rules

I start by constructing a robustly optimal policy rule following Giannoni and Woodford

(2002). I consider a rule that would bring about the optimal equilibrium pattern of

responses to shocks as well as yield a unique stationary equilibrium for the economy. I

assume that the objective of the monetary authority is to minimize the expected value

19This guarantees that the comparison between policy rules is ’fair’ in the sense of capturing only
the impact of the deterministic component.of the rules.
However, this highlight an important fact. If there is inherent randomness in the conduct of mon-

etary policy, long-term rates might be undesirable instruments because they magnify the effects of
monetary policy shocks.
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of a loss criterium given by,

J =
1

2
E0

Ã ∞X
t=0

βtLt

!
(12)

where the bank’s discount rate β is the same as in (3) and the period loss function is

of the form,

Lt = π2t + ωxx
2
t + ωRR

2
1,t (13)

Here the parameters ωx and ωR (assumed to be positive) govern the relative concern for

output and short-term nominal interest rate variability. Hence, the monetary authority

faces the problem of minimizing (12) subject to equations (1) and (3). Notice that

minimization is achieved by choosing a time path for {πt, xt, R1,t}∞t=0 that minimizes

the monetary authority’s objective and simultaneously satisfies the model’s structural

equations at each point in time. The first order conditions of the problem are given by,

πt − β−1Λ1,t−1 + Λ2,t − Λ2,t−1 = 0

ωxxt + Λ1,t − β−1Λ1,t−1 − λΛ2,t = 0

ωRR1,t + Λ1,t = 0

R1,t −Etxt+1 + xt −Etπt+1 − μg(1− φ)gt + (1− ρ)at = 0

πt − λxt − βEtπt+1 − μvvt = 0

where Λ1,t and Λ2,t stand for the Lagrange multipliers associated with the IS and New

Phillips curve equations respectively. One can use the equations above to substitute

out the Lagrange multipliers in order to obtain a monetary policy rule consistent with
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the optimal allocation of the form,

R1,t = (1 +
λ

β
)R1,t−1 +

1

β
∆R1,t−1 +

λ

ωR
πt +

ωx

ωR
∆xt (14)

As shown by Giannoni and Woodford (2002), commitment to this rule implies a unique

equilibrium as well as an optimal equilibrium pattern of responses to the economy’s

disturbances. In this case, the optimization is not performed over some parametric set

of policy rules (e.g. a Taylor-type rule). The approach in this case consists of character-

izing the best possible pattern of responses to shocks by taking the structural equations

as constraints, and then finding the policy rule that generates such an equilibrium.

Since taking into account only a set of monetary policy reaction functions rules

out other possible kinds of feedback, any rule constrained to belong to a given set of

rules cannot perform better than the rule that responds to shocks in the best possible

way. Hence, type-1 or type-2 rules could not possibly yield a better outcome than (14).

However, studying the degree to which these rules are optimal remains important for

many reasons. Taking into account the McCallum’s (1988) critique, namely, that the

main problem that policymakers face is uncertainty about the exact structure of the

economy, one realizes that this uncertainty would translate into uncertainty about

the exact specification of the optimal monetary policy rule. For this reason it remains

important to understand how a given rule works across different plausible environments.

The exercise done here constitutes a step in this direction for type-1 and type-2 rules.

Simple policy rules have also been proposed on the basis of being operational and simple

to communicate to the public. Operationality limits study of rules that are expressed in

terms of instrument variables that could in fact be controlled by actual central banks
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and that require only information that could be possessed by these central banks.20

Although implementation of type-2 rules might require in some cases modifications in

the legislation that applies to central banks, there is no a priori reason why central

banks would not be able to manage policy by setting a longer term rate. In principle,

a central bank with sufficient access to money balances (and large enough holdings of

the asset in question) could stand ready to sell or buy a long-term bond at a desired

target price. Different is the case for example of assuming that the monetary authority

controls a monetary aggregate as M2 whose determination is not independent of the

behavior of the private sector.

I therefore consider the optimal rule, (14), as a benchmark to evaluate the perfor-

mance of type-1 and type-2 rules. I also take the standard case Taylor rule as a second

benchmark of evaluation. I want to know which rule among the set of parametric policy

rules given by (5) and (6) gets closer to the optimal rule. Do type-1 and/or type-2 rules

imply gains relative to the standard Taylor rule? I will restrict attention to type-1 and

type 2 rules that result in a unique stationary REE.

Table 1 shows, for different calibrations of ωx and a value of 0.1 for ωR, the value

of the loss function and each of its components for the optimal rule, (14), the standard

rule, (4), and type-1 rules of the selected term structure.21 Reacting to movements

in nominal longer-term rates does not present significant gains. As expected type-1

rules are no worse than the standard rule. In fact note that the standard rule is a
20If the central bank collects data with a lag, then depending on the frequency of the model, type-

2 rules might not be operational in practice. Notably McGough, Rudebusch and Williams (2005)
address this problem and find regions of uniqueness for policies that set a longer term rate in response
to lagged inflation.
21Notice that 12E0

P∞
t=0 β

t(π2t+ωxx
2
t+ωRR

2
1,t) =

1
2(1−β) (σ

2
π+ωxσ

2
x+ωRσ

2
R1
). So that minimizing J

is equivalent to minimizing a weighted average of the variances as given by 1
2(1−β) (σ

2
π+ωxσ

2
x+ωRσ

2
R1
).

Since 1
2(1−β) is only a scaling constant, one can focus on the value of Ĵ = σ2π+ωxσ

2
x+ωRσ

2
R1
instead.

This is the value of the loss function reported in all tables.
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particular case of a type-1 rule for which γ is set to zero. Inspection of Table 1 shows

not only that type-1 rules achieve a value of the loss function which is identical to

that of the standard rule, but also that the variances of the relevant variables remain

unchanged.22 Further numerical exploration shows that in the case of type-1 rules

there are multiple parameter configurations that minimize the loss function. In general,

for all calibrations and maturities considered the optimal value of γ turns out to be

negative. This is a surprising result in light of Goodfriend’s (1993) account of monetary

policy and Mehra’s (1999) econometric results. Recall that the rationale for allowing

the monetary authority to react to movements in long-term bond yields is that long-

term nominal interest rates could measure the private sector’s long-term inflationary

expectations. The central bank might therefore be interested in using reaction functions

that incorporate longer-term rates, so that if they rise the bank raises the short-term

rate in its attempts to keep inflation under control. In other words, this behavior would

imply a positive value of γ. Interestingly, there is a very recent macro-finance literature

that includes the long-run expected inflation component of the long-term rate in the

policy rule and can justify negative values for γ.23

I find that there is a certain degree of substitution for optimality between the

autoregressive coefficient, τ , and the reaction to long-term rates, γ. Positively higher

values of τ are associated with negatively smaller values of γ. Loosely speaking, long-

term rates play a redundant role in the RHS of the policy rule. Recall that long-term

rates could be expressed as the expected future path of R1 over the maturity horizon

22This is in general true up to the 9th decimal digit. A higher numerical precision shows that
type-1 rules are better than the standard rule as one would expect. However, this difference seems
insignificant.
23For example, in response to a perceived decrease in the inflation target (a decrease in the expected

inflation component of the long rate), the monetary authority must increase rates in order to push
inflation down to this lower target. This behavior would justify a negative value of γ. See Rudebusch
and Wu (2004)
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in question. Therefore, reacting to movements in a longer-term rate is equivalent to

reacting to the expected future path of the instrument in this case. To gain intuition,

consider the case of a type-1 rule for i = 2 and rewrite it with the aid of (2) as

R1,t =
2τ

2− γ
R1,t−1 +

2α

2− γ
πt +

2δ

2− γ
xt +

γ

2− γ
EtR1,t+1

Note that negative values of γ imply (for τ > 0) a positive "backward-smoothing"

coefficient and a negative "forward-smoothing" coefficient respectively. In addition,

observe that the larger γ is in absolute value the larger τ needs to be to yield a given

value of the backward smoothing term. The fact that the autoregressive coefficient on

R1,
2τ
2−γ , is the one that matters for the determination of expectations (in particular

EtR1,t+1) explains why there are multiple pairs of τ and γ that minimize the loss func-

tion. The expression above also reveals that in the context of type-1 rules a sufficiently

positive value of γ would result in a negative reaction to the previous period short-term

rate as well as to the current inflation rate and the current output gap.

Since there are no significant gains in reacting to movements in longer-term rates, I

do not investigate any further the behavior of type-1 rules under alternative calibrations

for ωx and ωR.

Notice that a type-1 rule is a modification of the familiar Taylor rule that adds

a longer-term interest rate as another variable to which the central bank adjusts its

short-term rate instrument. Elsewhere in the literature, others have proposed includ-

ing other asset prices in the Taylor rule, such as stock prices and housing prices. As

Filardo (2000) points out, Goodhart, a former member of the Bank of England’s Mone-

tary Policy Committee, argues that central banks should consider using housing prices

and stock market prices to guide their policy decisions. Goodhart’s recommendation
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is based on the argument that broader measures of inflation that include housing and

stock market prices have the potential of improving macroeconomic performance if

asset prices reliably predict future consumer price inflation. Goodhart’s recommenda-

tion follows Alchein and Klein’s (1973) view that traditional price indices are deficient

because they consider only the price of goods consumed today. To the extent that

long-term nominal interest rates capture future signs of inflation, my simulation re-

sults clearly suggest that such a reaction to long yields neither worsens nor improves

macroeconomic performance relative to the standard Taylor rule (for which γ is set to

zero). One could conclude from this exercise that long-term nominal interest rates do

not provide additional information for the monetary authority than what is already

present in the lagged short-term interest rate, current output and current inflation.

Filardo (2000) and Gilchrist and Leahy (2002) do not find a strong case for including

asset prices in monetary policy rules as well.

Table 2 shows, for different calibrations of ωx and a value of 0.1 for ωR, the value of

the loss function and the value of each of its components for the optimal rule, (14), the

standard rule, (4), and type-2 rules for the selected interest rates. Interestingly, medium

and long-term rates perform better as instruments in the class of Taylor-type rules than

short-term rates when the concern for output volatility is relatively low. For example

note that when ωx equals 0.05, all instruments except R40 do better than R1. In this

case, the best instrument turns out to be the 3-year rate. Also note that a Taylor-rule

with R12 as the instrument, generates a lower variance for R1 and higher variances for

inflation and output relative to the optimal rule, but lower variances of inflation and

output relative to the standard Taylor-rule. When the concern for output volatility

increases to 0.1, the optimal instrument for the class of Taylor-type rules, turns out to
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be the 5-year rate. Inspection of Table 2 reveals that in this case the relevant gain comes

from the ability of R20 to generate a lower variance of inflation. Observe that when

ωx equals 0.01, 0.05 and 0.1 (i.e when the concern for output deviations is relatively

low) the volatility of the short-term rate increases as the maturity of the instrument

increases. For these parameter values, using longer-term rates as instruments yields a

higher variance of the short-term rate than that of the standard case. Notice however

that this property is not preserved as the concern for output deviations increases to

0.33 or to 1. Table 3 reproduces the results of Table 2 but this time with ωR set to

1. Notice that as the concern for short-term variability increases the variance of R1

diminishes as expected in all cases and for all the instruments. In Table 3, for all

values of ωx considered, the volatility of the short-term rate achieved by rules using

longer-term rates is lower than in the optimal rule case and in the standard case.24

By comparing Tables 2 and 3 it can be observed that when the concern for output

volatility is relatively low the optimal maturity length of the instrument is sensitive

to the value of ωR. For example note, that when ωx equals 0.1 and ωR equals 0.1, the

best instrument turns out to be R20. However, when ωx equals 0.1 and ωR equals 1, the

best instrument turns out to be R12. Despite these differences in the maturity length,

Tables 2 and 3 show an interesting pattern. When the relative concern for output

volatility is low, medium/long-term rates perform better than the standard instrument

and when the concern for output volatility is high the short-term rate turns out to be a

24This is in principle an interesting result in light of the liquidity trap problem. If one would find
that in all the cases in which longer-term rates are used as instruments, the variance of the short-
term rate increases, then the potential solution of using longer-term rates when we approach the zero
bound looses much of its appeal. Additionally as explained by Woodford (2003, chapter 6) it might be
desirable in practice to pursue a policy that involves less volatility of the short-term nominal interest
rate in the presence of large random disturbances than a policy that achieves complete price stability.
The reason being that if disturbances are large in amplitude such a policy might not be possible
because it might requiere the nominal interest rate to be negative at some times.
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better instrument. One of the main results of this section is that the optimal maturity

length of the instrument depends upon the parameters determining the preferences of

the monetary authority for the class of Taylor-type rules.

Both tables reveal the presence of two different kinds of trade-off between the volatil-

ity of inflation and the volatility of output. The first is the well known trade-off that

arises when the parameter that governs the relative degree of concern for the output gap

variance, ωx, varies. This trade-off is known in the literature as the Taylor curve. No-

tice that for all rules considered, as ωx varies from 0.01 to 3, the central bank manages

to generate a lower variance for output at the expense of a higher one for inflation.

The second trade-off between the variance of output and the variance of inflation,

which to the best of my knowledge is new in the literature, shows up in terms of ma-

turities. Notice that a trade-off between the output and inflation variance appears for

given values of ωx and ωR as we move along the maturity dimension of the instruments,

for the class of standard/type-2 rules. Notice however that this is not a linear trade-off

in all cases. For example, it is not always the case that when the maturity length of

the instrument increases, one observes a lower variance of inflation at the expense of a

higher one for output. However, it is generally the case, that each ’maturity movement’

presents a trade-off between the two variances.25 Figure 4 illustrates this by plotting

the loss function and its components against the maturity of the interest rate instru-

ment. Panel A plots the case when ωx equals 0.1 and ωR equals 0.1. Note that as

the maturity of the instrument increases up to 20, the variance of inflation decreases

and the variance of output increases, but as we move further into the term structure

25A note of caution is in place. Recall that I have selected a term structure composed of maturities
1, 2, 4, 12, 20 and 40. Therefore, a ’maturity movement’ means in this case a move from say 4 to
12. The calculations for intermediate maturities have not been done because of the usual limitations.
However the general result that as we move along the term structure eventually a trade-off appears is
preserved for the selected calibrations.
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the trade-off changes its direction. Panel B shows the case when the preferences of the

central bank are given by ωx set to 3 and ωR set to 0.1. Observe that this time the

variance of inflation decreases and that of output increases but only up to a maturity

of 4. The direction of the trade-off changes above 4. It is important to emphasize

that this is a trade-off that emerges for given values of the parameters that govern the

preferences of the monetary authority, ωx and ωR. Also note that the precise nature

of this trade-off changes when the preferences of the central bank change.

Notice that when the concern for inflation volatility is very high, the best instrument

turns out to be the one-year interest rate. Why could this possibly be the case? In

order to develop an intuition for this result notice that the expected price contract

length is calibrated to one year. Further numerical exploration reveals that reducing

the expected price contract length to 6 months yields the two-period rate as the best

instrument when the concern for inflation variability dominates. Thus, I conjecture

that when the concern for inflation volatility is high, the optimal maturity length of

the instrument aligns to the degree of nominal rigidity in the economy.26

As an alternative way to understand the behavior of type-2 rules I consider what

happens to the loss function and its components as we deviate from the optimal value

of one of the parameters in the policy rule. Figure 5 illustrates the case in which

the reaction to current output, δ, changes for the standard rule and type-2 rules with

instruments given by R12 and R40, while the other parameters, τ and δ, remain fixed

at their optimal values. The situation is illustrated in the case of ωx set to 3 and ωR

set to 0.1. Notice that a trade-off between the variance of output and the variance of

inflation emerges as δ varies. Increasing δ results, for all rules, in a lower variance of

26A note of caution is in place. The parameter that governs the degree of price stickiness in the
economy is λ. This parameter is not only a function of the expected price contract length, but also a
function of the household’s discount rate, and the elasticity of labour supply.
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output at the expense of a higher variance for inflation, as one would expect. However,

the precise quantitative nature of the trade-off changes for different instruments. As δ

increases from zero the variance of inflation achieved by rules with longer-term rates is

smaller. The precise quantitative extent of the trade-off changes with the instrument.

Note that the volatility of the short-term rate displays a trade-off with the volatility

of output. Another interesting feature to note is that it seems relatively less costly to

deviate from the optimal value of δ using R12 as the instrument, as opposed to R1 or

R40.

The main message from this section is that it is not only possible to use longer-term

nominal interest rates as instruments of policy within the class of Taylor-type rules, but

it is also desirable under certain circumstances. In fact, there are plausible preferences

for the monetary authority that make medium/long-term rates better instruments, by

achieving a value for the loss function that gets closer to that of the optimal rule. I

have also shown that a trade-off between the variances of output and inflation emerges

in the maturity dimension. Hence, for given values of the parameters that determine

the preferences of the central bank and among the class of Taylor-type rules, this new

trade-off faces the monetary authority with a new dimension of choice, namely, the

maturity length of the instrument.

5 Conclusion

In this paper I have studied the implications of using long-term nominal interest rates

in the conduct of monetary policy. Under the first use for long-term rates the monetary

authority is allowed to react to movements in some long-term yield. I have shown that

there are plausible regions of the policy parameter space for which a unique stationary
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REE arises under such policy rules, labeled type-1 rules. The normative analysis has

revealed that there are no significant gains from using type-1 rules in terms of reducing

the value of the loss function. Surprisingly, the optimal parameter value of the reaction

to long-term rates turns out to be negative in most cases, contradicting the initial

intuition that recommends such use.

Under the second use for long-term nominal interest rates the monetary authority

is allowed to conduct policy by virtue of a Taylor-type policy rule that sets a longer-

term rate. The exercise conducted in this paper has revealed a number of surprising

aspects of this proposal. Interestingly, significant regions of the policy parameter space

exist where a unique stationary REE obtains. The numerical patterns show that the

Taylor-principle, namely, that the long run reaction of the instrument to movements

in inflation should exceed one, generalizes to instruments of various maturities in some

regions of the parameter space. The general result that uniqueness arises for instru-

ments other than the short-term rate is important in many dimensions. As emphasized

previously, this result is of practical importance in light of the zero-bound problem.

The existence of a unique equilibrium for longer term rates constitutes an interesting

potential solution to the problem. A formal study of this possible solution involves

a number of complications and constitutes an interesting avenue for further research.

Regardless of the liquidity trap, longer-term rates may be better instruments in their

own right for a given class of rule. The result opens up a new dimension of analysis

for monetary policy rules. All the elements of the term structure emerge as potential

candidate instruments for the conduct of monetary policy. This result also provides the-

oretical support for the study of macro-monetary models at various frequencies without

implying a deeper inconsistency. Discrete models in macroeconomics are usually set at
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a quarterly or monthly frequency without an explicit concern on whether or not the

theoretical short-term rate (a 3-month/1-month rate), would imply a unique level of

the current overnight rate, which is what is typically assumed to be under the control

of the central bank.

I then studied the performance of rules involving the explicit setting of a long-term

rate and found that, for the class of Taylor-type rules, they are better instruments

under certain central bank preferences. In particular, the exercise shows that when

the relative concern for output variability is low, medium or long-term rates turn out

to yield a better outcome. I have also found an interesting numerical pattern between

the maturity of the instrument rate and the variances of output and inflation. Namely,

for given preferences of the monetary authority, a trade-off between the variabilities of

output and inflation emerges as we move through the term structure in our choice of

instrument. This highlights one of the main results of the paper. That is, the choice of

maturity length for the instrument is sensitive to the preferences of the central bank.

The results have opened up many interesting avenues for future research. Recall

that the results are valid in the context of a simple New Keynesian model. It would

therefore be interesting to study the robustness of these results in different economic

environments. For example, are the main results preserved when investment and capital

accumulation are included in the model? Are the results sensitive to different timing

assumptions and different specifications of the Phillips curve? What happens in an

open economy? What happens in alternative models of the monetary transmission

mechanism (e.g. limited participation models)? Recently Andres et. al (2004) have

extended the New Keynesian model by explicitly considering time-varying risk premia

on longer term bonds and by introducing portfolio adjustment costs that give longer
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term rates a bigger role in the monetary transmission mechanism. It would therefore

be of much interest to pursue in future work a study of the performance of type-1 and

type-2 rules in that extended environment.

One limitation of the exercise is that the analysis of alternative rules involving

the explicit use of longer-term rates has been constrained to a selected term structure

on the basis of being the empirically relevant one. However, it might well be the

case that the optimal maturity of the instrument for a given class of rules is actually a

’hidden maturity’. Despite being an enormous numerical effort, a clearer understanding

of the problem along the maturity dimension might be obtained by conducting the

optimization over interest rates of all maturities.

In conclusion, the exercise conducted here has produced clear results. Long-term

nominal interest rates can be used in alternative ways without implying the prob-

lems associated with multiple equilibria or non existence of an equilibrium solution,

and under certain circumstances Taylor-type rules that set a longer-term rate better

approximate the optimal outcome.
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Figure 1: Regions of uniqueness for type-1 rules. ( δ = τ = 0.5 ) 
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Figure 2: Regions of uniqueness for type-2 rules. ( τ = 0.5 ) 
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1.0032 1.0032 1.0032 1.0032 1.0032 1.0032
ω x = 0.1 Var_pi 0.1015 0.1147 0.1147 0.1147 0.1147 0.1147 0.1147

Var_x 8.8961 8.8824 8.8824 8.8824 8.8824 8.8824 8.8824

Var_r 0.0150 0.0031 0.0031 0.0031 0.0031 0.0031 0.0031

Loss 2.8744 2.8744 2.8744 2.8744 2.8744 2.8744
ω x = ⅓ Var_pi 0.4574 0.3616 0.3614 0.3614 0.3614 0.3614 0.3614

Var_x 7.0625 7.5377 7.5383 7.5383 7.5382 7.5383 7.5383

Var_r 0.0757 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027

Loss 7.5900 7.5900 7.5900 7.5900 7.5900 7.5900
ω x = 1 Var_pi 1.6088 0.8299 0.8299 0.8301 0.8299 0.8299 0.8299

Var_x 5.0405 6.7488 6.7488 6.7486 6.7488 6.7488 6.7488

Var_r 0.7504 0.1130 0.1130 0.1130 0.1130 0.1130 0.1130

Loss 19.5110 19.5110 19.5110 19.5110 19.5110 19.5110
ω x = 3 Var_pi 4.8407 3.7726 3.7726 3.7725 3.7726 3.7726 3.7726

Var_x 3.0422 5.1710 5.1710 5.1711 5.1710 5.1710 5.1710

Var_r 3.3090 2.2525 2.2525 2.2524 2.2525 2.2525 2.2525

Type-1 Rulesω r = 0.1
Table 1 : Optimal Type-1 rules 

Optimal Standard

Rule Rule R2 R4 R12 R20 R40

Loss 0.9926

2.8191

6.7243

14.2980

 
 
 
 
 



  

0.1180 0.1179 0.1177 0.1182 0.1189 0.1195
ω x = 0.01 Var_pi 0.0039 0.0032 0.0032 0.0032 0.0033 0.0024 0.0012

Var_x 11.0347 11.2289 11.2218 11.2058 11.1868 11.2659 11.4064

Var_r 0.0252 0.0248 0.0245 0.0244 0.0307 0.0386 0.0423

Loss 0.5376 0.5374 0.5370 0.5359 0.5362 0.5377
ω x = 0.05 Var_pi 0.0396 0.0443 0.0440 0.0435 0.0426 0.0433 0.0453

Var_x 9.7381 9.8486 9.8494 9.8505 9.8377 9.8192 9.7952

Var_r 0.0216 0.0094 0.0095 0.0098 0.0138 0.0194 0.0262

Loss 1.0032 1.0032 1.0029 1.0028 1.0027 1.0035
ω x = 0.1 Var_pi 0.1015 0.1147 0.1143 0.1134 0.1116 0.1097 0.1110

Var_x 8.8961 8.8824 8.8853 8.8917 8.9075 8.9230 8.9173

Var_r 0.0150 0.0031 0.0031 0.0033 0.0040 0.0063 0.0069

Loss 2.8744 2.8752 2.8766 2.8773 2.8775 2.8778
ω x = ⅓ Var_pi 0.4574 0.3616 0.3593 0.3562 0.3556 0.3554 0.3515

Var_x 7.0625 7.5377 7.5472 7.5612 7.5651 7.5662 7.5789

Var_r 0.0757 0.0027 0.0019 0.0006 0.0000 0.0000 0.0000

Loss 7.5900 7.6189 7.6732 7.7088 7.7089 7.7105
ω x = 1 Var_pi 1.6088 0.8299 0.7823 0.6832 0.5987 0.6066 0.6135

Var_x 5.0405 6.7488 6.8280 6.9865 7.1101 7.1023 7.0970

Var_r 0.7504 0.1130 0.0872 0.0347 0.0000 0.0000 0.0000

Loss 19.5110 19.8466 20.6461 21.8445 21.9581 22.0236
ω x = 3 Var_pi 4.8407 3.7726 3.5856 3.1417 5.8654 6.0786 6.1891

Var_x 3.0422 5.1710 5.3491 5.7716 5.1613 5.1196 5.1001

Var_r 3.3090 2.2525 2.1369 1.8943 4.9512 5.2074 5.3430

ω r = 0.1 Type-2 Rules
Table 2 : Optimal Type-2 rules (ωr = 0.1 ) 

Optimal Standard

Rule Rule R2 R4 R12 R20 R40

Loss 0.1167

0.5287

0.9926

2.8191

6.7243

14.2980

 



  

0.1289 0.1288 0.1287 0.1306 0.1335 0.1366
ω x = 0.01 Var_pi 0.0128 0.0129 0.0128 0.0127 0.0156 0.0199 0.0254

Var_x 10.9092 10.9984 10.9958 10.9874 10.9132 10.8553 10.7963

Var_r 0.0062 0.0061 0.0061 0.0061 0.0058 0.0050 0.0032

Loss 0.5419 0.5418 0.5415 0.5415 0.5426 0.5440
ω x = 0.05 Var_pi 0.0479 0.0522 0.0520 0.0515 0.0522 0.0549 0.0584

Var_x 9.7043 9.7458 9.7472 9.7488 9.7300 9.7017 9.6733

Var_r 0.0044 0.0024 0.0024 0.0026 0.0028 0.0026 0.0018

Loss 1.0047 1.0046 1.0045 1.0044 1.0048 1.0053
ω x = 0.1 Var_pi 0.1090 0.1183 0.1181 0.1175 0.1166 0.1175 0.1193

Var_x 8.8679 8.8555 8.8571 8.8607 8.8685 8.8638 8.8538

Var_r 0.0035 0.0008 0.0008 0.0009 0.0010 0.0009 0.0006

Loss 2.8757 2.8762 2.8769 2.8773 2.8778 2.8780
ω x = ⅓ Var_pi 0.3916 0.3581 0.3572 0.3558 0.3555 0.3509 0.3553

Var_x 7.3225 7.5506 7.5554 7.5629 7.5656 7.5806 7.5684

Var_r 0.0167 0.0008 0.0005 0.0002 0.0000 0.0000 0.0000

Loss 7.6441 7.6601 7.6891 7.7070 7.7098 7.7953
ω x = 1 Var_pi 1.1005 0.6977 0.6772 0.6367 0.6058 0.6064 0.5047

Var_x 5.7595 6.9144 6.9589 7.0434 7.1011 7.1034 7.2891

Var_r 0.2570 0.0320 0.0240 0.0090 0.0000 0.0000 0.0015

Loss 20.5962 20.8247 21.3184 21.7777 21.7844 21.7845
ω x = 3 Var_pi 3.0671 1.8028 1.6506 1.2557 0.7568 0.7618 0.7485

Var_x 3.9136 6.0524 6.2104 6.5889 7.0070 7.0075 7.0120

Var_r 1.5907 0.6364 0.5428 0.2960 0.0000 0.0000 0.0000

ω r = 1 Type-2 Rules
Table 3 : Optimal Type-2 rules (ωr = 1 ) 

Optimal Standard

Rule Rule R2 R4 R12 R20 R40

Loss 0.1280

0.5375

0.9993

2.8492

7.1171

16.3987

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 3 : Impulse Responses for p and x. Standard Taylor Rule and type 1 and 
2  rules for R12 and R40. ( t = 0.6, a =0.6, d = 0.1 and g = 0.5 ) 
 
 

 
 
 

  



Figure 4: Optimal Policy for Type-2 rules. Maturity trade-off. 
Panel A: (ωx = 0.1 and ωr = 0.1)  
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Panel B : (ωx = 3 and ωr = 0.1)  
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Figure 5: Comparing type-2 rules: Varying d. (ωx = 3 y ωr = 0.1) 
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