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1 Introduction
My goal here is to provide some synthesis of recent results regarding unobserved
heterogeneity in nonlinear and semiparametric models, using as a context Matzkin
(2005a) and Browning and Carro (2005), which were the papers presented in the
Modeling Heterogeneity session of the 2005 Econometric Society World Meet-
ings in London. These papers themselves consist of enormously heterogeneous
content, ranging from high theory to Danish milk, which I will attempt to homog-
enize.
The overall theme of this literature is that, in models of individual economic

agents, errors at least partly reflect unexplained heterogeneity in behavior, and
hence in tastes, technologies, etc.,. Economic theory can imply restrictions on the
structure of these errors, and in particular can generate nonadditive or nonsepara-
ble errors, which has profound implications for model specification, identification,
estimation, and policy analysis.

2 Statistical vs Structural Models of Heterogeneity
Using one of Browning and Carro’s models to fix ideas, suppose we have a sam-
ple of observations of a dependent variable Y such as a household’s purchases of
organic whole milk, and a vector of covariates X , such as the prices of alterna-
tive varieties of milk and demographic characteristics of the consuming house-
hold. The heterogeneity we are concerned with here is unobserved heterogeneity,
specifically the behavioral variation in Y that is not explained by variation in X .
By behavioral, I mean variation that primarily reflects actual differences in ac-
tions, tastes, technologies, etc.,. across the sampled economic agents, rather than
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measurement or sampling errors. For simplicity, assume for this discussion that
our data are independent, identically distributed observations of Y and X , without
any complications associated with sample selection, censoring, or measurement
errors.
One view of heterogeneity, which could be called the statistical model, is that

unobserved heterogeneity is completely defined by F(Y | X), that is, the condi-
tional distribution of Y given X , since this gives the probability of any value of Y
given any value of X . This can be easily estimated nonparametrically, and by this
view the only purpose or reason to construct a model is dimension reduction or
otherwise improving the efficiency of our estimate of F .
This may be contrasted with what I’ll call the Micro Econometrician’s view,

which is that there is a behavioral or structural model Y = g(X, θ,U), which
may include parameters θ and has unobservables (heterogeneity) U . We could
also include endogeneity, by allowing U to correlate with X or by including Y
into the function g, but ignore that complication for now.
Wewish to understand and estimate this structural model because it is based on

some economic model of behavior and its parameters may have implications for
economic policy. The structural model g is more informative than F , because it
tells us how F would change if some underlying parameters change. For example,
θ could include production function parameters, which would then allow us to
predict how the distribution of outputs across firms might change in response to
an improvement in technology, or in the milk example θ provides information
about the distribution of tastes across households, which we might use to predict
the response to introduction of a new milk product, or the returns to a marketing
compaign aimed at changing tastes.
To illustrate, the Micro Econometrician might assume a linear random coeffi-

cients model Y = a+bX + ε = (a+ e1)+ (b+ e2)X , where the errors e1 and e2,
representing unobserved variation in tastes, are distributed independently of each
other and of X , and are normal so e j v N(0, σ 2j ) and ε = e1 + e2X . This then
implies the statistical model F(Y | X) = N(a + bX, σ 21 + σ 22X2).
Given a scalar, continuously distributed Y , there is a trick Matzkin employs

to construct a function that could be structural. Define an unobserved error term
U by U = F(Y | X), and a function G by Y = G(X,U) = F−1(U | X).
The idea is then to assume that the true behavioral model Y = g(X, θ,U) is just
Y = G(X,U). By construction this error term U is independent of X , since it
has a standard uniform distribution regardless of what value X takes on. We could
further transform U by any known monotonic function, e.g., converting U to a
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standard normal instead of a standard uniform. Matzkin then adds economically
motivated assumptions regarding G and U for identification or to interpret G as
structural, e.g., if Y is output G might be interpreted as a production function with
U being an unobserved input or factor of production, and with constant returns to
scale inplying that G is linearly homogeneous in X and U .
Taking Y = G(X,U) = F−1(U | X) to be a structural model is a very

tempting construction. It says that, once we abandon the idea that errors must
appear additively in models, we can assume that all unobserved heterogeneity
takes the form of independent uniform errors! This would appear to conflict with
Browning’s claim that the way we model errors is often too simplistic, that is,
there is typically more (and more complicated) unobserved heterogeneity in the
world than in our models.
The source of this conflict is that the clean error construction Y = G(X,U)

requires that G be the inverse of F , but a model Y = g(X, θ,U) that has some
economically imposed structure is typically not the inverse of F . Equivalently, the
construction ofG assumes that the unobserved heterogeneityU equals conditional
quantiles of Y , while a structural model g may assume errors of another form. For
example, in the random coefficients model Y = a + bX + (e1 + e2X) the error
ε = e1 + e2X appears additively, and imposing constant returns to scale in X ,ε
implies only a = 0. In contrast, with an independent uniform error U the model
is Y = G(X,U) = a + bX + (σ 21 + σ 22X2)1/2�−1(U) where �−1 is the inverse
of the cumulative standard normal distribution function. I chose this example
for its simplicity, but even in this model one can see that imposing structure like
additivity in U or constant returns to scale in X,U would place very different
restrictions on behavior than imposing additivity in ε or constant returns to scale
in X, ε.
Browning and Carro consider structural models we could write generically as

latent additive error models, Y = g (h(x)+U). Knowing that we can always
write Y = G(X,U) with U independent of X , we might hope that after im-
posing a relatively mild restriction like latent additivity, the resulting errors U in
Y = g (h(x)+U) could still be close to independent. However, using panels
that are long enough to permit separate estimation for each household, Browning
and Carro finds empirically that the distribution of U depends strongly on X in
complicated ways.
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3 Multiple Equations, Coherence, and Invertibility
Now consider multiple equation models, so Y is now a vector of endogenous vari-
ables. Once we allow for nonadditivity or nonlinearity of errors or endogenous
regressors, the issue of coherency arises. An incoherent model is one in which,
for some values of the errors or regressors, there is either no corresponding value
for Y , or multiple values for Y (when the incoherence only takes the form of mul-
tiple solutions, the problem is sometimes called incompleteness). See Heckman
(1978), Gourieroux, Laffont, and Monfort (1980), Blundell and Smith (1994), and
Tamer (2003).
For example, consider the simple system of equations Y1 = I (Y2 + U1 ≥

0), Y2 = αY1 + U2, where I is the indicator that equals one if its argument is
true and zero otherwise. This system might arise as the reaction function of two
players in a game, one of whom chooses a discrete strategy Y1, and the other a
continuous strategy Y2. This innocuous looking model is incoherent. The system
has multiple solutions, implying both Y1 = 0 and Y1 = 1, when−a ≤ U1+U2 <
0, and it has no solution, with neither Y1 = 0 nor Y1 = 1 satisfying the system,
if 0 ≤ U1 + U2 < −a. This example is from Lewbel (2005), who provides
general conditions for coherency of models like these. Examples of incoherent or
incomplete economic models similar to this example include Bresnahan and Reiss
(1991) and Tamer (2003).
When we write down econometric models, coherence is usually taken for

granted to such an extent that many researchers are unaware of the concept. This
may be due to the fact that linear models, optimizing models, and triangular mod-
els are all generally coherent, or typically incomplete in only harmless ways, such
as potential ties in optimizing solutions that occur with probability zero.
A coherent model is one that has a well defined reduced form, that is, it’s a

model for which a function G exists such that Y = G(X,U) for all values that
X and U can take on. Closely related to coherence is invertibility. A model is
invertible if a function H exists such that U = H(Y, X), so a coherent model
can be solved for Y and an invertible model can be solved for U . Invertibility is
convenient for estimation, e.g., it implies one can do maximum likelihood if the
U distribution is parameterized, or one can construct moments for GMM estima-
tion if U is uncorrelated with instruments. For structural models, if U represents
unobserved taste or technology parameters, then invertibility generally means that
we can estimate the distribution of these tastes or technologies.
Invertibility depends on how the structural model, and hence the correspond-

ing errors, are defined. The probit model Y = I (a + bX + e ≥ 0) with standard
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normal e independent of X is, like most latent variable models, coherent but not
invertible in the latent error e. However, this model can be rewritten as Y =
�(a+bX)+ ε which is invertible in the heteroskedastic error ε = Y − E(Y | X).
With a continuously distributed vector Y , Matzkin uses an extension of the

idea of inverting the distribution function to construct coherent, invertible mod-
els, with errors U that are independent of X . Let Y = (Y1,Y2). Define errors
U = (U1,U2) by U1 = F1(Y1 | X), and U2 = F2(Y2 | X,U1), where F1
and F2 are conditional distribution functions of Y1 and Y2. Then let G j = F−1j
to obtain the coherent, invertible, triangular model Y = G(X,U) defined by
Y1 = G1(X,U1) and Y2 = G2(X,U1,U2). The extension to Y3 and up is im-
mediate. As before, the question that arises is whether this construction of G is
just a statistical trick or a model that represents underlying behavior, and whether
economic modeling restrictions can be imposed on this G without reintroducing
substantial dependence of U on X (and without introducing incoherence).
Consider the example where Y is a consumption bundle, that is, a K vector

of quantities of goods that an individual consumes, determined by maximizing a
utility function subject to a linear budget constraint. Then X is a vector consisting
of the prices of the K goods, the consumer’s income or total expenditures on
goods, and observed characteristics of the consumer that affect or are otherwise
correlated with the consumer’s utility function. In this model, U is interpreted
as a vector of unobserved utility function parameters. A necessary condition for
coherence and invertibility of this model is thatU have K −1 elements. Roughly,
this is because the demand functions for K − 1 of the goods each have an error
term corresponding to an element of U , and then the budget constraint pins down
the quantity of the K )th good.
Actually achieving coherency and invertibility in this application is surpris-

ing difficult, because utility maximization imposes constraints on Y = G(X,U),
such as symmetry and negative semidefiniteness of the Slutsky matrix, that must
be satisfied for every value that U can take on. See, e.g., van Soest, Kapteyn, and
Kooreman (1993). In particular, if consumers are price takers with fixed prefer-
ences, then the utility parametersU should be independent of prices, but semidef-
initeness imposes inequality constraints on demand functions and hence upon U
that, except for very special classes of preferences, will generally be functions of
prices. Similarly, Lewbel (2001) shows that additive demand errors must gener-
ally be heteroskedastic. Another example that Browning mentions is that popular
utility functions for empirical demand system estimation do not coherently en-
compass ordinary heterogeneity models such as random coefficients.
Brown and Matzkin (1998) provide one rather restrictive demand model that
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is coherent and invertible, which are demands derived from a random utility func-
tion of the form V (Y )+ Y )U , where Y denotes the K vector Y with one element
YK removed. Beckert and Blundell (2004) provide some generalizations of this
model. See also the stochastic revealed preference results summarized in Mc-
Fadden (2005). Matzkin’s paper combines these concepts, considering coherent,
invertible demands with unobservables U independent of X , reparameterized us-
ing the above technique of sequentially inverting distribution functions, and gives
conditions for their nonparametric identification.

4 Nonparametric Identification
There is a small but growing literature on identification with incomplete (and
hence in that way incoherent) models, which is closely related to set identification
concepts, but the vast bulk of the identification literature assumes coherent, com-
plete models. I will focus on ordinary point identification assuming coherency,
but note that the unknown objects we are identifying can be entire functions, not
just finite parameter vectors.
The statistical model F(Y | X) tells us everything we can know from the

data about the response in Y to a change in X . We can therefore define identifi-
cation as the ability to recover unknown structural parameters or functions from
the statistical model. For example, in the normal random coefficients model Y =
(a+e1)+(b+e2)X identification means obtaining the parameter values, a, b, σ 1,
and σ 2 from the distribution function F . With F(Y | X) = N(a+bX, σ 21+σ 22X2),
the slope and intercept of the function E(Y | X) are a and b, while the slope and
intercept of the function var(Y | X2) are σ 1 and σ 2, so we have identification.
More generally, in the random coefficients model the joint distribution of the two
random variables a+U1 and b+U2 is nonparametrically identified assuming they
are independent of X , a fact that Browning exploits in some of his work.
Brown (1983) and Roehrig (1988) provided general conditions for nonlinear

and nonparametric identification of structural functions. Assume a coherent, in-
vertible model with error vector U that is independent of X , and invert the struc-
tural model Y = G(X,U) to obtain U = H(Y, X). The model H or equivalently
G is nonparametrically identified if there does not exist any other observation-
ally equivalent model, that is, any alternative inverse model H(Y, X) such that U
defined byU = H(Y, X) is also independent of X , where H also possesses what-
ever properties were used to define or characterize H . These properties could be
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parameterizations or functional restrictions such as additivity, separability, homo-
geneity, monotonicity, or latent index constructions.
Such identification generally requires some normalizations of parameters or

of functions, for example, we must rule out trivial cases where H is just a sim-
ple monotonic transformation of H . With some assumptions, Roehrig (1988)
expressed this identification condition as a restriction on the rank of a matrix of
derivatives of ∂H(Y, X)/∂Y , ∂H(Y, X)/∂X , ∂H(Y, X)/∂Y , and ∂H(Y, X)/∂X ,
and Brown (1983) earlier provided a similar expression based on parameteriza-
tion.
Recently, Benkard and Berry (2004) found, by means of a counterexample, a

flaw in this characterization of identification. The source of the problem is that
one must consider both H(Y, X) and the distribution function of U , FU (U) =
FU (H(Y, X)). Matzkin (2005b) fixes the Brown and Roehrig results, showing
that the matrix one actually needs to check the rank of depends on functions of
derivatives of FU and FU as well as the above derivatives of H and H .
Matzkin (2005a) applies this result to a range of coherent demand models.

Some cleverness is required to find sufficient functional restrictions and normal-
izations to obtain nonparametric identification. This generally involves limit-
ing the number and dimension of unknown functions by using additivity and
separability restrictions. One example she considers is utility derived demand
systems with K goods and a linear budget constraint using the utility function
V (Y ) + Y )U + YK with U independent of X . She shows nonparametric identi-
fication of V and the distribution of U in this model, essentially using this new
nonparametric identification machinery to recast and extend results from Brown
and Matzkin (1998).
Another example she considers is utility derived demand systems with two

goods and a linear budget constraint, which for coherence and invertibility re-
quires that U equal a scalar U1, and assuming U1 is independent of X . A general
utility function V (Y1,Y2,U1) is not identified from demand functions in this case,
essentially because a general three dimensional function cannot be recovered from
two demand equations. Matzkin obtains nonparametric identification in this ex-
ample by reducing the dimensionality of the problem, specifically by assuming the
utility function has the additively separable form V1(Y1,Y2)+ V2(Y1,U1), where
V1, and V2 are unknown functions that she shows can be nonparametrically iden-
tified from F(Y | X) (essentially corresponding to nonparametric Marshallian
demand functions), again assuming a suitably normalized U that is independent
of X .
Matzkin also considers stronger restrictions on utility to obtain identification
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in cases where either total expenditures or prices are not observed. The former is
closely related to nonlinear hedonic modeling (see, e.g., Ekeland, Heckman, and
Nesheim 2002) while the latter is concerned with Engel curve estimation. Re-
garding the latter, it would be useful to derive the connections between these new
identification theorems and results in the older demand system literature on iden-
tification of Engel curve rank (Gorman 1981, Lewbel 1991), and identification of
equivalence scales using Engel curve data and the related use of variation in char-
acteristics to help identify price effects (Barten 1964, Muellbauer 1974, Lewbel
1989).

5 Discrete Choice Models
In his presentation, Browning observed, "Conventional schemes have usually been
devised by statisticians to introduce hetereogeneity in such a way as to allow us
to immediately take it out again." This is particularly true in discrete choice mod-
els, where estimators, and associated assumptions about all types of errors (not
just heterogeneity) are often chosen based on tractibility rather than behavioral
realism. A particularly egregious example is the widespread use of the linear
probability model to deal with measurement errors, endogeneity, or fixed effects.
Browning and Carro consider parametric dynamic discrete choice models al-

lowing for substantial heterogeneity, including both fixed effects and coefficients
that vary across individuals. They note that in short (fixed T) panels, the presence
of individual specific parameters implies that unbiased estimators for transition
probabilities do not exist and they propose, as an alternative to maximum likeli-
hood estimation, a bias adjusted maximum likelihood estimator and a minimum
integrated mean squared error estimator. These results and estimators are essen-
tially applications of recent theoretrical advances in the larger literature on the
incidental parameters problem. See, e.g, Hahn and Newey (2004) and Woutersen
(2004). However, it is informative to see just how much these adjustments matter
in empirical work, and more importantly, how strong the evidence is for all kinds
of unobserved heterogeneity
Turning to less parametric models, let Z be a scalar variable that is observed

along with the vector X . Assume Y is conditionally independent of Z , condition-
ing on X . Assume now that we do not observe Y , but instead observe a discrete
binary D given by the latent variable threshold crossing model D = I (Y−Z > 0)
where I is the indicator function that equals one when its argument is true and

8



zero otherwise. For example, D could indicate the purchase of a good, where Z
is a price faced by the consumer and Y is the consumer’s unobserved reservation
price. More generally, Y could be an observed benefit and Z the observed cost of
some decision D, or Z could be any observed variable that monotontically affects
the probability of choosing D = 1, and Y is all other observed and unobserved
variables that determine D.
In this model E(D | Z , X) = 1−Pr(Y ≤ Z | X, Z) = 1−F(Z | X), where as

before F denotes the conditional distribution of the (now latent) Y conditioning
on X . It follows that the distribution F is identified for all Y on the support of
Z , and is therefore identified everywhere if the support of Z is large enough to
contain the support of Y . Here Z is a special regressor as in Lewbel (2000), who
uses this construction to estimate parameters in a model of Y .
Most ofMatzkin’s discrete choice identification results are variants of this con-

struction. In particular, any set of assumptions that are used to identify a model
Y = g(X,U) where X and a continuous Y are observed can now alternatively be
used to identify the latent variable discrete choice model D = I (Z−g(X,U) ≥ 0)
where we instead observe D, Z , and X . Lewbel (2000) focused on linear g(X,U)
with errors U that are heteroskedastic or correlated with some elements of X
(such as endogenous or mismeasured regressors). Lewbel, Linton, and McFad-
den (2004) use this model to estimate nonparametric conditional moments of Y .
Matzkin considers cases such as nonparametric G assuming an independent U .
Lewbel and Matzkin also both extend these ideas to multinomial choice, assum-
ing we can observe a separate Z for each possible choice.

6 Endogenous Regressors
Matzkin next considers identification of some general nonparametric models with
endogenous regressors. In addition to the special regressor as above, another gen-
eral technique for identifying such models is control function methods (See Lew-
bel 2004 for a comparison of the two methods in the above discrete choice context
when g is linear). The control function approach has a long history going back at
least to Heckman (1978), but in its modern form assumes we observe vectors Y, X,
and instruments Z where Y = g(X,U) and X = r(Z , e) and U and e are corre-
lated. The key assumption here is thatU and e are independent of Z , so the source
of endogeneity is only through e, that is, X and U are correlated only because e
and U are correlated. This then implies that X and U are conditionally indepen-
dent, conditioning on e, so instead of identifying the g model based on F(Y | X),
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we can instead use F(Y | X, e). Essentially, the control function method consists
of fixing the endogeneity problem by nonparametrically including e as an addi-
tional regressor in the model for Y . For example, If Y = r(X )β+U), X = Z )α+e
and U = eγ + ε where ε is independent of e and /Z , then Y = r(X )β + eγ + ε)
and ε must be independent of e and X , so including both X and e as regressors
results in a model that no longer suffers from endogeneity.
We now have a whole range of tools that can be mixed and matched. Essen-

tially, any of the earlier described techniques could be used in the first step to
define and identify e in X = r(Z, e), and again any might be used in the second
step to define and identify U . For example, in the first stage if the endogenous
X is continuous then e could be defined by inverting the conditional distribution
function of X given Z , or if the endogenous X is discrete then the distribution
function of e could be obtained using a special regressor in the X model. Either
method could also be used in the model for Y given X and e. Other variants can
also be applied in either step, for example, semiparametric parameters of the Y
model could be obtained when Y is discrete from a nonparametric regression of Y
on X and e as in Blundell and Powell (2004). Matzkin (2004) suggests exchang-
ing the roles of Z and e, letting e be an observed covariate and z be an unobserved
instrument, which then removes the need to identify and estimate e. Other ex-
amples and variations include Altonji and Matzkin (2005), Chesher (2003), and
Imbens and Newey (2003).
With such an assortment of models to choose from, there is little excuse for

continued use of flawed specifications such as the linear probability model for
dealing with problems like endogeneity and heterogeneity.

7 Conclusions
In classical econometrics, virtually all errors were treated (either essentially or
literally) as measurement errors. Models such as McFadden (1973) that took er-
rors seriously as heterogeneity parameters were the exception rather than the rule.
However, it is clear that the errors in most microeconomic relationships are so
large and systematic that they must to some extent represent true structural het-
erogeneity (though misspecification and mismeasurement may also loom large).
Indeed, it is common in microeconomic models to see R2 statistics far below a
half, that is, often most of the variation in Y is unexplained individual variation.
The errors matter more than the regressors! This is a humbling realization for
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the researcher, but it demonstrates the crucial importance of developing specifi-
cation, identification, and estimation methods that incorporate realistic models of
unobserved individual variation.
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