
On the Welfare Cost of Inflation and the Recent
Behavior of Money Demand

Peter N. Ireland∗

Boston College and NBER

April 2007

Abstract

Post-1980 U.S. data trace out a stable long-run money demand relationship of Ca-
gan’s semi-log form between the M1-income ratio and the nominal interest rate, with an
interest semi-elasticity of 1.79. Integrating under this money demand curve yields esti-
mates of the welfare cost of modest departures from Friedman’s zero nominal interest
rate rule for the optimum quantity of money that are quite small. The results suggest
that the Federal Reserve’s current policy, which generates low but still positive rates
of inflation, provides an adequate approximation in welfare terms to the alternative of
moving all the way to the Friedman rule.
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1 On the Welfare Cost of Inflation ...

Inflation, brought under control in the early eighties, remains subdued today. Still, the

question remains: what cost does the Federal Reserve’s well-established policy of low but

positive inflation impose on the economy, when compared to the optimal monetary policy

prescribed by Friedman (1969), which calls for a deflation that makes the nominal interest

rate equal to zero?

Lucas (2000), working in the tradition of Bailey (1956) and Friedman (1969), addresses

this question directly. Lucas’ analysis juxtaposes two competing specifications for money

demand. One, inspired by Meltzer (1963), relates the natural logarithm of m, the ratio of

nominal money balances to nominal income, to the natural logarithm of r, the short-term

nominal interest rate, according to

ln(m) = ln(A)− η ln(r) (1)

where A > 0 is a constant and η > 0 measures the absolute value of the interest elasticity

of money demand. The other, adapted from Cagan (1956), links the log of m instead to the

level of r via

ln(m) = ln(B)− ξr, (2)

where B > 0 is a constant and ξ > 0 measures the absolute value of the interest semi-

elasticity of money demand.

Figure 1 plots the log-log demand curve (1) and the semi-log demand curve (2) on the

same graph, where the axes measure both m and r in levels. Lucas’ (2000) preferred spec-

ifications set η = 0.5 in (1) and ξ = 7 in (2), then pin down the constants A = 0.0488 and

B = 0.3548 so that ln(A) equals the average value of ln(m) + η ln(r) and ln(B) equals the

average value of ln(m) + ξr in annual U.S. data, 1900-1994. These same settings determine

the curvature and horizontal placement of the two curves in Figure 1.

The graph highlights how (1) and (2) describe very different money demand behavior at
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low interest rates: as r approaches zero, (1) implies that real balances become arbitrarily

large, while (2) implies that real balances reach the finite satiation point B when expressed

as a fraction of real income. Hence, as emphasized by Lucas (2000), these competing money

demand specifications also have very different implications for the welfare cost of modest

departures from Friedman’s (1969) zero nominal interest rate rule for the optimum quantity

of money.

Bailey’s (1956) traditional approach measures this welfare cost by integrating under the

money demand curve as the interest rate rises from zero to r > 0 to find the lost consumer

surplus then subtracting off the seigniorage revenue rm to isolate the deadweight loss. Let

w(r) denote this welfare-cost measure, expressed as a function of r. Lucas (2000) shows that

w(r) = A

µ
η

1− η

¶
r1−η (3)

when money demand takes the log-log form (1) and

w(r) =
B

ξ
[1− (1 + ξr)e−ξr] (4)

when money demand takes the semi-log form (2). If, as assumed by Lucas, the steady-

state real interest rate equals three percent, so that r = 0.03 prevails under a policy of zero

inflation or price stability, then (3) and (4) imply that this policy costs the economy the

equivalent of 0.85 percent of income when money demand is log-log, but only 0.10 percent

of income when money demand has the semi-log form. Likewise, an ongoing two percent

inflation costs the economy 1.09 percent of income under (1) and (3), but only 0.25 percent

of income under (2) and (4).

These calculations underscore the importance of discerning the appropriate form of the

money demand function before evaluating alternative monetary policies, including those

that generate very low but still positive rates of inflation. Hence, Figure 1 also plots U.S.

data on the money-income ratio and the nominal interest rate, from an annual sample
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extending from 1900 through 1994 that is constructed, as described below in the Appendix,

to resemble closely the one used by Lucas (2000). Following Lucas,m is measured by dividing

the M1 money stock by nominal GDP and r is measured by the six-month commercial

paper rate. Based on the same comparison between these data and the plots of (1) and

(2) shown in Figure 1, Lucas concludes that the log-log specification provides a better fit,

and thereby argues implicitly that the Federal Reserve could secure a substantial welfare

gain for American consumers by abandoning its current, low-but-positive inflation policy

and adopting the Friedman rule instead.

An important caveat to Lucas’ (2000) argument arises, however, once one recognizes

that the log-log specification appears to deliver a significantly better fit in Figure 1 thanks

in large part to its ability to track the five data points that lie farthest out along the x-axis,

representing (m, r) pairs such that m exceeds 0.4 and r falls below 0.0015. Viewed in one

way, these data points are quite informative, since they show how the demand for M1 in the

United States did, in fact, increase sharply when the interest rate fell to very low levels. But,

all the same, one might reasonably question the relevance of these particular data points to

an exercise that evaluates Federal Reserve policy today, since they come from 1945 through

1949, a distant period when the U.S. financial system and indeed the U.S. economy as a

whole looked very different from the way they appear now.

Fortunately, new data has accumulated since the mid-1990s that quite usefully comple-

ment those used in Lucas’ (2000) study: importantly, those new data include observations

from a much more recent episode from 2002 through 2004 that also features very low nomi-

nal interest rates. Hence, Figure 2 reproduces Figure 1 after updating Lucas’ sample to run

through 2006. The more recent data also cover a period when the development and prolifer-

ation of retail deposit sweep programs, involving banks’ efforts to reclassify their checkable

deposits as money market deposits and thereby avoid statutory reserve requirements, severely

distort official measures of the M1 money stock. Since, as argued by Anderson (2003b), these

sweep operations take place behind the scenes, invisible to the eyes of most account hold-
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ers, Figure 2 uses data on the M1RS aggregate, defined and constructed by Dutkowsky

and Cynamon (2003), Cynamon, Dutkowsky, and Jones (2006), and Dutkowsky, Cynamon,

and Jones (2006) by adding the value of swept funds back into the standard M1 figures, to

measure the money-income ratio since 1994.

To focus more clearly on the recent behavior of money demand, Figure 2 distinguishes

between the data from 1980-2006 and the data from 1900-1979, the breakpoint coinciding

with both the arrival of Paul Volcker at the Federal Reserve Board and the implementation

of the Depository Institutions Deregulation and Monetary Control Act of 1980 as key events

marking the start of a new chapter in U.S. monetary history. Strikingly, the data points from

the post-1980 period also trace out what looks like a stable money demand relationship, but

one that seems very different from the log-log specification preferred by Lucas (2000) based

on his examination of the earlier data.

Even after correcting for the effects of retail sweep programs, money balances displayed

only modest growth relative to income during the 2002-2004 episode of very low interest

rates, suggesting that the semi-log specification (2) with its finite satiation point may now

provide a more accurate description of money demand. Futhermore, the new data points

appear to trace out a demand curve that is far less interest-elastic than either of the two

curves drawn in to track the earlier data from Figure 1. Both of these shifts, in functional

form and towards a lower elasticity or semi-elasticity, work to reduce Lucas’ (2000) estimate

of the welfare cost of inflation. But, to make sure that the patterns appearing in Figure 2

are real and not optical illusions and to sharpen the quantitative estimate of the welfare cost

of inflation implied by the recent behavior of money demand, the next section presents some

more formal statistical results.
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2 ... and the Recent Behavior of Money Demand

While Lucas’ (2000) focus on a long historical time series extending back to the start of

previous century requires the use of annual data, the focus here on the post-1980 period

allows for the use of readily-available quarterly figures, again as described below in the

Appendix. The money-income ratio is measured by dividing the sweep-adjusted M1 money

stock, the M1RS aggregate referred to above, by nominal GDP. And since the Federal Reserve

discontinued its reported series for the six-month commercial paper rate in 1997, the three-

month U.S. Treasury bill rate serves instead as the measure of r; in any case, U.S. Treasury

bills come closer to matching the risk-free, nominally-denominated bonds that serve as an

an alternative store of value in theoretical models of money demand.

Following most of the empirical literature on U.S. money demand since Hafer and Jansen

(1991) and Hoffman and Rasche (1991), the econometric analysis of these data revolves

around the ideas of nonstationarity and cointegration introduced by Engle and Granger

(1987). Specifically, a finding that the semi-log specification (2) describes a cointegrating

relationship linking two nonstationary variables, the money-income ratio and the nominal

interest rate, coupled with a finding that the log-log specification (1) fails to describe the

same sort of relationship, provides formal statistical evidence supporting the more casual

impressions gleaned from visual inspection of Figure 2 that the semi-log form offers a better

fit to the post-1980 data.

Note that these statistical tests, which check first for nonstationarity in and then for

cointegration between the variables ln(m) and ln(r) in (1) and the variables ln(m) and

r in (2), require one to adopt a somewhat schizophrenic view of those data since, in a

linear statistical framework, the analysis of (1) requires ln(r) to follow an autoregressive

process with a unit root, while the same analysis of (2) requires r to follow an autoregressive

process with a unit root. Bae (2005) helps to resolve this schizophrenia by providing a more

detailed discussion of the case in which both (1) and (2) can be estimated under the common

assumption that r follows an autoregressive process with a unit root, with (1) viewed as a
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nonlinear relationship between ln(m) and r and (2) viewed as a linear relationship between

the same two variables. The analysis here, by contrast, follows Anderson and Rasche (2001)

by putting the two competing specifications on equal footing ex-ante, treating both as linear

relationships linking ln(m) to ln(r) in one case and ln(m) to r in the other.

Table 1 displays results from applying the Phillips-Perron (1988) unit root test described

by Hamilton (1994, Ch.17) to each of the three variable: ln(m), ln(r), and r. The table

reports values for μ̂ and ρ̂, the intercept and slope coefficients from an ordinary least squares

regression of each variable on a constant and its own lagged value, together with t, the

conventional OLS t-statistic associated with the null hypothesis of a unit root: ρ = 1.

The Phillips-Perron test statistic Zt corrects this conventional t-statistic for the presence of

serial correlation in the regression error by using the Newey-West (1987) estimator of its

variance; Table 1 reports Zt as computed for values of the lag truncation parameter q, that

is, the bound on the number of sample autocovariances used in computing the Newey-West

estimate, ranging from 0 (no serial correlation) to 8 (positive autocorrelations running out

to eight quarters or two years). Critical values for Zt appear under the heading “Case 2” in

Hamilton’s (1994, p.763) Table B.6. None of these test statistics allows the null hypothesis

of a unit root to be rejected, paving the way for tests of cointegration between pairs of these

apparently nonstationary variables.

Intuitively, the Phillips-Ouliaris (1990) test for cointegration described by Hamilton

(1994, Ch.19) uses ordinary least squares to estimate the intercept and slope coefficient

in the linear relationship (1) linking the nonstationary variables ln(m) and ln(r) or (2) link-

ing the nonstationary variables ln(m) and r, then applies a Phillips-Perron test to determine

whether the regression error from the equation is stationary or nonstationary. In the case

where the null hypothesis of a unit root in the error can be rejected, then either (1) or (2)

represents a cointegrating relationship: a stationary linear combination of two nonstationary

variables. Table 2 displays results associated with these Phillips-Ouliaris tests: the intercept

and slope coefficients α̂ and β̂ from a linear regression of the form (1) or (2), the slope coeffi-
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cient ρ̂ from a regression of the error term from (1) or (2) on its own lagged value (without a

constant, since the error has mean zero), the conventional t-statistic for the null hypothesis

of no cointegration (ρ = 1), and the Phillips-Perron statistic Zt for values of the Newey-West

(1987) lag truncation parameter q ranging again from 0 through 8. Critical values for Zt so

constructed appear under the heading “Case 2” in Hamilton’s (1994, p.766) Table B.9.

Confirming the apparent breakdown from Figure 2 of Lucas’ (2000) preferred log-log

specification in the post-1980 data, none of the tests summarized in Table 2’s top panel

rejects the null hypothesis of no cointegration between ln(m) and ln(r). On the other hand,

all of the tests in the table’s bottom panel reject their null of no cointegration between

ln(m) and r at the 90 or 95 percent confidence level. Taken together, these results provide

statistical evidence of a tighter money demand relationship of the semi-log form for the

post-1980 period. And again confirming the visual impressions from Figure 2, the estimated

semi-elasticity of 1.79 for 1980-2006 stands far below Lucas’ choice of 7 made to fit the data

from 1900-1994.

Table 3 complements Table 2 by reporting results from Johansen’s (1991) test for coin-

tegration, again applied first to ln(m) and ln(r) and then to ln(m) and r. As described by

Hamilton (1994, Ch.20), Johansen’s approach assumes that each pair of variables follows a

p-th order vector autoregression in levels and expresses this VAR(p) in error-correction form,

with the stationary first difference of each pair of variables on the left-hand side and p − 1

lags of first-differenced variables together with one lag of the hypothesized stationary linear

combination of the two variables in levels on the right. Johansen’s technique simultaneously

estimates via maximum likelihood the parameters of the cointegrating vector in the error-

correction term and the coefficients on the lagged first-differenced variables describing the

model’s short-run dynamics. Table 3 shows, for each pair of variables and for each value of

p ranging from 2 through 9 (implying 1 through 8 lags when the VAR(p) in levels is written

in error-correction form in first differences), the maximum eigenvalue λ1 computed when

evaluating the model’s likelihood function using Johansen’s algorithm, and the associated
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maximum eigenvalue statistic LR = −T ln(1 − λ1), a likelihood ratio statistic for testing

the null of no cointegration against the alternative of cointegration. Since the cointegrating

vector in (1) or (2) has a constant term, the critical values for LR appear under the heading

“Case 2” in Hamilton’s (1994, p.768) Table B.11.

Again, the results point to the semi-log specification (2) as providing a better description

of the post-1980 data. The test statistics shown in Table 3’s top panel fail to reject the null

of no cointegration between ln(m) and ln(r) in six out of eight cases. By contrast, all but

one of the test statistics from the table’s bottom panel reject the null of no cointegration at

the 90 percent level, and for values of p greater than 5 the null can in fact be rejected at the

99 percent confidence level.

The OLS estimates of the intercept and slope coefficient reported for the semi-log speci-

fication in Table 2 imply values of B = 0.1686 and ξ = 1.7944 in (2). Plugging these values

into the corresponding formula (4) for Bailey’s (1956) welfare cost measure and assuming, as

above, that the steady-state real interest rate equals three percent, so that r = 0.03 corre-

sponds to zero inflation, r = 0.05 corresponds to two percent annual inflation, and r = 0.13

corresponds to ten percent annual inflation, yields an estimate of only 0.01 percent of income

for the cost of pursuing a policy of price stability as opposed to the Friedman (1969) rule,

an estimate of 0.04 percent of income for the cost of two percent inflation, and an estimate

of 0.22 percent of income for the cost of ten percent inflation. These welfare cost estimates

lie far below those computed by Lucas (2000) and bring the analysis fill circle, back to Fig-

ures 1 and 2 and the apparent steepening and leftward shift of the money demand function

in the years since 1980. Interestingly, these figures also provide an estimate of the cost of

ten percent inflation compared to price stability, w(0.13) − w(0.03), equal to 0.21 percent

of income, a number that is still smaller than, but resembles more closely, Fischer’s (1981)

estimate of 0.30 percent of income and Lucas’ (1981) estimate of 0.45 percent of income.

These results suggest that the Federal Reserve’s current policy, which generates low

but still positive rates of inflation, provides an adequate approximation in welfare terms
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to the alternative of moving all the way to Friedman’s (1969) deflationary rule for a zero

nominal interest rate. Before closing, however, it should be emphasized that these welfare

cost estimates account only for the money demand distortion brought about by positive

nominal interest rates. Dotsey and Ireland (1996) demonstrate that, in general equilibrium,

other marginal decisions can also be distorted when inflation rises, impacting on both the

level and growth rate of aggregate output, while Feldstein (1997) argues that the interactions

between inflation and a tax code that is not completely indexed can add substantially to the

welfare cost of inflation. To the extent that these additional sources of inefficiency remain

present in the post-1980 U.S. economy, there will of course be larger gains to reducing

inflation below its current low level.

3 Appendix: Data Sources

The annual data displayed in Figures 1 and 2 come from sources identical or very closely

comparable to those used by Lucas (2000). To measure money, figures on M1 for 1900-1914

are taken from the U.S. Bureau of the Census (1960, Series X-267). Figures on M1 for 1915-

1958 are taken from Anderson (2003a, Table 3, Columns 3 and 10) and come, originally,

from Friedman and Schwartz (1970) for 1915-1946 and Rasche (1987, 1990) for 1947-1958.

Figures on M1 for 1959-2006 are taken from the Federal Reserve Bank of St. Louis FRED

database and are adjusted from 1994 onward by adding back into M1 the funds removed

by retail deposit sweep programs using estimates described by Cynamon, Dutkowsky, and

Jones (2006).

To measure nominal income, figures on nominal GDP for 1900-1928 are constructed by

taking Kendrick’s (1961, Table A-III, Column 5) series for real GDP and multiplying it by

a series for the deflator constructed by dividing nominal GNP (Table A-IIb, Column 11) by

real GNP (Table A-III, Column 1). Lucas (2000), too, uses the deflator for GNP to translate

Kendrick’s figures for real GDP into a corresponding series for nominal GDP; though his
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source for the deflator is U.S. Bureau of the Census (1960, Series F-5), the numbers from

that table resemble quite closely those that come directly fromKendrick’s (1961) monograph.

Figures on nominal GDP for 1929-2006 come from the FRED database.

Finally, to measure the nominal interest rate, data on the six-month commercial paper

rate are taken from Friedman and Schwartz (1982, Table 4.8, Column 6) for 1900-1975 and

from the Economic Report of the President (2003, Table B-73) for 1976-1997. The Federal

Reserve stopped publishing the interest rate series reported in this last source in 1997; hence,

the interest rate for 1998-2006 is the three-month AA nonfinancial commercial paper rate,

drawn from the FRED database.

The quarterly, post-1980 data used in the econometric analysis summarized in Tables

1, 2, and 3 all come from the Federal Reserve Bank of St. Louis FRED database, except

that the series for M1 is adjusted by adding back the funds removed by retail deposit sweep

programs using estimates described by Cynamon, Dutkowsky, and Jones (2006): the money

stock is therefore measured by their M1RS aggregate. Nominal GDP again measures income,

and the three-month U.S. Treasury bill rate measures the nominal interest rate.
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Table 1. Phillips-Perron Unit Root Test Results

ln(m) μ̂ ρ̂ t q Zt

−0.0410 0.9778 −1.1923 0 −1.1923
1 −1.3826
2 −1.5262
3 −1.6488
4 −1.7269
5 −1.7792
6 −1.8165
7 −1.8313
8 −1.8256

ln(r) μ̂ ρ̂ t q Zt

−0.1049 0.9682 −1.6449 0 −1.6449
1 −1.7672
2 −1.8595
3 −1.9385
4 −1.9943
5 −2.0366
6 −2.0697
7 −2.0836
8 −2.0863

r μ̂ ρ̂ t q Zt

0.0029 0.9361 −2.4602 0 −2.4602
1 −2.5036
2 −2.5028
3 −2.5100
4 −2.4994
5 −2.4939
6 −2.4932
7 −2.4757
8 −2.4604

Notes: Each panel reports μ̂ and ρ̂, the intercept and slope coefficient from an ordinary least squares
regression of the variable on a constant and its own lag, together with t, the t-statistic associated
with null hypothesis of ρ = 1, and Zt, the Phillips-Perron statistic corrected for autocorrelation in the
regression error, computed using the Newey-West standard error of its variance for various values of
the lag truncation parameter q. The critical values for Zt are reported by Hamilton (1994, Table B.6,
p.763): −2.58 (10 percent), −2.89 (5 percent), and −3.51 (1 percent).



Table 2. Phillips-Ouliaris Cointegration Test Results

ln(m) = α− β ln(r) α̂ β̂ ρ̂ t q Zt

−2.1474 0.0873 0.9351 −1.8768 0 −1.8768
1 −2.0501
2 −2.1720
3 −2.3457
4 −2.4447
5 −2.5277
6 −2.6090
7 −2.6401
8 −2.6430

ln(m) = α− βr α̂ β̂ ρ̂ t q Zt

−1.7800 1.7944 0.8575 −3.1065 0 −3.1065∗
1 −3.1926∗
2 −3.1612∗
3 −3.2526∗
4 −3.2694∗
5 −3.3238∗
6 −3.4075∗∗
7 −3.4134∗∗
8 −3.4083∗∗

Notes: Each panel reports α̂ and β̂, the intercept and slope coefficient from the ordinary least squares
regression of ln(m) on ln(r) or r; ρ̂, the slope coefficient from an ordinary least squares regression
of the corresponding regression error on its own lagged value; t, the t-statistic associated with null
hypothesis of ρ = 1; and Zt, the Phillips-Perron statistic for ρ = 1, corrected for autocorrelation in the
residual, computed using the Newey-West standard error of its variance for various values of the lag
truncation parameter q. The critical values for Zt are reported by Hamilton (1994, Table B.9, p.766):
−3.07 (10 percent), −3.37 (5 percent), and −3.96 (1 percent). Hence ∗ and ∗∗ indicate that the null
hypothesis of no cointegration can be rejected at the 90 and 95 percent confidence levels.



Table 3. Johansen Cointegration Test Results

ln(m) = α− β ln(r) p LR = −T ln(1− λ1) Cointegrating Vector

2 6.6154 31.0889 lnmt = −68.5210− 3.3000 ln rt
3 11.1572 33.6092 lnmt = −71.9444− 2.8586 ln rt
4 11.3538 35.2480 lnmt = −75.1127− 2.8850 ln rt
5 11.4929 37.6776 lnmt = −81.1610− 3.3735 ln rt
6 19.0392∗∗∗ 37.1250 lnmt = −81.9482− 3.9818 ln rt
7 10.5451 42.4132 lnmt = −92.6301− 4.2193 ln rt
8 11.5461 44.5248 lnmt = −97.2603− 4.4355 ln rt
9 15.2944∗∗ 41.7114 lnmt = −93.1040− 4.8169 ln rt

ln(m) = α− βr p LR = −T ln(1− λ1) Cointegrating Vector

2 11.4511 34.4628 lnmt = −60.4502− 77.1440rt
3 17.4283∗∗ 33.9142 lnmt = −61.0110− 49.8548rt
4 13.8940∗ 21.3753 lnmt = −39.7389− 9.4334rt
5 15.5605∗∗ 19.0282 lnmt = −35.8125− 0.9179rt
6 31.0005∗∗∗ 35.7493 lnmt = −62.0107− 91.9355rt
7 19.9672∗∗∗ 34.1291 lnmt = −58.5019− 99.7169rt
8 25.0197∗∗∗ 53.7868 lnmt = −95.2640− 104.6905rt
9 19.3294∗∗∗ 47.4775 lnmt = −82.1158− 126.1795rt

Notes: Each panel reports the cointegrating vector linking ln(m) and ln(r) or ln(m) and r, estimated
using Johansen’s maximum likelihood technique under the assumption that the two variables follow a
VAR(p) in levels, together with the statistic LR = −T ln(1− λ1) for testing the null hypothesis of no
cointegration against the alternative of cointegration, where T = 108 for quarterly data, 1980-2006,
and λ1 denotes the maximum eigenvalue computed when evaluating the model’s likelihood function
using Johansen’s technique. The critical values for LR are reported by Hamilton (1994, Table B.11,
p.768): 12.783 (10 percent), 14.595 (5 percent), and 18.782 (1 percent). Hence ∗, ∗∗, and ∗∗∗ indicate
that the null hypothesis of no cointegration can be rejected at the 90, 95, and 99 percent confidence
levels.
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Figure 1. U.S. Money Demand, 1990-1994

0

0.02

0.04

0.06

0.08

0 0.1 0.2 0.3 0.4 0.5 0.6

no
m

in
al

 in
te

money/income

log-log demand semi-log money demand U.S. Data, 1990-1994



0 08

0.1

0.12

0.14

0.16

te
re

st
 ra

te

Figure 2. U.S. Money Demand, 1900-2006
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