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Abstract

Rabin [17] proved that a low level of risk aversion with respect
to small gambles leads to a high, and absurd, level of risk aversion
with respect to large gambles. Rabin’s arguments strongly depend on
expected utility theory, but we show that similar arguments apply to
many non-expected utility theories.

1 Introduction

One of the fundamental hypotheses about decision makers’ behavior in risky
environments is that they evaluate actions by considering possible final wea-
lth levels. Throughout the last fifty years the final-wealth hypothesis has
been widely used in the classical theory of expected utility as well as in its
applications. Moreover, many of the new alternatives to expected utility,
alternatives that were developed during the last twenty five years in order to
overcome the limited descriptive power of expected utility, are also based on
the hypothesis that only final wealth levels matter.
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The final-wealth hypothesis is analytically tractable as it assumes that
decision makers behave according to a unique, universal preference relation
over final-wealth distributions. Suggested deviations from this hypothesis
require much more elaborate and complex analysis. For example, postulat-
ing that decision makers ignore final wealth levels and, instead, care about
possible gains and losses may require using many preference relations and
necessitates the need for a mechanism that defines the appropriate refer-
ence points. However, the poor descriptive power of some of the final-wealth
models and, in particular, of the final-wealth expected utility models, have
increased the popularity of gain-losses model such as prospect theory and its
offsprings.

Recently, Rabin [17] offered a strong theoretical argument against final-
wealth expected utility theory: Seemingly innocuous levels of risk aversion
with respect to small gambles lead to enormous levels of risk aversion with
respect to large gambles. For example, decision makers who at all wealth
levels beneath $300,000 reject an even chance of winning $110 or losing $100
will also reject at the wealth level of $290,000 an even chance of loosing $2000
and gaining $12,000,000. 1

A possible response to Rabin’s argument is that its basic assumption is
actually wrong: No reasonable expected utility decision maker will reject
the small gamble at such a wide range. Palacios-Huerta and Serrano [15]
claim that even if expected utility decision makers are risk averse, moderate
observed levels of relative risk aversion imply that absolute risk aversion must
go down to zero as wealth increases. Hence, at sufficiently large wealth levels,
decision makers will accept the small (but positive expected value) gamble
(see also LeRoy [12]).

Our analysis rejects this defence of expected utility theory. As we show
in section 2, Rabin’s calibration results can be strengthened by restricting
the length of the intervals to less than forty thousands. Over such intervals,
the claim of Palacios-Huerta and Serrano is less compelling.

A natural conclusion from Rabin’s argument and from the results of sec-
tion 2 is that final-wealth expected utility should be replaced with more gen-
eral final-wealth theories. Indeed, it can easily be seen that rank-dependent
with linear utility (Yaari [22]) is capable of exhibiting both a relatively strong

1For an earlier claim that a low level of risk aversion in the small implies huge risk
aversion at the large, although without detailed numerical estimates, see Hansson [11] and
Epstein [9].
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aversion to small gambles and a sensible degree of risk aversion with respect
to large gambles. Nevertheless, our main result is that simple extensions of
Rabin’s argument apply to many known models of final-wealth non-expected
utility theories, including Chew’s [3] weighted utility, betweenness (Dekel [8],
Chew [3]), some forms of quadratic utility (Machina [13], Chew, Epstein, and
Segal [5]), and some versions of the more general differentiable non-expected
utility model (Machina [13]). We prove our calibration results by assum-
ing some restrictions on these functionals, requiring them to satisfy forms of
monotonicity regarding risk aversion. This is done by utilizing Machina’s [13]
hypotheses 1 and 2. We use these methods to obtain the calibration results
of section 4 below.

Not all models are covered by our analysis, which crucially depends on
the differentiability of the local utility functions approximating the general
functionals. We deal with the nondifferential case in another paper [18].

2 Calibration Results for Expected Utility

Rabin’s [17] results are directed at showing that rejections of small, favorable,
even bets must lead to the rejection of enormously favorable even bets. In
this section we first show that Rabin’s results hold even if the range at which
the small lotteries are rejected is significantly smaller than the one suggested
by Rabin. We then show that rejections of small even bets must also lead to
the rejection of extremely profitable low risk investment opportunities.

Following Rabin, consider a risk averse expected utility maximizer with
a concave vNM utility function u, who, for ` < g, is rejecting the lottery
(−`, 1

2
; g, 1

2
) at all wealth levels x in a given interval [a, b].2 We assume, for

simplicity, that b− a = k(` + g) for some integer k.
Rejecting the lottery (−`, 1

2
; g, 1

2
) at a + ` implies u(a + `) > 1

2
[u(a) +

u(a + ` + g)], hence u(a + `)− u(a) > u(a + ` + g)− u(a + `). By concavity,
u′(a) > [u(a + `)− u(a)] /` and

u′(a + ` + g) 6
u(a + ` + g)− u(a + `)

g
<

u(a + `)− u(a)

`

`

g
6

`

g
u′(a)

Similarly, as b = a + k(` + g) and k = b−a
`+g

, we get

2The probabilities need not be the same. This analysis is also valid for decision makers
who, for example, reject lotteries of the form (−80, 0.1; 10, 0.9).
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u′(b) < u′(a)

(
`

g

) b−a
`+g

(1)

Concavity implies that for every c, u(c + ` + g) 6 u(c) + (` + g)u′(c), hence

u(b) 6 u(a) + (` + g)u′(a)

b−a
`+g∑
i=1

(
`

g

)i−1

(2)

Likewise, for every c, u(c− `− g) 6 u(c)− (` + g)u′(c), hence

u(a) 6 u(b)− (` + g)u′(b)

b−a
`+g∑
i=1

(g

`

)i−1

(3)

Normalizing u(a) = 0 and u′(a) = 1 we obtain from eqs. (1) and (2)

u′(b) 6

(
`

g

) b−a
`+g

and u(b) 6 (` + g)
1−

(
`
g

) b−a
`+g

1− `
g

(4)

For concave u we now obtain that for every x 6∈ [a, b]

u(x) 6


−(a− x) x < a

u(b) + (x− b)
(

`
g

) b−a
`+g

x > b

(5)

Alternatively, a normalization with u(b) = 0 and u′(b) = 1 gives (by eqs. (1)
and (3))

u′(a) >
(g

`

) b−a
`+g

and u(a) 6 −(` + g)
1−

(
g
`

) b−a
`+g

1− g
`

(6)

and hence, for every x 6∈ [a, b]

u(x) 6

 u(a)− (a− x)
(

g
`

) b−a
`+g x < a

x− b x > b

(7)
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Inequalities (4) and (5) imply that if for all wealth levels x between a and
b the decision maker rejects the lottery (−`, 1

2
; g, 1

2
), then when his wealth

level is a, he will also reject any lottery of the form (−L, p; G, 1−p), G > b−a,
provided that

L >

[
(` + g)

1−( `
g )

b−a
`+g

1− `
g

+ (G + a− b)
(

`
g

) b−a
`+g

]
1−p

p
(8)

Table 1 offers the value of L for different levels of G, b − a, and g when
` = 100 and p = 1

2
. If p 6= 1

2
, the values should be multiplied by 1−p

p
.

G b− a g = 101 g = 105 g = 110 g = 125

200,000 20,000 79,637 5,810 2,330 1,125
40,000 39,586 4,316 2,310 1,125

1,000,000 20,000 376,873 12,662 2,421 1,125
40,000 150,023 4,375 2,310 1,125

10,000,000 20,000 3,720,787 89,752 3,450 1,125
40,000 1,392,440 5,035 2,310 1,125

Table 1: If the decision maker rejects (−100, 1
2 ; g, 1

2) at all wealth levels between
a and b, then at a he also rejects (−L, 1

2 ;G, 1
2), values of L entered in the table.

For example, if the decision maker rejects (−100, 1
2
; 110, 1

2
) on a range of

20,000, then he also rejects the lottery (−3,450, 1
2
; 10,000,000,1

2
). Multiplying

by 1−p
p

for 1 − p = 1
100,000

, we obtain that this decision maker will refuse to
pay even four cents for a 1:100,000 chance of winning 10 million dollars!

Inequalities (6) and (7) imply that if for all wealth levels x between a and
b the decision maker rejects the lottery (−`, 1

2
; g, 1

2
), then he will also reject,

at b, any lottery of the form (−(b− a), p; G, 1− p), provided that

p(` + g)
( g

` )
b−a
`+g −1

g
`
−1

> (1− p)G ⇐⇒ p > G

/[
(` + g)

( g
` )

b−a
`+g −1

g
`
−1

+ G

]
(9)

In Table 2, ` = 100 and the wealth level is b. The table presents, for dif-
ferent combinations of L = b−a, G, and g, values of p such that a rejection of
(−100, 1

2
; g, 1

2
) at all x ∈ [b−L, b] leads to a rejection of (−L, p; G, 1−p) at b.
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L G g = 101 g = 105 g = 110 g = 125

100,000 0.7462 0.1740 0.0054 2.7 · 10−7

20,000 1,000,000 0.9671 0.6781 0.0516 2.7 · 10−6

100,000,000 0.9996 0.9952 0.8447 2.7 · 10−4

100,000 0.5929 0.0189 5.8 · 10−5 1.3 · 10−11

30,000 1,000,000 0.9357 0.1621 5.8 · 10−4 1.3 · 10−10

100,000,000 0.9993 0.9508 0.0550 1.3 · 10−8

100,000 0.3137 1.7 · 10−4 6.6 · 10−9 3.2 · 10−20

50,000 1,000,000 0.8205 0.0017 6.6 · 10−8 3.2 · 10−19

100,000,000 0.9978 0.1421 6.6 · 10−6 3.2 · 10−17

Table 2: If the decision maker rejects (−100, 1
2 ; g, 1

2) at all wealth levels in [b−L, b],
then at b he also rejects (−L, p;G, 1− p), values of p entered in the Table.

We believe that the values of Table 2 are even more disturbing than those
of Rabin [17], as many of the entries represent an almost sure gain of huge
amounts of money, where with a very small probability less than 50,000 may
be lost. For example, if the decision maker rejects (−100, 1

2
; 110, 1

2
) on a range

of 30,000, then he also rejects the lottery (−30,000, 1
1700

; 1,000,000,1699
1700

). In
the next section we show that similar tables can be constructed for many
non-expected utility models.

3 Definitions and Assumptions

Having Tables 1 and 2 in mind, we begin with the following definition.

Definition 1 The vector (`, g, L, G, c) is an upper calibration quintuple if a
risk averse expected utility decision maker who is rejecting (−`, 1

2
; g, 1

2
) at

all wealth levels in [w,w + c] will also reject (−L, 1
2
; G, 1

2
) at the wealth level

w, for all w. The vector (`, g, L, G, ε) is a lower calibration quintuple if a
risk averse expected utility decision maker who is rejecting (−`, 1

2
; g, 1

2
) at

all wealth levels in [w−L, w] will also reject (−L, ε; G, 1−ε) at the wealth
level w, for all w.

We assume throughout that preferences over distributions are represent-
able by functionals V that are risk averse with respect to mean-preserving
spreads, monotonically increasing with respect to first order stochastic dom-
inance, continuous with respect to the topology of weak convergence, and
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that they display a modest degree of smoothness in the sense that at every
distribution F , there is a hyperplane containing all the tangent lines at F to
the indifference curve of V through F . Denote the set of all such functionals
by V .

Observe that the aforementioned hyperplane is an indifference set of an
expected utility functional with a unique (up to positive affine transforma-
tions) vNM utility function u(·; F ), which is called the local utility at F (see
Machina [13]). 3 According to the context, utility functionals are defined over
lotteries (of the form X = (x1, p1; . . . ; xn, pn)) or over cumulative distribution
functions (denoted F, H). Degenerate cumulative distribution functions are
denoted δx. Machina [13] introduced the following definitions.

Definition 2 (a) The functional V ∈ V satisfies Hypothesis 1 (H1) if for

every distribution F , −u′′(x;F )
u′(x;F )

is a nonincreasing function of x.

(b) The functional V ∈ V satisfies Hypothesis 2 (H2) if for all F and H such
that F dominates H by first order stochastic dominance and for all x

−u′′(x; F )

u′(x; F )
> −u′′(x; H)

u′(x; H)

In the sequel, we will also use the opposite of these assumptions, denoted
¬H1 and ¬H2. ¬H1 says that for every distribution F , −u′′(x;F )

u′(x;F )
is a nonde-

creasing function of x while ¬H2 says that if F dominates H by first order
stochastic dominance, then for all x, −u′′(x;F )

u′(x;F )
6 −u′′(x;H)

u′(x;H)
. We say that H1

(or ¬H1) is satisfied in S if it is satisfied at all F ∈ S. Similarly, H2 (or
¬H2) is satisfied in S if it applies to all F, H ∈ S.

By definition, H1 and H2 need differentiability of the local utility func-
tions. This is not a trivial assumption, and it is closely associated with orders
of risk aversion. 4 We discuss below models that are compatible with these
assumptions.

Machina [13, 14] shows that H1 and H2 conform with many violations
of expected utility like the Allais paradox, the common ratio effect [1], and

3By Dekel [8], the existence of such hyperplanes does not require Fréchet differen-
tiability (as in Machina [13]) or even Gâteaux differentiability (as in Chew, Karni, and
Safra [6]).

4V represents first [second] order risk aversion if the risk premium the decision maker
is willing to pay to avoid playing t · X ≡ (tx1, p1; . . . ; txn, pn) for E[X] = 0 converges to
zero at the same rate as t [t2]. See Segal and Spivak [19, 20].
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the mutual purchase of insurance policies and lottery tickets. Hypothesis 2
implies that for given x > y > z, indifference curves in the set {(x, p; y, 1
−p − q; z, q) : p + q 6 1} become steeper as one moves from δz to δx. The
experimental evidence concerning H2 is inconclusive. Battalio, Kagel, and Ji-
ranyakul [2] and Conlisk [7] suggest that indifference curves become less steep
as one moves closer to either δx or δz. But Conlisk’s experiment does not
prove a violation of H2 near δx. In this part of the experiment, subjects were
asked to rank B = (5, 0.88; 1, 0.11; 0, 0.01) and B∗ = (5, 0.98; 0, 0.02). Most
ranked B∗ higher than B. But this pair does not dominate the pair (1, 1) and
(5, 0.1; 1, 0.89; 0, 0.01) of the Allais paradox, and therefore the fact that most
subjects prefer (1, 1) to (5, 0.1; 1, 0.89; 0, 0.01) does not prove a violation of
H2. Moreover, we suspect that most subjects would prefer (5, 0.89; 1, 0.11)
to (5, 0.99; 0, 0.01), which is consistent with H2. Battalio et al. did find some
violations of this assumption, but as most of their subjects were consistent
with expected utility theory, only a small minority of them violated this hy-
pothesis. For further citations of violations of H2, see Starmer [21, Sec. 5.1.1].

4 Calibration Results for Non EU Preferences

We start by analyzing the set of quasi concave functionals, that is, functionals
where V (F ) > V (H) implies for all α ∈ (0, 1), V (αF + (1− α)H) > V (H).
An important subset of this is the set of betweenness functionals (Dekel [8],
Chew [4]), where indifference sets are hyperplanes: If F and H are in the
indifference set I, then for all α ∈ (0, 1), so is αF + (1− α)H. Formally: V
satisfies betweenness if for all F and H satisfying V (F ) > V (H) and for all
α ∈ (0, 1), V (F ) > V (αF + (1− α)H) > V (H).

Theorem 1 Let V ∈ V be a quasi concave functional and let (`, g, L, G, ε)
and (`, g, L̄, Ḡ, c) be lower and upper calibration quintuples, respectively. De-
fine S1 = {X : supp(X) ⊆ [a, b]} for some a and b satisfying b−a = max{L+
g, c + `} and assume that, for all x ∈ [a, b], V (x, 1) > V (x− `, 1

2
; x + g, 1

2
).

1. If V satisfies H1 or H2 on S1 then V (b, 1) > V (b−g−L, ε; b−g+G, 1−ε).

2. If V satisfies ¬H1 or ¬H2 on S1 then V (a, 1) > V (a− L̄, 3
4
; a + Ḡ, 1

4
).

In other words, adjustments not larger than g are made in the outcomes
of the large lotteries of Table 2 and the probabilities of Table 1 are changed to
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3
4

and 1
4
. Obviously, the rejection of the new big lotteries is still absurd. 5 If

we assume betweenness, we can prove that rejected large lotteries are exactly
those given in Tables 1 and 2 (see [18]).

Quadratic utility (Machina [13], Chew, Epstein, and Segal [5]) is given by
V (F ) =

∫ ∫
ϕ(x, y)dF (x)dF (y) for some symmetric, continuous, and mono-

tonic function ϕ. If one indifference of a quadratic function is quasi concave,
then so are all indifference curves above it.6 The local utility of quadratic
functionals is given by u(x; F ) =

∫
ϕ(x, y)dF (y). It is easy to verify that H2

[¬H2] is satisfied if ϕxxyϕx −ϕxxϕxy < [>] 0 and that H1 [¬H1] is satisfied if
ϕxxxϕx − ϕ2

xx > [< ] 0.
Chew’s [3] weighted utility is given by V (F ) =

∫
vdF/

∫
hdF with the

local utility u(x; δw) = v(x)− v(w)
h(w)

h(x). This function induces either fanning

out or fanning in indifference curves on probability triangles {(x, p; y, 1 −
p − q; z, q)} for given x > y > z, but in general it satisfies H2 [¬H2] when-
ever [v′′(x)h′(x)− v′(x)h′′(x)][v′(w)h(w)− v(w)h′(w)] > [< ] 0. Monotonicity
with respect to first order stochastic dominance implies that v(w)h′(w) −
v′(w)h(w) does not change sign [3, Corollary 5]. 7 H2 and ¬H2 thus require
[v′′(x)h′(x) − v′(x)h′′(x)] not to change its sign. Although not all weighted
utility functionals satisfy these assumptions, we can prove directly that the
results of Theorem 1 apply to this functional without making any assump-
tions like H1 or H2 (see [18]).

The proof of the theorem utilizes the local structure of the given func-
tionals. The rejection of the small lottery (−`, 1

2
; g, 1

2
) at b implies, by quasi

concavity, that the local utility function u∗ at (b− `, 1
2
; b + g, 1

2
) prefers (b, 1)

to the lottery (b− `, 1
2
; b + g, 1

2
). If H1 is satisfied, then u∗ also prefers (x, 1)

to the lottery (x − `, 1
2
; x + g, 1

2
), for all x 6 b. Table 2 then implies that

u∗ rejects large and attractive lotteries. We use this and quasi-concavity to
show that the original functional rejects these large lotteries as well. Al-
ternatively, assume H2. For all x ∈ [a, b − g], the decision maker prefers
(x, 1) to (x − `, 1

2
; x + g, 1

2
), hence, as above, the local utility function at

(x− `, 1
2
; x + g, 1

2
) prefers (x, 1) to the lottery (x− `, 1

2
; x + g, 1

2
). By H2, so

does the local utility at (b, 1) and the argument follows as above. A formal

5Assuming ¬H2 we actually prove that V (a, 1) > V (a − L̄, 1
2 + `

L̄
; a + Ḡ, 1

2 −
`
L̄

). See
eq. (14) at the end of the proof of Theorem 1.

6Conditions implying quasi concavity are discussed in [5, fnt. 6].
7In Chew’s [3] notation, V (F ) =

∫
αφdF/

∫
αdF . To obtain our representation, let

h = α and φ = v/h. Monotonicity in x of α(x)(φ(x) − φ(s)) for all s is equivalent to
monotonicity of v(x)− h(x)v(s)/h(s), that is, to v′(x)− h′(x)v(s)/h(s) 6= 0.
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proof of these and the other cases appears in the Appendix.
The following example shows the necessity of the H assumptions.

Example 1 Let uw(x) = min{x, w+x
2
} and define V (F ) to be that number w

such that E[uw(F )] = w. This is a special case of Gul’s [10] disappointment
aversion theory, which satisfies betweenness. Its local utilities are uw which
are nondifferentiable, and hence do not satisfy any of the four hypotheses.
Clearly these preferences reject (−100, 1

2
; g, 1

2
) for all g < 200, but accept

(−L, 1
2
; G, 1

2
) for all G > 2L. �

Next we analyze general preferences that are not necessarily quasi con-
cave. To make sure that they are sufficiently smooth we assume Gâteaux
differentiability (see Zeidler [23, p. 191]). If the functional V is Gâteaux dif-
ferentiable at F , then there exists a function u(·; F ) such that for every H
and t,

V ((1− t)F + tH)− V (F ) = t

∫
u(x; F )d(H − F )(x) + o(t) (10)

Although all indifference sets of betweenness functionals are hyperplanes,
these functionals are not necessarily Gâteaux differentiable (see Dekel [8]).

The following lemma is needed since the calibration results for expected
utility rely on the concavity of the vNM function. It extends Machina’s [13]
result for Fréchet differentiable functionals to the class of all Gâteaux differ-
entiable functionals.

Lemma 1 All local utilities of a Gâteaux differentiable V ∈ V are concave.

The next result relates to general (not necessarily quasi concave) Gâteaux
differentiable functions. Unlike the first theorem, it yields only a subset of
lower calibration quintuples.

Suppose that for all x ∈ [a, b], V (x, 1) > V (x − `, 1
2
; x + g, 1

2
). By the

continuity of V , there exists ε̂ > 0 such that ∀ε ∈ (0, ε̂) and ∀x ∈ [a, b],
V (a, ε; x, 1 − ε) > V (a, ε; x − `, 1−ε

2
; x + g, 1+ε

2
). In theorem 2 we therefore

assume directly the existence of such ε̂.

Theorem 2 Let V ∈ V be a Gâteaux differentiable functional. Let `, g, L ∈
<, let b−a = L+g, and let ε̂ be as above. Define S2 = {X : Supp X ⊂ [a, b]}.
Let ε < ε̂ and let

G < ε
1−ε

(` + g)
( g

` )
b−a
`+g −1

g
`
−1

(11)
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If V satisfies H2 on S2, then V (b, 1) > V (b− g − L, ε; b− g + G, 1− ε).

For example, let a = b − 40K. If for all x ∈ [a, b] the decision maker
prefers (a, 0.002; x, 0.998) to (a, 0.002; x− 100, 0.499; x + 110, 0.499), then he
also prefers (b, 1) to (b− 40K, 0.002; 3.4 · 108, 0.998). Gâteaux differentiable
quadratic utility is an example for a functional covered by this theorem.

The first part of the proof of Theorem 2 is similar to that of Theorem 1.
The rejection of the small lottery (−`, 1

2
; g, 1

2
) at all x ∈ [a, b − g] implies,

by differentiability, that at some distribution on the line segment connecting
(x, 1) and (x − `, 1

2
; x + g, 1

2
), the local utility function ūx prefers (x, 1) to

the lottery (x − `, 1
2
; x + g, 1

2
). By H2, so does the local utility ū at (b, 1).

Hence, ū rejects some of the attractive large lotteries of Table 2. Next we
show that a similar property holds along the line segment connecting (b, 1)
and (b− g−L, ε : b− g +G, 1− ε). By Gâteaux differentiability, the decision
maker rejects the large lotteries as well.

The requirement that V rejects mean preserving spreads is essential.
Machina [13, Sec. 4.5] provides an example for a functional V that satis-
fies H2, rejects symmetric lotteries, and yet does not reject attractive large
lotteries. This functional does not reject all mean preserving spreads, and
indeed, its local utility functions are not globally concave.

5 Discussion

Rabin [17] proved that if a risk averse expected utility maximizer is mod-
estly risk averse in the small, then he must be absurdly risk averse in the
large. This paper shows that this criticism is not limited to expected utility
theory—similar arguments can be made against many of its known transi-
tive alternatives. For these extensions we need to assume H1 or H2 (or their
opposites), that relate to changes in attitudes towards risk that result from
moving from one lottery to another.

Both H1 and H2 assume differentiable local utilities, hence they rule out
first order risk aversion (see [19, 20]). To this class belong disappointment
aversion (Gul [10]) and rank dependent utilities (Quiggin [16]). To obtain
calibration results for such models we need an alternative tool, which is based
on the rejection of small lotteries at the face of background risk (see Safra
and Segal [18]).

Rabin’s original arguments seem to be relevant only for expected utility
theory. Essentially, these arguments tie together small degree of concavity for
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small neighborhoods at many points to obtain a lot of concavity with respect
to big lotteries. This can be done since expected utility theory permits only
one function. In this paper we show that this analysis does not require
linearity in the probabilities, and can be extended to situations where more
than one function is used (like Chew’s [3] weighted utility), provided some
structure is assumed regarding the decision maker’s attitude towards risk
when one moves from one distribution to another.

This paper provides sufficient, not necessary, conditions for the existence
of calibration results. Other results are possible — for example, we can
prove Theorem 1 for general Gâteaux differentiable functionals satisfying
either H1 and ¬H2, or ¬H1 and H2. Or we can prove this theorem for
betweenness functionals and obtain in part 2, V (a, 1) > V (a − L̄, 1

2
; a +

Ḡ, 1
2
). Our main point is that the regularity imposed by the H assumptions

on functionals enables us to weave together many pieces of reasonable risk
aversion with respect to small lotteries into absurd risk aversion with respect
to large lotteries.

Appendix

Proof of Theorem 1 We show first that for all F , u(·; F ) is concave. Let
I be the supporting hyperplane of the indifference set of V through F . Let
u(·; F ) be the local utility determining this hyperplane (hence for all H ∈ I,∫

u(x; F )dH(x) =
∫

u(x; F )dF (x)). Suppose u(·; F ) is not concave, then
there exist z and H such that z = E[H] and

∫
u(x; F )dH(x) > u(z; F ). By

monotonicity and continuity, there exist p and z′ such that (z, p; z′, 1−p) ∈ I,
hence H ′ := (H, p; z′, 1 − p) is above I with respect to the expected utility
functional with the vNM utility function u(·; F ). All lines in I are tangent
at F to the indifference curve of V through F , hence, by assumption, I is the
hyperplane that contains all the lines that are tangent at F to that indiffer-
ence set. As H ′ 6∈ I, the line through F and H ′ is not in I, hence it cannot
be tangent at F to the indifference set of V though F . Therefore there exists
α ∈ (0, 1) such that V (F, α; H ′, 1−α) > V (F ) > V (F, α; (z, p; z′, 1−p), 1−α)
(the second inequality follows by quasi concavity). This is a violation of risk
aversion, as the first distribution is a mean preserving spread of the third.

Case 1: Assume H1 and let Fb be the distribution of (b − `, 1
2
; b + g, 1

2
).

Using quasi-concavity and continuity, the preference V (b, 1) > V (Fb) implies
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that u(b; Fb) > 1
2
u(b− `; Fb) + 1

2
u(b + g; Fb). By H1,

u(x; Fb) > 1
2
u(x− `; Fb) + 1

2
u(x + g; Fb)

for all x 6 b. Taking b− ` to be the wealth level, Table 2 implies

u(b− `; Fb) > εu(b− `− L; Fb) + (1− ε)u(b− ` + G; Fb) (12)

Hence,∫
u(x; Fb)dFb(x) = 1

2
u(b− `; Fb) + 1

2
u(b + g; Fb)

> u(b− `; Fb)

> εu(b− `− L; Fb) + (1− ε)u(b− ` + G; Fb)

which implies that, according to the local utility at Fb, Fb is preferred to the
lottery (b − ` − L, ε; b − ` + G, 1 − ε). Hence, by quasi-concavity, V (Fb) >
V (b− `− L, ε; b− ` + G, 1− ε) and, as V (b, 1) > V (Fb),

V (b, 1) > V (b− g − L, ε; b− g + G, 1− ε)

Case 2: Assume H2 and consider x ∈ [a, b−g]. As in Case 1, the preference
V (x, 1) > V (x − `, 1

2
; x + g, 1

2
) implies that at Fx, the distribution of (x −

`, 1
2
; x + g, 1

2
),

u(x; Fx) > 1
2
u(x− `; Fx) + 1

2
u(x + g; Fx)

Obviously, as x 6 b−g, δb dominates Fx by first order stochastic dominance.
Hence, by H2, u(x; δb) > 1

2
u(x − `; δb) + 1

2
u(x + g; δb) for all x ∈ [a, b − g].

Table 2 now implies

u(b; δb) > u(b− g; δb) >

εu(b− g − L; δb) + (1− ε)u(b− g + G; δb)

Hence, by quasi concavity,

V (b, 1) > V (b− g − L, ε; b− g + G, 1− ε)

Case 3: Assume ¬H1. Similarly to Case 1, the preference V (a, 1) > V (a−
`, 1

2
; a + g, 1

2
) implies that for Fa, the distribution of (a − `, 1

2
; a + g, 1

2
), the

inequality

u(a; Fa) > 1
2
u(a− `; Fa) + 1

2
u(a + g; Fa)
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is satisfied and

V (a, 1) > V (Fa) (13)

By ¬H1, the first inequality holds for all x > a and, by Table 1,

u(a; Fa) > 1
2
u(a− L̄; Fa) + 1

2
u(a + Ḡ; Fa)

Set u(a; Fa) = 0 and use the concavity of u(·; Fa) to obtain

u(a− `; Fa) > `
L̄
u(a− L̄; Fa)

Using the last two inequalities we obtain∫
u(x; Fa)dFa(x) =

1
2
u(a− `; Fa) + 1

2
u(a + g; Fa) >

1
2
u(a− `; Fa) + 1

2
u(a; Fa) >

`
2L̄

u(a− L̄; Fa) + 1
2

[
1
2
u(a− L̄; Fa) + 1

2
u(a + Ḡ; Fa)

]
>

3
4
u(a− L̄; Fa) + 1

4
u(a + Ḡ; Fa)

where the last inequality holds since `
2L̄

< 1
2

and u(a − L̄; Fa) < 0. Finally,
eq. (13) and quasi concavity imply

V (a, 1) > V (Fa) > V (a− L̄, 3
4
; a + Ḡ, 1

4
)

Case 4: We assume here that L̄ > 4`. Assume ¬H2 and obtain, similarly
to Case 2, that u(x; δa) > 1

2
u(x − `; δa) + 1

2
u(x + g; δa) for all x ∈ [a + `, b].

Now, by Table 1,

u(a + `; δa) > 1
2
u(a + `− L̄; δa) + 1

2
u(a + ` + Ḡ; δa)

Set u(a + `; δa) = 0 and use the concavity of u(·; δa) to obtain

u(a; δa) > `
L̄
u(a + `− L̄; δa)

Summing the last two inequalities yields (recall that u(a + `; δa) = 0)

u(a; δa) >
(

1
2

+ `
L̄

)
u(a + `− L̄; δa) + 1

2
u(a + ` + Ḡ; δa)

>
(

1
2

+ `
L̄

)
u(a + `− L̄; δa) +

(
1
2
− `

L̄

)
u(a + ` + Ḡ; δa) (14)

> 3
4
u(a + `− L̄; δa) + 1

4
u(a + ` + Ḡ; δa)
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Where the last inequality holds since `
L̄

< 1
4

and u(a+ `− L̄; δa) < 0. Finally,
quasi concavity and monotonicity imply

V (a, 1) > V (a + `− L̄, 3
4
; a + ` + Ḡ, 1

4
)

> V (a− L̄, 3
4
; a + Ḡ, 1

4
) �

Proof of Lemma 1 Suppose u(·; F ) is not concave. Then there exist H∗

and H such that H is a mean preserving spread of H∗, but
∫

u(x; F )dH∗(x) <∫
u(x; F )dH(x). For every ε, (1− ε)F + εH is a mean preserving spread of

(1−ε)F +εH∗, hence, by risk aversion, V ((1−ε)F +εH) 6 V ((1−ε)F +εH∗).
As this inequality holds for all ε, it follows that ∂

∂ε
V ((1− ε)F + εH)

∣∣
ε=0

6 ∂
∂ε

V ((1− ε)F + εH∗)
∣∣
ε=0

. Hence, by equation (10),
∫

u(x; F )dH(x) 6∫
u(x; F )dH∗(x), a contradiction. �

Proof of Theorem 2 Let (`, g, L, G, ε) be a lower calibration quintuple
with ε < ε̂ and G as is defined in eq. (11) (the existence of such a quintuple
follows by eq. (9)).

Assume H2 and consider x ∈ [a, b− g]. As V (x, 1) > V (x− `, 1
2
; x + g, 1

2
),

it follows by Gâteaux differentiability that there are p and ζ > 0 such that
for all p′ ∈ (p, p + ζ)

V (x, 1− p; x− `, p
2
; x + g, p

2
) > V (x, 1− p′; x− `, p′

2
; x + g, p′

2
) (15)

Denote by Hx the distribution of (x, 1 − p; x − `, p
2
; x + g, p

2
). By Gâteaux

differentiability we obtain that for a sufficiently close p′, p′′ ∈ [p, p+ζ], p′ < p′′,

(1− p′)u(x; Hx) + p′

2
u(x− `; Hx) + p′

2
u(x + g; Hx) >

(1− p′′)u(x; Hx) + p′′

2
u(x− `; Hx) + p′′

2
u(x + g; Hx)

Hence

u(x; Hx) > 1
2
u(x− `; Hx) + 1

2
u(x + g; Hx) (16)

Obviously, δb dominates Hx by first order stochastic dominance whenever
b > x + g. Hence, by H2, u(x; δb) > 1

2
u(x − `; δb) + 1

2
u(x + g; δb) for all

x ∈ [a, b− g]. As before, since local utilities are concave (Lemma 1), Table 2
now implies

u(b; δb) > u(b− g; δb) > (17)

εu(b− g − L; δb) + (1− ε)u(b− g + G; δb)
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By Gâteaux differentiability, this implies that for sufficiently small µ, the
decision maker with wealth level b prefers not to participate in the lottery
(b− g −L, µε; b, 1− µ; b− g + G, µ(1− ε)). We now show that µ = 1, which
is the claim of the theorem.

Let µ̄ = max{µ : V (b, 1) > V (b − g − L, µε; b, 1 − µ; b − g + G, µ(1 −
ε))} and suppose that µ̄ < 1. Denote by F̄ the distribution of the lottery
(b − g − L, µ̄ε; b, 1 − µ̄; b − g + G, µ̄(1 − ε)). We want to show that for all
x ∈ [b− g − L, b− g],

u(x; F̄ ) > 1
2
u(x− `; F̄ ) + 1

2
u(x + g; F̄ ) (18)

We defined a = b − g − L, therefore, as µ̄ε < ε̂, V (X̂x) > V (X̃x), where
X̂x = (b−g−L, µ̄ε; x, 1− µ̄ε) and X̃x = (b−g−L, µ̄ε; x−`, 1−µ̄ε

2
; x+g, 1−µ̄ε

2
).

Let F̂x and F̃x denote the distributions of X̂x and X̃x, respectively. Similarly
to the derivation of eq. (16), it follows by Gâteaux differentiability that there
exists F in the line segment connecting F̂x and F̃x for which

u(x; F ) > 1
2
u(x− `; F ) + 1

2
u(x + g; F )

As F̄ dominates both F̂x and F̃x by first order stochastic dominance it dom-
inates F as well and eq. (18) follows by H2.

Similarly to the derivation of eq. (17), the local utility at F̄ satisfies

u(b; F̄ ) > εu(b− g − L; F̄ ) + (1− ε)u(b− g + G; F̄ ) (19)

Let H denote the cumulative distribution function of (b − g − L, ε; b − g +
G, 1− ε). Then, by Gâteaux differentiability and eq. (19),

∂

∂t
V ((1− t)F̄ + tH) =

(1− µ̄)[εu(b− g − L; F̄ ) + (1− ε)u(b− g + G; F̄ )− u(b; F̄ )] < 0

But this means that ∃µ ∈ (µ̄, 1) such that V (b − g − L, µε; b, 1 − µ; b − g +
G, µ(1 − ε)) < V (b − g − L, µ̄ε; b, 1 − µ̄; b − g + G, µ̄(1 − ε)) 6 V (b, 1); a
contradiction. Hence µ̄ = 1 and

V (b, 1) > V (b− g − L, ε; b− g + G, 1− ε) �
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