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1 Introduction

Transplantation is the preferred treatment for the most serious forms of kidney disease. Un-

fortunately there is a considerable shortage of deceased-donor kidneys, compared to demand.

Because healthy people have two kidneys and can remain healthy on one, it is also possible

for a kidney patient to receive a live-donor transplant. There were 6,086 live-donor trans-

plants in the U.S. in 2004. However, a willing, healthy donor may not always be able to

donate to her intended patient, because of either blood-type or immunological incompatibil-

ities. Rapaport [1986] is the first to propose kidney exchange between two such incompatible

pairs in case each donor can feasibly donate a kidney to the patient of the other pair. Ross

et. al [1997] reinforced this idea and in 2000 transplantation community issued a consensus

statement declaring kidney exchange to be ethically acceptable (Abecassis et. al [2000]). In

the period 2000-2004 feasible exchanges were sought in an unorganized way in parts of the

U.S., and a relatively small number of them has been carried out. Roth, Sönmez, and Ünver

[2004] (henceforth RSÜ [2004]) observed that the impact of this idea can be significantly

increased if exchange is organized and modeled kidney exchange as a mechanism design

problem. Since then, centralized clearinghouses for kidney exchange has been established in

New England (see Roth, Sönmez, and Ünver [2005]), Ohio and Maryland.1

The two main sources of kidneys for transplantation is deceased-donor kidneys and live-

donations from family and friends. U.S. congress views deceased-donor kidneys offered for

transplantation as a national resource, and the National Organ Transplant Act of 1984

established the Organ Procurement and Transplantation Network (OPTN). Run by the

United Network for Organ Sharing (UNOS), OPTN has developed a centralized priority

mechanism for allocation of deceased-donor kidneys. In addition to direct exchange between

incompatible pairs, another form of exchange considered in the transplantation literature

is an indirect exchange (Ross and Woodle [2000]). In this kind of exchange, the patient of

the incompatible pair receives an upgrade in the deceased-donor priority list in exchange

for donor’s kidney. Unlike in direct exchange between incompatible pairs, certain patient

groups may suffer a loss under indirect exchange (see Zenios, Woodle and Ross [2001]) and

the transplantation community does not have a uniform view on its implementation. RSÜ

[2004] considered both direct and indirect exchanges as well as their more elaborate nested

versions. Currently indirect exchanges are considered by the New England Program for

Kidney Exchange (see www.nepke.org) whereas only two pair direct exchanges are considered

1The efforts in New England and Ohio are both collaboration of several transplant centers whereas in
Maryland, Johns Hopkins has a single-center kidney exchange program.
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by the Ohio Solid Organ Transplantation Consortium. While indirect exchanges are also

avoided by the Paired Kidney Exchange Transplant Program of Johns Hopkins, they have

recently pursued a closely related idea: In May 2005, surgeons at Johns Hopkins performed an

exchange between an altruistic, non-directed living donor (also known as a Good Samaritan

donor), two incompatible patient-donor pairs, and a patient on the deceased-donor priority

list. Unlike the deceased-donor kidneys, donations from Good Samaritan donors (henceforth

GS-donors) are not regulated by the law. Nevertheless, rare donations from GS-donors have

been mostly treated similar to deceased-donor kidneys and allocated through the centralized

priority mechanism. In this way each GS-donor gives a gift of life to a stranger on the

priority list. In the recent exchange at Johns Hopkins, however,

• the kidney from the GS-donor is transplanted to the patient of the first incompatible

pair,

• the kidney from the first incompatible pair is transplanted to the patient of the second

incompatible pair, and

• the kidney from the second incompatible pair is transplanted to the highest priority

patient on the deceased-donor priority list.

In this way, not only the GS-donor gave a gift of life to a stranger, but she also facilitated

two others which otherwise would not be possible. Organization of such exchanges is the

theme of this paper and we analyze mechanisms for kidney exchange with GS-donors.

As we have already mentioned, the allocation of deceased-donor kidneys is regulated and

there is some resistance in the transplantation community against integrating kidney ex-

change with deceased-donor priority lists through indirect exchange. In contrast, currently,

the allocation of kidneys from GS-donors is not regulated and there is flexibility on its allo-

cation. As the Johns Hopkins example illustrates, there are potential gains from integrating

allocation of GS-donations with kidney exchange. We consider a model where kidneys from

GS-donors are initially offered to the kidney exchange pool, and only if they are unassigned

they are sent to the deceased-donor priority list. We analyze mechanisms that integrate do-

nations from GS-donors with kidney exchange, and the interaction with the deceased-donor

list is implicit in our paper. Observe that for any patient in the exchange pool who receives a

kidney from a GS-donor, there exists a (not necessarily distinct) patient whose incompatible

donor remains unassigned. While not explicitly modeled in the paper, we interpret these

donors to be sent to the deceased-donor priority list (just as the unassigned GS-donors).
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So the idea is, the kidney exchange pool “owes” a live-donor kidney to the deceased-donor

priority list for each kidney transplanted to a patient in the pool from a GS-donor.

In our model each problem consists of a set of incompatible patient-donor pairs, a set of

GS-donors whose kidneys are not “attached” to any particular patient, and a list of strict

patient preferences on all donors. Given fixed sets of patients and donors, an allocation is

a matching of patients and donors so that each patient is assigned one donor and no donor

is assigned to more than one patient. A mechanism is a systematic procedure that selects

a matching for each problem. This model is a special case of house allocation with existing

tenants (Abdulkadiroğlu and Sönmez [1999]) model where there are a number of existing

tenants each with an initial house, a number of vacant houses, and a number of newcomers

none of whom has initial claims on any house. Patients and their incompatible donors in

our model correspond to existing tenants and their initial houses, and GS-donors who are

not attached to any particular patient correspond to vacant houses.

Abdulkadiroğlu and Sönmez [1999] introduce the following mechanism which we refer as

You Request My Donor-I Get Your Turn (YRMD-IGYT) in the present context: Patients

are prioritized in a queue and they are assigned their top choice donor among still unassigned

donors in priority order. This continues until a patient “requests” the incompatible donor of

a patient who has not been assigned a donor yet. In this case this request is put on hold; the

patient whose incompatible donor is requested is moved to the top of the queue, directly in

front of the requester and the process continues with the modified queue. This is repeated

any time there is a request for the incompatible donor of a patient whose assignment is yet

to be finalized. If a cycle of requests is formed, each patient in the cycle is assigned the

donor she requested and removed from the system together with their assignments.

Abdulkadiroğlu and Sönmez [1999] showed that the YRMD-IGYT mechanism is Pareto

efficient, individually rational (in the sense that each patient is guaranteed a donor that

is no worse than her paired-donor) and strategy-proof . In this paper we present a full

characterization of the YRMD-IGYT mechanism based on these three axioms together with

weak neutrality and consistency . Weak neutrality requires the outcome of a mechanism

to be independent of the names of the GS-donors. The formulation of consistency is less

obvious in the present context. The traditional consistency axiom compares any pair of

economies where one economy is obtained from the other by removal of a group of agents

together with their assignments under the mechanism for which consistency is tested, and it

requires this mechanism to insist on the same assignment as in the original economy for each
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remaining agent.2 If a mechanism is consistent , then it eliminates incentives to renegotiate

upon departure any group of agents with their assignments. This is very plausible in the

present context for distinct exchanges in a matching are often conducted weeks, even months

apart (although all transplants in a given exchange are conducted simultaneously due to

incentives reasons). The difficulty, however, is that upon the removal of a group of patients

with their assignments, what remains may not always be a well-defined problem. For example

if two patients are assigned each others’ paired-donors and if one of them leaves with her

assignment, in what remains there is a patient with no paired-donor. A natural formulation

here would be requiring consistency whenever the reduced economy is well-defined, but as

it turns out this version is not strong enough for the full characterization of the YRMD-

IGYT mechanism.3 For full characterization we also need a mechanism to insist on its

outcome if a set of unassigned donors are removed (provided that what remains is a well-

defined economy). The consistency axiom we present in the paper is the following: When

a group of patients are removed from a problem together with their assignments under a

mechanism φ and possibly together with some unassigned donors under φ, what remains may

not be a well-defined problem. But if it is, then the assignments of the remaining patients

under mechanism φ should not be affected by this departure. So if some of the exchanges

are finalized while the others are pending, and even if some unassigned GS-donors have a

change of heart and they are no longer willing for alturistic donation, the remaining patients

should still have no reason to request another run of the mechanism.

1.1 Related Literature

As we have already indicated, kidney exchange as an application of economic theory is re-

cently brought to the attention of economists by RSÜ [2004]. Roth, Sönmez and Ünver

[2005b] considers a related model where each patient is indifferent between all compatible

kidneys and no exchange can involve more than two pairs. Our modeling choice is closer to

the first of these two papers: Just as RSÜ [2004], our model is a generalization of housing

markets (Shapley and Scarf [1974]); but unlike RSÜ [2004], our model is a special case of

house allocation with existing tenants model. Although we are unaware of any characteriza-

tion result for the latter model, there is a rich axiomatic literature on allocation of indivisible

goods in general including in housing markets and in house allocation problems (Hylland and

2See Thomson [1996] for a comprehensive survey.
3The mechanism in Example 5 satisfies all four other axioms and this version of consistency but not the

stronger version we present in the paper.
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Zeckhauser [1977]).

YRMD-IGYT mechanism is a generalization of both Gale’s Top Trading Cycles mech-

anism for housing markets and the simple serial dictatorship for house allocation. When

preferences are strict, Gale’s Top Trading Cycles mechanism gives the unique core outcome

of a housing market (Roth and Postlewaite 1977) and it is strategy-proof (Roth 1982). In-

deed it is the only mechanism that is Pareto efficient, individually rational, and strategy-proof

(Ma 1994). In the context of housing markets, Svensson [1999] shows that the simple serial

dictatorship is the only mechanism that is strategy-proof, nonbossy and neutral while Ergin

[2000] shows it is the only mechanism that is Pareto efficient, consistent and neutral . Our

characterization is a natural generalization of each of Ma [1994], Svensson [1999], and Ergin

[2000] results.4

2 Kidney Exchange with Good Samaritan Donors

Let I be a finite set of patients and D be a finite set of donors such that |D| ≥ |I|. Each

patient i ∈ I has a distinct paired-donor di ∈ D and has strict preferences Pi on all donors

in D. Let Ri denote the weak preference relation induced by Ri and for any subset of donors

D ⊂ D, let R(D) denote the set of all strict preferences over D.

A kidney exchange problem with good samaritan donors, or simply a problem,

is a triple 〈I,D,R〉 where:

• I ⊆ I is any set of patients,

• D ⊆ D is any set of donors such that di ∈ D for any i ∈ I , and,

• R = (Ri)i∈I ∈ [R(D)]|I| is a preference profile.

Given a problem 〈I,D,R〉, the set of “unattached” donors D\{di}i∈I is referred as Good

Samaritan donors (or in short GS-donors). Observe that the paired-donor dj of a patient

j is formally a GS-donor in a problem 〈I,D,R〉 if dj ∈ D although j �∈ I .5

Since the information on patients and donors are embedded in a preference profile, when-

ever convenient we will denote a problem with simply a preference profile.

4Other axiomatic studies in housing markets and house allocation include Chambers [2004], Ehlers [2002],
Ehlers and Klaus [2005], Ehlers, Klaus and Papai [2002], Kesten [2004], Miyagawa [2002], Papai [2000, 2004].

5This observation will be useful when we formalize the consistency axiom later on. We will be considering
such situations as patient j being assigned a GS-donor and leaving the problem. The paired-donor dj of
patient j is no longer attached to any patient in the reduced problem, and hence treated as a GS-donor.

6



Given I ⊆ I and D ⊆ D, a matching is a mapping µ : I → D such that

µ (i) = c and µ (j) = d ⇒ c �= d for any distinct i, j ∈ I.

We refer µ (i) as the assignment of patient i. A matching is simply an assignment of donors

to patients such that each patient is assigned one donor and no donor is assigned to more

than one patient. Let M(I,D) denote the set of matchings for given I,D.

A mechanism is a systematic procedure that assigns a matching for each problem R.

The outcome of mechanism φ for problem R is denoted by φ[R] and the assignment of patient

i under φ for problem R is denoted by φ[R](i). For any J ⊆ I , let φ[R](J) = {φ [R] (j)}j∈J
be the set of donors assigned to patients in J .

3 The Axioms

3.1 Individual Rationality, Pareto Efficiency and Strategy-

Proofness

Throughout this section, we fix I ⊆ I and D ⊆ D.

A matching is individually rational if no patient is assigned a donor worse than her

paired-donor. Formally, a matching µ ∈ M is individually rational if, µ (i)Ridi for any

i ∈ I . A mechanism is individually rational if it always selects an individually rational

matching.

A matching is Pareto efficient if there is no other matching that makes every patient

weakly better off and some patient strictly better off. Formally, a matching µ ∈ M is Pareto

efficient if there is no matching ν ∈ M such that ν (i)Riµ (i) for all i ∈ I and ν (j)Pjµ (j)

for some j ∈ I . A mechanism is Pareto efficient if it always selects a Pareto efficient

matching.

A mechanism is strategy-proof if no patient can ever benefit by misrepresenting

her preferences. Formally a mechanism φ is strategy-proof if for any problem R ∈
[R(D)]|I|, any patient i ∈ I, and any potential misrepresentation R∗

i ∈ R(D), we have

φ [Ri, R−i] (i)Riφ [R∗
i , R−i] (i) .

3.2 Weak Neutrality and Consistency

Each of the three axioms we introduced so far is defined for fixed sets of patients and

donors. In contrast, our next axiom weak neutrality relates problems with possibly different
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sets of donors and final axiom consistency relates problems with different sets of patients

and donors.

A mechanism is weakly neutral if labeling of GS-donors has no affect on the outcome

of the mechanism.

We need additional notation to introduce our final axiom.

Fix I,D. For any patient i ∈ I , preference relation Ri ∈ R(D), and set of donors C ⊂ D,

let RC
i be the restriction of preference Ri to donors in C .6 That is,

cRC
i d ⇐⇒ cRid for any c, d ∈ C.

For any J ⊂ I , let RJ = (Ri)i∈J be the restriction of profile R to patients in J .7 For

any J ⊂ I and C ⊂ D, let RC
J = (RC

i )i∈J be the restriction of profile R to patients in

J and donors in C.

Given a problem 〈I,D,R〉, a set of patients J ⊂ I , and a set of donors C ⊂ D, we refer〈
J, C,RC

J

〉
as the restriction of problem 〈I,D,R〉 to patients in J and donors in C.

The triple
〈
J, C,RC

J

〉
itself is a well-defined reduced problem if dj ∈ C for any j ∈ J .

Given a problem 〈I,D,R〉, a set of donors C ⊂ D is unassigned under mechanism φ if

φ[R](I) ∩ C = ∅.
Given a problem 〈I,D,R〉, the removal of a set of patients J ⊂ I together with their

assignments φ[R](J) under φ and a set of unassigned donors C ⊂ D under φ results in a

well-defined reduced problem
〈
I \ J, D \ (φ[R](J) ∪ C), R

−φ[R](J)∪C
−J

〉
if

(φ[R ]( J )∪C) ∩ {di}i∈I\J = ∅.

A mechanism φ is consistent if for any problem 〈I,D,R〉, whenever the removal of a

set of patients J ⊂ I together with their assignments φ[R](J) and a (possibly empty) set of

unassigned donors C ⊂ D results in a well-defined reduced problem,

φ[R
−φ[R](J)∪C
−J ] (i) = φ [R] (i) for any i ∈ I\J.

So under a consistent mechanism, the removal of

• a set of patients,

• their assignments, and

6Given Ri ∈ R(D), we will often denote R
D\C
i by R−C

i .
7Given fixed D ∈ D and R ∈ [R(D)]|I|, we will often denote RI\J by R−J .
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• some unassigned donors

does not affect the assignments of remaining patients provided that the removal results in

a well-defined reduced problem. As we have argued in the introduction, distinct kidney

exchanges are often performed months apart and consistency removes the incentives to

request a new run of the mechanism upon completion of part of the exchanges.

4 You Request My Donor-I Get Your Turn Mechanism

You Request My Donor-I Get Your Turn mechanism (or YRMD-IGYT mechanism in short)

is introduced by Abdulkadiroğlu and Sönmez [1999] in the context of house allocation with

existing tenants and further studied by Chen and Sönmez [2002] and Sönmez and Ünver

[2005].8 In order to define this mechanism we need the following additional notation:

A (priority) ordering is a one-to-one and onto function f : {1, 2, . . . , |I|} → I. Here

f(1) indicates the patient with the highest priority in I, f(2) indicates the patient with

the second highest priority in I, and so on. Let F be the set of all orderings. Given a

set of patients J ∈ I, patient j ∈ J is the highest priority patient in J under f if

f−1 (j) ≤ f−1 (i) for any i ∈ J . Given a set of patients J ∈ I, the restriction of f to J

is an ordering fJ of the patients in J which orders them as they are ordered in f . Formally

fJ : {1, 2, . . . , |J |} −→ J is a one-to-one and onto function such that for any i, j ∈ J ,

f−1
J (i) ≤ f−1

J (j) ⇐⇒ f−1 (i) ≤ f−1 (j) .

Each ordering f ∈ F defines a YRMD-IGYT mechanism. Let ψf denote the YRMD-

IGYT mechanism induced by ordering f ∈ F . For any set of patients I ⊂ I and set of

donors C ⊂ D, let ψf [RC
J ] denote the outcome of the YRMD-IGYT mechanism induced by

ordering fJ for problem
〈
J, C,RC

J

〉
.

For any problem 〈I,D,R〉, matching ψf [R] is obtained with the following YRMD-IGYT

algorithm in several rounds.

Round 1(a): Construct a graph in which each patient and each donor is a node. In this

graph:

8YRMD-IGYT mechanism is a generalization of both Gale’s Top Trading Cycles mechanism (for housing
markets (Shapley and Scarf 1974)), and serial dictatorship (for house allocation problems (Hylland and
Zeckhauser 1977)). Abdulkadiroğlu and Sönmez [1999] provided two algorithms, You Request My House-I
Get Your Turn (YRMH-IGYT) algorithm and the Top Trading Cycles (TTC) algorithm, to implement this
mechanism. The description we provide below is based on the description that utilizes the TTC algorithm.

9



• each patient “points to” her top choice donor (i.e. there is a directed link from each

patient to her top choice donor),

• each paired-donor di ∈ D points to her paired-patient i in case i ∈ I , and to the highest

priority patient in I otherwise,

• and each GS-donor points to the patient with the highest priority in I .

Since there is a finite number of patients and donors, there is at least one cycle. (A cycle is

an ordered list (c1, j1, . . . , ck, jk) of donors and patients where donor c1 points to patient j1,

patient j1 points to donor c2, donor c2 points to patient j2, . . ., donor ck points to patient

jk, and patient jk points to donor c1.) If there is no cycle without a GS-donor then skip to

Round 1(b). Otherwise consider each cycle without a GS-donor. (Observe that if there is

more than one such cycle, they do not intersect.) Assign each patient in such a cycle the

donor she points to and remove each such cycle from the graph. Construct a new graph with

the remaining patients and donors such that

• each remaining patient points to her first choice among the remaining donors,

• each remaining paired-donor di ∈ D points to her paired-patient i in case her paired

patient i remains in the problem, and to the highest priority remaining patient other-

wise,

• and each GS-donor points to the highest priority remaining patient.

There is a cycle. If there is no cycle without a GS-donor then skip to Round 1(b); otherwise

carry out the implied exchange in each such cycle and proceed similarly until either no

patient is left or there exists no cycle without a GS-donor.

Round 1(b): There is a unique cycle in the graph, and it includes both the highest priority

patient among remaining patients and a GS-donor.9 Assign each patient in such a cycle the

donor she points to and remove each such cycle from the graph. Proceed with Round 2.

In general, at

Round t(a): Construct a new graph with the remaining patients and donors such that

• each remaining patient points to her first choice among the remaining donors,

9That is because each GS-donor points to the highest priority patient among remaining patients.
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• each remaining paired-donor di ∈ D points to her paired-patient i in case her paired

patient i remains in the problem, and to the highest priority remaining patient other-

wise,

• and each remaining GS-donor points to the highest priority remaining patient.

There is a cycle. If the only remaining cycle includes either a GS-donor or a paired-donor

whose paired-patient has left, then skip to Round t(b); otherwise carry out the implied

exchange in each such cycle and proceed similarly until either no patient is left or the only

remaining cycle includes either a GS-donor or a paired-donor whose paired-patient has left.

Round t(b): There is a unique cycle in the graph, and it includes the highest priority

patient among remaining patients and either a GS-donor or a paired-donor whose paired-

patient has left. Assign each patient in such a cycle the donor she points to and remove each

such cycle from the graph. Proceed with Round t+1.

The algorithm terminates when there is no patient left in the graph.

5 Characterization of the YRMD-IGYT Mechanisms

Our main result is a characterization of the YRMD-IGYT mechanism:

Theorem 1: A mechanism is Pareto efficient, individually rational, strategy-proof, weakly

neutral, and consistent if and only if it is a YRMD-IGYT mechanism.

We present our main result through two propositions:

Proposition 1: For any ordering f ∈ F , the induced YRMD-IGYT mechanism ψf is Pareto

efficient, individually rational, strategy-proof, weakly neutral and consistent.

Proof of Proposition 1: Let f ∈ F . Pareto efficiency, individual rationality and strategy-

proofness of ψf follows from Abdulkadiroğlu and Sönmez [1999]. Weak neutrality of ψf

directly follows from the description of the YRMD-IGYT algorithm (i.e., under the relabeled

economy, the relabeled version of the same sequence of cycles will form).

We next prove that ψf is consistent. Fix a problem 〈I,D,R〉. Let C ⊂ D be such that

ψf [R](I)∩C = ∅ and J ⊂ I be such that (ψf [R](J)∪C)∩{di}i∈I\J = ∅ so that the reduced

problem
〈
I \ J, D \ (ψf [R](J) ∪ C), R

−ψf [R](J)∪C
−J

〉
is well-defined. Consider the execution
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of the YRMD-IGYT algorithm to obtain matching ψf [R] and suppose it terminates after

round t∗. For any t ∈ {1, 2, . . . , t∗}, let At be the set of patients who formed cycles and

received their assignments in Round t(a) and, let Bt be the set of patients who formed

a cycle received their assignments in Round t(b). Since no patient in J is assigned the

paired-donor of a patient in I \ J , set J can be partitioned as {I t, J t}t∈{1,2,...,t∗} where

• I t ⊆ At is a set of patients who form one or more cycles in Round t(a) of YRMD-IGYT

algorithm, and

• J t ⊆ Bt is a set of patients {j1, j2, . . . jk} such that

1. ψf [R] (j�) = dj�+1
for any � ∈ {1, 2, . . . , k − 1}, and

2. ψf [R](jk) is a GS-donor or the paired-donor of a patient in ∪t−1
s=1J

s.

Consider, the reduced problem R
−ψf [R](J)∪C
−J , and the execution of YRMD-IGYT algo-

rithm to obtain ψf
[
R

−ψf [R](J)∪C
−J

]
.

Round 1(a): In Round 1(a), having removed the patients in J has no affect on any remaining

cycles and all patients in A1\I1 forms the same cycles as in the original problem. Since some

of the donors in the original problem are removed in the reduced problem, cycles that form

in subsequent rounds in the original problem may form earlier in Round 1(a) in the reduced

problem. A cycle that is not removed remains a cycle in subsequent rounds until removed.

Keep any cycle involving patients in I\ (A1 ∪B1) until the round it formed under the original

problem and skip to Round 1(b).

Round 1(b): If J1 = ∅, then exact same cycle forms in Round 1(b) as before and each patient

in B1 receives the same assignment as before. If J1 = B1 then this round is skipped. Let

J1 ⊂ B1 be such that J1 �= ∅. Let (dg , i1, di2 , i2, . . . , dik , ik) be the cycle formed in Round

1(b) of the original problem where i1 is the highest priority patient in I\A1 under ordering

f and dg is a GS-donor. We have J1 = {i�, i�+1, . . . , ik} for some � ∈ {2, . . . , k} for otherwise

someone in J1 would have been assigned the paired-donor of a patient who has been removed

(and thus the reduced problem would not have been well-defined). Having been the highest

priority patient in a larger set, patient i1 is still the highest priority patient among the

remaining patients. Moreover since patient i� has been removed, donor di� is a GS-donor in

the reduced problem. Hence donor di� points to i1 in Round 1(b). In addition patient i1

points to di2 (as before), donor di2 points to patient i2 (as before), . . . ,patient i�−1 points

to di� (as before). Hence
(
di� , i1, di2, . . . di�−1

, i�−1

)
is a cycle in Round 1(b). Therefore each
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patients in B1 \ J1 receives the same assignment in the reduced problem as before. We

remove this cycle from the reduced problem and proceed with Round 2.

We similarly continue with Round 2, and so on.10 Therefore, each patient in I\J is

assigned the same donor as under ψf [R], completing the proof. ♦

Proposition 2: Let φ be a Pareto efficient, individually rational, strategy-proof, weakly

neutral, and consistent mechanism. Then φ = ψf for some f ∈ F .

Proof of Proposition 2: Let φ be a Pareto efficient, individually rational, strategy-proof,

weakly neutral, and consistent mechanism. Let d∗ ∈ D \{di}i∈I be a good-Samaritan donor.

We will recursively construct an ordering f ∈ F as follows:

• We determine f(1) as follows: Let R1 ∈ [R(D)]|I| be such that for any i ∈ I,

d∗R1
i diR

1
i d for any d ∈ D\{d∗} .

By Pareto efficiency of φ, there exists some h1 ∈ I such that φ [R1] (h1) = d∗. Let

f(1) = h1.

• For any t > 1, upon determining patients f (1) , f (2) ,. . .,f (t− 1), we determine f (t)

as follows: Let Rt ∈ [R(D)]|I| be such that

* Rt
i = R1

i for any i ∈ I\ {f (1) , f (2) , . . . , f (t− 1)}, and

* diR
t
id for any i ∈ {f (1) , f (2) , . . . , f (t− 1)} and d ∈ D.

By individual rationality of φ, φ[Rt] (i) = di for all i ∈ {f (1) , f (2) , . . . , f (t− 1)}
and by Pareto efficiency of φ, we have φ[Rt] (ht) = d∗ for some ht ∈
I\ {f (1) , f (2) , . . . , f (t− 1)}. Let f (t) = ht.

This uniquely defines an ordering f ∈ F . We will prove that φ = ψf .

Fix a problem 〈I,D,R〉. We construct matching ψf [R] by using the YRMD-IGYT

algorithm. For each round t of the algorithm let At be the set of patients removed in Round

t(a) of the algorithm and letBt be the set of patients removed in Round t(b) of the algorithm.

We next construct a preference profile R′ ∈ R|I| that will play a key role in our proof.

Consider a patient i ∈ I and let t be such that i ∈ At ∪Bt. Two cases are possible:

10The only difference in the argument in the following rounds is that, in Round t(b) for t ∈ {1, 2, . . . , t∗},
the patient referred as patient dg in our argument could be either a GS-donor or the paired-donor of a patient
in ∪t−1

s=1J
s.

13



R′
i

d ψf [R](i) di d′ d′′ d′′′

Ri

d ψf [R](i) d′ d′′ di d′′′
�

�
�

�
�

�
�

�
�

���

Figure 1: Construction of Preference R′
i for Case 1

Case 1: Either i ∈ At or i ∈ Bt although she is not the highest priority patient in Bt under

ordering f : If ψf [R] (i) = di then R′
i = Ri. Otherwise let R′

i be such that

1. cP ′
id⇐⇒ cPid for any c, d ∈ D\ {di} .

2. ψf [R] (i)P ′
idiP

′
id for any d ∈ D \ {di} s.t. ψf [R] (i)Pid.

That is, R′
i is obtained from Ri by simply inserting donor di right after donor ψf [R] (i)

and keeping the relative ranking of the rest of the donors as in Ri. (See Figure 1.)

Case 2: i ∈ Bt and she is the highest priority patient in Bt under ordering f : Let ψf [R] (Bt)

be the set of donors allocated in Round t(b) of the YRMD-IGYT algorithm. Note that

ψf [R] (i)Ric for any c ∈ ψf [R] (Bt) ∪ {di} . We construct R′
i as follows:

1. cP ′
id⇐⇒ cPid for any c, d ∈ D\ (ψf [R] (Bt \ {i}) ∪ {di}

)
.

2. cP ′
id⇐⇒ cPid for any c, d ∈ ψf [R] (Bt).

3. ψf [R] (i)P ′
icP

′
idiP

′
id

for any c ∈ ψf [R] (Bt\{i}), and d ∈ D\(ψf [R] (Bt) ∪ {di}
)

s.t. ψf [R](i)Pid.

That is, R′
i is obtained from Ri in Case 2 by inserting donors in ψf [R] (Bt \ {i}) right

after donor ψf [R] (i) without altering their relative ranking, inserting donor di right

after that group, and keeping the relative ranking of the rest of the donors as in Ri.

(See Figure 2).

14



R′
i

d ψf [R](i) c c′ di d′ d′′ d′′′

Ri

d ψf [R](i) c c′did′ d′′ d′′′
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Figure 2: Construction of Preference R′
i for Case 2 when ψf [R] (Bt) =

{
ψf [R] (i) , c, c′

}
By construction, ψf [R′] = ψf [R]. We will prove four claims that will facilitate the proof

of Proposition 2. We consider the patients in A1 in the first two claims.

Claim 1: For any R̂−A1 ∈ R|I\A1| and i ∈ A1, we have φ
[
R′
A1 , R̂−A1

]
(i) = ψf [R] (i) .

Proof of Claim 1: Fix R̂−A1 ∈ R|I\A1|. By induction, we will show that

φ
[
R′
A1 , R̂−A1

]
(i) = ψf [R] (i) for all i ∈ A1.

• Partition the patients in A1 based on the cycle they belong. Let A1
1 ⊆ A1 be the set of

patients encountered in the first cycle in Round 1(a) of the YRMD-IGYT algorithm.

By individual rationality we have φ
[
R′
A1 , R̂−A1

]
(i) ∈ {ψf [R] (i) , di} for any i ∈ A1

1.

Moreover ψf [R] (i)R′
idi for any i ∈ A1

1, and ψf [R] (A1
1) = ∪j∈A1

1
dj . Hence by Pareto

efficiency , φ
[
R′
A1 , R̂−A1

]
(i) = ψf [R] (i) for any i ∈ A1

1.

• Let A1
t ⊆ A1 be the set of patients removed in tth cycle in Round 1(a) of the YRMD-

IGYT algorithm. In the inductive step, assume that for any patient j removed in

the previous cycles, φ
[
R′
A1 , R̂−A1

]
(j) = ψf [R] (j). Given this, by individual ratio-

nality of φ, we have φ
[
R′
A1, R̂−A1

]
(i) ∈ {ψf [R] (i) , di} for any i ∈ A1

t . Moreover

ψf [R] (i)R′
idi for any i ∈ A1

t , and ψf [R] (A1
t ) = ∪j∈A1

t
dj . Hence by Pareto efficiency ,

φ
[
R′
A1 , R̂−A1

]
(i) = ψf [R] (i) for any i ∈ A1

t .

�

Note that the proof of Claim 1 is entirely driven by Pareto efficiency and individual

rationality of φ. Therefore it directly implies the following corollary.
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R′
j

d
ψf [R](j)︸ ︷︷ ︸

=φ[R′
A1 ,R−A1 ](j)

dj d′ d′′ d′′′

Rj

d
ψf [R](j)︸ ︷︷ ︸

=φ[R′
A1 ,R−A1 ](j)

d′ d′′ dj d′′′

φ[Rj, R
′
A1\{j}, R̂−A1 ](j)

φ[Rj, R
′
A1\{j}, R̂−A1 ](j)

︷ ︸︸ ︷

︷ ︸︸ ︷

Figure 3: φ
[
Rj, R

′
A1\{j}, R̂−A1

]
(j) = φ

[
R′
A1 , R̂−A1

]
(j) = ψf [R] (j) by strategy-proofness.

Corollary 1: For any R̂−A1 ∈ R|I\A1|, any Pareto efficient and individually rational match-

ing µ for problem
(
R′
A1 , R̂−A1

)
, and any i ∈ A1, we have µ(i) = ψf [R] (i).

Claim 2: For any R̂−A1 ∈ R|I\A1|, and any i ∈ A1, we have φ
[
RA1 , R̂−A1

]
(i) = ψf [R] (i).

Proof of Claim 2: Fix R̂−A1 ∈ R|I\A1|. For any J ⊆ A1, we will prove that

φ
[
RJ , R

′
A1\J , R̂−A1

]
(i) = ψf [R] (i) for all i ∈ A1 by induction on the size of J .

• Let J = {j} ⊆ A1. By strategy-proofness of φ,

φ
[
Rj, R

′
A1\{j}, R̂−A1

]
(j)Rjφ

[
R′
A1 , R̂−A1

]
(j) and φ

[
R′
A1 , R̂−A1

]
(j)R′

jφ
[
Rj , R

′
A1\{j}, R̂−A1

]
(j) .

The above relation, construction of R′
j, and Claim 1 imply that (see Figure 3)

φ
[
Rj, R

′
A1\{j}, R̂−A1

]
(j) = φ

[
R′
A1 , R̂−A1

]
(j) = ψf [R] (j) .

Therefore while problems (Rj, R
′
A1\{j}, R̂−A1) and (R′

A1 , R̂−A1) differ in preferences of

patient j, her assignment under φ does not differ in these two problems. Hence match-

ing φ
[
Rj, R

′
A1\{j}, R̂−A1

]
not only has to be Pareto efficient and individually rational

under (Rj, R
′
A1\{j}, R̂−A1 ) but also under (R′

A1 , R̂−A1) and therefore by Corollary 1

φ
[
Rj, R

′
A1\{j}, R̂−A1

]
(i) = ψf [R] (i) for all i ∈ A1.

• Fix k ∈ {1, . . . , |A1| − 1}. In the inductive step, assume that for any J ⊂ A1 with

|J | ≤ k,

φ
[
RJ , R

′
A1\J , R̂−A1

]
(i) = ψf [R] (i) for all i ∈ A1. (1)
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Fix J ⊆ A1 such that |J | = k + 1. Fix j ∈ J . By strategy-proofness of φ, we have

φ
[
RJ , R

′
A1\J , R̂−A1

]
(j)Rjφ

[
RJ\{j}, R

′
A1\(J\{j}), R̂−A1

]
(j) and

φ
[
RJ\{j}, R′

A1\(J\{j}), R̂−A1

]
(j)R′

jφ
[
RJ , R

′
A1\J , R̂−A1

]
(j)

The above relation and the construction of R′
j imply that

φ
[
RJ , R

′
A1\J , R̂−A1

]
(j) = φ

[
RJ\{j}, R′

A1\(J\{j}), R̂−A1

]
(j) = ψf [R] (j) , (2)

where the second equality follows from the inductive assumption Equation 1 (since

|J\ {j}| = k). Since the choice of j ∈ J is arbitrary, Equation 2 holds for all j ∈ J .

Therefore while problems (RJ , R
′
A1\J , R̂−A1) and (R′

A1 , R̂−A1) differ in preferences of

patients in J , their assignments under φ do not differ in these two problems. Hence

matching φ
[
RJ , R

′
A1\J , R̂−A1

]
not only has to be Pareto efficient and individually ra-

tional under (RJ , R
′
A1\J , R̂−A1 ) but also under (R′

A1 , R̂−A1), and therefore by Corollary

1

φ
[
RJ , R

′
A1\J , R̂−A1

]
(i) = ψf [R] (i) for all i ∈ A1,

completing the induction and the proof of Claim 2. �

Let B1 = {i1, . . . , ik} and let (dg, i1, di2 , i2 . . . , dik , ik) be the cycle removed in Round 1(b)

of the YRMD-IGYT algorithm where patient i1 is the highest priority patient in I\A1 under

ordering f , and donor dg is a GS-donor. In order to simplify the notation, let dik+1
≡ dg.

We have

ψf [R] (i�) = di�+1
for all � ∈ {1, . . . , k} .

We consider the patients in B1 in the next two claims.

Claim 3: φ
[
R′
B1, R−B1

]
(i) = ψf [R] (i) for all i ∈ B1.

Proof of Claim 3: First of all, observe that φ
[
R′
B1, R−B1

]
(i) = ψf [R] (i) for all i ∈ A1

by Claim 2. We will prove the claim by contradiction. Suppose that there exists a patient

i� ∈ B1 such that φ
[
R′
B1, R−B1

]
(i�) �= ψf [R] (i�) = ψf [R′] (i�) = di�+1

. Pick the last such

patient in the cycle. Then

φ [R′
B1, R−B1] (im) = dim+1 for all m ∈ {� + 1, . . . , k} by the choice of �,

φ [R′
B1, R−B1] (i�) = di� by Claim 2 and individual rationality of φ,

φ [R′
B1, R−B1 ] (i�−1) = di�−1

by above relation, Claim 2 and individual rationality of φ,

...

φ [R′
B1, R−B1] (i2) = di2 by above relation, Claim 2 and individual rationality of φ.
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Since i1 is the highest priority patient in I\A1, Case 2 applies in construction of R′
i1
. There-

fore by Claim 2 and individual rationality of φ we have φ
[
R′
B1, R−B1

]
(i1) ∈

{
di1 , . . . , dik+1

}
,

and since all but donors d1 and di�+1
are assigned to other patients by above relations,

φ [R′
B1, R−B1] (i1) ∈

{
di1 , di�+1

}
.

But donor di�+1
can neither be left unmatched nor be matched with patient i1 under

φ
[
R′
B1, R−B1

]
for otherwise assigning donor dim+1 to patient im for all m ∈ {1, . . . , �}

(and keeping the other assignments the same) would result in a Pareto improvement un-

der
(
R′
B1, R−B1

)
. Therefore,

φ [R′
B1, R−B1] (i1) = di1 and φ [R′

B1, R−B1] (j1) = di�+1
for some j1 ∈ I\ (A1 ∪B1

)
.

Iteratively form set S as follows:

Step 1. Let j1 ∈ S (i.e., patient j1 is the first patient to be included in set S). Recall that

φ
[
R′
B1, R−B1

]
(j1) = di�+1

. Let preferences R′′
j1
∈ R be such that

φ [R′
B1, R−B1] (j1)︸ ︷︷ ︸

=di�+1

R′′
j1
dj1R

′′
j1
d for all d ∈ D\{di�+1

}.

Consider the problem
(
R′
B1, R′′

j1
, R−B1∪{j1}

)
. By Claim 2,

φ
(
R′
B1, R′′

j1
, R−B1∪{j1}

)
(i) = ψf [R] (i) for all i ∈ A1. (3)

By strategy-proofness of φ,

φ
[
R′
B1, R′′

j1
, R−B1∪{j1}

]
(j1)R

′′
j1
φ [R′

B1, R−B1] (j1)︸ ︷︷ ︸
=di�+1

and since donor di�+1
is the top choice under R′′

j1

φ
[
R′
B1, R′′

j1
, R−B1∪{j1}

]
(j1) = φ [R′

B1, R−B1] (j1) = di�+1
. (4)

Therefore

φ
[
R′
B1, R′′

j1
, R−B1∪{j1}

]
(i�+1) = di�+2

by Eqn 3, Eqn 4, and individual rationality of φ

...

φ
[
R′
B1, R′′

j1
, R−B1∪{j1}

]
(ik) = dik+1

by Eqn 3, above relation, and individual rationality of φ
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and

φ
[
R′
B1, R′′

j1
, R−B1∪{j1}

]
(i�) = di� by Eqn 3, Eqn 4, and individual rationality of φ

...

φ
[
R′
B1, R′′

j1
, R−B1∪{j1}

]
(i2) = di2 by Eqn 3, above relation, and individual rationality of φ.

Equation 3, above relations, and individual rationality of φ imply

φ
[
R′
B1, R′′

j1
, R−B1∪{j1}

]
(i1) = di1.

Step 2. If there is no patient j2 ∈ I\ (A1 ∪B1) such that φ
[
R′
B1, R′′

j1
, R−B1∪{j1}

]
(j2) = dj1

then terminate the construction of S. (Thus S = {j1}.) Otherwise such patient j2 is

the second patient to include in set S and let preferences R′′
j2
∈ R be such that

φ
[
R′
B1, R′′

j1
, R−B1∪{j1}

]
(j2)︸ ︷︷ ︸

=dj1

R′′
j2
dj2R

′′
j2
d for all d ∈ D\{dj1}.

By Claim 2,

φ
[
R′
B1, R′′

{j1,j2}, R−B1∪{j1,j2}
]
(i) = ψf [R] (i) for all i ∈ A1. (5)

By strategy-proofness of φ,

φ
[
R′
B1, R′′

{j1,j2}, R−B1∪{j1,j2}
]
(j2)R

′′
j2
φ
[
R′
B1, R′′

j1
, R−B1∪{j1}

]
(j2)︸ ︷︷ ︸

=dj1

which in turn implies

φ
[
R′
B1, R′′

{j1,j2}, R−B1∪{j1,j2}
]
(j2) = φ

[
R′
B1, R′′

j1
, R−B1∪{j1}

]
(j2) = dj1 .

Therefore by individual rationality of φ, Equation 5, and construction of R′′
j2

,

φ
[
R′
B1, R′′

{j1,j2}, R−B1∪{j1,j2}
]
(j1) = di�+1

,

which in turn implies (using a similar argument as in Step 1)

φ
[
R′
B1, R′′

{j1,j2}, R−B1∪{j1,j2}
]
(im) = dim+1 for all m ∈ {� + 1, . . . , k} ,

φ
[
R′
B1, R′′

{j1,j2}, R−B1∪{j1,j2}
]
(im) = dim for all m ∈ {1, . . . , �} .
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We continue iteratively and form set S = {j1, j2, . . . , js} ⊆ I\ (A1 ∪B1) and preference

profile
(
R′
B1, R′′

S, R−B1∪S
)

such that

φ [R′
B1, R′′

S, R−B1∪S] (i) �= djs for any i ∈ I,

φ [R′
B1, R′′

S, R−B1∪S] (jm) = djm−1 for all m ∈ {2, . . . , s},
φ [R′

B1, R′′
S, R−B1∪S] (j1) = di�+1

, and

φ [R′
B1, R′′

S, R−B1∪S] (i1) = di1.

Observe that there is no patient i ∈ I such that φ
[
R′
B1, R′′

S, R−B1∪S
]
(i) = djs for oth-

erwise patient i would also be included in set S. Therefore, upon removing patients in

T = I\ ({i1} ∪ S) and their assigned donors C = φ
[
R′
B1, R′′

S, R−B1∪S
]
(T ) , the reduced

problem
(
R′−C
i1

, R′′−C
S

)
is well-defined. Note that the set of remaining patients is {i1} ∪ S,

and donor di�+1
is a GS-donor in the reduced problem (possibly together with other GS-

donors). By consistency of φ, we have

φ
[
R′−C
i1

, R′′−C
S

]
(i) = φ [R′

B1, R′′
S, R−B1∪S] (i) for all i ∈ {i1} ∪ S.

In the rest of the proof, for the sake of notation we set

dj0 ≡ di�+1
.

Note that the preference relation profile (R′−C
i1

, R′′−C
S ) ∈ [R(D \ C)]|S|+1 is given as follows:

R′−C
i1

: dj0P
′−C
i1

di1P
′−C
i1

. . . R′′−C
S :




dj0P
′′−C
j1

dj1P
′′−C
j1

. . .

dj1P
′′−C
j2

dj2P
′′−C
j2

. . .
...

djs−1P
′′−C
js

djsP
′′−C
js

. . .

We consider the remaining donors D\C and construct the following preference relation

R′′−C
i1

∈ R(D \ C):

dj0P
′′−C
i1

dj1P
′′−C
i1

· · ·P ′′−C
i1

djsP
′′−C
i1

di1P
′′−C
i1

d for all d ∈ D\ (C ∪ {dj0 , . . . , djs , di1}) .

By strategy-proofness of φ,

φ
[
R′−C
i1

, R′′−C
S

]
(i1)︸ ︷︷ ︸

=di1

R′−C
i1

φ
[
R′′−C

{i1}∪S
]
(i1) .
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Since dj0 ∈ ψf [R](B1), we have dj0P
′−C
i1

di1 and therefore φ
[
R′′−C

{i1}∪S
]
(i1) �= dj0 . Moreover

φ
[
R′′−C

{i1}∪S
]
(i1) �= di1 . That is because, the allocation

(
i1 j1 j2 · · · js

djs dj0 dj1 · · · djs−1

)

Pareto dominates any such allocation under R′′−C
{i1}∪S contradicting Pareto efficiency of φ.

Hence

φ
[
R′′−C

{i1}∪S
]
(i1) ∈ {dj1 , . . . , djs}.

Let φ
[
R′′−C

{i1}∪S
]
(i1) = djm . Then by individual rationality

φ
[
R′′−C

{i1}∪S
]
(jp) = djp for all p ∈ {m+ 1, . . . , s} ,

φ
[
R′′−C

{i1}∪S
]
(jp) = djp−1 for all p ∈ {1, . . . , m} .

Therefore upon removing all patients except {i1, jm} and all donors except C ′ ={
di1 , djm , djm−1

}
from the reduced problem R′′−C

{i1}∪S, the further reduced problem R′′C′
{i1,jm}

is well-defined. (That is because, di1 is unmatched, djm is matched to patient i1, and djm−1

is matched to patient jm under φ
[
R′′−C

{i1}∪S
]
). In this further reduced problem, donor djm−1

is the unique GS-donor. By consistency of φ, we have

φ
[
R′′C′

{i1,jm}
]
(i1) = φ

[
R′′−C

{i1}∪S
]
(i1) = djm ,

φ
[
R′′C′

{i1,jm}
]
(jm) = φ

[
R′′−C

{i1}∪S
]
(jm) = djm−1 .

Note that the preference profile R′′C′
{i1,jm} ∈ [R(C ′)]2 is given as follows:

R′′C′
{i1,jm} :

{
djm−1P

′′C′
i1

djmP
′′C′
i1

di1

djm−1P
′′C′
jm djmP

′′C′
jm di1

We consider the donors in C ′ and construct the following preference relation R̃C′
i1

∈ R(C ′):

djm−1 P̃
C′
i1
di1 P̃

C′
i1
djm .

By strategy-proofness of φ,

φ
[
R′′C′

{i1,jm}
]
(i1)︸ ︷︷ ︸

=djm

R′′C′
i1
φ
[
R̃C′
i1
, R′′C′

jm

]
(i1)
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Since djm−1P
′′C′
i1

djm by construction, φ
[
R̃C′
i1
, R′′C′

jm

]
(i1) �= djm−1 . Therefore by individual

rationality of φ,

φ
[
R̃C′
i1
, R′′C′

jm

]
(i1) = di1

and this together with Pareto-efficiency of φ imply

φ
[
R̃C′
i1
, R′′C′

jm

]
(jm) = djm−1 .

Recall that i1 is the highest priority patient in I\A1 under ordering f . In particular, i1

has higher priority than jm, since jm ∈ I\ (A1 ∪ B1). Let i1 = f (t) for some t. Consider

the profile Rt used in construction of f . Any patient i ordered before i1 has di as her first

choice under Rt, whereas any other patient i has the GS-donor d∗ as her first choice and di

as her second choice under Rt. We have φ [Rt] (i1) = d∗ and φ [Rt] (i) = di for all i ∈ I\ {i1}
by construction of f and individual rationality of φ. Therefore, upon removing all patients

except {i1, jm} and all donors except C∗ = {di1 , djm , d∗} from problem Rt, the reduced

problem RtC∗
{i1,jm} is well-defined. (That is because, di1 is unmatched, djm is matched to jm,

and d∗ is matched to i1 under φ [Rt] .) By consistency of φ,

φ
[
RtC∗

{i1,jm}
]
(i1) = φ

[
Rt
]
(i1) = d∗ and φ

[
RtC∗

{i1,jm}
]
(jm) = φ

[
Rt
]
(jm) = djm .

Note that the preference profile RtC∗
{i1,jm} ∈ [R(C∗)]2 is given as follows:

RtC∗
{i1,jm} :

{
d∗RtC∗

i1
di1R

tC∗
i1
djm

d∗RtC∗
jm djmR

tC∗
jm di1

There is a single GS-donor in both reduced problems
(
R̃C′
i1
, R′′C′

jm

)
and RtC∗

{i1,jm} while the

patients and the paired-donors are the same. Under the profile
(
R̃C′
i1
, R′′C′

jm

)
each patient

ranks the GS-donor djm−1 as the first choice, her paired-donor as the second choice, and the

paired-donor of the other patient as the third choice. Similarly under profile RtC∗
{i1,jm} each

patient ranks the GS-donor d∗ as the first choice, her paired-donor as the second choice, and

the paired-donor of the other patient as the third choice. However, patient jm is assigned

the top ranked GS-donor djm−1 under φ
[
R̃C′
i1
, R′′C′

jm

]
whereas patient i1 is assigned the top

ranked GS-donor d∗ under φ
[
RtC∗

{i1,jm}
]
, contradicting weak neutrality of φ. Therefore, we

have φ[R′
B1, R−B1] (i) = ψf [R] (i) for all i ∈ B1 completing the proof of Claim 3. �

Claim 4: φ [R] (i) = ψf [R] (i) for all i ∈ B1.

Proof of Claim 4: We prove the claim by induction. Starting from preference profile(
R′
B1, R−B1

)
, we will replace R′

i with Ri for each patient in B1 = {i1, . . . , ik} one at a
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R′
i1

d
ψf [R](i1)︸ ︷︷ ︸

=di2=φ[R′
B1 ,R−B1 ](i1)

di4 di3 di1 d′ d′′ d′′′

Ri1

d
ψf [R](i1)︸ ︷︷ ︸

=di2=φ[R′
B1 ,R−B1 ](i1)

di4 di3di1d′ d′′ d′′′

φ[R′
B1\{i1}, R−B1\{i1}](i1)

φ[R′
B1\{i1}, R−B1\{i1}](i1)

︷ ︸︸ ︷

︷ ︸︸ ︷

Figure 4: φ
[
R′
B1\{i1}, R−B1\{i1}

]
(i1) = φ

[
R′
B1, R−B1

]
(i1) = ψf [R] (i1) = di2 by strategy-

proofness of φ for the case with B1 = {i1, i2, i3} and di4 ≡ dg is a GS-donor.

time in order. Recall that (dg, i1, di2 , i2 . . . , dik , ik) is the cycle removed in Round 1(b) of

the YRMD-IGYT algorithm where patient i1 is the highest priority patient in I\A1 under

ordering f , and donor dg is a GS-donor. Recall that dik+1
≡ dg. We have

ψf [R] (i�) = di�+1
for all � ∈ {1, . . . , k} .

• Consider the preference profile (R′
B1\{i1}, R−B1\{i1}). By Claim 2,

φ
[
R′
B1\{i1}, R−B1\{i1}

]
(i) = ψf [R] (i) for all i ∈ A1. (6)

By strategy-proofness of φ,

φ
[
R′
B1\{i1}, R−B1\{i1}

]
(i1)Ri1φ [R′

B1, R−B1] (i1)︸ ︷︷ ︸
=di2

and ,

φ [R′
B1, R−B1] (i1)︸ ︷︷ ︸

=di2

R′
i1
φ
[
R′
B1\{i1}, R−B1\{i1}

]
(i1) .

Recall that i1 is the highest priority patient in B1 under ordering f . Therefore, Case

2 applies to the construction of R′
i1

and the above relation together with construction

of R′
i1

imply (see Figure 4)

φ
[
R′
B1\{i1}, R−B1\{i1}

]
(i1) = φ [R′

B1, R−B1] (i1) = ψf [R] (i1) = di2 , (7)

where the second equality follows from Claim 3.
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By individual rationality of φ, Equation 6, and construction of R′
B1\{i1} (for which Case

1 applies) we have

φ
[
R′
B1\{i1}, R−B1\{i1}

]
(i�) ∈

{
di� , di�+1

}
for all � ∈ {2, . . . , k} . (8)

Then,

φ
[
R′
B1\{i1}, R−B1\{i1}

]
(i2) = di3 by Eqn 7 and Eqn 8,

...

φ
[
R′
B1\{i1}, R−B1\{i1}

]
(ik) = dik+1

by above relation and Eqn 8.

We showed that

φ
[
R′
B1\{i1}, R−B1\{i1}

]
(i) = φ [R′

B1, R−B1] (i) = ψf [R](i) for all i ∈ B1.

• Let � ∈ {2, . . . , k} and J = {i�, . . . , ik} . In the inductive step, assume that

φ [R′
J , R−J ] (i) = ψf [R] (i) for all i ∈ B1.

We will show that φ
[
R′
J\{i�}, R−J\{i�}

]
(i) = ψf [R] (i) for all i ∈ B1.

Consider preference profile (R′
J\{i�}, R−J\{i�}). By Claim 2,

φ
[
R′
J\{i�}, R−J\{i�}

]
(i) = ψf [R] (i) for all i ∈ A1. (9)

By strategy-proofness of φ,

φ
[
R′
J\{i�}, R−J\{i�}

]
(i�)Ri�φ [R′

J , R−J ] (i�)︸ ︷︷ ︸
=di�+1

and

φ [R′
J , R−J ] (i�)︸ ︷︷ ︸
=di�+1

R′
i�
φ
[
R′
J\{i�}, R−J\{i�}

]
(i�)

and this together with construction of Ri� (for which Case 1 applies) imply

φ
[
R′
J\{i�}, R−J\{i�}

]
(i�) = φ [R′

J , R−J ] (i�) = ψf [R] (i�) = di�+1
, (10)

where the second equality follows from the inductive assumption.

By individual rationality of φ, Equation 9, and construction of R′
J\{i�} (for which Case

1 applies) we have

φ
[
R′
J\{i�}, R−J\{i�}

]
(im) ∈ {dim, dim+1

}
for all m ∈ {� + 1, . . . , k} . (11)
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Then,

φ
[
R′
J\{i�}, R−J\{i�}

]
(i�+1) = di�+2

by Eqn 10 and Eqn 11,

...

φ
[
R′
J\{i�}, R−J\{i�}

]
(ik) = dik+1

by above relation and Eqn 11.

Hence, we showed that

φ
[
R′
J\{i�}, R−J\{i�}

]
(i) = φ [R′

J , R−J ] (i) = ψf [R](i) for all i ∈ J. (12)

We are ready to complete the induction by invoking consistency: Upon removing

patients in J = {i�, . . . , ik} and their assignments

φ
[
R′
J\{i�}, R−J\{i�}

]
(J) = φ [R′

J , R−J ] (J) =
{
di�+1

, . . . , dik+1

}
(13)

from problems
(
R′
J\{i�}, R−J\{i�}

)
and (R′

J , R−J ), the reduced problems are not only

well-defined (recall that dik+1
is a GS-donor) but also identical. Therefore, for any

i ∈ I \ J ,

φ
[
R′
J\{i�}, R−J\{i�}

]
(i) = φ


R−φ

[
R′

J\{i�},R−J\{i�}
]
(J)

−J


 (i) by consistency of φ

= φ

[
R

−φ[R′
J ,R−J](J)

−J

]
(i) by Eqn 13

= φ [R′
J , R−J ] (i) by consistency of φ

and this together with Equation 12 imply

φ
[
R′
J\{i�}, R−J\{i�}

]
= φ [R′

J , R−J ] . (14)

Equation 14 and inductive assumption imply that

φ
[
R′
J\{i�}, R−J\{i�}

]
(i) = ψf [R] (i) for all i ∈ B1,

completing the induction and the proof of Claim 4. �
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We are ready to complete the proof of Proposition 2. By Claim 2 and Claim 4,

φ [R] (i) = ψf [R] (i) for all i ∈ A1 ∪B1. (15)

Since for any i ∈ A1∪B1, the donor ψ[R](i) is either the GS-donor dik+1
or the paired-donor

of a patient in A1 ∪ B1, upon removing the patients in A1 ∪ B1 and their assigned donors

φ [R] (A1 ∪ B1) = ψf [R] (A1 ∪B1) from the problem R, the reduced problem R
−φ[R](A1∪B1)
−A1∪B1

is well-defined. For any i ∈ A2 ∪ B2, we have

φ [R] (i) = φ

[
R

−φ[R](A1∪B1)
−A1∪B1

]
(i) by consistency of φ

= ψf
[
R

−φ[R](A1∪B1)
−A1∪B1

]
(i) by application of Claims 2 and 4 to R

−φ[R](A1∪B1)
−A1∪B1 for A2 ∪ B2

= ψf
[
R

−ψf [R](A1∪B1)
−A1∪B1

]
(i) by Eqn 15

= ψf [R] (i) by consistency of ψf .

We iteratively continue with patients in A3 ∪B3, and so on to obtain

φ [R] = ψf [R]

completing the proof. ♦

6 Independence of the Axioms

The following examples establish the independence of the axioms.

Example 1: Let mechanism φ assign each patient i ∈ I her paired-donor di for each problem

〈I,D,R〉.
Mechanism φ is individually rational , strategy-proof , weakly neutral and consistent but

not Pareto efficient .

Example 2: Fix an ordering f ∈ F and let mechanism φ be the serial dictatorship induced

by f : For any problem 〈I,D,R〉, the highest priority patient in I is assigned her top choice,

the second highest priority patient is assigned her top choice among remaining donors, etc.

Mechanism φ is Pareto efficient , strategy-proof , weakly neutral and consistent but not

individually rational .
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Example 3: Fix an ordering f ∈ F . Let g ∈ F be constructed from f by demoting patient

f(1) to the very end of the ordering (so that the highest priority patient under f is the

lowest priority patient under g) but otherwise keeping the rest of the priority ordering as in

f . For any problem 〈I,D,R〉, let

φ[R] =

{
ψg[R] if dRidf(1) for all i ∈ I and d ∈ D,

ψf [R] if otherwise.

That is, mechanism φ picks the outcome of the YRMD-IGYT mechanism induced by ordering

g if each patient (including patient f(1)) ranks the paired-donor of patient f(1) as her

last choice, and picks the outcome of the YRMD-IGYT mechanism induced by ordering f

otherwise.

Mechanism φ is Pareto efficient , individually rational , weakly neutral and consistent but

not strategy-proof .

Example 4: Let I,D be such that |I| ≥ 2 and |D| ≥ |I| + 2. Let i1, i2 ∈ I and d∗ ∈
D \ {di}i∈I. Let f, g ∈ F be such that f(1) = g(2) = i1, f(2) = g(1) = i2 and f(i) = g(i)

for all i ∈ I \ {i1, i2}. For any problem 〈I,D,R〉, let

φ[R] =

{
ψf [R] if i1 ∈ I , d∗ ∈ D and d∗Ri1d for all d ∈ D \ {di}i∈I ,
ψg[R] if otherwise.

That is, mechanism φ picks the outcome of the YRMD-IGYT mechanism induced by ordering

f if both patient i1 and GS-donor d∗ are present and patient i1 prefers GS-donor d∗ to

any other GS-donor, and mechanism φ picks the outcome of the YRMD-IGYT mechanism

induced by ordering g otherwise.

Mechanism φ is Pareto efficient , individually rational , strategy-proof , and consistent but

not weakly neutral.

Example 5: Let f, g ∈ F be such that f �= g. For any problem 〈I,D,R〉, let

φ[R] =

{
ψf [R] if there are odd number of GS-donors,

ψg[R] if there are even number of GS-donors.

Mechanism φ is Pareto efficient , individually rational , strategy-proof , and weakly neutral

but not consistent .
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[20] A.E. Roth, T. Sönmez, and M.U. Ünver (2004) “Kidney exchange.” Quarterly Journal

of Economics 119: 457-488.
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