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Returns to Scale in Networks

1.  Introduction

When demand increases in a congestible network, there are typically a variety of ways that a

network authority can provide additional capacity.  In a highway network, existing roads can be

widened or new ones added.  In a bus network, not only is an increase in service frequency or bus

size possible, but also in the density of the route network.

This paper is concerned with the determination of the degree of local returns to scale in the

cost function for the network’s outputs when there are multiple margins – including the network’s

density – along which the network authority can make adjustments to capacity.  The special

importance of the degree of local returns to scale is that it determines whether budgetary balance

can be achieved under optimal pricing and capacity provision.  In particular, when the degree of

local returns to scale is equal to one, the receipts from congestion charges for an optimally priced

and designed network are exactly equal to its capacity costs, resulting in exact budgetary balance.1

First for a highway network, then for a bus network, we prove:

Theorem.  Under the provision of a cost-minimizing network, the degree of local returns to

scale is the same along all margins for adjusting capacity, both singly and in combination.  This

includes the network’s density.

The theorem applies to any type of network.  This will hopefully be clear from the intuition we

provide.  We will see that the theorem is essentially an Envelope Theorem result and that the

intuition lies in the Envelope Theorem.

A particular implication of the theorem is that, subject to the optimality of the initial network, its

density can be held fixed in evaluating local returns to scale.  This was argued by Kraus (1981) in

the context of highway networks, but, with the exception of one simple network model, without

formal proof.  The objective of the present paper is proof of the more general theorem.

There are two important applications of the theorem.  One is that if a network can be assumed
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to be cost-minimizing, then local returns to scale can be estimated along any margin.  An example

of this type of application is Kraus (1981), which estimated the degree of local scale economies in

urban highway network capital costs holding network density fixed.  The second is that if cost

minimization cannot be assumed, and if indeed it turns out that the estimated degree of local returns

to scale along different margins is different, then one has evidence of cost inefficiency.

The next section sets out our basic model.  It is well suited to highway networks and can be

adapted to other types of networks.  We illustrate this in Section 3 for an adaptation to bus

networks.  Section 4 concludes.

2.  Model and Analysis

The network consists of two types of elements, nodes and links.  The number of each is finite.

The set of nodes is denoted by N, the set of links by L.  Each element of N is either an origin, a

destination, or a junction of links.  Each link in L is associated with (exactly) two distinct nodes in

N and provides a directed connection between these nodes.2  There can be multiple links that

connect a directed pair of nodes.

Let r and s be any two distinct elements of N.  Then by a path from r to s, we mean a sequence

of links   

€ 

{a1,K, aK} such that there exist 

€ 

K +1 distinct nodes   

€ 

n0,n1,K,nK , where 

€ 

n0 = r,

€ 

nK = s, and 

€ 

ai  provides a connection from 

€ 

ni −1 to 

€ 

ni .  The set of all paths in the network is

denoted by P.

Let r and s be two distinct nodes such that there is a path from r to s.  Then the ordered pair of

nodes 

€ 

w = (r, s) will be said to be connected, and the set of all such w will be denoted by W.  W is

the set of all origin-destination (O-D) pairs.3

For each origin-destination pair 

€ 

w ∈W, there is some nonnegative demand 

€ 

yw  and a subset

€ 

Pw  of P, consisting of those paths of the network associated with w.  The output 

€ 

yw  has to be

produced using the paths in 

€ 

Pw .  For 

€ 

p ∈ Pw , the part of 

€ 

yw  produced using p is denoted by 

€ 

qp .

We have
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€ 

qp = yw
p∈Pw
∑

€ 

∀w ∈W. (1)

Let 

€ 

δap be the binary variable defined by 

€ 

δap = 1 if link 

€ 

a ∈ L  is contained in path 

€ 

p ∈ P, and

otherwise defined by 

€ 

δap = 0.  Denoting the flow (i.e., load) on link a by 

€ 

xa , we have

€ 

xa = δap qp
p∈P
∑

€ 

∀a ∈ L. (2)

Each link a has some nonnegative capacity 

€ 

ka , which is set by a network authority (NA).  The

NA can exclude link a from the network by setting 

€ 

ka = 0.  For any 

€ 

ka > 0, link a is part of the

network.  Thus, L is the set of potential links, with the set of actual links being some endogenously

determined subset of L.

Let 

€ 

k  be a vector whose components are all of the 

€ 

ka 's.  Similarly, let 

€ 

x  be a vector whose

components are the 

€ 

xa 's.  Denoting user cost (the cost incurred by a user for a single use) on link

a by 

€ 

fa , we assume that 

€ 

fa  depends not only on 

€ 

xa  and 

€ 

ka , but on the flows and capacities of

other links.  We denote this by 

€ 

fa (x, k), which we take to be a 

€ 

C1 function satisfying

€ 

∂fa(⋅)/∂xa > 0, 

€ 

∂fa(⋅)/∂ka < 0.  Aggregate user costs on link a are

€ 

ca(x, k) ≡ xa fa (x, k ). (3)

€ 

fa (x, k)  ka= 0 is assumed to be finite, but sufficiently large that 

€ 

ka = 0 leads to path flows in

which 

€ 

xa = 0.  From (3), it follows that 

€ 

ca(x, k)  ka= 0 = 0.

Finally, the cost that the network authority incurs for capacity provision is 

€ 

g(k).   We take this

to be a 

€ 

C1 function satisfying 

€ 

∂g(⋅)/∂ka > 0.

Full Long-Run Optimum

By a full long-run optimum, we mean vectors of link and path flows, x and q (q is a vector

whose components are the 

€ 

qp's), and a vector of link capacities, k, such that the total system cost

expression

€ 

ca (x, k)
a∈ L
∑ + g(k) (4)

is at a minimum subject to (1), (2) and nonnegativity restrictions on q and k.4
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Let y be a vector whose components are all of the 

€ 

yw's.  When the solution to the preceding

problem is unique in link flows and capacities 

€ 

(x(y) and 

€ 

k(y), respectively), then we can write the

problem’s value function

€ 

ca
a∈ L
∑ (x(y), k(y)) + g(k(y)) ≡ C(y). (5)

€ 

C(y) is the network’s long run cost function.  Our concern in what follows is with the associated

elasticity of scale function

€ 

E(y) ≡ λ
C(λy)

⋅
dC(λy)
dλ λ =1

. (6)

Its reciprocal, 

€ 

S(y) =1/E(y), is the conventional measure of the degree of local returns to scale in

terms of the cost function (see, e.g., Bailey and Friedlaender (1982)).  As we will see below, 

€ 

S(y)

gives the ratio of the total cost of output to the total value of output under marginal cost pricing.5

For expositional purposes, we now proceed to break up the problem into stages, with x and q

optimized conditional on k at the first stage, and k optimized at the second stage.6  With k taken as

given, the problem at the first stage is:

€ 

min ca (x, k )
a∈ L
∑

x,q

s.t.

€ 

qp = yw
p∈Pw
∑

€ 

∀w ∈W (1)

€ 

xa = δap qp
p∈P
∑

€ 

∀a ∈ L (2)

€ 

qp ≥ 0

€ 

∀p ∈ P.

In what follows, we will assume that a solution to this problem exists and that optimal link flows are

given by the 

€ 

C1 function 

€ 

x(y, k).7

The problem at stage 2 is simply

 min   

€ 

φ(y, k) (7)

€ 

k ≥ 0
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where, for each value of k,

€ 

φ(y, k) ≡ ca (x(y, k), k)
a∈ L
∑  

€ 

+ g(k) (8)

is one of the network’s short run cost functions.  Since 

€ 

ca(x, k), g(k) and x(y, k) are all 

€ 

C1

functions, so is 

€ 

φ(y, k), and the first-order conditions for (7) are the Kuhn-Tucker conditions that,

€ 

∀a ∈ L,

€ 

∂φ
∂ka

≥ 0,

€ 

ka ≥ 0, (9a)

€ 

ka
∂φ
∂ka

= 0. (9b)

We assume that a solution to (7) exists, and that optimal capacities are given by the 

€ 

C1  function

€ 

k(y).

Under this approach, the network’s long run cost function arises as the value function for (7):

€ 

C(y) = φ(y, k(y)), (10)

which is nothing more than the envelope of the network’s family of short run cost functions.  Since

€ 

φ(y, k) and 

€ 

k(y) are both 

€ 

C1 functions, so is 

€ 

C(y), ensuring that the elasticity of scale at a point is

well-defined (see (6)).

Remark.  One can now appreciate the role of the various smoothness assumptions we have

made.  They are indispensable to having a well-defined elasticity of scale at a point.  Had we

decided not to stage the problem, slightly weaker assumptions would have been possible, but would

have come at the expense of the expositional ease that will now ensue.

From (6),8

€ 

E(y) =
1

C(y)
 yw

∂C
∂yww∈W

∑ . (11)

Meanwhile, from (10),
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€ 

∂C
∂yw

=
∂φ
∂yw

+  

∂φ
∂kaa∈L

∑
∂ka
∂yw

. (12)

Thus,

€ 

E(y) =
yw
C(y)w∈W

∑
∂φ
∂yw

+  

yw
C(y)w∈W

∑
∂φ
∂kaa∈L

∑
∂ka
∂yw

 . (13)

The first term on the right-hand-side of (13) is the elasticity of scale of short run costs.  In the

second term,

€ 

yw
C(y)w∈W

∑
∂φ
∂ka

∂ka
∂yw

 (14)

is the contribution to the elasticity of scale from the network authority using 

€ 

ka  as a margin of

adjustment.  The key thing to note is that (14) is equal to zero 

€ 

∀a ∈ L.  This is clearly the case

whenever 

€ 

∂φ /∂ka = 0, which, from (9b), holds whenever 

€ 

ka > 0.  But what about when

€ 

∂φ /∂ka > 0?   Not only is 

€ 

ka  equal to zero in this case, but the solution for 

€ 

ka  is deep in the corner,

resulting in 

€ 

∂ka /∂yw = 0  ∀w ∈W.  Thus, (14) equals zero in this case also.

To see the meaning of this result, let 

€ 

θa  be a zero-one variable and, with θ as the vector of the

€ 

θa 's, define

€ 

e(y,θ ) =
yw
C(y)w∈W

∑
∂φ
∂yw

+  θa
yw
C(y)w∈W

∑
∂φ
∂kaa∈L

∑
∂ka
∂yw

 . (15)

€ 

1/e(y,θ ) is a generalized local returns to scale measure in which 

€ 

θa  is an indicator variable which

takes on the value of 1 or 0 according to whether or not 

€ 

ka  is used as a margin of adjustment in

evaluating local returns to scale.  Note that 

€ 

e(y,θ ) has 

€ 

E(y) as a special case (when 

€ 

θa = 1

€ 

∀a ∈ L) and that our result about (14) implies that 

€ 

e(y,θ )  is independent of θ.  We state this as:

Theorem 1.  For a network at a full long-run optimum, 

€ 

e(y,θ )  is independent of θ and equal

to 

€ 

E(y).  That is, it is immaterial which of a network authority’s possible margins of adjustment are

used in evaluating local returns to scale.  In particular, it is unnecessary in evaluating local returns to

scale to consider adding new links to the network.
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Conditional Cost Minimum

What if the congestion externalities imposed by users of the network are left unpriced,

individuals choose paths according to their private costs, and, conditional on these choices, the

network authority sets cost-minimizing capacities.  We will refer to this as a conditional cost

minimum and show that the previous result holds.

In the absence of congestion pricing, the price of using link a is its user cost 

€ 

fa (x, k).  The

price of using path p is the sum of the prices of its component links or

€ 

δap
a∈ L
∑ fa(x, k). (16)

For an O-D pair w, the lowest of its path prices is

€ 

min    δap
a∈ L
∑ fa(x, k).

p∈Pw
(17)

Individuals act as price-takers, taking link and path prices as given.  The only paths in 

€ 

Pw  that

they use are those that have prices equal to the minimum in (17).  Given k, the conditions for link

and path flows to be in equilibrium consist of (1), (2) and the following pair of conditions 

€ 

∀w ∈W :

€ 

qp( δap
a∈ L
∑ fa (x, k) −

€ 

min    δap
a∈ L
∑ fa(x, k)

p∈Pw
) = 0 ∀p∈ Pw (18a)

€ 

qp ≥ 0 ∀p∈ Pw . (18b)

The key condition here is (18a).  It implies that if 

€ 

qp > 0  for some p∈ Pw , then p must be one of

w’s lowest-price paths.  It also implies that if p∈ Pw , but is not one of w’s lowest-price paths, then

€ 

qp = 0.

We assume that a solution to the system of equilibrium conditions exists, and that equilibrium

link flows are given by the 

€ 

C1 function 

€ 

˜ x (y, k).  

€ 

˜ x (y, k) corresponds to 

€ 

x(y, k) of the full long-run

optimum problem.

The problem faced by the network authority is similar to the previous stage 2 problem.  It is

simply
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min   

€ 

˜ φ (y, k), (19)
 

€ 

k ≥ 0

where

€ 

˜ φ (y, k) ≡ ca ( ˜ x (y, k), k)
a∈ L
∑  

€ 

+ g(k). (20)

From here, we proceed just as in the previous section, next invoking the Kuhn-Tucker conditions

for (19).  Under existence, uniqueness and smoothness assumptions analogous to those for (7), the

theorem of the previous section holds for a network at a conditional cost minimum.

3.  A Model of a Bus Network

Consider a road network through which individuals make trips on buses.  We define nodes,

links and paths as before.  Unlike in the previous section, we take all link capacities as given.  Thus,

the road network is given, and the NA optimizes bus service.

Each path of the network is a potential bus line.  A bus line is therefore associated with a

sequence of nodes, and these are its stops.  Note also that a bus line is directional (e.g., no. 40,

inbound), with the set of all possible bus lines represented by P.

Given an O-D pair 

€ 

w = (r, s), we now take 

€ 

Pw  to be the set of bus lines that an individual can

use to travel from r to s.  These not only include bus lines that start at r and terminate at s, but those

for which r and/or s are in between the line’s extremities, with s coming sequentially after r.

Given any

€ 

p ∈ Pw , where 

€ 

w = (r, s) ∈W, we define 

€ 

qpw  to be the number of individuals who

use bus line p to travel from r to s.  We assume that the only way to travel is by bus and hold off

for the time being on introducing the complication of a trip involving a possible transfer from one

bus line to another.  Under this assumption, (1) becomes

€ 

qpw = yw
p∈Pw
∑

€ 

∀w ∈W. (21)

Given any bus line p, let 

€ 

Lp  be the set of all links a that make up p, and for any link 

€ 

a ∈ Lp ,

define 

€ 

xap  to be the passenger load on bus line p over link a.  We can express 

€ 

xap  as

€ 

xap = δapwqpw
w∈Wp
∑

€ 

∀a ∈ Lp  and p ∈ P, (22)
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where for any bus line p, 

€ 

Wp  is the set of all O-D pairs served by p, and for any 

€ 

w = (r, s) ∈Wp

and link 

€ 

a ∈ Lp , 

€ 

δapw is an indicator variable equal to one if link a is part of the subpath of p from

r to s and zero otherwise.

For simplicity, we will assume that the only cost that a passenger incurs is a crowding cost.

For link a of bus line p, we write this as 

€ 

fap(xap, kp), where 

€ 

kp  is the frequency of bus service that

the NA provides to bus line p.  If 

€ 

kp = 0, line p is excluded from the network of bus routes. 

€ 

fap(⋅)

is assumed to satisfy 

€ 

∂fap(⋅)/∂xap > 0, 

€ 

∂fap(⋅)/∂kp < 0, and we define

€ 

cap(xap, kp) ≡ xap fap(xap, kp). (23)

Writing the cost that the NA incurs for providing bus service as 

€ 

g(k) (k is now a vector whose

components are the 

€ 

kp 's), a full long-run optimum now consists of a set of link and path flows (the

€ 

xap's  and 

€ 

qpw's, respectively) and a vector of service frequencies, k, such that the total system cost

expression

€ 

p∈P
∑ cap(xap, kp) + g(k)

a∈Lp
∑ (24)

is at a minimum subject to (21), (22) and the nonnegativity restrictions

€ 

qpw ≥ 0

€ 

∀w ∈Wp  and 

€ 

p ∈ P (25)

€ 

kp ≥ 0

€ 

∀p ∈ P. (26)

Staging the problem as in the previous section, we can again write the stage 2 problem as (7),

where 

€ 

φ(y, k) is again the value function for stage 1.  Thus, under the same assumptions as in the

previous section and with obvious adjustments to (13) and (15) – 

€ 

kp 's  instead of 

€ 

ka 's  and indicator

variables 

€ 

θp  – Theorem 1 holds for the present model of a bus network.  It implies that it is unnec-

essary in evaluating local returns to scale to consider adding new service routes to the network.

Transfers

A passenger is now permitted to make up to a single transfer.9  In other respects the model is

unchanged.
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Given an O-D pair 

€ 

w = (r, s), the set of bus lines that an individual can use to travel from r to s

without making a transfer is again denoted by 

€ 

Pw .

By a pair of transfer-compatible paths for an O-D pair 

€ 

w = (r, s) we mean an ordered pair of

paths 

€ 

˜ p = ( ′ p , ′ ′ p ) which have exactly one common node – the transfer point10 – such that r is a

node of 

€ 

′ p  which comes sequentially before the transfer point, while s is a node of 

€ 

′ ′ p  which comes

sequentially after the transfer point.  The set of all pairs of transfer-compatible paths for w is

denoted by 

€ 

Aw .  Also, for any 

€ 

w = (r, s) and any 

€ 

˜ p = ( ′ p , ′ ′ p ) in 

€ 

Aw , the number of individuals who

travel from r to s by transferring from 

€ 

′ p  to

€ 

′ ′ p  is denoted by 

€ 

Q ˜ p w .  Then (21) generalizes to

€ 

qpw + Q ˜ p w = yw
˜ p ∈Aw

∑
p∈Pw

∑

€ 

∀w ∈W. (27)

In order to generalize (22), we let 

€ 

Δap˜ p w  be an indicator variable which is one if either p is the

first path that makes up 

€ 

˜ p  and link a is between r and the transfer point or p is the second path that

makes up 

€ 

˜ p  and a is between the transfer point and s, and zero otherwise.  Then (22) becomes

€ 

xap = δapwqpw +
w∈Wp

∑
w∈Bp

∑ Δap˜ p wQ ˜ p w
˜ p ∈Aw

∑

€ 

∀a ∈ Lp  and p ∈ P, (28)

where 

€ 

Bp is the set of all O-D pairs served by p through a transfer.

As before, the problem is to minimize (24).  The only difference is that (27) and (28) replace

(21) and (22).  This has no effect on the applicability of Theorem 1.  Nor would allowing for

multiple transfers.

4.  Conclusion

This paper has presented a theorem:

Theorem.  Under the provision of a cost-minimizing network, the degree of local returns to

scale is the same along all margins for adjusting capacity, both singly and in combination.  This

includes the network’s density.
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Seeing that the theorem is general is no more difficult than understanding the Envelope Theorem.

The key is to model the capacity of a potential link or serviceable path as a control variable subject

to a nonnegativity restriction.  Regardless of whether the optimal value of the control variable is

initially positive or zero, its value can be held fixed in evaluating the cost function’s elasticity of

scale.  Either costs are stationary with respect to the control variable or the solution for the control

variable is deep in the corner.
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Footnotes

1. The basic result for an isolated highway was derived by Herbert Mohring and appears in

Mohring and Harwitz (1962).

2. Thus, a two-way road is represented by separate links for each direction.

3. This does not rule out the possibility that the demand for a certain O-D pair is zero.

4. Equation (2) ensures that x is nonnegative whenever q is.

5. It should be noted that, since user costs are included in both the total cost of output and the

total value of output, this ratio is different than the ratio of total capacity costs to receipts from

congestion charges.

6. The first-stage problem has been studied extensively (see, e.g., Nagurney (1993)).  In

most network models, link capacities are exogenous and there is no second-stage

problem.

7. Because it has both y and k as arguments, there should be no confusion between this

function and the function 

€ 

x(y) introduced earlier.

8. To see that 

€ 

E(y) gives the ratio of the total value of output to the total cost of output under

marginal cost pricing, simply substitute price for marginal cost where the latter appears in

(11).  The result holds regardless of whether factor markets are competitive (Small (1999)).

9. Allowing for multiple transfers complicates the model, but introduces nothing new as far as

Theorem 1 is concerned.

10. For simplicity, transfers between lines with multiple intersection points are ignored.


