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Abstract

Under tenancy rent control, rents are regulated within a tenancy but not between tenancies.
This paper investigates the e¤ects of tenancy rent control on housing quality, maintenance, and
rehabilitation. Since the discounted revenue received over a �xed-duration tenancy depends
only on the starting rent, intuitively the landlord has an incentive to spruce up the unit between
tenancies in order to �show� it well, but little incentive to maintain the unit well during the
tenancy. The paper formalizes this intuition, and presents numerical examples illustrating the
e¢ ciency loss from this e¤ect.

Keywords: tenancy rent control, rent control, maintenance, housing quality, rehabilitation,
credible commitment

JEL Classi�cation: R21, R38

�The authors would like to thank seminar participants at the MIT Real Estate Seminar and session participants at
the 2005 North American Regional Science Association Meetings, especially the discussant, John Quigley, for useful
comments on an earlier draft of the paper.

yCorresponding Author (richard.arnott@bc.edu). Department of Economics, Boston College, Chestnut Hill, MA
02467

zDepartment of Economics, Boston College, Chestnut Hill, MA 02467

1



Tenancy Rent Control and Credible
Commitment in Maintenance

1 Introduction

Tenancy rent control is a form of rent control in which rents are regulated within a tenancy but may
be raised without restriction between tenancies; more speci�cally, the starting rent for a tenancy
is unregulated but the path of nominal rents within a tenancy, conditional on the starting rent,
is regulated, typically causing rents to rise less rapidly over the tenancy than they would in the
absence of controls1. Many, perhaps most, jurisdictions around the world that previously had
traditional �rst- and second-generation rent control programs (Arnott (1995)) have moved in the
direction of tenancy rent control as a method of partial decontrol2.

In jurisdictions that have stricter forms of rent control, tenancy rent control may be an attractive
method of partial decontrol. Because the starting rent adjusts to clear the market, tenancy rent
control does not generate the excess demand phenomena (such as key money, waiting lists, and
discrimination) of stricter rent control programs, and should have less adverse e¤ects on tenant
mobility and the matching of households to housing units3. Tenancy rent control continues to
provide sitting tenants with improved security of tenure; for one thing, rent regulation within ten-
ancies precludes economic eviction; for another, because tenancy rent control, like other forms of
rent control, provides landlords with an incentive to evict tenants, it is invariably accompanied by
conversion (rehabilitation, demolition and reconstruction, and conversion to condominium) restric-
tions4. As well, tenancy rent control may be a politically attractive method of partial decontrol
since it continues to provide rent protection to sitting tenants, who are typically the strongest op-
ponents of decontrol. These bene�ts must be weighed against the costs. The most obvious costs are
the tenant lock-in created by tenancy rent control and the unfairness of the preferential treatment
of sitting tenants. There are also less obvious costs. The workability of tenancy rent control makes
it more di¢ cult to move to complete decontrol, should this be deemed desirable. Also, because a
rent control administration is kept in place, it is relatively easy to return to harder controls should
the political winds change. Landlords, fearing this, may curtail investment5.

This paper focuses on another less obvious cost of tenancy rent control � its adverse e¤ect on
maintenance, construction, demolition and reconstruction, and rehabilitation. Pollakowski (1999)
provides an empirical analysis of the e¤ects of New York City�s rent control system on housing

1This de�nes the �ideal type�, which is what will be modeled in this paper. Many jurisdictions have forms of rent
control that are intermediate between tenancy rent control, according to the above de�nition, and more traditional
forms of rent control. In some, rent increases are regulated both within and between tenancies, but less severely
between tenancies than within tenancies. In others, rent increases are unregulated between tenancies but are subject
to a variety of regulatory provisions within a tenancy, such as a guideline rent increase (which allows rents to rise
by a certain percentage per year) with a cost-pass through provision (which allows the landlord to apply for a rent
increase above the guideline rent increase if justi�ed by cost increases).

2Basu and Emerson (2000, 2003) and Arnott (2003) list some of these jurisdictions. Borsch-Supan (1996) mod-
els the current German system and Iwata (2002) the current Japanese system, both of which are termed �tenant
protection�systems.

3There is a large literature on the adverse e¤ects of rent control. Three particularly good papers that avoid
polemical rent-control bashing are Frankena (1975), Glaeser and Luttmer (2003), and Olsen (1988).

4Miron and Cullingworth (1983) and Hubert (1991) examine the e¤ects of rent control on security of tenure.
5These less obvious costs are evident in the Ontario experience with rent control (e.g., Smith, 2003).
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maintenance there. Arnott and Johnston (1981) provides an informal, diagrammatic discussion of
the e¤ects of several rent control programs (though not tenancy rent control) on housing quality
and maintenance. This paper will adapt the model of Arnott, Davidson, and Pines (1983) to
examine how the application of tenancy rent control to a single atomistic landlord-builder a¤ects
his pro�t-maximizing behavior6.

Assume, as we will throughout the paper in order to abstract from the tenant lock-in e¤ect, that
tenancy duration is exogenous. There are two con�icting intuitions concerning the e¤ects of tenancy
rent control on the atomistic landlord�s behavior. A lay person with good economic intuition would
probably argue that tenancy rent control gives the landlord an incentive to spruce up his units
between tenancies so that they �show�well and hence can be let at a higher starting rent, but little
incentive to maintain the units well during tenancies since, after the starting rent has been agreed
upon, maintaining well has no e¤ect on the rent stream during the tenancy. An economist might
however reasonably object that, with tenancy duration exogenous, there is nothing to prevent the
landlord from following the program that is pro�t maximizing in the absence of tenancy rent control
�which we shall term the e¢ cient program. If the landlord follows this program, the tenant should
be willing to pay as much over her tenancy as she would have for an uncontrolled unit. This line
of reasoning suggests that, were it not for the tenancy lock-in, the landlord�s pro�t-maximizing
program would be una¤ected by the application of tenancy rent control.

The resolution of the two con�icting intuitions lies in the ability of the landlord to credibly commit
to the e¢ cient program. If he is able to credibly commit to a maintenance program, he will credibly
commit to the e¢ cient program and the tenant will agree to pay the same in rent in discounted
terms over the duration of the tenancy as in the absence of rent control. The landlord will therefore
be making the same revenue and incurring the same costs as in the absence of rent control, and
can surely do not better than this. If, however, the landlord is unable to credibly commit to
pursuing the e¢ cient program, once the lease is signed he has an incentive to pursue a di¤erent
maintenance program, which we term the opportunistic program. Since the signing of the lease
�xes the discounted rent the landlord will receive over the current tenancy, the only incentive he
has to maintain is to improve the quality of the unit at the end of the lease, as this will increase
the discounted rent he receives on subsequent tenancies. Compared to the e¢ cient program, the
opportunistic program entails both a reduction in average maintenance and a postponement of
maintenance within a tenancy. Before the lease is signed, a prospective tenant should in this
situation realize that under tenancy rent control the landlord will pursue the opportunistic rather
than the e¢ cient maintenance program and hence not be willing to pay as high a starting rent as
she would if he were to pursue the e¢ cient program.

The crux of the matter is therefore the landlord�s ability, under tenancy rent control, to commit
to a particular maintenance program. Three commitment mechanisms might be partially e¤ective.
The �rst is contracting on maintenance. One problem with this commitment mechanism is that,
since maintenance is such an amorphous concept, maintenance clauses in the lease would be highly
incomplete; for example, if the contract were to require the landlord to replace appliances every
ten years, he might replace with appliances that are used and reconditioned or of minimal quality.
Another problem is that it would be costly for a tenant to document that her landlord had not met

6Since the analysis is �very�partial equilibrium, it will ignore the e¤ects of tenancy rent control on the level of
rents and on other markets such as the labor market.
While the paper focuses on tenancy rent control, the techniques employed can be applied to examine the e¤ects of

other forms of rent control on the landlord�s optimal program (indeed, Arnott and Johnston (1981) does so, albeit
informally).
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the maintenance terms of the contract. The second commitment mechanism, reputation, is likely to
be ine¤ective since the typical prospective tenant knows little or nothing about di¤erent landlords�
maintenance performance when she is searching for a unit. The third mechanism, maintenance
regulation, su¤ers from problems similar to those for contracting on maintenance. In our judgment,
such commitment devices are generally ine¤ective, and in our analysis we shall assume them to be
completely ine¤ective. The e¢ ciency costs that we identify are reduced to the extent that these
commitment mechanisms are indeed e¤ective.

Section 2 analyzes the landlord�s pro�t-maximizing program in the absence of rent control. Sec-
tion 3 examines how tenancy rent control in the absence of credible commitment in maintenance
distorts the pro�t-maximizing program. Section 4 provides some calibrated examples focusing on
the magnitude of the e¢ ciency loss caused by tenancy rent control. And section 5 concludes.

2 The Pro�t-Maximizing Program without Rent Control

A competitive landlord owns a vacant lot of �xed area on which only a single unit of housing
can be constructed7. Housing is durable and its quality is endogenous. Four quality-changing
technologies are available: construction, maintenance, rehabilitation, and demolition. The economic
environment is stationary over time and described by the quality-changing technologies, the rent
function relating market rent to quality, and the interest rate. The maintenance technology is
autonomous �the unit�s rate of quality change depends on its current quality and the current level
of maintenance expenditure but not on the unit�s age per se. The landlord chooses the pro�t-
maximizing program. Under these assumptions, phase plane analysis may be employed.

A rather thorough analysis of this problem is presented in Arnott, Davidson, and Pines (1983).
Here we focus on a special �but also probably the most realistic �case, in which, in the absence
of controls, at the beginning of the program it is pro�t maximizing to construct and downgrade.
Three qualitatively di¤erent active programs may be pro�t maximizing:

1. Initial construction, followed by downgrading to saddlepoint quality (program S).

2. A construction-downgrading-demolition cycle (program D).

3. Initial construction followed by a downgrading-rehabilitation cycle (program R).

2.1 Program S

Under program S, at time 0 the landlord constructs a single housing unit of quality qc on his lot
and then downgrades the unit asymptotically to saddlepoint quality qS . Where q(t) is quality at
time t, P (q) the exogenous rent function, m(t) maintenance expenditure at time t, r the interest
rate, � construction cost per unit of quality, g(q;m) the depreciation function, and T the terminal

7The analysis can be extended to endogenize structural density (Arnott, Davidson, and Pines (1986)).
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time, the pro�t-maximizing program is the solution to

max
qc;m(t)

1R
0

(P (q (t))�m (t)) e�rtdt� �qc

i) _q = g (q;m)
s:t: ii) qc � q (0) free

iii) limT"1 q (T ) free

(1)

Note that quality is measured as some fraction of construction costs, and that tenant maintenance
is not considered. We impose non-negativity conditions on q and m. Where 0s denote derivatives
and subscripts partial derivatives, we also impose reasonable restrictions on the functions P and
g: i) P (0) = 0, P 0(q) > 0 and P 00(q) < 0; and ii) gq < 0, gm(q; 0) = 1, g(q; 0) < 0, gm(q;1) = 0,
gm > 0, gmm < 0. Thus, rent increases with quality but at a diminishing rate; there are positive
but diminishing returns to maintenance; holding �xed the rate of quality deterioration, more has
to be spent on maintenance as quality increases; and with zero maintenance, the unit deteriorates.
In our numerical examples, the �rst-order conditions of the S program will de�ne a unique interior
maximum.

We solve the problem using optimal control theory (Kamien and Schwartz (1991)). The current-
value Hamiltonian corresponding to (1) is

H� = P (q (t))�m (t) + � (t) g (q (t) ;m (t)) ; (2)

where �(t) is current-value co-state variable on
�
q = g (q;m) : The �rst-order condition8 for mainte-

nance is
�1 + � (t) gm (q (t) ;m (t)) = 0: (3)

Since �(t) is the marginal value of quality at time t, and gm(q(t);m(t)) the amount by which
quality is increased by an extra dollar�s expenditure on maintenance, �gm is the marginal bene�t
from maintenance. Thus, at each point in time, maintenance should be such that marginal bene�t
equals marginal cost. The conditions imposed on gm guarantee that there is a unique, interior
optimal level of maintenance expenditure for all non-negative values of q and �; thus, we may write
m = m(q; �) with m� > 0. Inserting this function into (2) yields the maximized current-value
Hamiltonian:

H (q; �) = P (q)�m (q; �) + �g (q;m (q; �)) : (4)

The equation of motion of the co-state variable is

�
� = r��Hq = r�� P

0 � �gq: (5)

The assumptions thus far have not ruled out the possibility that the optimal saddlepoint program
entails upgrading to saddlepoint quality via maintenance alone. We assume that the maintenance
and construction technologies are such that the optimal saddlepoint program entails construction
at the start of the program. The transversality condition with respect to qc is then

� (0) = �; (6)

8Throughout the analysis we shall omit second-order conditions as we compare the pro�t-maximizing programs
with and without rent controls, for which the second-order conditions will hold. We shall also omit non-negativity
conditions. In the numerical examples of section 4, we explicitly verify that non-negativity conditions hold.
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construction quality should be increased up to the point where the marginal value of quality equals
its marginal cost.

We are now in a position to construct the phase plane corresponding to this program. We assume
that: i) the _q = 0 locus is positively sloped; ii) the _� = 0 locus is negatively sloped; and iii) the
_q = 0 locus and _� = 0 locus intersect in the positive orthant. Thus, there is a unique saddlepoint,
S = (qS ; �S). We assume furthermore that �S > �, unless otherwise noted. Figure 1 displays
a phase plane consistent with these assumptions. As is the case for all the �gures, Figure 1 is
drawn for the functional forms and parameters used in the series of numerical examples presented
in Section 4.

Figure 1: Phase plane for construction with downgrading to the steady state. Construction cost
(� � 105) is $60,000.

We also have the in�nite horizon transversality conditions associated with terminal quality and
terminal time. Arnott, Davidson, and Pines (1983) proves that, under the assumptions made,
these conditions imply that the optimal trajectory must terminate at the saddlepoint. Putting
together the necessary conditions for optimality, we obtain that the S program entails construction
at that quality at which the right stable arm intersects the � = � line, followed by downgrading
along the stable arm to the saddlepoint.

For an autonomous optimal control problem with discounting, the value of the program at any
time along an optimal trajectory equals the value of the Hamiltonian at that time divided by the
interest rate:

V (t) =
H (q(t); �(t))

r
:
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The economic interpretation is that the value of the Hamiltonian gives the economic return per
unit time from owning the program, which includes the net (of expenses and depreciation) earnings
stream it generates plus capital gains, and competitive asset pricing requires that the net return
per unit time from owning an asset equal the asset price times the discount rate.

With some abuse of notation, we denote the value of the maximized Hamiltonian at a point labeled
X in the phase plane by H(X). The value of the program immediately after initial construction is
then H(A)

r , so that the value of the program immediately before initial construction, which is the

value of the S program, is V S = H(A)
r � �qA.

2.2 Program D

Consider next program D, which entails a construction-demolition cycle, where qs is the starting
quality for each cycle. The landlord�s pro�t-maximizing program is the solution to9

max
qs;qT ;T;m(t)

1

1� e�rT

(
TR
0

(P (q (t))�m (t)) e�rtdt� �qs

)

i)
�
q = g (q;m)

s:t: ii) qs � q (0) free
iii) qT � q (T ) free
iv) T free

(7)

Let J(qs; qT ; T ) denote the maximized value of the expression in curly brackets, which is the present
value of net revenue from a single cycle as a function of qs, qT , and T . Then (7) can be rewritten
as

max
qs;qT ;T

1

1� e�rT J (qs; qT ; T ) :

We assume that the D program entails construction at the beginning of each cycle. Eqs. (2)
through (6) continue to apply. The transversality condition for qT is

�(T )q(T ) = 0; (8)

which indicates that the building�s quality should be run down until the optimal trajectory intersects
one of the axes in the phase plane. If the optimal trajectory intersects the q-axis, as will be the
case in all our numerical examples, the condition is that �(T ) = 0; the building�s quality should be
run down until, at the end of the cycle, the marginal value of quality is zero. The transversality
condition for T is

H (q (T ) ; � (T )) + r�qs = H (q (0) ; � (0)) ; (9)

the left-hand side is the marginal bene�t from postponing demolition and reconstruction, the right-
hand side the marginal cost. We can provide a useful geometric depiction of this transversality
condition. Now,

H (q (0) ; � (0))�H (q (T ) ; � (T )) =
qsZ
qT

�
Hq +H�

�
d�

dq

���
dq;

9The analysis can be straightforwardly extended to treat demolition costs.
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where � indicates evaluation along a phase plane trajectory connecting the starting and end points.

Since (d�=dq)� =
� �
�
�
q

��
and H� =

�
q; using (5) the above expression reduces to

H (q (0) ; � (0))�H (q (T ) ; � (T )) =
qsR
qT

r�� (q) dq: (10)

Combining (9) and (10) gives

�qs =
qsR
qT

�� (q) dq: (11)

Figure 2: Phase plane for a construction-demolition cycle. Construction cost (� � 105) is $30,000.

Figure 2 displays the phase plane for a D program. As drawn, the trajectory CDEF satis�es the
three transversality conditions: it starts on � = �, it terminates at � = 0, and it satis�es (9).
Eq. (11) has the interpretation in the phase plane that the area under the optimal trajectory
from the starting to the end point equals �qs, that Area ZCDEF = Area OXCZ. Subtracting the
common area ZCEF from both these areas gives the equivalent condition that Area CDE = Area
OXEF. A necessary and su¢ cient condition for the existence of a trajectory that satis�es all three
transversality conditions is that Area ASW > Area OXWB, where SWB is the unstable arm from
the saddlepoint to its intersection with the q- or �-axis, as the case may be. We refer to this as
the D-areas condition. If the D-areas condition is satis�ed, we say that a D program exists, and if
it is not that a D program does not exist. Since increasing � decreases Area ASW and increases
Area OXWB, there is a critical value of �, above which the D-areas condition is not satis�ed, and
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below which it is. Thus, a D program exists for construction costs below a critical level, but not
otherwise.

If a D program exists, which is more pro�table, the D program or the S program? We have
already demonstrated that the value of the S program immediately prior to construction is V S =
H(A)
r � �qA. An analogous line of reasoning establishes that the value of the D program is V D =

H(C)
r ��qC . Now, HA�HC =

R qA
qC
Hq (q; �) dq =

R qA
qC

�
r��

�
�

�
dq (from (5)): Thus,

�
HA
r � �qA

�
��

HC
r � �qC

�
=
R qA
qC
�
�
�dq along � = �, which can be seen to be negative. Thus, if a D program

exists, it is more pro�table than the S program. It can also be shown that if a D program
does not exist, the optimal S program is more pro�table than any construction-demolition cycle
program. Thus, the construction-demolition cycle program is more pro�table than the saddlepoint
program when construction costs are below the critical value, and the saddlepoint program is more
pro�table than any construction-demolition cycle program when construction costs are above the
critical value, which accords with intuition.

2.3 Program R

The �nal option is a rehabilitation cycle, which entails constructing at quality qc, downgrading to
quality qT , rehabbing up to quality qs, and then repeating the downgrading-rehabilitation cycle.
Discounted net rents

max
qc;qs;qT ;Tc;T;m(t)

TcR
0

(P (q (t))�m (t)) e�rtdt� �qc

+
e�rTc

1� e�rT

"
TR
0

(P (q (t))�m (t)) e�rtdt�R (qs; qT )
#
;

are maximized with respect to qc; qs; qT ; Tc; T; and m (t) where Tc is the length of time from
construction to the �rst rehab, T the length of the rehabilitation cycle, and R (qs; qT ) the cost of
rehabbing a unit of quality qT to quality qs. It is assumed that it remains pro�table to construct
initially, so that (3) through (6) continue to apply. The transversality conditions are

qc : �c = �

T : H (qT ; �T ) + rR (qs; qT ) = H (qs; �s)

qs : � (0) = �s =
@R

@qs

qTc ; qT : �(Tc) = �(T ) = �T =
@R

@qT

Tc : H(qTc ; �Tc) = H(qT ; �T )

In our numerical examples, we shall assume that the function R(qs; qT ) is strongly separable in
qs and qT , i.e. R(qs; qT ) = R1(qs) � R2(qT ). Figure 3 plots a con�guration of the phase plane
for which the rehabilitation cost function is linear in the two quality levels. Here too the timing
transversality condition can be displayed as an equal areas condition, that Area NQR equals Area
RTUV. Adapting the argument used in the previous two subsections, it can be shown that the
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Figure 3: Phase plane for a rehabilitation cycle. Construction cost (� � 105) is $20,000.

value of the R program is HM=r � �qM .

Applying the same line of reasoning as in the previous subsection, it can be shown that if the R
program exists, it is more pro�table than the S program, and that if the R program does not exist,
the S program is more pro�table than any program entailing rehabilitation. It remains to compare
the pro�tabilities of the R program and the D program, if both exist. Both start on the � = �
line between where it intersects the right stable arm and the _� = 0 line. The argument employed
in the previous subsection to prove that, if the D program exists, it is more pro�table than the S
program, can be adapted to prove that if both the D and the R program exist, the one which starts
further to the left on the � = � line is the more pro�table. An upward shift of the R1(qs) function
or a downward shift of the R2(qT ) function reduces the pro�tability of the R program relative to
the S program and the D program.

In section 4 we shall present a series of related numerical examples, indicating di¤erent sets of
parameter values for which each of programs S, D, and R, are pro�t maximizing.
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3 The Pro�t-maximizing Program with Tenancy Rent Control

We model tenancy rent control as a ceiling on the time path of rents over the duration of a tenancy,
conditional on the starting rent10. Letting ps denote the starting rent, u the length of time into the
tenancy, and F (ps; u) (with @F=@ps > 0) the rent control function �the maximum allowable rent
u years into a tenancy, conditional on ps �a tenancy rent control program imposes the constraint
that bP (u) � F (ps; u), where bP (u) is the rent charged by the landlord u years into the tenancy.
We shall examine the e¤ects of tenancy rent control applied to a single housing unit when all
other units are uncontrolled; the analysis is therefore partial equilibrium. We make a number of
simplifying assumptions:

Assumption 1 The length of a tenancy is exogenous at L.

This assumption is made for two reasons. First, we wish to abstract from the e¤ect of tenancy
rent control on tenancy duration, in order to focus on its e¤ects on landlord maintenance and
conversion. Second, the assumption takes into account that tenancy rent control is invariably
accompanied by restrictions on eviction11. Since tenancy rent control front-end loads rent over
a tenancy, shorter tenancies are more pro�table for landlords. In the absence of restrictions on
eviction, tenancy rent control would therefore provide landlords with an incentive to evict tenants12.
Under the assumption, the landlord is able to rehabilitate or to demolish-and-reconstruct only
between tenancies.

Assumption 2 The rent control function is such that the landlord �nds it pro�t maximizing to
charge the maximum controlled rent over the duration of a tenancy, i.e. bP(u) = F (ps ; u).
This assumption states that, under the opportunistic program, the time path of controlled rents
over a tenancy are su¢ ciently �front-end loaded� relative to the time path of market rents that
the tenancy rent control constraint binds strictly throughout the tenancy. While not primitive,
this assumption greatly simpli�es the analysis since otherwise the possibility would have to be
considered that the rent control constraint binds over some quality intervals of a tenancy but not
over others.

Assumption 3 Tenants are identical.

Assumption 4 Tenants face perfect capital markets and discount �nancial �ows at the same rate
as the landlord.

10There are tenancy rent control programs that restrict the percentage increase in rent from one year to the next.
Under such a program, a landlord might �nd it pro�t maximizing to charge less than the maximum allowable rent
increase for some time interval during a tenancy, in which case the ceiling on the time path of rents would thereafter
be determined by the rent level at the time the percentage increase regulation again becomes binding. Thus, our
modeling of tenancy rent control entails a simpli�cation.

11We use the term eviction to mean that the tenant is required to leave her unit even though she would prefer not
to, rather than in the legal sense.

12Tenancy rent control rules out economic eviction (raising rents to force a tenant out) but at least in North
America, where annual tenancies are the norm, a landlord can evict a tenant in some jurisdictions simply by choosing
not to renew the lease, and in others by citing as just causes minor lease violations or his intention to lease the unit
to a family member, convert it to owner occupancy, or rehabilitate it.
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With identical tenants, the market rent as a function of quality adjusts so that a renter receives the
same utility at all quality levels. Thus, under tenancy rent control, a tenant is indi¤erent between
living in a controlled and uncontrolled unit if and only if the discounted value of controlled rents
over the tenancy equals the discounted value of market rents for the same quality path, discounted
at her discount rate. The assumption that the tenant�s discount rate is the same as the landlord�s
is made to simplify the analysis.

Under the above assumptions, the opportunistic program is independent of the form of the rent
control function. A proof runs as follows. Suppose that the pro�t-maximizing program with a
particular rent control function has been solved for. Now modify the rent control function, holding
constant the program but allowing the starting rents for each tenancy to adjust so that tenants
remain indi¤erent between controlled and uncontrolled housing. The pro�tability of the program
remains unchanged and the landlord cannot improve pro�tability by altering the program. With-
out ambiguity, we may then let q̂(u; qs) denote the time path of quality over a tenancy under the
opportunistic program, conditional on starting quality qs. And the condition that, with the oppor-
tunistic program, over each tenancy the discounted value of controlled rents equals the discounted
value of market rents may be written as

LR
0

F (ps; u)e
�rudu =

LR
0

P (bq(u; qs))e�rudu.
Thus, under the above assumptions, it is the imposition of tenancy rent control rather than its
severity13 that matters since it is the imposition of tenancy rent control that undermines the
credibility of the e¢ cient program.

In the analysis of the previous section, without rent control, there were three qualitatively di¤erent
optimal programs for the landlord, the S program, the D program, and the R program. The same
three qualitatively di¤erent optimal programs are present under tenancy rent control.

3.1 Program bS
Program bS under tenancy rent control is the analog of program S in the absence of rent control.
Under our assumptions concerning the characteristics of the maintenance and construction tech-
nologies, program S entails construction followed by downgrading to steady-state quality. ProgrambS, too, entails construction followed by downgrading from one tenancy to the next, but mainte-
nance follows a sawtooth pattern, increasing within each tenancy and then falling discontinuously
from the end of one tenancy to the start of the next. The program converges to a steady-state
tenancy maintenance cycle in which quality is highest at the beginning and end of each tenancy,
rather than to a steady-state quality.

We decompose solution of the opportunistic program under tenancy rent control during a single
tenancy into two stages. In the �rst stage, we solve the program taking as given not only the
initial quality of the unit and the duration of the tenancy but also the terminal quality. In the

13A tenancy rent control program is more severe than another if it permits a lower nominal percentage increase
in rent every year during a tenancy.

Assumption A.2 is that the tenancy rent control program is su¢ ciently severe that the landlord �nds it pro�t
maximizing to charge the maximum controlled rent over the duration of the tenancy. If the tenancy rent control
program is su¢ ciently �lax�that the landlord �nds it pro�t maximizing to charge the maximum controlled rent over
no portion of the tenancy, the program has no e¤ect. Intermediate situations are analytically messy.
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second stage, we solve for the pro�t-maximizing terminal quality. The landlord decides on this
program after the lease has been signed, and therefore after his discounted rent over the tenancy
has been determined. The �rst-stage problem entails the minimization of discounted maintenance
expenditures needed to achieve terminal quality, qL, taking as given the starting quality, qs, and the
tenancy duration, L. This is an elementary optimal control program with a well-known solution.
De�ne J(qs; qL; L) to be the value of this program. We shall use three properties of the solution:

@J=@qs = �(0) @J=@qL = ��(L)e�rL _� = r�� �gq (12)

where �(t) is the current value of the co-state variable on _q = g(q;m). The �rst solution property
indicates that �(0) is the marginal value of quality at the start of the tenancy, after the tenancy
contract has been signed. The second indicates that �(L) is the marginal value of terminal quality
at terminal time, so that �(L)e�rL is the marginal value of terminal quality discounted to the
beginning of the tenancy. Since the �rst stage of the problem entails deciding on the maintenance
path over the tenancy, after the contract has been signed, we refer to � as the marginal value of
quality via maintenance or the ex post (viz., after the tenancy contract has been signed) marginal
value of quality. The last solution property is that over a tenancy the marginal value of quality via
maintenance grows14 at the rate r � gq through the tenancy.

The second stage of the solution of the opportunistic program entails the choice of qL. To derive this,
we work with a value function. Under tenancy rent control, the value of a housing unit is a function
not only of quality but also of how much time remains in the current tenancy contract15. Let bV (q)
denote the value of a housing unit of quality q between tenancies, and Z(qs) the revenue received
over a tenancy contract, discounted to the beginning of the tenancy contract. The landlord decides
on the maintenance program, and hence qL, after signing the tenancy contract, and therefore after
the revenue received over the tenancy has been determined. Then the value function for bV (q) may
be written as bV (qs) = Z(qs) +maxqL [J(qs; qL; L) + bV (qL)e�rL]: (13)

Terminal quality is chosen to maximize the expression in square brackets. The corresponding
�rst-order condition is

@J=@qL + bV 0(qL)e�rL = 0: (14)

Comparing the second equation in (12) and (14) yields

�(L) = bV 0(qL): (15)

Di¤erentiating (13) with respect to qs yieldsbV 0(qs) = Z 0(qs) + @J=@qs (using the envelope theorem)

= Z 0(qs) + �(0) (using (12)). (16)

Eq. (16) requires some care in interpretation. bV 0(qs) is the ex ante (before the tenancy contract
14Suppose the landlord buys an extra unit of quality today at a price of �. Instantaneously, he must make

the competitive return on that unit, r�, and the return comprises two components, the capital gain, _�, minus the
depreciation, ��gq:

15Since the housing market remains competitive under rent control, it must still be the case that owning the
program for an increment of time between u and u + du within a tenancy provides income of rV (q(u); u), where
V (q(u); u) is the market value of a controlled housing unit of quality q u units of time into a tenancy. From
this relationship, the rent control function, and the boundary condition that bV (qs) = V (qs; 0), V (q(u); u) may be
calculated.
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has been signed) marginal value of quality at the start of a tenancy, while �(0) is the ex post (after
the tenancy contract has been signed) marginal value of quality at the start of a tenancy. Eq.
(16) indicates that, at starting quality, the ex ante marginal value of quality exceeds the ex post
marginal value of quality by Z 0(qs), marginal discounted revenue. Thus, there is a downward jump
discontinuity in the marginal value of quality at the time the lease is signed. Now return to (15).
It states that, in contrast, the marginal value of quality immediately before the termination of the
tenancy equals the marginal value of quality immediately afterwards, in both cases equaling the
increase in the property price from a unit increase in terminal quality.

Figure 4: Phase plane for construction-downgrading to the steady-state cycle under rent control.
Construction cost (� � 105) is $40,000.

The value of the bS program immediately prior to construction is

bV bS = max
qc

hbV (qc)� �qci : (17)

Assuming an interior solution, the corresponding �rst-order condition for pro�t-maximizing con-
struction quality is bV 0(qc)� � = 0 (18)

Comparing (16) and (18), for the �rst tenancy, since qc = qs;

�(0) = �� Z 0(qc): (19)

Construction occurs at that quality level, for which the ex ante marginal value of quality via
construction equals the marginal cost, while the ex post marginal value of construction quality falls
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short of marginal construction cost by Z 0(qc).

In the steady state, quality varies within a tenancy, but the starting and terminal qualities remain
constant from one tenancy to the next. Let q� denote the optimal starting and terminal quality of
a steady state cycle. Since in a steady-state tenancy qs = qL = q�,

bV (q�) = 1

1� e�rL fZ(q�) + J(q�; q�; L)g:

Figure 4 displays the phase diagram of the bS program for the numerical example, and plots the
optimal trajectory for two tenancies, the �rst tenancy that occurs immediately after construction
and the steady-state tenancy. For comparison it also plots the optimal (stable arm) trajectory
without rent control. With the depreciation function we employ, maintenance expenditures are
positively related to � and independent of q. The diminished incentive to maintain under tenancy
rent control is re�ected in the lower position, on average, of the optimal trajectory under tenancy
rent control. The incentive under tenancy rent control to postpone maintenance expenditures
towards the end of the tenancy is also evident.

3.2 Program bD
Program bD under tenancy rent control is the analog of program D in the absence of rent control.
Recall that, under our assumptions concerning the construction and maintenance technologies,
program D entails constructing at a quality above saddlepoint quality, downgrading smoothly to
demolition, and then repeating the cycle, which has an endogenous length of T . Recall, too,
that if an optimal demolition program exists, it is more pro�table than the optimal saddlepoint
program. The program bD di¤ers from program D in two important respects. First, because of
the assumed �xed duration of a tenancy under tenancy rent control, demolition can occur only
between tenancies, so that the length of the demolition cycle must be some integer multiple of L.
Thus, there are two types of cycles, the construction-demolition cycle and the maintenance cycle
within each tenancy. Since terminal time is not, therefore, a continuous variable, there will not be
a timing transversality condition. Instead, optimal cycle length can be computed by comparing the
pro�t obtained when demolition occurs after every tenancy, after every second tenancy, and so on.
Second, under tenancy rent control the commitment problem arises.

Our solution of the bD program proceeds in two stages16. In the �rst stage, the pro�t-maximizing
program is calculated conditional on the number of tenancies in a construction-demolition cycle. LetbV n(qc) denote the value of a housing unit that has just been constructed at quality qc, conditional
on n tenancies in the cycle, and Vn the value of the optimal program conditional on n tenancies
within a demolition cycle. In the second stage, the corresponding pro�t levels are compared for
di¤erent numbers of tenancies within the cycle. In this subsection, we ignore the complications
that would arise if the non-negativity constraint on q would bind.

We start by solving for the optimal program, conditional on the unit being demolished after each
tenancy. Once the tenancy contract has been signed, the landlord has no incentive to maintain.
Spending on maintenance does not increase the revenue received over the tenancy and the value of
the structure is zero at the end of the cycle since it is about to be demolished. The value of the

16Eqs. (13) - (19) apply to the demolition case as well. We proceed as we do in order to provide more insight into
the economics, and to motivate the numerical solution algorithm we employ.
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program is

V1 = max
qc

nbV 1(qc)� �qco = max
qc

1

1� e�rL fZ(qc)� �qcg;

from which the �rst-order condition for pro�t-maximizing construction quality is straightforward
to obtain.

We now solve for the optimal program, conditional on the structure being demolished after two
tenancies. It is pro�t maximizing for the landlord to spend nothing on maintenance during the
second tenancy. Let superscript i on q denote the order of tenancy within a demolition cycle, so
that q1L is terminal quality for the �rst tenancy, for example. ThenbV 2(qc) = Z(qc) + max

q1L

[J(qc; q
1
L; L) + Z(q

1
L)e

�rL] + (bV 2(qc)� �qc)e�2rL:
Thus, bV 2(qc) = 1

1� e�2rL fZ(qc) + maxq1L
[J(qc; q

1
L; L) + Z(q

1
L)e

�rL]� �qce�2rLg:

Calculate �rst Z(q1L). Then solve the maximization problem in square brackets, which yields q1L as
a function of qc, from which an expression for bV 2(qc) is obtained. Since the value of the program
prior to construction, conditional on construction at quality qc, is bV 2(qc) ��qc, the �nal step is to
choose qc to maximize bV 2(qc) ��qc.
This line of reasoning suggests an algorithm for solving for the pro�t-maximizing program with
n tenancies during a construction-demolition cycle. Let vi(qis; n) be the value of revenue net of
maintenance expenditures received from the beginning of tenancy i until the structure is demolished,
discounted to the beginning of tenancy i, conditional on qis and the number of tenancies within a
demolition cycle. Proceed by backward recursion17. First, calculate vn(qns ; n) ( = Z(q

n
s )). Second,

solve
max
qns

J(qn�1s ; qns ; L) + v
n(qns ; n)e

�rL:

Denote by qns (q
n�1
s ) the value of qns that solves this maximization problem, as a function of q

n�1
s .

Then
vn�1(qn�1s ; n) = Z(qn�1s ) + J(qn�1s ; qns (q

n�1
s ); L) + vn(qns (q

n�1
s ); n)e�rL:

Return to step 2, but replacing n by n � 1, and n � 1 by n � 2. Proceed recursively backwards
until v1(q1s ; n) �the value discounted to construction time of the net revenue received over the life
of the building as a function of q1s = qc, conditional on n tenancies �is obtained. Then

18

Vn = max
qc

1

1� e�rnL fv
1(qc; n)� �qcg:

If the optimal number of tenancies is �nite, then n� = argmaxnfVng, and Vn
�
is the value of the bD

program. If the optimal number of tenancies is in�nite, we say that an optimal demolition program
does not exist.

Figure 5 plots one cycle of the bD program for the numerical example for which the pro�t-maximizing
17This algorithm is inapplicable to the optimal saddlepoint program, since the optimal saddlepoint program

contains an in�nite number of tenancies.
18Alternatively, we may write bV n(qc) = v

1(qc; n)+(��qc+bV n(qc))e
�rnL, and obtain Vn as the value of bV n(qc)��qc

maximized with respect to qc:
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Figure 5: Phase plane for a demolition cycle under tenancy rent control. Construction cost (� �105)
is $30,000.

number of tenancies within a demolition cycle is four. Note that � = 0 throughout the last tenancy.

3.3 Program bR
Program bR under rent control is the analog of program R in the absence of rent control. Recall
that, under our assumptions concerning the construction and maintenance technologies, program
R entails constructing at quality qc above saddlepoint quality, downgrading the unit to quality qT ,
upgrading it via rehabilitation to quality qs, downgrading it along the original trajectory from qs
to qT , and then repeating the rehabilitation cycle ad in�nitum. We also showed that if program
R exists, it is more pro�table than program S, and that, if both program R and program D
exist, the one with the lower construction quality is the more pro�table. Program bR di¤ers from
program R in two respects. First, because under tenancy rent control rehabilitation is permitted
only between tenancies and because tenancy duration is L, the period from initial construction to
the �rst rehabilitation must be some integer multiple of L, as must the period between subsequent
rehabilitations. Because of this, the starting and terminal quality of a rehabilitation cycle will
in general vary from one rehabilitation to the next. Second, as with the other two rent control
programs, downgrading does not occur smoothly because of the commitment problem.

In the optimal demolition program with rent control, all the cycles are the same. This is not in
general true of the optimal rehabilitation program; the number of tenancies may be di¤erent for
di¤erent rehabilitation cycles. In our numerical examples, however, since we assume that the mar-
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ginal bene�t of increasing quality via rehabilitation is independent of the quality level from which
rehabilitation is undertaken, the �rst rehabilitation is followed by the stationary rehabilitation cy-
cle. In this case, the construction of a solution algorithm is relatively straightforward. First, one
solve for the opportunistic stationary rehabilitation cycle, conditional on one, two, etc. tenancies
between rehabilitations, and then for the unconditional opportunistic stationary cycle. And second,
solve for the optimal program up to the �rst rehabilitation, conditional on one, two, etc. tenancies
to that point, and then for the unconditional optimal program.

Figure 6: Phase plane for a rehabilitation cycle under tenancy rent control. Construction cost
(� � 105) is $20,000.

Among the bS, bD, and bR programs, the overall optimal program is the one with the highest value.
The deadweight loss due to rent control is simply the di¤erence between the value of the optimal
program without rent control minus the value of the optimal program with rent control.

4 Numerical Examples

This section presents a series of related numerical examples with the aim of quantifying the e¤ects
of tenancy rent control. The e¢ ciency cost caused by the commitment problem is of special interest.

4.1 Choice of functional forms and parameters

We had hoped to draw on the empirical literature in our choice of functional forms and parameters.
Unfortunately, there seem to be no empirical studies that have employed the Arnott, Davidson,
and Pines (1983) conceptual framework as the basis for empirical analysis. As a result, we adopt
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the more modest goal of developing numerical examples whose parameters and functional forms
are �reasonable�. We choose the functional forms so as to obtain equations of motion that are
the solutions to linear di¤erential equations, as well as (for the case of rent control) closed-form
value functions. And we choose the parameters to generate plausible results for the steady-state,
demolition, and rehabilitation programs.

As in the theoretical analysis, we measure quality as proportional to construction costs. We as-
sume the following functional forms for the rent function, the construction cost function, and the
maintenance/depreciation function:

P (q) = eq � fq
2

2
C(q) = � _q = ��q + 2am1=2

The rent equation generates a linear, downward-sloping marginal-willingness-to-pay-for-quality
function. The maintenance/depreciation function is about the simplest possible. In the absence of
maintenance, quality depreciates exponentially at the rate �. A given level of maintenance expen-
diture slows down the rate of quality depreciation by an amount that is independent of quality, and
there are diminishing returns to maintenance. The optimal expenditure on maintenance is given by
a2�2; maintenance expenditure is therefore increasing in � and independent of q. Substituting the
expression for optimal maintenance into the depreciation function gives the maximized depreciation
function,

_q = ��q + 2a2�: (20)

In the absence of rent control, these equations imply a co-state equation of the form

_� = (r + �)�� e� fq; (21)

and with tenancy rent control19,
_� = (r + �)�: (22)

In the absence of rent control, these equations of motion correspond to a phase plane with a linear,
upward-sloping _q = 0 line and a linear, downward-sloping _� = 0 line, whose intersection point, the
saddlepoint is at

qS =
2a2e

�(r + �) + 2a2f
� =

e�

�(r + �) + 2a2f
:

With rent control, the _� = 0 line coincides with the q-axis, so that the _q = 0 and _� = 0 lines do
not intersect in the interior of the phase plane.

We take as our units of measurement years and hundreds of thousands of dollars. We start by
setting the following parameters:

� = 0:03, r = 0:0375, a = 0:2121; e = 0:055; f = 0:005; and L = 10:

These parameters imply a saddlepoint quality of 2.0, saddlepoint maintenance of 0.02 ($2000 per
year), saddlepoint rent of 0.10 ($10000 per year), and a value of the co-state variable (the marginal

19Thus, both with and without rent control, the state and co-state equations are together a pair of linear �rst-
order di¤erential equations in q and �. In the absence of rent control, substituting one into the other generates
linear, second-order di¤erential equations for q alone and � alone. And with rent control, (22) is a linear, �rst-order
di¤erential equation in � alone, and substituting the solution to (22) into (20) results in a linear, �rst-order di¤erential
equation in q alone.
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value of quality) at the saddlepoint of 0.667. � is varied across examples.

Our rehabilitation function has a very simple form: R(qs; qT ) = �1qs � �2qT = �2(qs � qT )� (�1 �
�2)qs, where �1 = 0:25; �2 = 0:24: Thus, besides a linear cost of quality upgrade, the landlord has
to pay a fee proportional to the �target�quality qs.

4.2 Numerical solution procedures

The details of the numerical solution procedures employed are presented in the Appendix of the
version of the paper available at http://fmwww.bc.edu/ec/arnott.php. Here we just describe in
broad terms the general approaches. In the absence of rent control, the solution procedure centers
on solving for the solution parameters of the second-order linear di¤erential equation for �, since
everything else may be solved for once these parameters are obtained. One parameter is obtained
from the initial condition that �(0) = �. How the other parameter is determined depends on the
type of program. In the case of the saddlepoint program, the second parameter is obtained from
the �-coordinate of the saddlepoint; in the case of the demolition program, the second parameter
and the period of the demolition cycle are solved simultaneously from �(T ) = 0 and the terminal
time (or equal-areas) transversality condition; in the case of the rehabilitation program, the second
parameter, as well as �s and �T , are solved simultaneously from the transversality conditions for
�s, �T ; and the terminal time transversality condition.

The approaches taken to solve the optimal programs with tenancy rent control are more complex.
It is convenient to express the unknown parameters in the functions �(t) and q(t) in terms of q(0)
and q(L). This allows us to obtain the discounted revenue received over a tenancy, Z(q0), and
the net value of a tenancy cycle, J(q0; qL; L). For program bS, we make a conjecture about the
form of bV (q). Then, using (14) to �nd qL(qs) and plugging it into (13), we apply the method of
undetermined coe¢ cients to solve for bV (q). The �nal step is to �nd the construction quality qc
using (18). The solution algorithm for the demolition program with rent control was described in
Section 3.2 and that for the rehabilitation program sketched in Section 3.3.

4.3 Examples without rehabilitation

In this subsection, we assume that rehabilitation is unpro�table and that � is not so high as to make
initial construction unpro�table. In the absence of rent control, the optimal program is therefore
either the optimal saddlepoint program or the optimal demolition program, with the saddlepoint
program being optimal for � above 0.4166 and the demolition program for � below that level. With
rent control, the optimal program entails either convergence to a steady-state cycle or a demolition
program, with the former occurring when construction costs are high relative to maintenance. We
proceed by lowering � from one example to the next.

� � = 0:695

The fourth panel of Figure 7 displays the phase diagram for this example, both with and without
rent control. The _� = 0 locus in the absence of rent control is shown as the dotted line; with
rent control, it coincides with the q-axis. Recall that the level of maintenance is proportional
to �. In the absence of rent control, the optimal program entails construction at q = 1:416,
followed by upgrading to steady-state quality, qS = 2:0. Construction occurs at that quality at
which the marginal value of quality, �, equals the marginal cost of construction. The value of the
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program is 0.751. With rent control, the optimal program entails a steady-state tenancy cycle, with
construction at q = 1:542. As explained earlier, � jumps downwards discontinuously immediately
after a tenancy contract is signed, re�ecting the commitment problem, and then rises continuously
within the tenancy. With increasing maintenance over the tenancy, quality initially falls and then
rises until it reaches construction quality by the end of the tenancy. The value of the program is
0.694. Thus, the e¢ ciency loss due to tenancy rent control is 7.6% of the value of the uncontrolled
program. Observe that the average quality of housing is lower under rent control, consistent with
intuition.

Note: NRC is an abbreviation for no rent control.

Figure 7: Phase planes with and without rent control. No rehabilitation.

� � = 0:667

The third panel of Figure 7 shows the optimal trajectories for this example without and with rent
control. The optimal program in the absence of rent control entails constructing at saddlepoint
quality and holding quality constant at that level. The value of the Hamiltonian at the saddlepoint
is 0.08 (rent of 0.10 minus maintenance costs of 0.02 and of course no depreciation). Housing value
is 2.133 and construction costs are 1.333, so that the value of the program prior to construction is
0.800 and the land to housing value ratio 0.375. Are these numbers reasonable? The �cap rate�
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(the percentage of net rent to value) is low, under the model�s assumptions simply equaling the
interest rate; if uncertainty and property taxes were considered, the cap rate would be reasonable.
Maintenance expenditures are 0.94% of housing value, which accords broadly with the 1-percent
rule that maintenance expenditures are typically about 1% of property value. The Figure shows
two rent-control trajectories. The path on the right is for the �rst tenancy, that on the left for the
steady-state tenancy. Construction occurs just above saddlepoint quality. Maintenance increases
within each tenancy, but starting quality falls from one tenancy to the next, converging to steady-
state starting quality below saddlepoint quality. The value of the program is 0.746, implying a
deadweight loss due to tenancy rent control of 6.8% of value.

� � = 0.4

It was noted earlier that, with the assumed functional forms and parameter values, in the absence
of rent control the optimal demolition program is more pro�table than the optimal saddlepoint
program when � is below 0.4166. Thus, in this example, displayed in the second panel of Figure 7,
the optimal program without rent control is a demolition cycle. Construction occurs at a quality
considerably above saddlepoint quality. This is followed by downgrading to demolition quality, at
which point the structure is demolished and the cycle exactly repeated. The value of the program is
2.058. In contrast, with tenancy rent control, convergence to a steady-state cycle remains optimal20.
Construction occurs at high initial quality, followed by downgrading from one tenancy to the next
(but with rising maintenance within each tenancy) converging to a steady-state cycle. The value
of the program is 2.030, so that in this case the deadweight loss due to rent control is only 1.4% of
the uncontrolled program value.

� � = 0.1

In this example, shown in the �rst panel of Figure 7, construction is su¢ ciently cheap relative to
maintenance that a demolition cycle is pro�t maximizing both with and without rent control. The
range of qualities over a demolition cycle is similar for the two programs. The level of maintenance
is lower under rent control at every quality level; as a result, depreciation is more rapid and the
demolition cycle shorter. The values of the program without and with rent control are 5.663 and
5.549, respectively, implying a deadweight loss due to rent control of 2.0% of the value of the
uncontrolled program.

Figure 8 focuses on the deadweight loss resulting from the application of rent control. Panel A
shows the value of the optimal program without rent control as a function of �. There is a slope
discontinuity in the value of this optimal program at � = 0:4166, where the switch occurs between
the range of qualities where the saddlepoint program is optimal and where the demolition cycle
is optimal. There are several slope discontinuities in the value of the optimal program with rent
control.21 The one corresponding to the highest value of � corresponds to the switch point between
the range of qualities for which the steady-state cycle is optimal and for which the demolition cycle
is optimal. The ones at lower values of � correspond to switch points for which di¤erent numbers of
tenancies within a demolition cycle are optimal. Panel B shows the absolute loss in program value
from the application of tenancy rent control, and Panel C the corresponding proportional loss.

20The critical construction cost level below which the optimal program entails demolition is therefore lower with
rent control than without. With � = 0.4, the deadweight loss due to the commitment problem is therefore higher
with the optimal demolition program than with the optimal steady-state program.

21This function is not drawn since to the naked eye, it is hard to distinguish for that drawn in Panel A.
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Panel A: Value of the optimal
programs without rent control as a
function of construction cost, $105

Panel B: Absolute deadweight
loss due to rent control, $105

Panel C: Relative deadweight
loss due to rent control, %

Figure 8: Values of optimal programs without rent control, and deadweight loss due to rent control
- Case without rehabilitation

4.4 Examples with rehabilitation

In examples with rehabilitation, we consider a limited range of � (0 < � < 0:24). Due to our
choice of the functional form, for higher values of � construction becomes unreasonably expensive
compared to rehabilitation. Figure 9 presents the value of the optimal program without rent control
as a function of �, and the absolute and relative deadweight loss due to rent control.

Panel A: Values of the optimal
programs without rent control as a
function of construction cost, $105

Panel B: Absolute deadweight
loss due to rent control, $105

Panel C: Relative deadweight
loss due to rent control, %

Note: Figure 8 has a di¤erent �-axis scale than Figure 9.

Figure 9: Values of optimal programs without rent control, and deadweight loss due to rent control
- Case with rehabilitation

For � � 0:112 the optimal program with or without rent control is demolition (programs D and bD).
Under rent control: for � � 0:011, the bD program has only one tenancy cycle between demolitions;
for 0:011 < � � 0:077; two tenancy cycles; and for 0:077 < � � 0:112; three tenancy cycles. This
explains the non-smoothness of deadweight loss when demolition is optimal. For 0:112 < � � 0:141;
D is still the optimal program without rent control but under rent control rehabilitation is more
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pro�table. For 0:141 < � � 0:24; the optimal program is rehabilitation with or without rent
control. For 0:141 < � � 0:168; the bR program entails three tenancies before the �rst rehab, while
for 0:168 < � � 0:24 only two tenancies precede the �rst rehab. As a result, there is a �kink�in
panels B and C at � = 0:168. At these relatively low values of � steady-state programs are never
optimal. The relative loss is limited and does not exceed 2.5% of the value of an optimal program.
Absolute loss may reach $12,000 per unit per year.

5 Conclusion

In recent years an increasing number of jurisdictions around the world have adopted what has come
to be known as tenancy rent control, typically as a method of partial decontrol of a previously
stricter form of rent control. Under tenancy rent control, rents are controlled within a tenancy but
are free to vary between tenancies. Tenancy rent control appears attractive, as a way of providing
security of tenure to sitting tenants without the excess demand distortions created by stricter
control programs. How attractive tenancy rent control in fact is depends on the magnitude of the
distortions it creates. Since tenancy rent control typically results in the contract rent exceeding the
market rent in the early years of the tenancy and falling short of it in later years, it provides an
incentive for tenants to stay in their apartments longer than they otherwise would. In this paper
we examined the e¤ects of tenancy rent control on a landlord�s choice of the quality path of his
housing units, which includes his decisions on construction quality, maintenance, rehabilitation, and
demolition and reconstruction, under the assumptions that tenancy duration is exogenous and that
the controls are applied to only a single housing unit. We showed that the application of tenancy
rent control gives rise to a potential commitment (or time inconsistency) failure. We contrasted
two programs, the e¢ cient program and the opportunistic program. The e¢ cient program is
the pro�t-maximizing program in the absence of rent control. The opportunistic program is the
pro�t-maximizing program over a tenancy once the tenancy contract has been signed. The signing
of the contract results in the present value of revenue from the tenancy being independent of
the landlord�s maintenance expenditure, and hence reduces his incentives to maintain. Before the
tenancy contract is signed, the landlord would like to commit to following the e¢ cient program, but
none of the commitment mechanisms available �contract, reputation, and regulation �is likely to
be very e¤ective. In our analysis, we assumed that these mechanisms are completely ine¤ective, so
that the landlord follows the opportunistic program. Building on the Arnott-Davidson-Pines model
of housing quality and maintenance, we compared the properties of the e¢ cient and opportunistic
programs. Section 4 presented a series of related numerical examples, with the aim of quantifying
the deadweight loss due to the commitment failure. For reasonable parameter values, we found
that the deadweight loss is modest but not insigni�cant, ranging from zero to eight percent of the
pre-control value of the program.

There are several open questions left for future research.

1. The paper considered the application of tenancy rent control to a single housing unit when the
rest of the market is uncontrolled. How do the results change when the entire market is controlled?
2. The paper built on the Arnott-Davidson-Pines �ltering model. Since there is no empirical
work based on this model, the numerical examples used simple functional forms and �reasonable�
parameter values. How would the results change if estimated functional forms were used instead?
3. The paper assumed, under tenancy rent control, that tenancy duration is exogenous. But, by
front-end loading rents, tenancy rent control should increase tenancy duration. How important is
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this distortion compared to the commitment-in-maintenance distortion considered here, and how
do the two distortions interact?
4. The paper noted that tenancy rent control improves security of tenure for tenants. What is the
social value of doing so?
5. The paper compared the unrestricted market equilibrium to the market equilibrium under
tenancy rent control. But since tenancy rent control has typically been employed as a method of
partial decontrol, it is perhaps more relevant to ask: What is the magnitude of the e¢ ciency gain
when a stricter form of rent control is replaced by tenancy rent control?
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A Technical Appendix

In this appendix we �nd optimal programs without and with rent control for the functional forms used in
our numerical examples. As was stated in Section 4, in the numerical examples we employ the following rent
function, construction cost function, and maintenance/depreciation function:

P (q) = eq � fq
2

2
= 0:055q � 0:005q

2

2
C(q) = �q

_q = ��q + 2am1=2 = �0:03q + 2(0:045�2)1=2:

A.1 No-rent-control programs

We start by solving the system of di¤erential equations (20) and (21):

_q = ��q + 2a2�;

_� = (r + �)�� e+ fq:

This system can be reformulated as follows:

��� r _�� (2a2f + �(r + �))�+ �e = 0;

q =
_�+ e� �(r + �)

f
: (A-1)

The solution to the second order di¤erential equation for � has the following form:

�(t) = C1e

1t + C2e


2t +B (A-2)

where

B =
�e

2a2f + �(r + �)
= �S ;


1 =
r +

p
r2 + 4(2a2f + �(r + �))

2
,


2 =
r �

p
r2 + 4(2a2f + �(r + �))

2
:

With �(t), we can �nd q(t) using (A-1):

q(t) =
1

f

�
C1e


1t(
1 � r � �) + C2e
2t(
2 � r � �) + e�B(r + �)
�
:

Recalling that

qS =
2a2e

�(r + �) + 2a2f

and rearranging e�B(r+�)
f , we obtain that

q(t) =
1

f
[C1e


1t(
1 � r � �) + C2e
2t(
2 � r � �)] + qS : (A-3)
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Whether the S or D program is optimal, the transversality condition (6) holds:

�(0) = �:

Using this condition, we solve for C2:

C1 + C2 + �
S = �;

C2 = �� C1 � �S :

The other transversality condition that allows us to solve for C1 is di¤erent for the S and D programs, which
we consider in turn.

A.1.1 Program S

The steady-state program implies that

lim
t!1

q(t) = qS (A-4)

lim
t!1

�(t) = �S :

Notice that 
1 > 0 while 
2 < 0. Therefore, (A-4) can hold only if C1 = 0. This condition completely de�nes
q(t) and �(t):

�(t) = C2e

2t + �S ;

q(t) =
1

f
C2e


2t(
2 � r � �) + qS ;

C2 = �� �S :

A.1.2 Program D

To �nd C1, we use the transversality condition �(T ) = 0:

C1e

1T + C2e


2T +B = 0;

C1 = �
B + C2e


2T

e
1T
:

The last unknown is T . It is determined by the equal-areas condition:

H(T ) = H(0)� r�q(0) (A-5)

where

H(t) = eq(t)� fq(t)
2

2
+ a2�(t)2 � �q(t)�(t): (A-6)

Equation (A-5) involves sums of exponents of T , so it cannot be solved analytically. We �nd its solution
numerically for a given value of �. It appears that this equation has two solutions in the region where T is
positive. We choose the one that results in the higher value of the program.

A.1.3 Program R

Our rehabilitation technology is R(qs; qT ) = 0:25qs � 0:24qT : In this problem, there are two di¤erent pairs
of laws of motion for q and �, fqc(t); �c(t)g for a tenancy immediately after construction, which we call
a construction cycle, and the other, fq(t); �(t)g, for all subsequent tenancies, which we call rehabilitation
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cycles. Both pairs are described by (A-3) and (A-2), respectively, but with di¤erent unknown constants,
which we will denote as fCc1; Cc2g for a construction cycle and fC1; C2g for rehabilitation cycles. We start
by �nding the laws of motion for rehabilitation cycles. The transversality conditions

�(0) =
@R(qs; qT )

@qs
= 0:25;

�(T ) = �@R(qs; qT )
@qT

= 0:24

allow us to solve for the unknown constants on which q(t) and �(t) depend. Then we �nd the optimal
duration of the rehabilitation cycle T , using the equal-area condition:

(H(0)�H(T ))=r = R(q(0); q(T )): (A-7)

Here H(�) is de�ned in (A-6) and depends on the laws of motion for the rehabilitation cycle. We solve
this equation numerically using Maple 9.5 and obtain that the optimal duration of the rehabilitation cycle is
(approx.) 16:61 years. We verify that there are no other solutions for positive T by examining behavior of the
left-hand side and the right-hand side of (A-7). Notice that T does not depend on the cost of construction.
Then we �nd the laws of motion qc(T ) and �c(T ) for the construction cycle using the following transversality
conditions:

�c(0) = �;

�c(Tc) = �(T ):

Finally, we numerically solve for the length of the construction cycle Tc for each speci�c � using the following
equation:

qc(Tc) = q(T ):

A.2 Programs with rent control

Under programs with rent control, the di¤erential equation for � is di¤erent from that without rent control.
Solving the system (20) and (22)

_q = ��q + 2a2�;
_� = (r + �)�;

we obtain the following solutions:
�(t) = c1e

(r+�)t;

q(t) =
2a2c1
r + 2�

e(r+�)t + c2e
��t:

We solve for c1 and c2 in terms of initial and terminal quality of a tenancy cycle, qs and qL:

q(0) =
2a2c1
r + 2�

+ c2 = qs;

c2 = q0 �
2a2c1
r + 2�

.
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Since the analytical solutions to programs with rent control contain quite messy expressions, we give only
solutions for the values of parameters used in our numerical examples and round all values to the third digit.

q(t) =
qL � qse��L
e(r+�)L � e��L

�
e(r+�)t � e��t

�
+ q0e

��t

= 0:817(e0:0675t � e0:03t)qL + (�0:606e0:0675t + 1:606e0:03t)qs ,

�(t) = c1e
(r+�)t =

�
qL � qse��L

�
(r + 2�)�

e(r+�)L � e��L
�
2a2

e(r+�)t

= (�0:656qs + 0:886qL)e0:0675t:

Recall that optimal maintenance is m(t) = a2�2: Thus, the value of a tenancy cycle is

J(qs; qL; L) = �
Z L

0

m(t)e�rtdt = �
Z L

0

a2�(t)2e�rtdt:

It is straightforward to calculate this function but the expression is cumbersome; examining the � (t) function,
one can see that

J(qs; qL; L) = G1q
2
s +G2q

2
L +G3qsqL:

where G1, G2, and G3 are some known functions of parameters.

Using the de�nition of the rent function P (�), we also calculate the discounted present value of rent received
over a tenancy:

Z(qs; L) =

Z L

0

[eq̂ (t; qs)�
f

2
bq (t; qs)2]e�rtdt;

with

q̂ (t; qs) =
qL(qs)� qse��L
e(r+�)L � e��L

�
e(r+�)t � e��t

�
+ qse

��t

where a �nal quality of a cycle, qL(qs); is optimally chosen and is a function of an initial quality of a cycle,
qs. The functional form of q(t) implies that

Z(qs; L) = B1q
2
s +B2qL(qs)

2 +B3qsqL(qs) +B4qs +B5qL(qs):

Again, fBig5i=1 are some known functions of the parameters.

A.2.1 Program bS
In case of the bS program, the problem of the landlord boils down to an in�nite horizon dynamic programming
problem, in which the state variable is the initial quality while the control variable is the terminal quality of
a unit. Thus, we have the following Bellman equation:

bV (qis) = Z(qis) + max
qiL

[J(qis; q
i
L; L) + bV (qi+1s )e�rL] (A-8)

s:t: qi+1s = qiL, i = 1; 2; ::: is the number of the tenancy cycle.

We apply the �guess-and-verify�method. Notice that J is quadratic in qiL. If q
i
L is a linear function of q

i
s,

then Z is also quadratic in qiL. Notice also that q
i
L is a linear function of q

i
s if bV is quadratic. Thus, we make

a guess that bV is quadratic: bV (q) = A0 +A1q +A2q2: (A-9)
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We �nd A0, A1 and A2 by the method of undetermined coe¢ cients. First we need to �nd qiL as a function
of qis. Assuming that J(q

i
s; q

i
L; L) +

bV (qi+1s )e�rL is concave, we use the �rst order condition:

@

@qiL

h
J(qis; q

i
L; L) + bV (qi+1s )e�rL

i
= 2G2q

i
L +G3q

i
s + e

�rLA1 + 2e
�rLA2q

i
L = 0;

qiL = �
G3q

i
s + e

�rLA1
2(G2 + e�rLA2)

� K1q
i
s +K2: (A-10)

Substituting (A-9) and (A-10) into the Bellman equation (A-8) and suppressing the index for the cycle i, we
obtain

A0 +A1qs +A2(qs)
2 = B1q

2
s +B2(K1qs +K2)

2 +B3qs(K1qs +K2) (A-11)

+B4qs +B5(K1qs +K2)

+G1q
2
s +G2(K1qs +K2)

2 +G3qs(K1qs +K2)

+ e�rL[A0 +A1(K1qs +K2) +A2(K1qs +K2)
2]:

One can see that (A-11) is quadratic in qs. We �nd the unknown constants A0, A1 and A2 by rewriting
(A-11) in the form

W0 +W1qs +W2q
2
s = 0

and solving the system

W0 = 0 (A-12)

W1 = 0

W2 = 0

for A0, A1 and A2.

After some simpli�cation and a bit of rounding, the system (A-12) can be rewritten as

A2 + 0:336 +
0:779

1:375A2 � 1:195
+

0:473� 0:539A2
(1:375A2 � 1:195)2

= 0

A1 � 0:254 +
0:175 + 1:213A1
1:375A2 � 1:195

+
0:734A1 � 0:837A1A2
(1:375A2 � 1:195)2

= 0

0:313A0 +
0:136A1 + 0:472A

2
1

1:375A2 � 1:195
+
0:285A21 + 0:325A2A

2
1

(1:375A2 � 1:195)2
= 0:

This system of (cubic) equations has three solutions:

A0 = 3:012, A1 = �1:634, A2 = 0:567;

A0 = 34:012; A1 = �12:235; A2 = 0:861;

A0 = 0:635, A1 = 0:772, A2 = �0:025:

Only the third solution results in a concave value function while other solutions have A2 > 0. Indeed, one can
check that the �rst and second solutions are spurious, since they result in convex J(qis; q

i
L; L)+

bV (qi+1s )e�rL.
We proceed further with the third solution

bV (q) = 0:635 + 0:772q � 0:025q2:
To complete the solution of the problem, we use the the �rst-order condition for the maximization of the
value of the program:

d

dq0

�
��q0 + bV (q0)� = ��+A1 � 2A2q0 = 0:
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Therefore,

q0 =
A1 � �
2A2

:

A.2.2 Program bD
Recall that program bD entails an in�nite number of repetitions of a contruction-demolition cycle, each of
which comprises of n tenancy cycles. Conditional on pursuing program bD, the problem of the landlord is
not only to choose an optimal trajectory for each tenancy cycle but also to choose optimal n. Given n, the
problem of the landlord is to �nd the optimal maintenance path and optimal construction quality. To �nd
optimal maintenance, the landlord solves a �nite-horizon dynamic programming problem similar to (A-8):

v(qis) = Z(q
i
s) + max

qiL

[J(qis; q
i
L; L) + v(q

i+1
s )e�rL]; (A-13)

s.t. qi+1s = qiL, i = 1; 2; ::n is the number of the tenancy cycle,

v(qn+1s ) = 0:

Given our particular functional form, we show the solution for n = 1: v(q2s) = 0, so q
1
L is a solution to the

�rst-order condition:
d

dq1L

�
�0:328(q10)2 + 0:886q1Lq10 � 0:598(q1L)2

�
= 0:

Thus,
q1L = 0:741q

1
0 :

Given q1L,
v(q1s) = 0:4q

1
s � 0:016(q1s)2:

Knowing v(q1s), the landlord optimizes with respect to q
1
s :

max
q1s

(��q1s + v(q1s)); (A-14)

which gives
q1s = �31:31�+ 12:522: (A-15)

The value of program bD for n = 1 is

bV 1(q1s) = 1

1� e�rL (v
1(q1s ; 1)� �q1s)

= �40:044�+ 16:016� (0:051 + 3:198�)(�31:31�+ 12:522):

Following the same strategy we solve for bV n(q1s) for n from 1 to 20.

One more complication we encounter is that for su¢ ciently high values of � (for � > 0:55) the non-negativity
condition q � 0 binds for an optimal bD program. We say that the demolition program under rent control
does not exist for � > 0:55 given our choice of functional forms and parameters.

A.2.3 Program bR
The pro�t-maximizing rehabilitation program under tenancy rent control requires �nding the sequence of
initial and terminal qualities in each tenancy cycle that maximizes the landlord�s net income stream and
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solves:

max
fqis;qiLg1i=1

[��q1s + Z(q1s) + J(q1s ; q1L; L)

+
1X
i=2

e�(i�1)rL(�(R(qis; qiL))+ + Z(qis) + J
�
qis; q

i
L; L

�
)]

where (x)+ = x if x > 0 and (x)+ = 0 if x � 0: The superscripts on q stand for the number of the tenancy
cycle. In this case the main problem is to guess the solution. We make two conjectures. First, consider the
following value function:

W (q1s) = max
q1L;fqis;qiLg1i=2

[��q1s + Z(q1s) + J(q1s ; q1L; L)

+
1X
i=2

e�(i�1)rL(�(R(qis; qiL))+ + Z(qis) + J
�
qis; q

i
L; L

�
)]:

Our �rst conjecture is that W (�) is quadratic. This is suggested by the functional form of Z(�) and J(�; �)
which are quadratic. But even knowing that W (�) is quadratic is not su¢ cient to get the complete solution
as there is another issue: when does the landlord rehabilitate and when not? We look for the program that
has the following form:

��q1s +
MX
i=1

e�(i�1)rL
�
Z(qis) + J(q

i
s; q

i
L; L)

�
+ e�MrL bV K(qML )

where bV K(qML ) = 1X
j=1

e�(j�1)rKLY (qML ;K)

and

Y (qML ;K) = �R(qM+1
s ; qML ) +

KX
i=1

e�(i�1)rL
�
Z(qM+i

s ) + J(qM+i
s ; qM+i

L )
�
:

Thus we are looking for programs that have two parts, a �non-stationary�and a �stationary�one. A stationary
part bV (qML ;K) consists of in�nite repetition of the same cycle Y (qML ;K), which starts with rehabilitation
followed by K tenancy cycles without rehabilitation. The non-stationary part of the program is the initial
part, which comprises M tenancy cycles without rehabilitation. We do not consider other conceivable
programs but intuition and some properties of the solution for bV (q;K) suggest that we do not omit anything
substantial.

To �nd V K(qML ); we consider the following system:

V1(q
0
L;K) = max

q1s

[�R(q1s ; q0L) + V2(q1s ;K)]; (A-16)

V2(q
1
s ;K) = Z(q

1
s) + max

q1L

[J(q1s ; q
1
L) + e

�rLV3(q
1
L;K)]; (A-17)

:::

VK+1(q
K
s ;K) = Z(q

K
s ) + max

qLK
[J(qKs ; q

K
L ) + e

�rLV1(q
K
L ;K)]; (A-18)

qis = q
i�1
L ; i = 2; ::K:

Assuming that Vi, i = 1; ::;K + 1 is quadratic (Vi(x;K) = Ai + Bix + Cix2), one can notice that we have
two types of equations. Let us examine the optimal choices for each equation type. First, we consider
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maximization in equation (A-16).

max
qs1
[��1q1s + �2q0L +A2 +B2q1s + C2(q1s)2]:

Provided that C2 < 0,

q1s =
�1 �B2
2C2

;

i.e. q1s is just a constant. Note that q
1
s would be a constant when the rehabilitation function is additively

separable in its two arguments. Additive separability of the rehabilitation function implies that as soon as the
landlord �nds it pro�table to rehabilitate for the �rst time, the system loses memory about its history. This
fact suggests that the solution indeed should contain a stationary cycle of the kind described above. Also,
the loss of memory after rehabilitation implies that the non-stationary part of the solution may not contain
rehabilitation and, therefore, necessarily consists of a sequence of tenancy cycles without rehabilitation.

Given that Vi(x) = Ai+Bix+Cix2; it is straightforward to obtain the solutions to (A-17)-(A-18). We do not
present the explicit solutions as they involve quite cumbersome expressions. Having obtained the solutions
for optimal choices of the q�s, we substitute them into the system(A-16)-(A-18) and construct a new system
that has 3(K + 1) equations in the coe¢ cients on Vi(�), i = 1; :::;K + 1. The properties of the system that
we obtain are described in Table 1.

Equation for coe¢ cient on
q0 q q2

Variables that enter the equation
linearly nonlinearly linearly nonlinearly linearly nonlinearly

Eq. 1 A1; AK+1 B2; C2 B1 � C1 �
Eq. 2 A2; A3 B3; C3 B2 B3; C3 C2 C3
... ... ... ... ... ... ...

Eq. K + 1 AK+1; A1 BK+1; CK+1 BK+1 B1; C1 CK+1 C1

Table 1: Properties of the system of equations for the coe¢ cients of value functions

Fortunately, this system can be solved and never involves anything more complicated than linear equations.
First, solve for C1, then for CK+1; CK ; :::; C2. Then we are able to solve for B1 and combining this solution
with solutions for C1 we solve for BK+1; BK ; :::; B2: Substituting all these solutions into the the rest of
equations involving Ai�s, we obtain a system of linear equations that (as it appears) has exactly one solution.
Having the solution for the stationary part of the problem, it is easy to solve the problem completely by
working backwards starting from the stationary part.

To �nd the optimal program, the programs with K;M = 1; 2; :::; 20 were considered. It appears that, under
the chosen values of parameters, the stationary part of the program has two tenancies in one rehabilitation
cycle. The optimal number of tenancies in the non-stationary part depends on � and can be 2 or 3.

Depending on �, the value function for this program has the following form:

bV =
8>><>>:

6:887� 15:103�+ 10:554�2;
if 0:003 < � � 0:168; (3 tenancies in a non-stationary cycle)

6:851� 15:056�+ 11:527�2;
if 0:168 < � � 0:25 (2 tenancies in a non-stationary cycle)

(we do not consider � > 0:24). It is clear why we have more non-stationary cycles for lower � : the lower the
cost of construction, the higher the initial quality the landlord chooses and the longer it takes to downgrade
to the quality where it is pro�table to rehabilitate. Figure 6 shows the optimal trajectories for � = 0:2:
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