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Abstract

We invent Implicit Marshallian Demands, a new type of demand function that combines
desirable features of Hicksian and Marshallian demand functions. We propose and estimate
the Exact Af�ne Stone Index (EASI) Implicit Marshallian Demand system. Like the Almost
Ideal Demand (AID) system, EASI budget shares are linear in parameters given real expendi-
tures. However, unlike the AID, EASI demands can have any rank and its Engel curves can
be polynomials or splines of any order in real expenditures. EASI error terms equal random
utility parameters to account for unobserved preference heterogeneity. EASI demand functions
can be estimated using GMM or three stage least squares, and, like AID, an approximate EASI
model can be estimated by linear regression.
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1 Introduction

Recent empirical work with large consumer expenditure data sets �nds Engel curves (income ex-
pansion paths) with signi�cant curvature and variation across goods. For example, some goods
have Engel curves that are close to linear or quadratic, while others are more S-shaped (see, Blun-
dell, Chen and Kristensen (2007). Typical parametric demand models cannot encompass this vari-
ety of shapes, and are constrained by Gorman (1981) type rank restrictions.
Other current research shows the importance of allowing for unobserved preference hetero-

geneity in demand systems, and the dif�culty of doing so in a coherent fashion. In most empirical
models of consumer demand, model error terms cannot be interpreted as random utility parameters
representing unobserved heterogeneity. See, for example, Brown and Walker (1989), McFadden
and Richter (1990), Brown and Matzkin (1998), Lewbel (2001), and Beckert and Blundell (2004).
Despite these empirical issues, Deaton and Muellbauer's (1980) Almost Ideal Demand (AID)

model, which has linear Engel curves and does not incorporate unobserved heterogeneity, remains
very popular. This popularity is at least partly because alternative models involve nonlinear func-
tions of many prices and parameters, which are often numerically dif�cult or intractible to imple-
ment. In addition, the AID model has a very convenient approximate form which may be estimated
by linear methods.
In this paper, we develop an approach to the speci�cation and estimation of consumer demands

that addresses the above issues while maintaining the simplicity of the AID model. Consider
a consumer with demographic (and other observable preference related) characteristics z and log
nominal total expenditures x that faces the J�vector of log prices p. Assume she chooses a bundle
of goods, described by the J� vector of budget shares w, to maximize utility given her linear
budget constraint. Hicksian demand functions associated with her utility function, which express
w as a function of p, z, and attained utility level u, can easily be speci�ed to have many desirable
properties. We show that under some conditions, which permit both random utility parameters
and arbitrarily complicated Engel curves, utility u can be expressed as a simple function of the
observed variables x , w, p, and z. This function, which we denote y, can often be interpreted as
a measure of log real expenditures. We use these results to directly specify and estimate what we
call implicit Marshallian demands, which are Hicksian demands after replacing u with the implicit
utility measure y.
Noting that p0w is the de�nition of the Stone (1954) log price index, we de�ne the Exact

Af�ne Stone Index (EASI) class of cost functions, which have y equal to an af�ne transform of
Stone index de�ated log nominal expenditures, x � p0w. The resulting EASI implicit Marshallian
demand functions have the following properties:
1. Like the AID system, EASI budget share demand functions are, apart from the construction
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of y, completely linear in parameters, which facilitates estimation in models with many goods.
2. The AID budget shares are linear in p, z, and y. In contrast, EASI budget shares are linear

in p and are polynomials of any order in z and y. They can also include interaction terms such as
py, zy and pz0, and contain other functions of z and y.
3. EASI Engel curves for each good are almost completely unrestricted. For example, EASI

demands can be high order polynomials or splines in y and z, and so can encompass empirically
important speci�cations that most parametric models cannot capture, such as the semiparametric
S shaped Engel curves reported by Pendakur (1999) and Blundell, Chen and Kristensen (2007).
The AID system is linear in y and has rank two, and the quadratic AID of Banks, Blundell, and
Lewbel (1997) is quadratic in (an approximation of) y with rank three. In contrast, EASI demands
can be polynomials or splines of any order in y, and can have any rank up to J-1, where J is the
number of goods. EASI demands are not subject to the Gorman (1981) rank three limit even with
polynomial Engel curves (see the Appendix for de�nitions and details regarding the meaning and
nature of rank restrictions).
4. EASI budget share error terms can equal unobserved preference heterogeneity or random

utility parameters. The AID and other similar models do not have this property, since in those
models unobserved preference heterogeneity requires that additive errors be heteroskedastic (see
Brown and Walker 1989 and Lewbel 2001). The EASI unobserved preference heterogeneity is
coherent and invertible (see the Appendix).
5. EASI demand functions can be estimated using nonlinear instrumental variables, particularly

nonlinear three-stage least-squares (3SLS) and Hansen's (1982) Generalized Method of Moments
(GMM). Like the AID system, approximate versions of EASI demands can be estimated by linear
regression. We �nd little empirical difference between exact nonlinear and approximate linear
EASI estimates.
6. Since EASI demands are derived from a cost function model, given estimated parameters

we have simple closed form expressions for consumer surplus calculations, such as cost-of-living
indices for large price changes.
EASI demands thus accomodate an extremely wide class of functional forms. In the empirical

work below, we implement a model where, for the budget share w j of each good j , the estimating
equations for demand system have the linear in parameters form

w j D
5X
rD0
br j yr C

LX
lD1

�
Cl j zl C Dl j zl y

�
CC

LX
lD0

JX
kD1

Alk j zl pk C
JX
kD1

Bk j pk y C " j ,

where y is a measure of real total expenditures. The regressors in this model are a �fth order
polynomial in y, log-prices pk of each good k, and L different demographic characteristics zl ,
in addition to interaction terms of the forms pk y, zl y, and zl pk . Our approximate EASI model
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estimates these equations for each good j by ordinary least squares, letting y equal x�
PJ

jD1 p jw j ,
while the exact model has y given by equation (8) below.
We begin with an overview of our approach, de�ning implicit Marshallian demand functions

and general EASI demands. We show how these models accomodate high rank engel curves and
unobserved preference heterogeneity. We describe the speci�c EASI functional form we will use
in our empirical application, and also show how to construct a fully linear approximation for our
EASI demand model, analogous to the approximate linear AID model. We show how to apply the
EASI model with consumer surplus and compensated elasticity calculations. Then we describe
estimators for the EASI model, including consistent, asymptotically normal instrumental variable,
three stage least squares, and GMM estimators for the exact model and linear least squares estima-
tors for the approximate model.
We estimate the exact model using Canadian micro-data. We �nd more complicated Engel

curve shapes than those of standard parametric demand systems, and we �nd that the simple ap-
proximate EASI model captures this complexity very well. We apply the model to a cost-of-living
experiment, and �nd that both the increased �exibility of Engel curves and the incorporation of
unobserved heterogeneity into the model signi�cantly affect the resulting welfare calculations.
An appendix provides formal theorems and proofs, along with some extensions and additional

mathematical properties of EASI and other implicit Marshallian demands, which are relevant for
evaluating these models and for other possible applications of our general methodology.

2 Methods and Models

Here we de�ne the general idea of implicit Marshallian demands, describe the EASI functional
form, and explain how this model can be estimated and applied. Formal theorems regarding these
methods and models are provided in the Appendix.

2.1 Implicit Marshallian Demand Functions

We specify a cost (expenditure) function and use Shephard's lemma to obtain Hicksian demands
that have the desired properties. The usual next step would be to obtain Marshallian demands,
which are functions of p, z and x , by solving for indirect utility u in terms of p, z and x , and
substituting this into Hicksian demand functions. We instead construct cost functions that have
simple expressions for u in terms of w, p, z and x . We call this expression y, implicit utility,
and substitute y for u in the Hicksian demands to yield what we call implicit Marshallian demand
functions. These implicit Marshallian demands circumvent the dif�culty of �nding simple analytic
expressions for indirect utility or Marshallian demands.
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We wish to explicitly include both observable and unobservable sources of preference hetero-
geneity in our models, so let z D .z1; :::; zL/0 be an L�vector of observable demographic (or other)
characteristics that affect preferences, and let " be a J�vector of unobserved preference charac-
teristics (taste parameters) satisfying 10J" D 0 where 1J is the J�vector of ones. Typical elements
of z would include household size, age, and composition. The log cost or expenditure function is
x D C.p; u; z; "/, which equals the minimum log-expenditure required for an individual with char-
acteristics z; " to attain utility level u when facing log prices p. Sheppard's Lemma expresses Hick-
sian (compensated) budget-share functions, !.p; u; z; "/, as w D !.p; u; z; "/ D rpC.p; u; z; "/.
Indirect utility, V , is the inverse of log-cost with respect to u: u D V .p; x; z; "/ D C�1.p; �; z; "/.
If an analytic solution for V is unavailable, it may still be possible to express utility as a function
g of w;p; x; z. In this case, we can write u D g.!.p; u; z; "/;p; x; z/, which implicitly de�nes
u. We may then de�ne implicit utility y by y D g.w;p; x; z/. By construction, y D u and the
function g that de�nes y depends only on observable data, and may have a simple tractible closed
form expression even when no closed form expression exists for indirect utility V . The implicit
Marshallian demand system is then given by w D !.p; y; z; "/, which is the Hicksian demand
system except for replacing u with y.
A similar idea to implicit marshallian demands is Browning's (2001) `M-demands,' which

expresses demand functions in terms of prices and the quantity of one good, instead of in terms of
prices and total expenditures. This can be interpreted as a restrictive choice of g, since it uses only
one good.
In this construction, preferences and hence utility remain ordinal. So when we say that im-

plicit utility y equals the utility level u, this only means that the observable y equals one possible
cardinalization of u. In all our examples y will be linear in x and will either equal or closely
approximate a money metric cardinalization of utility, and hence y will also be interpretable as
a measure of real expenditures. We will sometimes refer to y as log real expenditures when this
interpretation of implicit utility is particularly relevant.
Since g expresses utility as a function of all the arguments of indirect utility plus allowing

for dependence !, it admits more possiblities than are available for explicit marshallian demand
systems. Although, in theory, the idea of implicit demand systems opens up an extremely large
class of potential demand systems, we �nd that simple forms for g allow us to solve a large number
of problems facing empirical demand analysis.
Just to illustrate the idea of implicit Marshallian demands, consider the following restrictive

example. For simplicity (ignoring the inequality constraints required for demand system regularity)
consider a log cost function of the form

C.p; u; z; "/ D u C p0m.u; z/C p0" (1)

5



where m.u; z/ is a J�vector valued function with 10Jm.u; z/ D 1. By Shephard's lemma, this
cost function has Hicksian (compensated) budget shares w D !.p; u; z; "/ D m.u; z/ C ". Since
x D u C p0 [m.u; z/C "], we may substitute m.u; z/ C " with w to derive u D x � p0w. We
therefore obtain implicit Marshallian demands with budget shares of the form

w D m.x � p0w; z/C "

D m.y; z/C "

where y D g.w;p; x; z/ D x � p0w. Here implicit utility y D x � p0w equals the log of nominal
expenditures x de�ated by the log Stone (1954) price index p0w. Here, exp.y/ is equal to nominal
expenditure de�ated by a price index equal to 1 when all prices equal 1. For this reason, we may
interpret y in this example as the log of real expenditures.
Unlike the AID system, where a Stone index is used to approximate the correct de�ator for x ,

in this model the Stone index is the exact, correct de�ator for obtaining real expenditures. This
is an example of what we call an Exact Stone Index cost function, which is any cost function for
which y D u D x�p0w (the details of this class are provided in section 5.1 of the Appendix). This
model does not have a closed form expression for indirect utility or ordinary Marshallian demand
functions except for very special choices ofm.u; z/, but it can still be readily estimated because it
expresses budget shares as functions of observables p; z and y D x�p0w. This example also shows
how implicit Marshallian demands can easily incorporate unobserved preference heterogeneity,
since the error terms in the nonlinear regression of w on y equal the random utility parameters
". This example also shows that the functional form of budget shares over y; z is completely
unrestricted, and Gorman's rank three limit does not apply. Finally, although y is endogenous (it
depends on w), it can be instrumented (for example, by x and p), so estimation can take the form
of instrumental variables, nonlinear 3SLS or GMM.
This example model is clearly very restrictive, particularly regarding price effects which enter

the model only through y. More generally, in the Appendix we show (by Theorems 1 and 2) that
all Exact Stone Index demand systems have some undesirable properties, so we instead propose
a generalization in which implicit utility equals an af�ne transform of the log of Stone-index de-
�ated expenditures. These are the Exact Af�ne Stone Index (EASI) implicit Marshallian demand
functions.
Theorems 3 and 4 in the Appendix describe EASI cost functions, which are those with the

property that utility is ordinally equivalent to an af�ne transformation of x � p0w. Equation (22)
in the Appendix describes one such cost function that is particularly convenient for empirical im-
plementation:

C.p; u; z; "/ D u C p0m.u; z/C T .p; z/C S.p; z/u C p0"; (2)
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This cost function differs from (2) only in the addition of T .p; z/ C S.p; z/u. It is similar to the
class of cost functions C.p; u/ D u C p0m.u/ C 1

2p
0M.u/p proposed by Pendakur and Sperlich

(2005), though they estimate ordinary Marshallian demands for their model by numerically solving
for u. There is also a connection to Gorman's (1976) "Tricks with Utility Functions," though we
employ an af�ne transform of de�ated expenditures instead of af�ne transforms of price or quantity
vectors.
By Theorem 4 in the Appendix, this class of cost functions has implicit Marshallian demands

w D !.p; y; z; "/ given by

w D m.y; z/CrpT .p; z/CrpS.p; z/y C " (3)

where y is given by

u D y D
x � p0w� T .p; z/C p0

�
rpT .p; z/

�
1C S.p; z/� p0

�
rpS.p; z/

� (4)

which is an af�ne transform of log of Stone Index de�ated nominal expenditures. Properties of
this general class of EASI models are provided in the Appendix.

2.2 An EASI Demand Model for Estimation

We propose the following parametric EASI cost function as our baseline case for empirical work:

C.p; u; z; "/ D u C p0
"
5X
rD0
brur C CzC Dzu

#
C
1
2

LX
lD0
zlp0AlpC

1
2
p0Bpu C p0": (5)

Here z0 D 1 and (for notational convenience inside the m function) z0 is not an element of the
vector z D .z1; ::::; zL/0; each br is a J�vector of parameters with 10Jb0 D 1, 1

0
Jbr D 0 for r 6D 0;

Al for l D 0; ::; L , and B are J � J symmetric matrices with 10JAl D 1
0
JB D 0

0
J ; and both C and

D are L � J matrices with 10JC D 1
0
JD D 0L .

This model for empirical application is the special case of the EASI model (2) in which

T .p; z/ D
1
2

LX
lD0
zlp0Alp;

S.p; z/ D
1
2
p0Bp;

and

m.u; z/ D

 
5X

rD 0
brur

!
C CzC Dzu: (6)
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The vector of functionsm.u; z/, which generates the model's Engel curves, could be replaced with
other sets of �exible functions of u; z such as splines. We use a polynomial in u and an af�ne
function of z to strike a balance between simple tractability and general Engel curve �exibility. We
choose quadratic forms in prices for T and S because these have simple gradient vectorsrpT .p; z/
and rpS.p; z/. Finally, we make S independent of z for the sake of terseness.
By Shephard's lemma, the cost function (5) has Hicksian (compensated) budget shares

w D
5X
rD0
brur C CzC Dzu C

LX
lD0
zlAlpC Bpu C " (7)

It can be readily checked from these formulas that

C.p; u; z; "/ D u C p0w�
LX
lD0
zlp0Alp=2� p0Bpu=2;

and solving this expression for u yields implicit utility y:

y D g.w;p; x; z/ D
x � p0wC

PL
lD0 zlp0Alp=2

1� p0Bp=2
: (8)

This y has many of the properties of log real expenditures. It equals a cardinalization of utility
u, it is af�ne in nominal expenditures x , and it equals x in the base period when all prices equal
one (which is when log prices p equal zero). Also, when B is zero, y exactly equals the log of
nominal expenditures de�ated by a price index. We later show empirically that y is very highly
correlated with the log of stone index de�ated nominal expenditures, which is a very popular ad hoc
measure of real expenditures. Like any money-metric utility measure, y is just a mathematically
convenient representation of utility and need not have any deeper signi�cance as an objective or
interpersonally comparable utility measure (see the "Shape Invariance and Equivalence Scales"
section in the Appendix for details).
Substituting implicit utility y into the Hicksian budget shares yields the implicit Marshallian

budget shares

w D
5X
rD0
br yr C CzC Dzy C

LX
lD0
zlAlpC Bpy C ": (9)

which is the matrix form of the equation provided in the introduction.
Given y, which is a function of observables x , p, z and the log Stone index p0w, the bud-

get share equations (9) are linear in parameters and so can be easily estimated. An approximate
estimator applies ordinary (linear) least squares after replacing y with x � p0w in (9), just like
estimation of the approximate AID model. Better estimators simultaneously estimate the model
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(9) with the parameters in y given by (8). One could use 3SLS or GMM estimation to account for
the endogeneity that results from having w appear in y. Use of GMM would allow for possible
unknown heteroskedasticity in ".
The EASI budget shares (9) have compensated price effects governed by Al , l D 0; 1; 2; :::; L ,

andB, which allow for �exible price effects and for �exible interactions of these effects with expen-
diture and with observable demographic characteristics. The Engel curve terms br , r D 0; 1; 2:::; 5
specify budget shares as �fth order polynomials in y, which (recalling that y is af�ne in log nom-
inal expenditures x) allows Engel curves to have very complicated shapes. Some empirically
popular demand functions have budget shares quadratic in log total expenditures, corresponding to
r D 0; 1; 2. We added higher moments r D 3; 4; 5 because they were statistically signi�cant. The
terms C and D allow demographic characteristics to enter budget shares through both intercept and
slope terms on y. The random utility parameters ", representing unobserved preference hetero-
geneity, take the form of simple additive errors in the implicit Marshallian demand equations.
The complete set of properties required for the EASI cost function (5) to satisfy cost function

regularity is as follows. Adding up and the required homogeneity conditions are satis�ed with
10Jb0 D 1, 1

0
Jbr D 0 for r 6D 0, 1

0
jAl D 1

0
jB D 0

0
J , 1

0
JC D 1

0
JD D 0L , and "

01J D 0. Symmetry
of Al and B ensures Slutsky symmetry. Strict monotonicity of cost requires @C.p; u; z; "/=@u >
0, which implies p0

h
�b�1u�2 C

�P5
rD 0 brrur�1

�
C DzC Bp=2

i
> �1. Finally, we require

concavity of exp[C.p; u; z; "/], and a suf�cient condition for concavity is that
PL
lD0 zlAl C Bu

be negative semide�nite. These constraints are assumed to hold for every value that the variables
x;p; z; " can take on, and hence every value that u;p; z; " can take on. It is shown in the Appendix
that this model can be globally regular if the set fx;p; z; "g has bounded support, and that " can be
distributed independently of x;p; z.
Apart from the construction of y, the implicit Marshallian demand equations (9) are linear in

coef�cients, which simpli�es estimation. In this model the D and B matrix parameters allow for
�exible interactions between y and both z and p. Either or both of these matrices could be zero
if such interactions are not needed. Note that if B were zero then y in equation (8) would also be
linear in parameters.
Our empirical model has Engel curves that are high order polynomials. Unlike Marshallian

demands, our implicit Marshallian EASI demands can be polynomials of any degree without
being bound by Gorman (1981) and Lewbel (1991) type rank restrictions. Note, however, that
monotonicity and concavity of the cost function places inequality constraints on the model, which
restricts the range of possible parameter values and the range of values of p; y; z; " for which these
demand functions satisfy regularity.
Polynomials are simple but are not required, i.e., we can maintain linearity in coef�cients by

replacing equation (6) withm.y; z/ D Bn.y; z/ for some J�K matrix of constantsB and K -vector
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of known functions n.y; z/. Our chosen functional form takes n.y; z/ to be a vector of elements
of the form ur and ur zl , but other functions could also be chosen. For example, the elements
of n.y; z/ could be splines or bounded functions such as logistic transformations of polynomials
(which would automatically bound estimated budget shares). Semiparametric speci�cations could
be obtained by letting n.y; z/ be basis functions with the number of elements of n growing to
in�nity with sample size.

2.3 Approximate Fully Linear Model

The demand functions (9) are linear in parameters except for the terms
PL
lD0 zlp0Alp and p0Bp that

appear in the construction of y in (8). A similar nonlinearity appears in Deaton and Muellbauer's
(1980) AID system and Banks, Blundell, and Lewbel's (1997) QUAID system, and can be dealt
with in an analogous way, either by nonlinear estimation or by replacing y with an observable ap-
proximation. Consider approximating our real expenditures measure y with nominal expenditures
de�ated by a Stone price index, that is, replace y withey de�ned by

ey D x � p0w (10)

for some set of budget shares w. Then by comparison with equation (9) we have

w D
5X
rD0
breyr C CzC Dzey C LX

lD0
zlAlpC Bpey Ce" (11)

wheree" � " withe" de�ned to make equations (11) hold. We call the model of equations (10) and
(11) the Approximate EASI model.
The Approximate EASI nests the model w D b0 C b1ey C Cz C Ap Ce", which is identical to

the popular approximate Almost Ideal Demand System (AID) if ey D x � p0w (that is, w D w).
The AID without the approximation has y equal to de�ated x where the log de�ator is quadratic in
p, while the EASI model without approximation has y equal to an af�ne transform of x � p0w.
The approximate EASI also nests the model w D b0 C b1ey C b2ey2 C Cz C Ap Ce", which is

the model estimated by Blundell, Pashardes, and Weber (1993). Their motivation for this model
was by analogy with the Almost Ideal, but if this model was really to be Marshallian then, as they
show, utility maximization would require linear rank restrictions on the coef�cients b0, b1, and b2,
which they did not impose. The approximate EASI implicit Marshallian demand function there-
fore provides a rationale for the unrestricted model that Blundell, Pashardes, and Weber actually
estimated.
The approximate EASI model, substituting equation (10) into (11), can be estimated by linear
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regression methods, with linear cross-equation symmetry restrictions on the Al and B coef�cients.
A natural choice for w is the sample average of budget shares across consumers. A better ap-
proximation to y would be to let w be each consumer's own w, so each consumer has their own
Stone index de�ator based on their own budget shares. However, as discussed later, this better
approximation introduces endogeneity.
In our empirical application, we estimate the approximate model with w D w using seem-

ingly unrelated regressions, and we estimate the true EASI model using nonlinear three stage least
squares. As in the approximate AID system, there is no formal theory regarding the quality of
the approximation that uses ey in place of y but we �nd empirically that approximate model esti-
mates do not differ much from estimates based on the exact y (most estimated parameters have
the same signs and roughly similar magnitudes), and provide good starting values for exact model
estimation.

2.4 Elasticities and Consumer Surplus

We now show how to evaluate the effects of changing prices or other variables in EASI models.
We will give results both for our speci�c empirical model and for the general EASI model given
by equations (2), (3), and (4).
First consider evaluating the cost to an individual of a price change. A consumer surplus

measure for the price change from p0 to p1 is the log cost of living index, which for the cost
function (2) is given by

C.p1; u; z; "/� C.p0; u; z; "/ D .p1 � p0/0m.u; z/C T .p1; z/� T .p0; z/C

S.p1; z/u � S.p0; z/u C .p1 � p0/0".

If C.p0; u; z; "/ is the cost function of a household that has budget shares w0 and implicit utility
level y then this expression can be rewritten in terms of observables as

C.p1; u; z; "/� C.p0; u; z; "/ D .p1 � p0/0
�
w0�rpT .p0; z/�rpS.p0; z/y

�
C

T .p1; z/� T .p0; z/C S.p1; z/y � S.p0; z/y.

For our base empirical model log cost function (5), this log cost of living index expression simpli-
�es to

C.p1; u; z; "/� C.p0; u; z; "/ D .p1 � p0/0w0 C
1
2
.p1 � p0/0

 
LX
lD0
zlAl C By

!
.p1 � p0/.
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The �rst term in this cost of living index is the Stone index for the price change, .p1 � p0/0w0.
Such indices are commonly used on the grounds that they are appropriate for small price changes
and that they allow for unobserved preference heterogeneity across households. In our model,
the presence of the second term, which depends upon T and S, allows us to explicitly model
substitution effects, and so consider large price changes, while also accounting for the behavioral
importance of both observed and unobserved heterogeneity.
De�ne semielasticities to be derivatives of budget shares with respect to log prices p, implicit

utility y, log nominal total expenditures x , and demographic characteristics (or other observed
taste shifters) z. The semielasticity of a budget share can be converted into an ordinary elasticity of
budget share by dividing by that budget share. We provide semielasticities because they are easier
to present algebraically. Hicksian demands are given by

!.p; u; z; "/ D m.u; z/CrpT .p; z/CrpS.p; z/u C ";

so the Hicksian price semielasticities are

rp0!.p; u; z; "/ Drpp0T .p; z/Crpp0S.p; z/u Drpp0T .p; z/Crpp0S.p; z/y:

These are equivalently the price semielasticities holding y �xed, rp0!.p; y; z; "/. Similarly, semi-
elasticities with respect to y, interpretable as real expenditure elasticities, are given by

r y!.p; y; z; "/ D r ym.y; z/CrpS.p; z/;

and semielasticities with respect to observable demographics z are

rz!.p; y; z; "/ D rzm.y; z/CrpzT .p; z/CrpzS.p; z/u

Compensated semielasticities for our baseline model, the log cost function (5), are linear apart
from the construction of y. Compensated price semielasticities are given by

rp0!.p; y; z; "/ D
LX
lD0
zlAl C By; (12)

and semielasticities with respect to y are

r y!.p; y; z; "/ D
5X
rD1
brr yr�1 C DzC Bp; (13)

which can vary quite a bit as y changes, re�ecting a high degree of Engel curve �exability. Demo-
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graphic semielasticities are given by

rzl!.p; y; z; "/ D clCdlyCAlp: (14)

where cl and dl are the appropriate rows of C and D, respectively, which allows for price and y
interactions with demographic effects.
Closed form expressions for Marshallian elasticities are more complicated, and so are provided

in the appendix.

3 Estimation

3.1 Estimators

We estimate demand systems with J goods, so as usual we can drop the last equation (the J 'th
good) from the system and just estimate the remaining system of J � 1 equations. The parameters
of the the J 'th good are then recoverable from the adding up constraint that budget shares sum
to one. Assume this is done in all of the following discussion. The system of equations to be
estimated is (9).
The approximate EASI, equation (11) withey given by equation (10), is trivial to estimate. If the

approximate EASIe" is uncorrelated with p, z, zey, pey, pzl , for l D 1; :::; L andeyr for r D 0; :::; 5,
then, without imposing symmetry of the Al and B matrices, estimating each approximate EASI
equation separately by linear ordinary least squares is consistent and equivalent to linear seem-
ingly unrelated regressions (SUR). Imposing symmetry of the Al and B matrices means imposing
linear cross-equation equality constraints on the coef�cients, but the resulting approximate EASI
model can still be consistently estimated using ordinary linear SUR. Since this model is only an ap-
proximation to the EASI model, we should not expect these uncorrelatedness assumptions to hold
exactly, but we found that the approximate EASI estimates were generally quite close to the exact
model estimates, and can provide useful parameter starting values for exact model estimation.
The exact EASI model (without approximation) that we estimate has equation (8) substituted

into equation (9) to give

w D
5X
rD0
br

 
x � p0wC

PL
lD0 zlp0Alp=2

1� p0Bp=2

!r
C CzC

LX
lD0
zlAlpC (15)

.DzCBp/

 
x � p0wC

PL
lD0 zlp0Alp=2

1� p0Bp=2

!
C ".

Equation (15) is nonlinear in parameters because of the presence of Al and B in y. An additional

13



complication for estimation is that w, which is endogenous, appears on the right side of equation
(15) in the Stone index p0w. One possible estimator is to ignore this endogeneity and simply
estimate the resulting system of equations by nonlinear least squares. In our empirical application
we �nd that the resulting bias from ignoring this endogeneity is small, because, as we discuss
below, the variation in the p0" component of p0w is tiny relative to the variation in x and the other
components of y.
To formally account for endogeneity, nonlinearity in parameters, and possible heteroskedastic-

ity of unknown form in ", we use an instrumental variables estimator. Let q be an M�vector of
observable variables that are uncorrelated with ", which will be used as instruments for estimation.
If E." j x;p; z/ D 0J then q can include any bounded functions of p, z, and x , for example,
p, z, and ey D x � p0w with w equal to the sample average budget-share vector. However, if un-
observed heterogeneity is correlated with some observed characteristics such as x or elements of
z, then those elements must be excluded from q. Let q D .q1,...,qM/0. Then E["0qm] D 0J for
m D 1,...,M , which implies

E

2664
0BB@ w�

P5
rD0 br

�
x�p0wC

PL
lD0 zlp0Alp=2

1�p0Bp=2

�r
� Cz�

PL
lD0 zlAlp�

.DzCBp/
�
x�p0wC

PL
lD0 zlp0Alp=2

1�p0Bp=2

�
1CCA qm

3775 D 0J (16)

for m D 1; :::;M .
Allowing for generally heteroskedastic ", parameters may be estimated by applying Hansen's

(1982) Generalized Method of Moments (GMM) to this set of moment conditions. By adding up,
the moments associated with the J 'th good are super�uous, so with M instruments we will have
.J � 1/M moments. An alternative, simpler estimator (which we found to be numerically better
behaved in practice) is homoskedastic nonlinear three stage least squares (3SLS). This 3SLS is, like
GMM or heteroskedastic 3SLS, consistent with heteroskedastic ", but is only as asymptotically
ef�cient as these other estimators when " is homoskedastic.
Another possible estimator (suggested by a referee) is a form of iterative linear three stage least

squares, as follows. Let � be the vector of all the parameters in the model. If y were observed,
we could estimate � by a linear three stage least squares, that is, we could estimate the system of
linear equations (9) using the vector q as instruments. Given observations (consumers) y1; :::yn , letb� D 2n.y1; :::yn/ denote this linear three stage least squares estimator, or any other linear model
GMM estimator based on the moments E["0qm] D 0J for m D 1,...,M with " given by equation
(9). For each consumer i we have byi D g.wi ;pi ; xi ; zi ;b�/ for the function g de�ned by equation
(8). The estimator would then consist of taking some starting values forb� (these could be estimates
using our approximate model estimator of �), substituting thisb� into g to obtain estimatesby1; :::byn ,
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do linear three stage least squares or linear model GMM using these by's as data to obtain a new
value of � given by bb� D 2n.by1; :::byn/, and repeat this process using bb� in place b�, iterating to
convergence. This estimator could be easily implemented in a statistical package like Stata that
does linear three stage least squares or linear GMM regression. Note that imposing symmetry
restrictions requires imposing cross equation equality restrictions on the estimated coef�cients in
each iteration.
Formally, let the �xed pointbb� D 2n h.g.w1;p1; x1; z1;bb�/; :::g.wn;pn; xn; zn;bb�//i de�ne the

estimatorbb�. This is a special case of the generic class of �xed point based estimators considered
by Dominitz and Sherman (2005), who provide associated consistency and limiting distribution
theory assuming that the mapping that de�nes the estimator bb� is a contraction mapping. If the
iterations had been linear least squares seemingly unrelated regressions instead of linear three
stage least squares regressions, then this estimator would also be an example of the iterated linear
least squares estimator for conditionally linear systems proposed by Blundell and Robin (1999).
Blundell and Robin apply the estimator to a demand system context similar to ours, and provide
an extension to endogenous regressors, but their extension requires a control function form of
endogeneity that our model does not satisfy. We do not provide formal asymptotic theory for bb�
in our model, but we found that this estimator performed very well in practice, yielding estimates
that are numerically quite close to those of our full nonlinear three stage least squares estimator.
The equality restrictions required for demand system rationality are easily imposed in our con-

text. Adding up and homogeneity constraints on the parameter vectors and matrices hold by omit-
ting the J 'th good and imposing the linear restrictions that 1JAl D 1JB D 0. Slutsky symmetry is
satis�ed if and only if Al for l D 0, ..., L and B are all symmetric matrices. All of these parametric
restrictions may be imposed as a set of linear constraints in 3SLS or GMM.
Writing this system linearly as equation (9) suggests that good instruments q should be highly

correlated with p, z, zy, py, pz1, ...,pzL and yr . We assume E." j p; x; z/ D 0J and take q to be
p, z, zy, py, pz1, ...,pzL , and yr for r D 0; :::; 5 with y de�ned as

y D
x � p0w�

PL
lD0 zlp0Alp=2

1C p0Bp=2

where w is the average budget shares across consumers in our sample, and Al and B are the
estimated values of Al and B based on linear least squares estimation of the approximate EASI
model. Note that use ofw and inconsistency of the estimates ofAl and B (due to their coming from
the approximate model) in the construction of y only affects the quality of the instruments q and
hence the ef�ciency of the 3SLS or GMM estimation, but does not cause inconsistency, because
y remains uncorrelated with " given any choice of values of the parameters w, Al and B in the
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construction of y. When symmetry of Al and B is not imposed, this set of moments E."0qm/ D 0J
for m D 1; :::;M exactly identi�es the EASI model parameters. Imposing symmetry reduces the
number of distinct parameters, yielding overidenti�cation.
Since we have assumed E." j p; x; z/ D 0J , we could interpret

P5
rD0 br yr C Cz C Dzy as

a sieve approximation to a general unknown J�vector of smooth functions n.y; z/, with a span-
ning basis consisting of functions of the form ysztk for integers s; t . Ai and Chen (2003) provide
associated rates of convergence, optimal instrument construction, and limiting distribution theory
for general semiparametric sieve GMM estimators of this form. Such estimators can attain the
semiparametric ef�ciency bound for the remaining parameters, in this case Al and B.
The parametric 3SLS or GMM estimators can be readily modi�ed to deal with possible mea-

surement error or endogeneity in some regressors, by suitably modifying the set of instruments q.
For example, if simultaneity with supply is a concern (which is more likely to matter signi�cantly
in an aggregate demand context than in our empirical application), then we could replace p with p
everywhere p appears in the construction of the instuments q, where p are the �ts from regressing
p on supply side instruments.
In many data sets, such as the UK Family Expenditure Survey, consumption is measured over a

very short time span and so is subject to considerable infrequency-based measurement error. In our
empirical application we use Canadian data where consumption is measured over an entire year,
which implies less infrequency-based error, but may suffer from recall-based error. One might
deal with this problem in part by including functions of income in place of functions of nominal
total expenditures in our list of instruments. However, using an instrument like income, which
has a large amount of over-time variation that is smoothed out in consumption decisions, may
entail considerable ef�ciency loss. One might alternatively use measures of household wealth as
instruments for total expenditure, but unfortunately, most public-use data sets (including ours) do
not have both wealth and consumption data. It should also be noted that measurement errors in
total expenditures would affect not only our total expenditures regressor, but also the construction
of our dependent variables, the budget shares. Estimators such as Lewbel (1996) could potentially
be used to deal with the latter problem.
Similarly, if unobserved preference heterogeneity " is correlated with some observed taste

shifters (i.e., elements of z), then those may be excluded from the instrument list and replaced
by, e.g, nonlinear functions of x and of the remaining elements of z. However, in these cases
one would need to take care in interpreting the resulting model residuals b", because they will
then contain both unobserved preference heterogeneity and measurement error. With panel data
one might separate these two effects by modeling the unobserved preference heterogeneity using
standard random or �xed effects methods. The exact model estimators remain consistent regardless
of heteroskedasticity in ", so for example the estimates are consistent if " D N.x; z/"� where "�

16



are preference parameters that are independent of p; x; z, and features of the functionN.x; z/ could
be estimated based on the estimated conditional variance of residualsb", conditioning on x; z.
The above described estimators do not impose the inequality (concavity and monotonicity) con-

straints implied by regularity of the cost function, or equivalently by utility maximization (global
regularity is discussed in the Appendix). In addition to these usual utility derived inequality con-
straints, interpreting " as preference heterogeneity parameters requires " to be independent of p,
and having the support of " independent of prices imposes additional inequality constraints (see
the Appendix for details). If the model is correctly speci�ed then imposing these inequality con-
straints on parameter estimates will not be binding asymptotically, and so failing to impose them
will not result in a loss of asymptotic ef�ciency, as long as the true parameter values do not lie on
the boundary of the feasible region implied by the inequality constraints. Based on this, a common
practice in empirical demand analysis, which we will follow in our application, is to estimate the
model without imposing inequality constraints, and then check that they are satistifed for a rea-
sonable range of p, x , and z values. In particular, the inequalities associated with utility function
regularity are readily veri�ed using elasticity calculations, e.g., the estimated Slutsky matrix can
be checked for negative semide�niteness.

3.2 Data and Model Tests

We �rst estimate the approximate EASI model, equation (11) withey given by equation (10), using
SUR. We then estimate the exact EASI model given by (15) by nonlinear 3SLS with instruments
and starting values as described in the previous section. We use 3SLS because we found the GMM
weighting matrix estimates to be numerically unstable. Also, 3SLS is asymptotically ef�cient
under the assumption of independently distributed ", and our 3SLS estimator remains consistent
(though inef�cient) if " is not homoskedastic.
The data used in this paper come from the following public use sources: (1) the Family Ex-

penditure Surveys 1969, 1974, 1978, 1982, 1984, 1986, 1990, 1992 and 1996; (2) the Surveys
of Household Spending 1997, 1998 and 1999; and (3) Browning and Thomas (1999), with up-
dates and extensions to rental prices from Pendakur (2002). Price and expenditure data are used
from 12 years in 4 regions (Atlantic, Ontario, Prairies and British Columbia) yielding 48 distinct
price vectors. Prices are normalised so that the price vector facing residents of Ontario in 1986 is
.1; :::; 1/, that is, these observations de�ne the base price vector p D 0J . Since the model contains
a high-order polynomial in y, we subtract the median value of x � p0w from y. Translating y by
a constant is absorbed by changes in the A0, br and C coef�cients leaving the �t unchanged, and
shifting y to near zero reduces numerical problems associated with data matrix conditioning by
giving the br coef�cients comparable magnitudes.
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The empirical analysis uses annual expenditure in J D 9 expenditure categories: food-in,
food-out, rent, clothing, household operation, household furnishing & equipment, transportation
operation, recreation and personal care. Personal care is the left-out equation, yielding eight expen-
diture share equations to be estimated. These expenditure categories, which exclude large durables,
account for about 85% of the current consumption of the households in the sample.
Our sample for estimation consists of 4847 observations of rental-tenure single-member house-

holds who had positive expenditures on rent, recreation and transportation. We use only persons
aged 25 to 64 living in cities with at least 30,000 residents. We use residents of English Canada
only (so Quebec is excluded). Single-member households are used to avoid issues associated with
bargaining or other complications that may be associated with the behavior of collective house-
holds. City residents are used to minimise the effects of possible home and farm production. Table
1 gives summary statistics for our estimation sample.
We include L D 5 observable demographic characteristics in our model: (1) the person's age

minus 40; (2) the sex dummy equal to 1 for men; (3) a car-nonowner dummy equal to 1 if real
gasoline expenditures (at 1986 gasoline prices) are less than $50; (4) a social assistance dummy
equal to 1 if government transfers are greater than 10% of gross income; and (5) a time variable
equal to the calendar year minus 1986 (that is, equal to zero in 1986).
We include the time variable in the model to account for possible slow changes over time in

tastes, quality, and composition of composite goods. Time trends are also commonly included
in demand systems to account for some types of habit formation (see, e.g., Pollak and Wales
1992). The time trend may also help to compensate for average growth in, and hence possible
nonstationarity of, real total expenditures over time, noting that our dependent variables, budget
shares, are bounded. See, e.g., Lewbel and Ng (2005) for a detailed analysis of the effects of
covariate nonstationarity in budget-share demand-system models. However, our data consist of
repeated cross sections at the household level, so the scope for possible dependence of errors
across observations due to total expenditure growth is limited.
These variables are all zero for a 40 year old car-owning female in 1986 who did not receive

much government transfer income. We use a limited set of characteristics like this because each
additional element of z increases the number of additional parameters to estimate in our model
by 52 (80 additional parameters minus 28 additional symmetry restrictions). One could introduce
additional demographics at a lower cost in degrees of freedom by including a large set of char-
acteristics in the m function (the C and D parameter matrices) and a smaller set interacted with
prices (the Al matrices). Restrictiveness of the observed heterogeneity speci�cation is also partly
mitigated by the relative demographic homogeneity of the sample, and by the role of " which
embodies unobserved preference heterogeneity.
When symmetry is not imposed on Al and B, then given the instruments speci�ed above, the
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model is exactly identi�ed. Denoting the number of terms in each br (6 in our baseline model) as
R, the symmetry-unrestricted model has [R C L C L C .J � 1/.L C 1/C .J � 1/] .J�1/ D 576
parameters for br ; C, D, Al , and B (72 coef�cients in each of 8 equations). When symmetry is
imposed on Al and B, the model has .L C 2/ .J � 1/ .J � 2/ =2 D 196 restrictions, which are
overidentifying restrictions for testing exogeneity and are also symmetry restrictions. Since each
estimated model has hundreds of parameters, we do not present all the individual coef�cients
estimates (they are available from the authors on request). We instead provide many summaries
and analyses of the results. Even with parameters all set to zero as starting values, we still obtained
convergence of the nonlinear 3SLS exact model estimator in only three iterations, due to the near
linearity of the EASI model.
Table 2 gives Wald- and J-tests for various hypotheses concerning the model. Since our sample

size is large (8 equations times 4847 observations per equation) we use a 1% critical value for all
tests. Consider price effects �rst. The Wald test of symmetry in the asymmetric model is mar-
ginally insigni�cant with a p-value of 1.4%, and symmetry is not rejected for either the level of
prices (Al D A0l for all l) or for prices interacted with implicit utility y (B D B

0). This lack of sym-
metry rejection is not due to the irrelevance of price effects. In particular, the direct price effects
given by the A0 matrix are strongly signi�cant, as are many of the interactions between prices and
demographics in the Al matrices. The interaction of prices with income are less signi�cant, and
we cannot reject the hypothesis that the py interaction given by the B matrix is excludable.
Turning to expenditure effects, we �rst check for adequacy of our �fth order polynomial in y

by adding either a y�1 or y6 term to the model. The reciprocal of y is excludable with a p-value
of 4.9%. The 6th order term in y is marginally signi�cant, but these tests covary, and the joint test
of exclusion of both y�1 and y6 is not signi�cant, with a p�value of 2.9%. Taken together the
above results suggest that symmetry may not be violated and that a 5th order polynomial in y may
be suf�cient, so we present further results for a symmetry-restricted model with r D 0; 1; ::; 5.
The lower panel of Table 2 shows that one cannot further reduce the level of the polynomial in y

by dropping y5. Turning to evidence of complicated Engel curve shapes, we test for whether or not
each of the 8 budget share equations can be reduced to a quadratic. The tests suggest that 4 of the 8
budget shares are statistically signi�cantly nonquadratic: food-at-home, rent, household operation,
and recreation. These departures from quadratic Engel curves suggest that allowing for complex
Engel curves is a useful attribute of our methodology. Later we examine our estimated Engel
curve shapes in more detail, considering whether the departures from quadratic are economically
important in addition to statistically signi�cant.
Next consider some model summary statistics. The symmetry-restricted model is overiden-

ti�ed, so we can construct overidenti�cation tests of instrument validity. The 196 symmetry-
restrictions result in our model having 196 more moments than parameters, and we pass the re-
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sulting overidenti�cation based test of validity of the included moments with a p-value of 2.1%.
However, if we include additional instruments based on y�1 and y6, we obtain 16 additional mo-
ments (two more instruments times eight budget share equations), and the resulting J-test of overi-
dentifying restrictions becomes marginally signi�cant.
Let e denote the sample residuals vector, which is also our estimate of " for each household.

The R2 values for the 8 equations (in the order given in Table 2) are: 0.49, 0.31, 0.65, 0.30, 0.19,
0.43, 0.57, and 0.31, respectively. The model is not estimated by ordinary least squares, so these
R20s should only be interpreted as summary measures regarding the size of e relative to budget
shares. These numbers show that much, even most, of the variation in budget shares is due to
unobserved heterogeneity. Our approach formally includes " as random utility parameters, so
the relatively large variation in e yields large effects in our welfare calculation estimates, as we
demonstrate below.
Table 3 gives information on the sources of variation in y. Since both total expenditures and

prices may contain time trends, we detrended all the variables in this table by regressing them on
dummies for each time period, and report correlations of the resulting residuals from these regres-
sions. The upper block of Table 3 gives standard deviations and pairwise correlations between
three variables. The �rst is y itself, detrended. The second, denoted y.p0.w � e// is identical to
y except that it removes p0e, from the p0w component of y given in equation (8). The third is
the instrument y, which is identical to y, except that it has p0w, where w is the sample-average
budget-share vector, in the numerator instead of p0w. These three variables have almost identical
variances and correlations over 0.998 even after detrending. This shows that the instrument y is
highly relevant, and that, while our estimator controls for endogeneity in y, it may not be numer-
ically important to do so in practice, since removing the source of endogeneity from y leaves it
virtually unchanged.
Further examining the components of y, the second block of Table 3 shows correlations be-

tween y and two measures of log of stone-de�ated expenditures, x � p0w andey D x � p0w. Even
after detrending these variables are also highly correlated with each other, which explains why
the approximate EASI model estimates are close to the exact model estimates, even though the
approximate EASI does not include the af�ne transformation of x � p0w that de�nes y, and our
approximate EASI estimates do not control for endogeneity.
The third block of Table 3 considers the magnitude of p0e in more detail. Here, we see that the

standard deviation of p0e is about one-twentieth as large as that of y and of the log of stone-de�ated
expenditures, x�p0w, and that p0e is only weakly correlated with these real expenditure measures.
This again shows that the endogenous component of y orey is small. It also shows that if the errors
in our model were treated as measurement errors in budget shares (or more generally, as errors that
are non-behavioral or otherwise not part of the model), then our parameter estimates (including our
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�nding of signi�cantly nonquadratic Engel curves) would be almost unchanged. However, treating
the errors as measurement errors rather than preference heterogeneity parameters substantially af-
fects consumer surplus and social welfare calculations, as we show later in the section on consumer
surplus estimates. Formally excluding p0" from y requires iterative estimation, following the spirit
of the iterative nonparametric approach proposed in Pendakur and Sperlich (2005). We discuss the
results of such estimation at the end of section 3.5.
The last block of Table 3 gives the standard deviation and correlations of

PL
lD0 zlp0Alp=2

(denoted p'Ap in the Table) and p0Bp=2, which are the components of the difference between y
and x�p0w. These components have less than one-tenth the standard deviation of p0e and less than
a hundredth the standard deviation of y. As a result, they only drive a tiny fraction of the variation
in y, which again shows why the approximation that ignores these components is quite good.

3.3 Estimated Engel Curves

The easiest way to summarize the income related parameter estimates is to examine the resulting
expenditure share equations as functions of x for particular values of p, z, and ". At p D 0J ,
y equals log nominal expenditure x , so at these base prices we obtain Marshallian Engel curves
w D

P5
rD0 br xrCCzCDzxC". Figures 1-8 show these estimated Engel curves from our model for

a 40 year old car-owning female in 1986 who did not receive much government transfer income,
and having " D 0. For her, w D

P5
rD0 br xr . The base period Engel curves for households with

different values of unobserved heterogeneity are identical except for being vertically shifted by
". These base period Engel curves are also informative about the shape of Engel curves in other
price regimes, since at other price vectors, Engel curves expressed in terms of our real expenditures
measure y differ from the above only by the addition of the linear function

PL
lD0AlzlpC Bpy.

In Figures 1 to 8, each �gure presents the estimated Engel curve for four models: thick black
lines indicate 3SLS estimates of the symmetry-restricted exact model; thick grey lines indicate
3SLS estimates of the symmetry-restricted quadratic (having a second instead of �fth order poly-
nomial in y) exact model; dotted thick black lines indicate approximate SUR estimates of the
model; and thin black lines indicate exact 3SLS estimates of the asymmetric model (italics denote
shorthand). Estimates are computed at each percentile of log expenditures in the data, and esti-
mated 90% con�dence intervals (computed via the delta method) are displayed with small crosses
for the exact 3SLS symmetry-restricted model at each �fth percentile of the expenditure distribu-
tion.
As noted earlier, our quadratic speci�cation is very similar to Quadratic Almost Ideal (QAI)

related models estimated by Blundell, Pashardes, and Weber (1993) and Banks, Blundell and Lew-
bel (1997). The quadratic EASI differs from these QAI models in that it has a different de�ator for
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total expenditures, and it does not require the coef�cient of squared y to either depend on prices or
on the lower order expenditure coef�cients to stay consistent with utility maximization. Our spec-
i�cation also allows for more general demographic effects than is typical in applied QAI models,
which usually only have terms analogous to C, but not Al or D.
Figures 1 and 2 show Engel curves for food-in (food consumed at home) and food-out. Both

these Engel curves are almost linear. Both the approximate and quadratic symmetry-restricted
models lie within the 90% pointwise con�dence intervals of the exact model. However, in the
food-out equation, the asymmetric model estimates are above the con�dence intervals in the upper
part of the expenditure distribution. The food-in budget share equation is statistically signi�cantly
non-quadratic (see Table 2), though the empirical size of the departure is small.
Figure 3 shows the Engel curve for rent. Throughout most of the expenditure distribution, the

quadratic estimates lie outside the con�dence intervals of the exact estimates. In the exact esti-
mates, the curvature of the Engel curve is near zero in the bottom decile, strongly negative in the
next two deciles, and near zero until it becomes positive in the top decile. This kind of complex-
ity cannot be captured in a quadratic model but is readily accomodated in the EASI framework.
Further, the magnitude of the quadratic departure from the exact model can be large. At the �fth
percentile, the quadratic model overestimates the rent budget share by almost 5 percentage points.
At the bottom quintile cutoff, the quadratic model underestimates the rent budget share by about 2
percentage points.
For the rent equation, the approximate model performs very well, lying essentially on top of

the exact estimates throughout the distribution of expenditures. As in the food-out equation, the
asymmetric model performs relatively poorly (though not as poorly as the quadratic model).
Figures 4, 5, 6 and 7 give the household operation, household furnishing & equipment, clothing

and transportation operation Engel curves. All four sets of estimates lie within the 90% con�dence
intervals of the exact model estimates. However, as shown in Table 2, the household operation
equation shows evidence of being statistically signi�cantly nonquadratic. The departure from
quadratic can be seen in Figure 4, where the exact model estimate looks more like two nearly
linear segments joined by a curved segment in the middle instead of a true quadratic function.
Figure 8 gives the recreation Engel curve. As in Figures 4-7, all four sets of estimates lie within

the pointwise con�dence intervals of the exact model estimates. However, as in the rent equation,
the quadratic model is statistically rejected (see Table 2), and the Engel curve looks nonquadratic,
particularly in the bottom decile, where the exact model estimate of the recreation Engel curve
�attens out, while the quadratic estimate has a strong negative slope.
We now address the question of whether the complexity we observe in our estimated Engel

curves is an artifact of our sample or of our choice of modeled expenditure categories. In particu-
lar, much of the nonquadratic behavior we observe is in the tails of the x distribution, where data
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are relatively sparse. In addition, many researchers of consumer demand exclude shelter expen-
ditures (ie., rent) on the grounds that such expenditures cannot be adjusted quickly in the face of
budget and price changes. A possible concern is whether the nonlinearity we observe in the rent
share arti�cially induces nonlinearity in other estimated budget share functions. We conduct three
robustness exercises aimed at these issues. First, we estimated our EASI model using an extended
sample of 18,600 households, which includes multiple-member households and households resid-
ing in Quebec. For this model, we included 4 additional demographic variables: the log of the
number of household members, and dummies indicating single-parent households, childless cou-
ple households and households residing in Quebec. Second, we estimated our EASI model on the
8846 households in our extended sample that did not have transfer income exceeding 10% of gross
income and who did own a car (called the `nopoor' extended sample). Third, we estimated our
EASI model on a subset of expenditure categories which excludes rent. For this model, we used
households of all tenures, not just rental-tenure households, and used only those that did not have
transfer income exceeding 10% of gross income and that did own a car. This yielded 32,399 obser-
vations available for an estimation sample (called the `norent nopoor' extended sample). For the
norent nopoor extended sample, we include the number of rooms in the dwelling and its square as
additional demographic characteristics. Detailed results for these models are available on request
from the authors.
Figures 9 and 10 show the estimated rent and recreation Engel curves for various samples for

the reference type de�ned above facing the base price vector, plus con�dence intervals (shown
with x's) for the Engel curves of the extended sample. Engel curves are evaluated at each �fth
percentile of the single-person household real-expenditure distribution for the sample. Con�dence
intervals for other samples are similar in size, and are suppressed to reduce clutter. Examination
of Figure 9 shows that the non-quadratic curvature we noted in Figure 3 for the rent Engel curve
remains evident in the much larger extended sample (thin black line). Of course, the extended
nopoor sample (dotted line) is uninformative at the bottom of the distribution because excludes
the poor, but it does reveal some departure from the quadratic model at the high end: at the 97th
percentile of the nopoor distribution, then EASI Engel curve is 2 percentage points (and statistically
signi�cantly) higher than the quadratic model would indicate.
Figure 10 gives Engel curves for the baseline sample, the extended sample, the extended nopoor

sample and the extended nopoor norent sample. The �gure shows that the curvature in the recre-
ation Engel curve observed at the bottom end of the expenditure distribution in Figure 8 may have
overstated the change in curvature for poor households. In particular, the extended sample (thin
black line) does not reveal much nonquadratic curvature at the bottom of the distribution. Unsur-
prisingly, since the curvature was seen mainly at the bottom, the extended nopoor sample (dotted
line) does not pick it up either. Also, in the larger sample at the upper end of the expenditure distri-
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bution, the three bunched recreation Engel curves lie within each others' 90% con�dence intervals.
Turning to the extended nopoor norent sample (thick grey line), wherein the rent equation is not
modeled and a much larger number of observations is used, apart from a slight upturn at the very
bottom of the distribution, we see little evidence of important non-quadratic curvature.
There are two important lessons that we draw from these �gures. First, the SUR estimates

of the approximate model do quite a good job of approximating the Engel curve estimates of the
exact model, even when the underlying Engel curves are quite complex. Second, while the demand
functions of some goods are close to linear or quadratic in log total expenditures, other goods such
as rent and recreation are not quadratic. This implies a demand system rank (see Gorman 1981
and Lewbel 1991) that is higher than three. Most past empirical studies have found rank to equal
three, though Lewbel (2003) �nds some empirical evidence for rank four. Figures 1 to 10 suggest
that the reason why previous studies failed to �nd ranks higher than three is because most of the
departures from quadratic are either somewhat subtle, as in the household operation equation, or
are concentrated in the tails of the expenditure distribution as in the rent equation. Either way, the
precision gained by detailed model speci�cation and large sample sizes is needed to con�rm the
departure from quadratic Engel curves.

3.4 Estimated Price Effects

Prices in our model vary only by region and year, so despite having thousands of observations we
only have 48 different price regimes. However these data still contain a very substantial amount of
relative price variation, both because our sample is spread out over 28 years, and because Canada
has historically had considerable regional price variation in some goods and services. As a result,
we are able to obtain a reasonable amount of precision in many of our price effect estimates.
In our framework, price effects are most easily evaluated by looking at compensated budget-

share semi-elasticities, compensated (good-speci�c) expenditure elasticities, or compensated quan-
tity derivatives (aka, Slutsky terms). As shown by equation (12), compensated budget-share semi-
elasticities with respect to prices are given by the matrix 7 �

PL
lD0Alzl C By, and so are af�ne

in z and y. Compensated (good-speci�c) expenditure elasticities with respect to prices is closely
related, and is given byW�1 �7 C ww0� whereW D diag.w/. The normalised1 Slutsky matrix,
S, is related to the compensated semi-elasticity matrix, 7 , by S D 7 Cww0�W. Table 4 assesses
all 3 of these measures of price effects. Since y D x at the base price vector, and since x D 0
at median expenditure, this matrix is equal to A0 at median expenditure for the reference type of

1The Slutsky matrix, S, is de�ned as the matrix of compensated quantity derivatives with respect to (unlogged)
prices. The normalised Slutsky matrix;S, (see Pollak and Wales 1990) normalises the Slutsky matrix for prices and
expenditure: S D PSP=x , where P D diag.exp.p//. Concavity of cost is necessary and suf�cient for negative
semide�niteness of both the Slutsky matrix and the normalised Slutsky matrix.
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person, a 40 year old car-owning female in 1986 who did not receive much government transfer in-
come. Table 4 presents summary estimated price effects, with asymptotic standard errors in italics.
The rightmost block of Table 4 gives compensated price semi-elasticities for a reference person
with median expenditure from the symmetry-restricted exact 3SLS estimates.
Consider �rst the matrix of compensated budget-share semi-elasticities for the reference person

at median expenditure given by A0. Several of the own-price effects are large and statistically
signi�cant. The own-price compensated semi-elasticity for the rent budget share is 0.063, which
implies that a rent price increase of 10% would be associated with a budget share 0.63 percentage
points higher when expenditure is raised to equate utility with that in the initial situation. In
contrast, if the recreation price rises by 10%, its budget share will be a little more than 1 percentage
point lower when expenditure is raised to compensate for the loss in utility.
Several cross-price effects are also large and statistically signi�cant, suggesting that substitu-

tion effects are important. For example, the clothing budget share compensated rent cross-price
semi-elasticity is -0.066, implying that an increase in the price of rent is associated with a sig-
ni�cant decrease in the budget share for clothing even after expenditure is raised to hold utility
constant.
For some readers, expenditure elasticities may be more easily interpreted than budget-share

semi-elasticities. In order to pin down these elasticities, we additionally need to specify the un-
observed heterogeneity terms, which enter w (but don't enter 0). For the reference type at me-
dian expenditures with " D 0J , we may calculate elasticities using A0 and the level of the bud-
get share function at median expenditure. The own-price expenditure elasticities are given in the
third column of Table 4, with asymptotic standard errors computed via the delta method in italics.
(The variance of these elasticities is driven by the variance of the own-price compensated semi-
elasticities, 0, and so reported standard errors are very close to those standard errors de�ated by
the appropriate budget share.) Unsurprisingly, only those equations with statistically signi�cant
own-price compensated budget-share semi-elasticities have statistically signi�cant compensated
expenditure elasticities. In particular, compensated rent expenditures have an elasticity of 0:528
and compensated transportation operation expenditure have an elasticity of 0:393. In contrast,
compensated recreation expenditures are highly negatively elastic, with a marginally statistically
signi�cant own-price expenditure elasticity of �1:191.
Although some of the own-price elasticities and semi-elasticities in Table 4 are statistically

signi�cantly positive, this does not imply that concavity (negative semi-de�niteness) is violated.
Concavity of cost is satis�ed if and only if S is negative semi-de�nite (see, e.g., Pollak and Wales
1992). For the case where " D 0J , the Slutsky matrix for the reference type with median ex-
penditure facing base prices is fully speci�ed by the matrix A0 and the value of the Engel curve
functions at median expenditure. The values of the own-price Slutsky terms are reported in the
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second column of Table 4, with asymptotic standard errors computed via the delta method in ital-
ics. A glance down this column reveals that the own-price Slutsky terms are all negative, and most
are statistically signi�cant. In addition, the Slutsky matrix evaluated at median expenditure for the
reference type facing base prices is negative semide�nite, implying that the cost function is weakly
concave at this point in the data.
The leftmost column of estimates in Table 4 contains the estimated own-price elements of B,

which show the magnitudes of the interaction between own-prices and with log total expenditures.
These parameters allow us to assess whether or not compensated semi-elasticities are the same for
rich and poor households. As noted in our discussion of Table 2, we cannot strongly reject the
joint hypothesis that the entire matrix B is zero, so these results must be interpreted with caution.
However, the estimated coef�cient of the rent own-price compensated semi-elasticity on y is 0:088,
and is by itself marginally statistically signi�cant. Consider the comparison between the rent
own-price compensated semi-elasticity for a reference person at the 5th percentile of expenditure
(x D �0:90) versus that for such a person at the 95th percentile of expenditure (x D 0:60). As
noted above, its value at the median expenditure of x D 0 is �0:066. At the 5th percentile, its
value is �0:066 � 0:90 � 0:088 D �0:016, and is insigni�cantly different from zero. In contrast,
at the 95th percentile, its value is �0:066C 0:60 � 0:088 D 0:115, and appears highly statistically
signi�cant. The corresponding own-price rent Slutsky terms are �0:236 at the �fth percentile and
�0:080 at the 95th percentile, and both are statistically signi�cantly negative. These results suggest
that poor households substitute much more than do rich households in the face of an increase in
the price of rent.
We draw three main conclusions from the analysis of price effects. First, we are able to obtain

estimates of compensated elasticities, which given symmetry are second-order derivatives of the
log-cost function and capture substitution effects. Uncompensated elasticities can also be calcu-
lated (see the Appendix for details). These elasticity estimates suggest that some price effects, and
therefore substitution effects, are large in magnitude. Our second conclusion is that the rationality
restriction of concavity is not violated, at least for the reference type. Third, there is some evi-
dence that substitution effects are different for rich and poor households, and speci�cally, that poor
households substitute much more in the face of rental price increases than do rich households.

3.5 Consumer Surplus Estimates

We assess the economic signi�cance of our models with a cost-of-living experiment. In Canada,
rent is not subject to sales taxes, which typically amount to 15% for goods such as food-out and
clothing. Consider the cost-of-living index associated with subjecting rent to a 15% sales tax for
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people facing the base price vector, so that p0 D 0J and p1 D [0 0 ln 0:15 0 0 0 0 0 0] :

C.p1; u; z; "/� C.p0; u; z; "/ D ln 0:15wrent C ln 0:152
 

LX
lD0
zlarent;rentl C brent;rent y

!
=2

D ln 0:15wrent C ln 0:152
 

LX
lD0
zlarent;rentl C brent;rent x

!
=2

where arent;rentl and brent;rent are the rent own-price elements of Al and B. We choose 0J as
the comparison price vector because at this price vector, y D x , and as a consequence only 1
budget share and 6 parameters are needed to estimate the cost-of-living index. Here, unobserved
heterogeneity enters only through the level effect on wrent . We can think of this cost of living
index as being comprised of two effects: a �rst-order effect which is driven by expenditure shares
and which incorporates unobserved heterogeneity; and a second-order effect which captures sub-
stitution effects. Traditional consumer demand analysis which ignores unobserved heterogeneity
would accomodate both �rst- and second-order effects, but would use bwrent , which contains no `er-
ror term', rather than wrent which contains an unobserved preference heterogeneity component. In
contrast, traditional nonparametric approaches to the cost-of-living would use only the �rst-order
term which accomodates unobserved heterogeneity, but would not incorporate the second-order
term which captures substitution effects. Our model combines the advantages of both approaches.
Figure 11 shows the estimated values of the cost-of-living index for each household facing

the base price vector in our baseline sample incorporating unobserved heterogeneity with empty
circles and shows estimated values for each household with unobserved heterogeneity set to zero
(" D 0) using �lled circles. In addition, the second-order component capturing substitution effects
is shown with �lled squares. The reason that the �lled circles and �lled squares do not each lie on
a single line is that variation in demographic characteristics z across households affect the surplus
measures.
The underlying Engel curve is visible in the estimates which zero out ", but is largely obscured

when this unobserved heterogeneity is taken into account. Failure to account for unobserved het-
erogeneity leads to the erroneous impression that most of the variation across individuals in the
cost-of-living impact of a large rent increase is related to expenditure, and only a little is related
to other characteristics. The more re�ned picture is that most of the variation in the impact on
cost-of-living is attributable to unobserved characteristics. Even in a model as rich as ours, with
many hundreds of parameters, most of the variation in demand is due to unobserved characteris-
tics, and this is re�ected in the variation in cost of living responses. As noted earlier, our parameter
estimates would be little changed if some or all of the errors were interpreted as ordinary model-
ing error rather than preference heterogeneity. In this case, the cost of living impacts would lie
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somewhere between the �lled and empty circles in Figure 11.
Figure 11 also shows the need for highly �exible Engel curves. The �rst-order term in the

consumer surplus calculation is driven by the Engel curve, and as Figure 3 shows, even a quadratic
provides a poor approximation to the rent expenditure share equation, so demand systems that only
allow for linear or quadratic Engel curves can make substantial errors in policy analyses. These
errors would be magni�ed in a policy experiment that more directly affected the distribution of
total expenditures, such as a change in the progressivity of income taxes.
The second-order terms above capture substitution effects across expenditure share equations.

These effects are not large in this experiment, but they do have a pronounced pattern, as shown
by the �lled squares in Figure 11. If consumers substitute greatly in the face of price increases,
then the second-order terms will be large and negative; if they substitute little, the the second-
order terms will be large and positive. Since the poor substitute more than the rich, second-order
effects are positively related to expenditure, so ignoring them would result in underestimating
the cost-of-living impact for rich households and over-estimating the impact for poor households.
The magnitude of the second-order term is about -0.1 percentage points for households at the
5th percentile (on a total impact of about 6 percentage points), and its magnitude is about +0.1
percentage points for households at the 95th percentile (on a total impact of about 4 percentage
points).
As noted above, the treatment of " as unobserved preference heterogeneity parameters rather

than as measurement error affects consumer surplus measures greatly. However, it turns out not to
affect estimated parameters of the model very much. We re-estimated the EASI model assuming
" is measurement error via an iterative procedure. First, we estimate the exact EASI model, and
then compute y.p0.w � e// as in Table 2, which is identical to y except that it has p0e subtracted
from the numerator in the de�nition of y given in equation (8). Then, we estimate the approximate
EASI model using y.p0.w� e// asey, re-compute y.p0.w� e//, re-estimate the approximate EASI
model, and iterate to convergence (4 iterations). The resulting estimated parameter vector is very
close to the exact EASI estimated parameter vector. The maximum absolute distance between
parameters of 0.1 standard error (using the exact EASI estimated standard errors), and the average
absolute distance is 0.005 standard error. In terms of an economic measure of difference, using the
`measurement error' version of the model to assess cost-of-living impacts as in Figure 11 yields
estimates visually identical to the �lled black circles in the Figure. The maximum absolute distance
between the �lled black circles in the Figure and the `measurement error' version of cost-of-living
estimates is 0.01 percentage points, which is negligible in comparison to the estimated values of
around 5 percentage points.
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4 Conclusions

We invent implicit Marshallian demand systems. These are the compensated budget share func-
tions (Hicks demands) associated with cost functions having the property that utility can be rep-
resented by a simple function of observables, including budget shares themselves. We show that
simple implicit Marshallian demand systems allow us to solve many problems facing consumer de-
mand analysis, including the incorporation of unobserved preference heterogeneity and allowing
for �exibility in Engel curves.
We provide the Exact Af�ne Stone Index (EASI) implicit Marshallian demand system, in which

utility is ordinally equivalent to an af�ne function of the log of expenditure de�ated by the Stone
Index. This EASI demand system is as �exible in price responses, as close to linear in parameters,
and as easy to estimate as the Almost Ideal Demand (AID) system. But, in contrast to the AID
system, the EASI demand system also allows for �exible interactions between prices and expendi-
tures, permits almost any functional form for Engel curves, and allows error terms in the model to
correspond to unobserved preference heterogeneity random utility parameters. Demand functions
may be estimated by 3SLS or GMM, and, like the AID system, an approximate model can be
estimated by linear regression. We estimate the model, and �nd some signi�cant departures from
linear and quadratic demands. We also �nd that allowing errors to equal unobserved preference
heterogeneity has little effect on model parameter estimates, but substantially affects social welfare
calculations such as the cost of living impacts of price changes.
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5 Appendix
This appendix provides Theorems associated with our model and with implicit Marshallian de-
mands in general. First we provide theorems that lead up to the EASI class of demand systems.
This is followed by extensions and additional mathematical properties of our models.

5.1 Exact Stone Index (ESI) Demands
Ignore preference heterogeneity for now, that is, consider z and " as �xed. We will reintroduce
them later. De�ne preferences to be regular if they can be represented by a log cost function
C.p; u/ where exp[C.p; u/] is concave, increasing, differentiable and homogeneous of degree one
in (unlogged) prices exp.p/ and is monotonically increasing and differentiable in u. For a given
C.p; u/ function it may be necessary to restrict the domain of p; u to values where C.p; u/ is
regular. Shephard's lemma relates Hicksian (compensated) budget shares to regular cost functions
by

w D !.p; u/ D rpC.p; u/:

Consider log Stone index de�ated expenditures x � p0w. Suppose preferences are represented
by a cost function C.p; u/ that makes u D y where implicit utility y D x � p0w, which is the log
of Stone index de�ated expenditures. We call this an Exact Stone Index (ESI) cost function. If we
have an ESI cost function, then we can substitute out u in the Hicks demand functionsw D !.p; u/
to obtain w D !.p; x � p0w/. The name Exact Stone Index is in contrast with the approximate
Almost Ideal demand system, which uses y D x � p0w as an approximation to de�ating x by a
certain quadratic function of p. In an ESI cost function, the Stone index is not an approximation to
some true de�ator. Instead, the Stone index is the exact correct de�ator for x .
Given an ESI cost function, w D !.p; x � p0w/ is an example of an implicit Marshallian

demand functions. Using x D C.p; u/ and Shephard's lemma, we obtain u D x � p0w, and
therefore have an ESI cost function, if and only if

u D C.p; u/� p0[rpC.p; u/]: (17)

Theorem 1 characterizes the solutions to this equation.

Theorem 1: De�ne d.p; u/ � C.p; u/�u and assume C.p; u/ is a regular cost function. Then
C.p; u/ is an Exact Stone Index (ESI) cost function if and only if d.�pC 1J�; u/ D �d.p; u/C �
for any scalars � > 0 and � .

Proof of Theorem 1: d.�p; u/ D �d.p; u/ is equivalent to d.p; u/ linearly homogeneous in p
and d.p C 1J�; u/ D d.p; u/ C � is equivalent to exp[d.p; u/] linearly homogeneous in exp.p/.
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The latter condition is required by cost function regularity. For the former, given equation (17) we
have C.p; u/� u D p0

�
rpC.p; u/

�
. This is equivalent to d.p; u/ D p0

�
rpd.p; u/

�
, which by the

Euler Theorem shows that d.p; u/ is linearly homogeneous in p.

Theorem 1 can be equivalently stated as the requirement that exp[d.p; u/] be linearly homoge-
neous in exp.p/, which follows from ordinary cost function homogeneity, and also that d.p; u/ be
linearly homogeneous p, which makes u D x�p0w. A function d.p/ is de�ned to be, "translatable
of degree c" if d.pC1J�/ D d.p; u/Cc� (see, e.g., Blackorby and Donaldson (1980)), so another
way to state Theorem 1 is that C.p; u/ is an ESI cost function if and only if C.p; u/ � u is both
linearly homogeneous in p and translatable of degree one in p.
By ordinality of utility, instead of x � p0w D u, we could have de�ned Stone Index exactness

by x � p0w D h.u/ for any strictly monotonically increasing function h, and Theorem 1 would
then hold with d.p; u/ de�ned by C.p; u/ � h.u/ There is no gain in generality from doing so,
because again by ordinality, C.p; u/� h.u/ has the same indifference curves, and hence the same
Marshallian and implicit Marshallian demand functions, as C.p; h�1.u// � u D eC.p; u/ � u.
In this representation of the cost function (i.e., in this cardinalization of utility), we then obtain
x � p0w D u as before.
The following Corollary and theorem illustrates the restrictiveness of ESI demands.

Corollary 1: Assume C.p; u/ is an ESI cost function. Then Hicksian demands !.p; u/ D
rpC.p; u/ are homogeneous of degree zero in p and in exp.p/.

Proof of Corollary 1: Homogeneity of degree zero in exp.p/ follows from ordinary cost func-
tion regularity, and homogeneity of degree zero in p follows from the property that the derivative
of a linearly homogeneous function, in this case d.p; u/, must be homogeneous of degree zero.

Cost function regularity implies that Hicksian demands do not change when all prices are scaled
by a constant factor. Corollary 1 shows that ESI requires that Hicksian demands also not change
when all prices undergo the same power transformation, for example, when all prices are squared,
and also rules out Hicksian demands that are linear in p. Relative prices can change dramati-
cally when all prices are squared, so this additional homogeneity condition binds in economically
implausible ways.

Theorem 2: Consider the case where J D 2. Then d.�p1C�; �p2C�; u/ D �d.p1; p2; u/C�
for any scalars � > 0 and � if and only if d.p1; p2; u/ D m.u/p1C[1�m.u/]p2 for some function
m.u/.

Proof of Theorem 2: Since d.�p1C�; �p2C�; u/ D �d.p1; p2; u/C� holds for any � and � ,
let � D 1=.p2 � p1/ and � D �p1=.p2 � p1/ to obtain d.0; 1; u/ D

�
d.p1; p2; u/= .p2 � p1/

�
��

p1= .p2 � p1/
�
. The theorem holds with m.u/ D 1� d.0; 1; u/.

Theorem 2 shows that with J D 2 goods, ESI cost functions must have the linear in p form
C.p; u/ D u C p0m.u/ where m.u/ is a J�vector of functions that satisfy m.u/01J D 1. This is
an ESI cost function for any J , but has the unattractive feature that it has Hicksian budget shares
m.u/ that are independent of p.
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ESI cost functions having more than J D 2 goods can be nonlinear in p. One example is

C.p; u/ D u C p0m.u/C
�
p0M.u/p

�1=2
where m.u/ is as above and M.u/ is a J by J symmetric matrix-valued function of u with
M.u/1J D 0J . As this example shows, ESI log cost functions can be nonlinear in log prices,
however, by Corollary 1 ESI log cost functions cannot be quadratic in log prices, and therefore ESI
budget shares cannot be linear in log prices.

5.2 Exact Af�ne Stone Index (EASI) Demands
As shown in the previous section, ESI Hicks and implicit Marshallian budget shares must possess
the unattractive feature of not changing when all prices are squared, and also must either be inde-
pendent of p or nonlinear in p. We can avoid these drawbacks by generalizing the expression for
real expenditures, thereby relaxing the homogeneity restrictions required by ESI demands. Specif-
ically, instead of imposing the ESI restriction that some cardinalization of u equal x � p0w, de�ne
Exact Af�ne Stone Index (EASI) cost functions to be cost functions that have the property that a
cardinalization of u exists that equals an af�ne transformation of x � p0w. In this cardinalization
u D y where implicit utility y is de�ned by y D

�
x � p0w

�es.p/ �et.p/ for some functionses.p/
andet.p/. For reasons that will be clear shortly, it is more convenient to express this relationship as

u D y D
x � p0w� t .p/
1C s.p/

(18)

for some functions s.p/ and t .p/. We choose af�ne transforms for their simplicity, in particular,
for now we wish to avoid having to solve nonlinear transformations to obtain cost functions (the
next section in this appendix discusses more general implicit Marshallian demand functions that
may require nonlinear transformation).
Equation (18) implies

x � u � p0w D t .p/C s.p/u;

and therefore any EASI cost function C.p; u/ must satisfy

C.p; u/� u � p0[rpC.p; u/] D t .p/C s.p/u (19)

The following two theorems characterize EASI cost functions, and hence the solutions to equation
(19), and provide a convenient way to construct such functions.

Theorem 3: Assume C.p; u/ is regular. Let d.p; u/ � C.p; u/ � u. There exists functions
t .p/ and s.p/ that make equation (18) hold, and hence make C.p; u/ an EASI cost function, if
and only if d.p C 1J�; u/ D d.p; u/ C � and r2ud.�p; u/ D �r2ud.p; u/ for any scalars � > 0
and � . When equation (18) holds, the functions t .p/ and s.p/ satisfy t .p C 1J�/ D t .p/ C � and
s.pC 1J�/ D s.p/C � .

Proof of Theorem 3: The condition that d.p C 1J�; u/ D d.p; u/ C � is equivalent to
exp[d.p; u/] linearly homogeneous in exp.p/, which is required by cost function regularity. Equa-
tion (19) is equivalent to d.p; u/�t .p/�s.p/u D p0

�
rpd.p; u/

�
. Taking derivatives of this expres-
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sion with respect to u givesrud.p; u/�s.p/ D p0
�
rprud.p; u/

�
, sor2ud.p; u/ D p0

�
rpr2ud.p; u/

�
,

which by the Euler Theorem shows thatr2ud.p; u/ is linearly homogeneous in p, that is,r2ud.�p; u/ D
�r2ud.p; u/. In the other direction, if r2ud.p; u/ is linearly homogeneous then r2ud.p; u/ D
p0
�
rpr2ud.p; u/

�
. Integrate this equation twice with respect to u (de�ning s.p/ be the constant of

integration for the �rst integration and t .p/ to be the constant of integration for the second integra-
tion) and continue following the above steps in reverse to obtain equation (19). Given exactness,
Equation (19) implies t .p/ C s.p/u D u � C.p; u/ C p0!.p; u/. Ordinary homogeneity of cost
functions and Hicksian demands requires that exp

�
u � C.p; u/C p0!.p; u/

�
be linearly homo-

geneous in exp.p/, so t .p/ C s.p/u must be linearly homogeneous in exp.p/. Since u can vary
holding p �xed, this requires that t .p/ and s.p/ must each be linearly homogeneous in exp.p/ ,
and therefore that t .pC 1J�/ D t .p/C � and s.pC 1J�/ D s.p/C � .

Theorem 4: Assume the function C.p; u/ satis�es the homogeneity conditions required to be
an ESI log cost function as given by Theorem 1. Assume C.p; u/ D C.p; u/C T .p/C S.p/u is a
regular log cost function. Then C.p; u/ is an EASI log cost function, so equation (18) holds, with
t .p/ D T .p/� p0

�
rpT .p/

�
and s.p/ D S.p/� p0

�
rpS.p/

�
.

Proof of Theorem 4: C.p; u/ D C.p; u/C T .p/C S.p/u, so

C.p; u/� p0[rpC.p; u/] D C.p; u/� p0[rpC.p; u/]C T .p/� p0
�
rpT .p/

�
C

S.p/u � p0
�
rpS.p/

�
u

D u C T .p/� p0
�
rpT .p/

�
C S.p/u � p0

�
rpS.p/

�
u

where the right side of the second equality follows from Stone index exactness for C.p; u/ from
Theorem 1. Comparing this equation to (19) proves the result.
Now consider how observed variables z that affect preferences and how random unobserved

preference heterogeneity parameters " can be incorporated into the ESI and EASI cost functions.
These cost functions are formulated above in terms of the functions C.p; u/, T .p/ and S.p/. In-
corporation of observed heterogeneity is completely general in that there are no restrictions on
how observed characteristics z enter the ESI cost function C.p; u; z/ or the price functions T .p; z/
and S.p; z/. However, the incorporation of unobserved heterogeneity is restricted by the fact that
implicit utility y must be a function of observables only. This can be accomplished by letting C
depend arbitrarily on " and having the price functions T .p; z/ and S.p; z/ be independent of ".
The incorporation of both forms of heterogeneity then results in the general class of EASI cost
functions

C.p; u; z; "/ D C.p; u; z; "/C T .p; z/C S.p; z/u; (20)

where C is a regular ESI cost function and exp.T .p; z// and exp.S.p; z// are both homogeneous
of degree zero in exp.p/. Based on equation (19) and Theorems 3 and 4, one very �exible choice
for C is C.p; u; z; "/ D u C p0m.u; z; "/, which allows for nonseparability with respect to the
unobserved heterogeneity parameters ", and results in an EASI form

C.p; u; z; "/ D u C p0m.u; z; "/C T .p; z/C S.p; z/u: (21)

We will use this speci�cation for illustration in Theorems 6 through 8.
Replacing m.u; z; "/ with m.u; z/ C " in equation (21) yields Hicksian (and hence implicit
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Marshallian) budget shares that are additively separable in ", which is convenient for estimation.
This results in the EASI cost function form

C.p; u; z; "/ D u C p0m.u; z/C T .p; z/C S.p; z/u C p0"; (22)

where 10Jm.u; z/ D 1 and 1
0
J" D 0. We use this form as the basis for our empirical investigation

and for most discussion in the text.

5.3 General Cost Functions For Implicit Marshallian Demands
Instead of Stone index related constructions, we could more generally de�ne implicit utility by

y D
x � G.w;p; z/
1C s.p; z/

(23)

for any de�ator function G. Setting y D u will then require

C.p; u; z/ D [1C s.p; z/]u C G.rpC.p; u; z/;p; z/ (24)

and the resulting implicit Marshallian demand functions are

w D !
�
p; z;

x � G.w;p; z/
1C s.p; z/

�
. (25)

where !.p; z; u/ D rpC.p; u; z/. At this level of generality, u D y is possible for almost any log
cost function C.p; u; z/ even with s.p; z/ D 0 as the following Theorem shows.

Theorem 5: Assume C.p; u; z/ is regular. A suf�cient condition for existence of a func-
tion G.w;p; z/ such that u D x � G.w;p; z/ is the existence of some scalar valued function of
rpC.p; u; z/ and p that is strictly monotonic in u.

Proof of Theorem 5: Let R be a scalar valued function of rpC.p; u; z/ and p that is strictly
monotonic in u. Since R.p; z;!.p; z; u// is strictly monotonic in u, it can be inverted to obtain
u D S.p; z; R/, and we may de�ne a function G by G.w;p; z/ D C.p; S.p; z; R.w;p; z//z; / �
S.p; z; R.w;p; z//.

Theorem 5 provides a very weak suf�cient condition for existence of implicit Marshallian de-
mands w D !

�
p; z; x � G.w;p; z/

�
for some function G. For example, this condition is satis�ed

if any good or combination of goods has a budget share that is strictly increasing or strictly de-
creasing in total expenditures (and hence in utility). Moreover, this condition is suf�cient but not
necessary, e.g., if preferences are homothetic so C.p; u; z/ D u C t .p; z/ for some function t , then
even though the suf�cient condition need not hold now, we can de�ne G.w;p; z/ D �t .p; z/ to
obtain implicit marshallian demands. So the only kinds of situations where G might fail to exist is
when all budget shares are independent of u for some, but not all, ranges of values of u.
To give an example of Theorem 5, suppose that the Hicksian budget share function for good 1,

w1 D !1.p; z; u/, is invertible in u, so u D !�11 .p; z; w1/. Then a de�ator G that makes u D y is
G.w;p; z/ D C.p; !�11 .p; z; w1/; z/� !

�1
1 .p; z; w1/.
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The function G satisfying equation (24) is not unique, e.g., it can be freely translated by an
ordinal transformation of u, and in the previous example, different invertible budget shares could be
used to obtain different expressions for G. For applications, the main point of implicit Marshallian
demands is not existence or uniqueness, but rather convenience for demand estimation, which is
why this paper focuses on examples where G has a simple closed form, namely, a translation of
the log Stone index.

5.4 Generalized EASI cost functions
A generalization of the EASI class of cost functions (22) is

x D C.p; u; z; "/ D u C c.p; z/0m.u; z; "/C T .p; z/C S.p; z/u (26)

where c.p; z/ is a J�vector valued function. The Hicksian budget shares for this class are

w D !.p; u; z; "/ D rpc.p; z/0m.u; z; "/CrpT .p; z/CrpS.p; z/u

Solving this expression for m.u; z; "/ and substituting the result into (26) gives

x D u C c.p; z/0
�
rpc.p; z/0

��1 �w�rpT .p; z/�rpS.p; z/u�C T .p; z/C S.p; z/u
Now solve this expression for u and call the result y to get

y D
x � T .p; z/� c.p; z/0

�
rpc.p; z/0

��1 �w�rpT .p; z/�
1C S.p; z/� c.p; z/0

�
rpc.p; z/0

��1
rpS.p; z/

which we can write as
y D

x � c.p; z/0w� t.p; z/
1C s.p; z/

for appropriately de�ned functions t , s, and J�vector c, and with this de�nition of y we obtain
implicit Marshallian demands

w D rpc.p; z/0m.y/CrpT .p; z/CrpS.p; z/y

This is a generalization of EASI demands where y is an af�ne transform of x � c.p; z/0w instead
of an af�ne transform of x � p0w. This generalization is useful for the closure under unit scaling
property discussed later, and could be used to introduce additional interactions among y, p, and z
if required.

5.5 Global Regularity of EASI Demands
Theorem 6: Assume a log cost function in the general EASI form of equation (21). Suf�cient con-
ditions for the cost function to be regular everywhere on the support of the data are 10Jm.u; z; "/ D
1, exp

�
T .p; z/

�
and exp

�
S.p; z

�
/ homogeneous of degree zero in exp.p/, T .p; z/ and S.p; z/ con-

cave and differentiable in p, 1C inf
�
p0rum.u; z; "/

�
> inf

�
S.p; z/

�
and inf.u/ > 0, where these

in�ma are over the supports of p; u; z; ".
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Proof of Theorem 6: Homogeneity of the cost function follows from 10Jm.u; z; "/ D 1
and homogeneity of exp T .p; z/ and exp S.p; z/. Concavity of T .p; z/ and S.p; z/ and having
u positive means that T .p; z/ C S.p; z/u is concave, which suf�ces for cost function concav-
ity. For monotonicity ruC.p; u; z; "/ D 1 C p0rum.u; z; "/ C S.p; z/, which is positive given
1C inf

�
p0rum.u; z; "/

�
> � inf

�
S.p; z/

�
.

By Theorem 6, EASI demands can be globally (i.e., over the entire supports of the data) regular
if the functions T and S satisfy homogeneity and concavity conditions, and if T , S,m and the sup-
ports of the data are suitably bounded. The suf�cient, though weaker than necessary, conditions in
Theorem 6 include inf.u/ > 0 (recall that u here is expressed in the cardinalization that makes u D
y). This condition can always be satis�ed without loss of generality by suitably adjusting the units
used to measure expenditures. To see this, de�ne K� D inf

�
p0m.eu; z; "/C T .p; z/� where this in-

�mum is over all p; z; " on their support, and over alleu � 0. If K� exists, inf �S.p; z/� > �1 and
inf.x/ > 0, then dividing the units expenditures are measured in by exp.K�/makes the log of these
rescaled expenditures x satisfy inf.x/ > K�. This then suf�ces to make inf.u/ > 0 since, using
equation (2), u D

�
x � p0m.u; z; "/C T .p; z/

�
=
�
1C S.p; z/

�
� [inf.x/� K�] =

�
1C inf .S.p; z//

�
>

0.
In our empirical model based on the cost function (5), T .p; z/ and S.p; z/ satisfy homogene-

ity, are bounded given boundedness of prices and are concave if
PL
lD0 zlAl and B are negative

semide�nite. Let cr D p0br , so boundedness of the support of p means that each cr lies in
some interval. For monotonicity in our empirical model, assume y is everywhere positive, let
�0 D

h
inf.x/� sup

�
p01 j �

PL
lD0 zlp0Alp=2

�i
=[1 C sup.�p0Bp/] and let �1 D sup.x/. It fol-

lows from equation (8) that �0 � y � �1. Let � D � inf
�
1C p0DzC p0Bp=2

�
. Since cr D p0br ,

boundedness of the support of p means that each cr lies in some interval. Then the suf�cient
monotonicity condition in Theorem 6 is satis�ed if �c�1y�2C

P5
rD0 crr yr�1 > � holds for all cr

on their supports and all y in the interval �0 � y � �1. In particular, if quantities are scaled so p
is nonnegative, and recalling that �0 > 0, a suf�cient condition is existence of a �nite lower bound
on the slope of every Engel curve at at every point. More generally, monotonicity requires that
downward sloping portions of Engel curves for any good need to be suf�ciently offset by upward
slopes of other Engel curves.
In practice, imposing the restrictions on parameter values that are suf�cient but not necessary

to guarantee global regularity of demand systems can induce undesirable restrictions on �exibility.
See, e.g., Diewert and Wales (1987) and Ryan and Wales (1998). In our empirical application we
therefore follow the common practice of estimating without imposing the inequality constraints
associated with regularity, and afterwards check for regularity in the neighborhood of the data.

5.6 Coherency, Invertibility, and the Distribution of Errors
Coherency of a structural model is de�ned as the property that, for each value of the exogenous
variables and errors, there exists a unique corresponding value of the endogenous variables. Invert-
ibility is the property that a unique value of errors is associated with each value of the endogenous
and exogenous variables. Coherency is essentially the condition that the model is fully speci�ed,
in the sense that the joint distribution of the endogenous variables is completely determined by the
joint distribution of the errors and exogenous variables. Invertibility is the condition that permits
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uniquely recovering estimates of the errors given estimates of the model parameters. Since our
model takes the errors to be random utility parameters, we will require invertibility to do policy
analyses that depend upon these random utility parameters.
In the demand system context (see, e.g., van Soest, Kapteyn, and Kooreman (1993), Brown

and Matzkin (1998) and Beckert and Blundell (2004)), coherency requires that a unique value of
budget shares w be associated with each possible value of p; x; z; ", and invertibility requires that
a unique value of errors " be associated with each possible value of p; x; z;w.

Theorem 7: Assume a log cost function in the EASI class (21) that is regular. Assume em D
m.u; z; "/ is invertible in ", so we may write " D m�1.u; z;em/. Then the resulting budget share
demand functions are coherent and invertible.

Proof of Theorem 7: Invertibility of this class is established by observing that by equation (3)

" D m�1
�
y; z;w�

�
rpT .p/

�
�
�
rpS.p/

�
y
�

where y is given by equation (4). This uniquely de�nes " as a function of p; x; z;w. Coherency
follows from C.p; u; z; "/ having all of the properties of a regular cost function, which ensures
existence of Marshallian demands (treating " as preference parameters) and hence of a unique
value of w associated with each possible value of p; x; z; ", even though we do not have a closed
form analytic expression for it.

Our functional form for empirical work, the cost function (5), satis�es the conditions of Theo-
rem 7 assuming regularity holds on the support of p; x; z; " (which, e.g., is satis�ed given Theorem
6). For that model m is invertible with, by equation (6), m�1.u; z;m/ D m �

�P5
rD0 brur

�
�

Cz� Dzu. More generally, invertibility is satis�ed ifm.y; z; "/ D Bn.y; z/C" for any parameter
matrix B and functions n.

For consistency of our estimator it was assumed that the distribution of " is mean independent
of p; x; z, and our 3SLS estimator is ef�cient (relative to GMM) if " is homoskedastic. A suf�cient
condition for these to hold is that " be distributed independently of p; x; z. Having " independent
of p is also appropriate for interpreting " as preference heterogeneity parameters. Having " be
distributed independently of p; x; z requires that the support of " not depend on p; x; z. Theorem
7 does not impose this condition.

Theorem 8: Assume a log cost function in the EASI class (2). Then cost function regularity,
the constraint that budget shares lie between zero and one, coherency, invertibility, and " distributed
independently of p; x; z can all hold simultaneously.

Proof of Theorem 8: Consider equation (2) cost functions with m.u; z; "/ D Bn.y; z/ C "
for some matrix of parameters B and vector of functions n.y; z/. Our empirical model (5) is an
example of this form. Then

w D Bn.y; z/CrpT .p; z/CrpS.p; z/y C ". (27)

Consider bounding each element of Bn.y; z/CrpT .p; z/CrpS.p; z/y to lie inside some interval
[� ; 1� � ] for every value of y in some positive interval [�0; �1] and for every value of p; z on their
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support, where 0 < � < 1=2. The interval [�0; �1] can be made arbitrarily large by restricting
the range of values n.y; z/ and rpS.p; z/ can take on. Let " be drawn from any distribution that
satis�es "01J D 0 and has the absolute value of each element of " be less than � . Let x be drawn
from any distribution that has support suf�ciently bounded to makeey de�ned by

ey D x � p0ew� T .p; z/C p0 �rpT .p; z/�
1C S.p; z/� p0

�
rpS.p; z/

� (28)

lie in [�0; �1] for every value of of p; z on their support and for every value of ew on the unit
simplex. Note that, as in the second part of Theorem 6, the units x is measured in can be adjusted
to move the location of the support of x and hence ofey It then follows that y given by equation (4)
will lie in [�0; �1], and then by construction w de�ned by equation (27) will lie in the unit simplex.
Given the cost function (21) withm.u; z; "/ D Bn.u; z/C", and the assumptions already made

above, the remaining restrictions required for global regularity in Theorem 6 are 10JBn.u; z/ D 1,
exp T .p; z/ and exp S.p; z/ homogeneous of degree zero in exp.p/, T .p; z/ and S.p; z/ concave
and differentiable in p, and 1 C inf

�
p0Brun.u; z/

�
> inf

�
S.p; z/

�
. Given that the support of u

lies inside an interval [�0; �1] for any value " can take on, we obtain global regularity for any " on
its support as long as these conditions (which do not depend directly on ") hold for every p; z on
their support and every u in the interval [�0; �1]. We then also obtain coherency and invertibility,
because the conditions of Theorem 7 all hold for this example.

None of the conditions imposed in the construction of the cost function and the distribution of
" in Theorem 8 con�ict with assumptions imposed for consistency of the the 3SLS estimates of our
exact, symmetry restricted empirically estimated EASI demand functions. For example, the proof
of Theorem 8 allows each " to have conditional or unconditional mean zero, because it permits " to
be drawn from any distribution that satis�es "01J D 0 and has the absolute value of each element
of " be less than � , However, having " be distributed independently of p; x; z means that for any
value of p; x; z, the range of possible values of w is limited by the support of ". For example, if
the support of " is such that each element of " is less than .1 in absolute value, and if for a given
p; x; zwe have each element of Bn.y; z/CrpT .p; z/CrpS.p; z/y lying between .2 and .8 for any
value of " (which, along with p; x; z determines y), then each element of w for consumers having
this observed value of p; x; z must lie between .1 and .9 (though consumers with different values
of p; x; z could have smaller or larger budget shares). This restriction on the conditional support
of w is a general feature of virtually all nontrivial demand systems that map demand errors into
unobserved preference heterogeneity parameters, such as Brown and Matzkin (1998) and Matzkin
(2005).
Having " distributed independently of p; x; z implies conditional homoskedasticity of ". Brown

and Walker (1989) and Lewbel (2001) show that additive errors in Marshallian budget share de-
mand systems must be heteroskedastic except under special circumstances (like homotheticity).
Their results do not apply to the EASI model, because the EASI model has additive errors in im-
plicit Marshallian (and hence in the Hicksian) budget share demand functions, rather than in the
Marshallian budget share demand functions. Still, one might expect heteroskedastic errors, e.g.,
empirical demands may have the property noted by Hildenbrand (1994) of variance increasing in
x . This need not con�ict with the EASI model, or with regularity, coherence, or invertibility since
all these conditions can be satis�ed ifm.y; z; "/ D Bn.y; z/CN.y; z; "/whereN is mean zero and
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invertible in ", which would then generate implicit Marshallian budget errors given by N instead
of ".

5.7 The Rank of EASI Demand Systems
For clarity, in this section the heterogeneity parameters z; " are held �xed, and so without loss
of generality are omitted from the equations here. A demand system is de�ned to be exactly
aggregable if it has Marshallian demands of the form w D G.p/f.x/ for some matrix valued
function G.p/ and some vector valued function f.x/. Gorman (1981) proved that for any exactly
aggregable demand system that is derived from utility maximization, the maximum possible rank
of the matrix G.p/ is three. Generalizing Gorman, Lewbel (1991) de�ned the rank of any demand
system to be dimension of the space spanned by its Engel curves. This de�nition coincides with
Gorman's rank of G.p/ for the special case of exactly aggregable demands. Lewbel (1991) shows
that rank of the demand system corresponding to any cost function C.p; u/ equals the smallest
integer ` such that there exist functions g, �1,...,�`, where C.p; u/ D g[�1.p/; :::; �`.p/; u]. The
maximum possible rank of any demand system is the number of goods in the system minus one.
It follows by inspection of equations (2) and (5) that EASI demands are not constrained to have

rank less than three, and can in fact have any rank, even when the EASI demands are linear in y.
For example, for the reference type household the EASI demands we use for our empirical work
has the cost function C.p; u/ D p0

hP5
rD0 brur

i
C 1
2p
0A0p C 1

2p
0Bpu, which to minimize ` can

be written as C.p; u/ D
�
p0b0 C 1

2p
0A0p

�
C
�
p0b1 C 1

2p
0Bp

�
u C

P5
rD2

�
p0br

�
ur , and so has rank

` D 6.

5.8 Shape Invariance and Equivalence Scales
Shape-invariance is a property of demand functions that is relevant for the construction of equiv-
alence scales, is convenient for semiparametric demand modelling, and has been found to at least
approximately hold empirically in some data sets. See, e.g., Blundell and Lewbel (1991), and
Blundell, Duncan and Pendakur (1998), Pendakur (1999), and Blundell, Chen, and Kristensen,
(2003). Shape-invariance is satis�ed if and only if Marshallian budget shares are identical across
household types except for equation speci�c vertical translations and a horizontal translation that
is common across equations.
In our notation, shape-invariance is satis�ed if and only if the log-cost function may be writ-

ten as C.p; u; z; "/ D f [p; h.u; z; "/] C G.p; z; "/. In this case, Hicks demands are given by
!.p; u; z; "/ D rp f

�
p; h.u; z; "/

�
C rpG.p; z; "/. We may then invert C with respect to utility

to obtain indirect utility h.�; u; z; "/ D f �1
�
�; x � G.p; z; "/

�
and substituting this expression into

Hicks demands yields w D rp f
�
p; x � G.p; z; "/

�
C rpG.p; z; "/. This structure for demands

may be very complex over x , but the characteristics z and " enter demands in a very simple way:
they translate expenditure shares vertically by the J -vector rpG.p; z; "/ and horizontally by the
scalar G.p; z; "/.
De�ne an equivalence scale E as the ratio of costs of a household with characteristics z; "

and a household with reference characteristics 0L ; 0J , so that ln E.p; u; z; "/ D C.p; u; z; "/ �
C.p; u; 0L ; 0J /. If demands are shape invariant and the untestable restriction that h.u; z; "/ D h.u/
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holds then C.p; u; z; "/ D f
�
p; h.u/

�
C G.p; z; "/ so

ln E.p; u; z; "/ D G.p; z; "/ (29)

and therefore the equivalence scale depends only on prices and characteristics, but not on the utility
level u. This property for E is called equivalence scale exactness (ESE) or independence-of-base
(IB) by Blackorby and Donaldson (1993) and Lewbel (1989), respectively. Shape invariance is a
necessary condition for IB/ESE.
EASI models can be shape invariant and can satisfy IB/ESE. The cost function (21) satis�es

shape-invariance if and only if S is independent of z and the vector-function m is additively sepa-
rable into a vector-function m1 that depends on utility only and a vector-function m2 that depends
on characteristics z; " only. In this case, we have

C.p; u; z; "/ D u C p0m1.h.u; z; "//C p0m2.z; "/C T .p; z/C S.p/h.u; z; "/
D

�
u C p0m1.h.u; z; "//C S.p/h.u; z; "/

�
C
�
p0m2.z; "/C T .p; z/

�
:

This speci�cation also satis�es IB/ESE if it satis�es the additional, untestable restriction that
h.u; z; "/ D h.u/.
Shape-invariance is easily imposed on our empirically estimated model given by (5). In partic-

ular, that model has shape invariant demands if D D 0. However, with D D 0 the log equivalence-
scale is given by ln E.p; u; z; "/ D p0 .CzC "/C 1

2
PL
lD1 zlp0Alp, which takes on a �xed value at

the base price vector, so ln E.0J ; u; z; "/ D 0. To relax this implausible restriction, one could add
a term linear in z to the log-cost function with D D 0, so that

C.p; u; z; "/ D u C d0zC p0
"
5X
rD0
brur C CzC "

#
C
1
2

LX
lD0
zlp0AlpC

1
2
p0Bpu; (30)

where d is a T�vector of parameters. The equivalence scale is then given by ln E.p; u; z; "/ D
d0zCp0 .CzC "/C 1

2
PL
lD1 zlp0Alp, which takes on the value d0z when evaluated at the base price

vector. In this version of the model, implicit utility y includes the constant term d0z and is given
by

y D
x � p0w� d0zC

PL
lD0 zlp0Alp=2

1� p0Bp=2
:

Other than this change in y, the demand functions are same as before, so the parameter vector d
enters the model only through y. Estimates of the model in this form are available on request from
the authors.

5.9 Closure Under Unit Scaling
A desirable feature of demand models is that they be closed under unit scaling, that is, that a change
in the units that goods are measured in (or equivalently, a change in the base year or region where
prices are normalized to equal one) only changes the values of the parameters or functions that
de�ne the model, leaving predicted values and estimated elasticities unchanged. See, e.g., Pollak
and Wales (1980), especially footnote 15. The AID system is closed under unit scaling. The
Quadratic AID of Banks, Blundell, and Lewbel (1997) is closed if the constant scalar parameter
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a0 in that model is estimated, though in practice that parameter is usually �xed at some convenient
value.
The parametric models proposed in this paper are not closed under unit scaling. To close them,

we could replace p with p C k everywhere that p appears in equations (2), (3), and (4), or in our
empirically estimated model de�ned by equations (5), (8), and (9), where k is an additional J -
vector of parameters to be estimated, with the free normalization k01J D 0. With the addition of z
and " terms, these are examples of equation (26) with c.p/ D c.p/ D pC k.
To check possible sensitivity of our empirical results to unit scaling, we tried to reestimate our

empirical model including the additional parameter vector k, but in every attempt k was either
completely insigni�cant or the model failed to converge. Also, reestimating the model (without
k) after changing the base year and region had little effect on the estimates, leaving Engel curve
shapes unchanged and altering elasticities by a few percent at most. Like the Quadratic AID model
with a0 �xed, the parametric EASI models without k are approximately, though not exactly, closed
under unit scaling. Formally, the objective function used for parameter estimation is relatively �at
in directions corresponding to changes in k.
To see why the parametric EASI models as estimated are almost closed, consider the general

cost function

C.p; u; z; "/ D u C p0m.u; z; "/C p0 [A1 C A2h.u; z; "/]p=2 (31)

where h and the J -vector m are nonparametric functions. This cost function has demands that are
closed under unit scaling (up to possible inequality constraints on the nonparametric functions)
because

C.pC k; u; z; "/ D u C .pC k/0m.u; z; "/C .pC k/0 [A1 C A2h.u; z; "/] .pC k/=2
u� C p0m�.u�; z; "/C p0

�
A1 C A2h�.u�; z; "/

�
p=2

where u� D uCk0m.u; z; "/Ck0 [A1 C A2h.u; z; "/]k=2,m�.u�; z; "/ D m.u; z; "/C[A1 C A2h.u; z; "/]k,
and h�.u�; z; "/ D h.u; z; "/, so by suitably rede�ning the functions m� and h�, adding k to the
log price vector is equivalent to ordinally transforming u, which leaves the resulting demand func-
tions unchanged. This paper's parametric EASI models are special cases of the cost function (31),
so they fail to be closed under unit scaling only because m� and h� need not be contained in the
same family of functional forms that are assumed for m and h. However, our �exible choice of
these functions, particularly of m, means that m� and h� can be closely approximated by suitable
choice of parameterization of m and h, which explains the empirical �nding that the numerical
effects of violation of closure under unit scaling are very small.

5.10 Marshallian Elasticity Calculations
Cost functions in the class of equation (21) have y given equation (8), so Marshallian demand
functions w.p; x; z; "/ for these EASI models are implicitly given by

w.p; x; z; "/ D !
�
p;
x � p0w.p; x; z; "/� p0A1p=2

1C p0A2p=2
; z; "

�
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Taking the total derivative of this expression with respect to any variable v gives

rvw.p; x; z; "/ D rv!.p; y; z; "/

C
�
r y!.p; y; z; "/

� �
rv

�
x � p0w� p0A1p=2
1C p0A2p=2

�
�

�
x � p0rvw.p; x; z; "/

1C p0A2p=2

��
and solving for the Marshallian semielasticity rvw.p; x; z; "/ yields

rvw.p; x; z; "/ D

"
IJ �

�
r y!.p; y; z; "/

�
p0

1C p0A2p=2

#�1
(32)"

rv!.p; y; z; "/C
�
r y!.p; y; z; "/

� "
rv

 
x � p0w� p0A1p

2
1C p0A2p=2

!
�

x
1C p0A2p

2

##

where IJ is the J by J identity matrix. In particular, taking v to be x above shows that, after
algebraic simpli�cation, the Marshallian semielasticity with respect to nominal expenditures x is

rxw.p; x; z; "/ D

 
IJ �

�
r y!.p; y; z; "/

�
p0

1C p0A2p=2

!�1 �
.1� x/r y!.p; y; z; "/

1C p0A2p=2

�
where r y!.p; y; z; "/ is given by equation (13). Equation (32) could also be evaluated taking v to
be p to obtain Marshallian price elasticities, but it is simpler to recover them from the Hicksian p
elasticities (12) and the above Marshallian x elasticities using the Slutsky matrix

rp0w.p; x; z; "/ D rp0!.p; u; z; "/�
�
rxw.p; x; z; "/

�
!.p; y; z; "/0.

Finally, again using equation (32), the Marshallian semielasticity with respect to z is

rzw.p; x; z; "/ D

 
IJ �

�
r y!.p; y; z; "/

�
p0

1C p0A2p=2

!�1 �
rz!.p; y; z; "/�

xr y!.p; y; z; "/
1C p0A2p=2

�
where r y!.p; y; z; "/ and rz!.p; y; z; "/ are given by equations (13) and (14).
Some of the above elasticity expressions depend on " either directly or through w. Given

estimated model parameters, " for each consumer can be estimated as the model residuals (the
difference between �tted and observed w). We may therefore estimate mean elasticities in the
population by calculating the estimated elasticities for each individual in the sample, plugging
in their observed w or estimated " where needed, and averaging the result. Other features of the
population distribution of elasticities such as its median or variance can likewise be estimated from
the corresponding empirical distribution.
If Marshallian demands are of direct interest, evaluated at points other than those observed in

the sample, they can be obtained numerically by, e.g., numerically solving x D C.p; u; z; "/ for u
and substituting the result into the Hicksian demand functions. However, as the above equations
show, this will often not be necessary for evaluating the effects on demand or welfare of price,
expenditure, or demographic changes.
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Table 1: Data Descriptives
Variable Mean Std Dev Minimum Maximum
budget shares Food-at-Home 0.14 0.08 0.00 0.61

Food-Out 0.08 0.07 0.00 0.63
Rent 0.37 0.12 0.01 0.89
Household Oper 0.07 0.04 0.00 0.61
Household Furneq 0.04 0.05 0.00 0.52
Clothing 0.08 0.06 0.00 0.48
Transport Oper 0.11 0.08 0.00 0.60
Recreation 0.08 0.07 0.00 0.59
Personal Care 0.03 0.02 0.00 0.21

log-prices Food-at-Home -0.05 0.43 -1.41 0.34
Food-Out 0.04 0.49 -1.46 0.53
Rent -0.08 0.40 -1.27 0.37
Household Oper -0.06 0.45 -1.40 0.32
Household Furneq -0.05 0.32 -0.94 0.20
Clothing 0.04 0.35 -0.94 0.34
Transport Oper -0.07 0.57 -1.53 0.57
Recreation 0.01 0.40 -1.04 0.42
Personal Care -0.03 0.38 -1.11 0.29

demographics age-40 0.71 11.89 -15.00 24.00
male 0.51 0.50 0.00 1.00
car-owner 0.42 0.49 0.00 1.00
social asst 0.27 0.44 0.00 1.00
time 88.99 8.73 69.00 99.00

log-expenditure x -0.11 0.59 -2.75 1.66
(median-norm'd) x- p'w -0.07 0.44 -1.70 1.44

Table 2: Model Tests (Wald- or J-tests)
model test of parameters df Test Stat p-value
asymmetric with symmetry Al=Al' for all l ; B=B' 196 241.8 0.014
with y -1 , y 6

symmetry Al=Al' for all l 168 194.1 0.082
symmetry B=B' 28 24.4 0.661
exclusion B=0 64 82.5 0.060
exclusion Al=0 for all l 384 636.0 0.000
exclusion B=0, Al=0 for all l 448 999.7 0.000
exclusion y -1

8 15.6 0.049
exclusion y 6 8 20.6 0.008
exclusion y 5

8 21.0 0.007
exclusion y -1 , y 6

16 28.3 0.029
exclusion y -1 , y 6 , y 5

24 75.5 0.000
symmetric with exclusion B=0 36 51.7 0.043
without y -1 , y 6

exclusion Al=0 for all l 216 646.2 0.000
exclusion B=0, Al=0 for all l 252 710.6 0.000
exclusion y 5 8 45.8 0.000
non-quadratic Food-at-Home 3 16.9 0.001
non-quadratic Food-Out 3 10.3 0.016
non-quadratic Rent 3 94.4 0.000
non-quadratic Household Oper 3 22.7 0.000
non-quadratic Household Furneq 3 3.4 0.340
non-quadratic Clothing 3 9.4 0.025
non-quadratic Transport Oper 3 6.8 0.079
non-quadratic Recreation 3 28.9 0.000
overidentification J- test (with sym pz) 196 238.4 0.021
overidentification J- test (with sym. pz, y -1 , y 6 ) 212 273.4 0.003



Table 3: Variation and Correlation of y  Components (detrended variables)

Variable std dev y y (p'(w-e)) y -bar x- p'w x- p'w-bar p'e p'(w-e) p'Ap/2 p'Bp/2

y 0.4393 1.0000
y (p'(w-e)) 0.4390 0.9988 1.0000

y -bar 0.4459 0.9984 0.9996 1.0000
x -p'w 0.4387 1.0000 0.9988 0.9984 1.0000

x -p'w-bar 0.4452 0.9984 0.9996 1.0000 0.9984 1.0000
p'e 0.0213 -0.0445 0.0041 0.0035 -0.0444 0.0035 1.0000

p'(w-e) 0.0716 0.0678 0.0672 0.0741 0.0685 0.0748 -0.0141 1.0000
p'Ap/2 0.0018 0.0173 0.0165 0.0234 0.0134 0.0196 -0.0172 -0.2243 1.0000
p'Bp/2 0.0011 -0.0123 -0.0141 -0.0122 -0.0140 -0.0140 -0.0371 -0.6439 0.4676 1.0000

          

Table 4: Compensated Price Effects, evaluated for reference type with median expenditure at base prices
Own-Price Own-Price Own-Price
B element Slutsky Terms Quant Elast Food-in Food-Out Rent HH OperHH Furneq Clothing Tran Oper Recr

Food-at-Home 0.047 -0.137 -0.064 -0.025
Std Err 0.063 0.045 0.347 0.045
Food-Out -0.009 -0.120 -0.126 0.051 -0.025
Std Err 0.068 0.037 0.346 0.033 0.037
Rent 0.088 -0.164 0.528 -0.026 0.037 0.063
Std Err 0.047 0.029 0.083 0.021 0.021 0.029
Household Oper 0.044 -0.035 0.292 0.026 -0.002 -0.002 0.012
Std Err 0.039 0.026 0.517 0.026 0.022 0.014 0.026
Household Furneq 0.037 -0.034 -0.150 0.110 -0.043 0.028 -0.018 -0.005
Std Err 0.114 0.058 1.937 0.035 0.032 0.021 0.026 0.058
Clothing -0.050 -0.066 -0.063 -0.050 -0.001 -0.066 -0.025 -0.023 -0.008
Std Err 0.060 0.046 0.734 0.030 0.032 0.020 0.024 0.038 0.046
Transport Oper -0.006 -0.105 0.393 -0.023 -0.030 -0.019 -0.013 -0.034 0.053 0.038
Std Err 0.035 0.020 0.115 0.021 0.019 0.016 0.017 0.021 0.019 0.020
Recreation -0.030 -0.182 -1.191 -0.044 0.032 -0.021 0.034 -0.010 0.087 0.033 -0.106
Std Err 0.093 0.053 0.635 0.034 0.032 0.023 0.025 0.045 0.037 0.022 0.053

Budget-share Semi-Elasticities



Figure 1: Estimated Food-In Shares
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Figure 2: Estimated Food-Out Shares
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Figure 3: Estimated Rent Shares

0.200

0.250

0.300

0.350

0.400

8.2 8.6 9 9.4 9.8 10.2

Log-Real-Expenditure

S
h

ar
e

Exact Quadratic 90% conf ints, Exact Asymmetric Approximate

Figure 4: Estimated Household Operation Shares
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Figure 5: Estimated Household Furn/Eq Shares
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Figure 6: Estimated Clothing Shares
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Figure 7: Estimated Transportation Operation Shares
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Figure 8: Estimated Recreation Shares
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Figure 9: Rent Shares: Baseline vs Extended 
Sample
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Figure 10: Recreation Shares, Baseline vs 
Extended Sample
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Figure 11: Cost-of-Living Experiment: 15% tax on rent

-0.02

0

0.02

0.04

0.06

0.08

0.1

8.2 8.6 9 9.4 9.8 10.2

log real-expenditure

C
o

st
 o

f 
L

iv
in

g
 In

d
ex

   
 

COLI COLI (e=0) Second-Order




