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Abstract

This paper develops and calibrates a model of downtown parking in a city without mass

transit, and applies it to investigate downtown parking policy. There is curbside and

garage parking and tra¢ c congestion. Spatial competition between private parking

garages determines the equilibrium garage parking fee and spacing between parking

garages. Curbside parking is priced below its social opportunity cost. Cruising for

parking adjusts to equalize the full prices of on- and o¤-street parking, and contributes

to tra¢ c congestion. The central result is that raising curbside parking fees appears to

be a very attractive policy since it generates e¢ ciency gains that may be several times

as large as the increased revenues raised.

Keywords: parking, tra¢ c congestion, parking garages, parking policy

JEL Classi�cation: R40

�We would like to thank Eren Inci and seminar participants at Clark University, the University of Cali-
fornia at Riverside, the University of Colorado at Boulder, the University of Florida at Gainesville, and the
University of Massachusetts at Amherst for helpful comments, and Junfu Zhang for pointing out an error in
an earlier draft.

yCorresponding Author. Address: Department of Economics, Boston College Chestnut Hill, MA 02467,
USA. E-mail address: richard.arnott@bc.edu

zAddress: Department of Economics, University of Calgary Calgary, AB T2N 1N4 CANADA. E-mail
address: rowse@ucalgary.ca

1



Downtown Parking in Auto City

1 Introduction

Anyone who drives in a major city will attest to the high cost of parking. Parking in a

convenient private parking garage or lot is expensive, while �nding cheaper parking typically

entails cruising for parking and walking some distance. To our knowledge, there are no

reliable estimates of the proportion of the average downtown auto full trip price associated

with parking. Informal estimates of one half seem too high. It seems warranted to say

however that the attention paid by economists to parking is far less than its importance in

urban travel merits. There is a sizeable literature in economics on urban auto congestion

but only a few recent papers on the economics of parking1.

This paper considers some aspects of parking policy in the downtown areas of major cities

where mass transit plays only a minor role, which include most US cities whose major

growth occurred during the post-World-War II automobile era. How much curbside should

be allocated to parking? And how should the parking meter rate be set? A simple model

of downtown parking in such auto-oriented cities is constructed. The model incorporates

the principal features that distinguish downtown parking from parking elsewhere �that a

considerable proportion of parking capacity is provided by parking garages and that during

the business day curbside (alternatively, on-street) parking is fully saturated. To simplify,

the model assumes that trip demand is perfectly inelastic, drivers are identical, and space

is isotropic, and examines steady states. Curbside parking is underpriced while garage

(alternatively, o¤-street) parking is overpriced due to the exercise of market power. The

consequent excess demand for curbside parking is rationed through cruising for parking.

The model is calibrated in order to get preliminary estimates of the quantitative importance

of the various e¤ects identi�ed.

In the �rst best, on- and o¤-street parking should be priced at their opportunity costs. The

shadow price of an on-street parking spot is the cost of the increased congestion caused by

1Small and Verhoef (forthcoming) provides an excellent and up-to-date review of both bodies of literature.
This paper focuses on downtown parking, which is saturated for most of the business day. Here we brie�y
review papers in economics that concentrate on other aspects of parking. Arnott, de Palma, and Lindsey
(1992) and Anderson and de Palma (2004) focus on the temporo-spatial equilibrium of parking when all
drivers have a common destination and desired arrival time, such as for a special event or the morning
commute to the central business district. Arnott and Rowse (1999) examines steady-state equilibria of cars
cruising for parking on a circle when parking is unsaturated. And Arnott and Inci (2006) presents a model
similar to this paper�s but without garage parking.
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using the space for parking rather than for tra¢ c, and the shadow price of an o¤-street

parking spot equals its marginal cost. The split between on- and o¤-street parking should

be chosen such that their opportunity costs are equalized. When, however, parking pricing is

distorted, the optimal split is more di¢ cult to determine. When curbside parking is priced

below garage parking, drivers cruise for on-street parking. The stock of cars cruising for

parking adjusts until the full price of curbside parking, including the private cost of cruising

for parking, equals that for garage parking. The second-best optimal split between on-

and o¤-street parking then depends on how the split a¤ects cruising for parking. The cars

cruising for parking also add to tra¢ c congestion.

Previous literature (Calthrop, 2001, Calthrop and Proost, 2006 and Shoup2, 2005, Ch. 13))

has recognized that the stock of cars cruising for parking adjusts to equilibrate the full prices

of on- and o¤-street parking. Calthrop (2001) and Arnott (2006) consider the potential

importance of garage market power, Calthrop by assuming a monopoly supplier, and Arnott

by assuming spatial competition between parking garages. And Arnott and Inci (2006) take

into account the e¤ects of cruising for parking on tra¢ c congestion, but without garage

parking. This paper innovates in combining the three elements and in developing calibrated

examples quantifying the various e¤ects.

In terms of policy insights, our principal �nding is that, under conditions of even moderate

tra¢ c congestion, the social bene�ts from raising on-street parking rates may be several

times the additional meter revenue generated. This is, of course, a double dividend result.

Another important �nding is that normally less space should be allocated to curbside parking

the larger is the wedge between the curbside and garage parking rates.

Section 2 considers a simple model in which o¤-street parking is supplied at constant unit

cost. Section 3 presents and analyzes the central model that takes into account the technology

of garage construction and spatial competition between parking garages. Section 4 presents

the calibrated numerical examples. And Section 5 discusses directions for future research

and concludes.

2Shoup, Table 11-5, displays the results of 16 studies of cruising for parking in 11 cities. The mean share
of tra¢ c cruising was 30% and the average search time was 8.1 minutes. While the study locations were not
chosen randomly, the results do indicate the potential importance of cruising for parking.
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2 A Simple Model

Understanding the central model of the paper will be facilitated by starting with a simpli�ed

variant. A broad-brush description is followed by a precise statement.

2.1 Informal model description

The model describes the equilibrium of tra¢ c �ow and parking in the downtown area of a

major city3. To simplify, it is assumed that the downtown area is spatially homogeneous

(isotropic) and in steady state, and also that drivers are homogeneous. Drivers enter the

downtown area at an exogenous uniform rate per unit area-time, and have destinations that

are uniformly distributed over it. Each driver travels a �xed distance over the downtown

streets to his destination. Once he reaches his destination, he decides whether to park

on street or o¤ street in a parking garage4. Both on- and o¤-street parking are provided

continuously over space. If he parks on street, he may have to cruise for parking, circling the

block until a space opens up. After he has parked, he visits his destination for a �xed period

of time, and then exits the system. Garage parking is assumed to be provided competitively

by the private sector at constant cost, with the city parking department deciding on the

curbside meter rate and the proportion of curbside to allocate to parking. The on-street

parking fee (the meter rate) is less than the garage fee. Consequently, all drivers would like

to park on street but the demand in�ow is su¢ ciently high that this is impossible. On-

street parking is saturated (the occupancy rate is 100%) and the excess demand for curbside

parking spaces is rationed through cruising for parking. In particular, the stock of cars

cruising for parking adjusts such that the full price of curbside parking, which is the sum

of the meter payment and the cost of time cruising for parking, equals the garage parking

payment. The downtown streets are congested by cars in transit and cruising for parking.

In particular, travel time per unit distance driven increases with the density of tra¢ c and

the proportion of curbside allocated to parking.

3The model di¤ers from that in Arnott and Inci (2006) in two respects. Arnott and Inci consider a
situation where all parking is on street and the demand for trips is sensitive to the full price for a trip. Here,
in contrast, the demand for trips is completely inelastic, and there is parking both on and o¤ street.
The model speci�cation is independent of the form of the street network, but for concreteness one may

imagine that there is a Manhattan network of one-way streets.
4The paper does not consider parking lots. Parking lots are di¢ cult to treat because most are transitional

land uses between the demolition of one building on a site and the construction of the next.
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2.2 Formal model

Consider a spatially homogeneous downtown area to which the demand for travel per unit

area-time is constant, D. Each driver travels a distance � over the downtown streets to

his destination, parks there for a period of time �, and then exits. A driver has a choice

between parking on street, where the meter rate is f per unit time, and parking o¤ street in

a parking garage, at a rate c per unit time, equal to the resource cost of providing a garage

parking space. Both curbside and garage parking are continuously provided over space. By

assumption, f < c, and the excess demand for curbside parking is rationed through cruising

for parking. The stock of curbside parking is P per unit area, so that the number of garage

parking spaces per unit area needed to accommodate the exogenous demand is D��P . The
technology of tra¢ c congestion is described by the function t = t(T;C; P ), where t is travel

time per unit distance, T is the stock of cars in-transit per unit area, and C the stock of cars

cruising for parking per unit area. The larger are C and T , the higher the density of tra¢ c

on the city streets, so that tT and tC (subscripts denote partial derivatives) are positive, and

the larger is P , the lower the proportion of street space available for tra¢ c, so that tP is

positive too. It is assumed as well that t is a convex function of T , C, and P .

D is su¢ ciently high that, even if all curbside is allocated to parking (so that P = Pmax),

there is still a need for garage parking (i.e., D� < Pmax). Due to the underpricing of curbside

parking, the stock of cars cruising for parking adjusts such that the full price of curbside

parking, the sum of the meter payment and the value of time lost cruising for parking, equals

the full price of garage parking. For the moment, it is assumed that, even when curbside

parking is provided free and all curbside is allocated to parking, the street system can still

accommodate the exogenous demand5.

The density of cars per unit area is T + C, their velocity, v, is 1=t, and since �ow equals

density times velocity6, the �ow in terms of car-distance per unit area-time is (T + C)=t.

If there are M distance units of one-way streets per unit area, then a person standing on a

sidewalk would observe a �ow of (T + C)=(Mt) cars per unit time. Throughput is de�ned

5Primitive conditions for this assumption to hold are given in section 2.6, which examines the congestion
technology in detail.

6Flow equals density times velocity is known as the Fundamental Identity of Tra¢ c Flow. Applying
this identity in this context requires some care. Ordinarily, density is measured in cars per unit distance, so
that, with velocity measured as distance per unit time, the dimension of �ow is cars per unit time. Here,
however, density is measured as cars per unit area, so that application of the formula gives �ow in units of
car-distance per unit area-time.
Now, suppose that there are M miles of street per unit area. Then the density in terms of cars per unit

distance on a street is (T +C)=M , and application of the formula gives �ow as cars per unit time on a street,
(T + C)=(Mt).
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analogously to �ow but includes only cars in transit7; thus, the throughput in terms of

car-distance per unit area-time is T=t.

Steady-state equilibrium is described by two conditions. The �rst, the steady-state equilib-

rium condition, is that the input rate into the in-transit pool, D, equals the output rate,

which equals the stock of cars in the in-transit pool divided by the length of time each car

stays in the pool, T=(�t(T;C; P )):

D =
T

�t(T;C; P )
: (1)

This may be written alternatively as D� = T=t(T;C; P ). D� is the input in terms of car-

distance per unit area-time, and T=t(T;C; P ) is the throughput. The second equilibrium

condition, the parking equilibrium condition, is that the stock of cars cruising for parking

adjusts to equilibrate the full prices of garage and curbside parking:

c� = f�+
�C�

P
: (2)

The full price of garage parking is c�. The full price of curbside parking is f� plus the

(expected) cost of cruising for parking. The expected time cruising for parking equals the

stock of cars cruising for parking, C, divided by the rate at which curbside parking spots are

vacated, P=�. Thus, holding �xed the expected time cruising for parking, the stock of cars

cruising for parking increases with the number of curbside parking spaces available. The

cost of cruising for parking equals the expected time cruising for parking times the value of

time, �. Eq. (2) may be rewritten as

C =
(c� f)P

�
; (3)

indicating the equilibrium stock of cars cruising for parking as a function of c, f , P , and �.

This simple model has two equations in two unknowns, T and C. The equations are recursive.

Eq. (2) determines C and then eq. (1) determines T . Resource costs per unit area-time,

RC, are simply �(T + C), the stock of cars in transit and cruising for parking, times the

value of time, plus the resource cost of garage parking, c(D�� P ).

7Since the transportation engineering literature has not analyzed situations in which cars circle the block,
it does not make a terminological distinction between �ow and throughput. It seems intuitive to de�ne �ow
as the number of cars that a bystander would count passing by per unit time. Throughput too seems an
appropriate choice of term.
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2.3 Full social optimum

The full social optimum entails no cruising for parking. The density of in-transit tra¢ c is

then determined by (1) with C = 0. The social welfare optimization problem is to choose T

and P to minimize resource costs per unit area-time, subject to the steady-state equilibrium

condition, given by (1):

min
T;P

RC = �T + c(D�� P ) s:t: T � �t(T; 0; P )D = 0 : (4)

The shadow cost of on-street parking is the increase in in-transit travel time cost per unit

area-time from having one more on-street parking spot, which, from (1), is �dT=dP =

��tPD=(1 � �tTD)). If, with P = 0, the shadow cost of on-street parking exceeds c, it is

optimal to allocate no curbside to parking. And if, with P = Pmax, the shadow cost of

on-street parking falls short of c, it is optimal to allocate all curbside to parking. Otherwise,

the optimal P solves
��tPD

1� �tTD
� c = 0 ; (5)

the level of on-street parking should be chosen to equalize the shadow costs of on- and

o¤-street parking8.

Let � denote the value of a variable at the social optimum. The social optimum can be

decentralized by setting P = P �, T = T �, and f = f � = c.

2.4 Constrained (second-best) social optimum

The constrained social optimum is now considered, where the constraint is that the on-

street parking fee is set below c, with the stock of cars cruising for parking adjusting so as to

satisfy the parking equilibrium condition. The second-best optimal allocation of curbside to

parking minimizes resource costs per unit area, subject to both the steady-state equilibrium

condition, (1), and the parking equilibrium condition, (2). Resource costs per unit area-time

are given by �(T+C)+c(D��P ). Thus, the constrained social welfare optimization problem

8Recall that the constraint is that the in�ow to the in-transit pool equal the out�ow. In conventional
tra¢ c �ow theory, there are two densities corresponding to a level of �ow. The speci�cation of the min-
imization problems implies the choice of the lower density. This complication is addressed in section 2.5.
The convexity of the congestion function ensures that there is a unique minimum corresponding to the lower
density.
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is to choose T , C, and P to

min
T;C;P

RC = �(T + C) + c(D�� P ) s:t:
i) D�t(T;C; P )� T = 0 ; �

ii) P
�
(c� f)� C = 0 ; '

(6)

where � is the Lagrange multiplier on constraint i) and ' that on constraint ii). The second-

best optimum may entail no curbside allocated to parking, in which case there is no cruising

for parking, or all the curbside allocated to parking. An interior optimum is characterized

by the �rst-order conditions:

T : �+ �(D�tT � 1) = 0 (7a)

C : �+ �D�tC � ' = 0 (7b)

P : �c+ �D�tP +
'(c� f)

�
= 0 (7c)

Substituting out the Lagrange multipliers yields

�D�tP
1�D�tT

+ (c� f) + D�tC
1�D�tT

(c� f)� c = 0 : (8)

A heuristic derivation is as follows: P should be chosen such that dRC=dP = 0. From the

objective function, dRC=dP = �dT=dP+�dC=dP�c; from constraint ii), dC=dP = (c�f)=�;
and from constraint i), (dT=dP )(1�D�tT ) = D�tCdC=dP +D�tP . Thus, an increase in P
has three e¤ects on travel costs. First, it has a direct e¤ect on aggregate in-transit costs by

reducing the road space available for travel; this capacity reduction e¤ect is the �rst term

in (8). Second, since the stock of cars cruising for parking is proportional to the amount

of on-street parking, the increase in P has a direct e¤ect on aggregate cruising-for-parking

time costs; this cruising-for-parking stock e¤ect is the second term. Third, by increasing the

stock of cars cruising for parking, it increases the congestion experienced by cars in transit;

this cruising-for-parking congestion e¤ect is the third term.

Let �� denote values at the constrained social optimum. With the on-street meter rate set at
the exogenous level, the constrained social optimum can be decentralized by setting T = T ��,

C = C��, and P = P ��.

Unless both allocations entail the same corner solution, the optimal amount of curbside

to allocate to parking is greater in the full social optimum than in the second-best social

optimum with underpriced curbside parking, i.e. P � > P ��. In both allocations, the marginal

social bene�t of increasing P by one unit is the saving in garage resource costs, c. But the
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marginal social cost of increasing P is lower in the full social optimum than in the second-

best optimum since the costs deriving from the cruising-for-parking stock and congestion

e¤ects are absent.

2.5 Revenue multiplier: the e¤ects of raising the on-street parking

fee

A principal theme of the paper is that the underpricing of on-street parking is wasteful.

To formalize this point, this subsection examines the resource savings from increasing the

on-street parking fee by a small amount when it is below c, holding P �xed. From the

expression for resource costs:

dRC

df
= �

dT

df
+ �

dC

df

= �[
dT

dC

����
(1)

+ 1]
dC

df
: (9)

where dT=dCj(1) denotes the change in T associated with a unit change in C along (1).

Now, the revenue raised from the parking fee, R, is Pf , so that dR=df = P . From (2),

�dC=df = �P . Thus,

�dRC
df

= [
dT

dC

����
(1)

+ 1]
dR

df
: (10)

Hence, the resource cost saving per unit area-time from raising the on-street parking fee

equals a multiple of the increase in the parking fee revenue raised. Since the full price of

parking is c, whether a driver parks on street or o¤, cruising-for-parking costs fall by exactly

the amount of the increase in the parking fee revenue, and there is the added bene�t that

in-transit travel costs fall due to the reduction in the stock of cars cruising for parking. The

resource costs savings would be even larger if account were taken of the distortion generated

by the collection of government tax revenue.

De�ne

� � �
dRC
df

dR
df

= 1 +
dT

dC

����
(1)

(11)

to be the (marginal) revenue multiplier. What determines the size of the revenue multiplier?

Or put alternatively, by how much does a unit reduction in the stock of cars cruising for

parking reduce the total stock of cars on the road? The answer depends on the technology

of congestion, as well as its level. The revenue multiplier is even larger if account is taken of

9



the marginal cost of public funds exceeding 1.

2.6 The congestion technology

The steady-state equilibrium condition, (1), can be written implicitly as C = C(T ;P;D).

Holding �xed P and D, for each level of T the function gives the stock of cars cruising for

parking consistent with steady-state equilibrium. Under the assumption that the function

t(:) is convex in T , C, and P , holding P �xed the function C is concave in T . In the absence

of cruising for parking, with realistic congestion functions there are normally two densities

consistent with a given level of (feasible) �ow, i.e. T = �t(T; 0; P )D has two solutions, one

corresponding to regular tra¢ c �ow, the other to tra¢ c jam conditions. Figure 1 displays

the graph of the function C, termed the steady-state locus, with these two properties. An

increase in P causes the locus to shift down; holding T �xed, (1) determines an equilibrium

travel time, and to o¤set the increase in travel time due to the increase in P requires a

decrease in C. An increase in D causes the locus to shift down; holding P and T �xed, for

(1) to continue to be satis�ed the increase in D must be o¤set by a decrease in t, and hence a

decrease in C. If D increases su¢ ciently, there is no (T;C) satisfying (1) and a steady-state

equilibrium does not exist.

It is assumed furthermore that the function t(:) is weakly separable, speci�cally that t =

t(T;C; P ) = t(V (T;C); P ), with V de�ned as the e¤ective density of cars on the road9 and

normalized in terms of in-transit car-equivalents in the absence of cruising for parking, i.e.

V (T; 0) = T .

De�ne �(C;P ) = maxT T=t(V (T;C); P ) to be the throughput capacity of the street system

as a function of C and P , so that �(0; P ) is capacity as conventionally de�ned. It indi-

cates the maximum entry rate, in terms of car-miles, the street system can accommodate

in steady-state equilibrium for a given C and P . If D� exceeds �(0; P ), then the entry rate

exceeds throughput capacity even in the absence of cruising for parking, and no steady-state

equilibrium exists. If D� is less than �(0; P ), then the steady-state locus lies in the positive

9In the numerical examples presented later, it will be assumed that congestion takes the form of a negative
linear relationship between velocity and e¤ective density: v = vf (1�V=Vj), where vf is free-�ow speed and Vj
is e¤ective jam density, which is a slight generalization of Greenshield�s relation. Travel time per unit distance
is the reciprocal of velocity. Then letting t0 denote free-�ow travel time, this relationship can be rewritten as
t = t0=(1�V=Vj). It will also be assumed that a car cruising for parking creates 1.5 times as much congestion
as a car in transit, i.e. V = T + 1:5C. Eq. (1) then becomes T (Vj � T � 1:5C) = �Dt0Vj . Thus, capacity is
Vj=(4t0), the e¤ective density corresponding to this capacity is Vj=2, (dC=dT )(1) = (Vj�2T �1:5C)=(1:5T ),
and the revenue multiplier is � = (Vj � 0:5T � 1:5C)=(Vj � 2T � 1:5C). We shall assume furthermore
that e¤ective jam density is linearly decreasing in the proportion of curbside allocated to parking: Vj =

(1� P=Pmax), where 
 is the e¤ective jam density with no curbside parking.
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Notes :

1. C(T ;P;D) is the steady-state locus, eq.(1).

2. C = c�f
�
P is the parking equilibrium locus, eq.(2):

Figure 1: Steady-state equilibrium

quadrant. The parking equilibrium condition, (2), can be written as C = (c� f)P=�, giving
the equilibrium stock of cars cruising for parking. Since the condition is independent of T ,

its graph in Figure 1, the parking equilibrium locus, is a horizontal line. If (2) lies everywhere

above (1), which occurs ifD� > �((c�f)P=�; P ), the entry rate exceeds throughput capacity
at the equilibrium level of cruising for parking, and no equilibrium exists10. If (1) and (2)

intersect, they do so twice. Following Vickrey�s terminology, the intersection point with the

lower level of T entails congested travel, and that with the higher level of T hypercongested

travel. It is assumed, as is conventionally done, that travel is congested rather than hyper-

congested, and hence that the former intersection point is the equilibrium for a given f and

P .

An initial equilibrium is indicated by E1 in Figure 1. The revenue multiplier equals one

plus the reciprocal of the slope of the steady-state locus at the equilibrium point. If the

parking fee is lowered, the parking equilibrium locus shifts up, causing the equilibrium to

10Earlier, to avoid considering non-existence of a solution to the resource cost minimization problems, it
was assumed an equilibrium exists even when tra¢ c is as congested as possible, which occurs when f = 0
and P = Pmax. This condition is that D� < �(cPmax=�; Pmax). With a positive parking fee and/or less
curbside allocated to parking, a solution to the resource costs minimization problems (and the corresponding
equilibria) may exist when this condition is not satis�ed.
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move up along the steady-state locus. Due to the convexity of the congestion technology,

the slope of the steady-state locus at the equilibrium point falls, and hence the revenue

multiplier increases. Now consider the e¤ect of increasing the amount of curbside allocated

to parking. The steady-state locus shifts down and the parking equilibrium locus shifts up.

The equilibrium T and C increase; e¤ective density increases, which, along with the decrease

in road capacity, causes tra¢ c congestion to worsen; and the revenue multiplier can be shown

to increase11.

2.7 Complications caused by garage construction technology

The above analysis laid out the economics of equilibrium when there is curbside and garage

parking, when garage parking is priced at constant unit cost and when curbside parking is

priced below this level. Unfortunately, the model is unrealistically simple in assuming that

garage spaces are supplied uniformly over space at constant unit cost. The technology of

garage construction and other factors result in parking garages being discretely spaced12. To

reduce his walking costs, a driver is willing to pay a premium to park in the parking garage

closest to his destination. Parking garages therefore have market power and may exercise it

by pricing above marginal cost13. Furthermore, spatial competition between parking garages

may result in their being ine¢ ciently spaced. Taking these considerations into account

complicates the economics, since there may then be three distortions that need to be taken

into account, not only the underpricing of curbside parking but also the overpricing and

11Substituting (2) into (1) gives T = �t(T; (c�f)P=�; P )) T̂ (P ). Also, from (2), C = (c�f)P=�. Then,
dT=dC = (dT̂ =dP )� (dC=dP ) = [�=(c� f)]dT̂ =dP , and so d(dT=dC)=dP = [�=(c� f)]d2T̂ =dP 2, which can
be shown to be positive.

12Suppose, for the sake of argument, that parking garages are continuously distributed over space. It
would be cheapest to construct garage parking on the ground �oor of every building, but this space is
especially valuable for retail purposes. Constructing below-ground parking may be cost e¤ective at the
time the building is constructed, but is expensive for buildings that were originally constructed without
underground parking. Constructing above-ground parking in multi-use buildings raises structural issues.
In most situations, the cost of constructing garage space is minimized with structures speci�cally designed
as parking garages. Even if parking were distributed continuously over space, parking garage entrances
would not be. Because of the �xed width required for a garage entrance and the �xed area required for a
central ramp, parking garage entrances would be discretely spaced. Consideration of aesthetics and tra¢ c
circulation may play a role as well. Zoning may require that parking garages be located away from major
tra¢ c arteries to reduce the congestion and visual nuisance they cause.
The web version of the paper provides a map of downtown Boston, indicating the capacity and location

of parking garages.
13The web version of the paper provides a �gure showing the regular parking rate schedules, as a function

of parking duration, for six Boston-area parking garages. The rate schedules are all concave. A parking
garage incurs a constant marginal cost associated with a parked car (and a �xed cost as well, but this shall
be ignored in the analysis). The concavity of the rate schedules therefore suggests price discrimination with
respect to visit duration.
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ine¢ cient spacing of garage parking.

In the next section, the model of this section is extended to take into account the exercise of

market power caused by the discrete spacing of parking garages. The exact reason for the

discrete spacing of parking garages is secondary. It is assumed that the discrete spacing arises

from the �xed land area required for a central ramp, which generates horizontal economies

of scale. The optimal spacing minimizes overall resources costs. The equilibrium spacing is

the outcome of spatial competition between parking garages.

3 The Central Model

The primitives of the model di¤er from those of the simple model of the previous section

in three respects. First, the garage cost function incorporates horizontal economies of scale,

re�ecting the �xed costs associated with the central ramp. Second, to avoid dealing with

price discrimination based on parking duration, parking duration rather than visit duration

is taken to be exogenous. And third, a grid street network is assumed.

In many cities, there are both public and private parking garages. To keep the analysis

manageable, however, it is assumed that all parking garages are private14. The social opti-

mum is solved �rst, then the spatial competition equilibrium is solved when the government

intervenes only through its curbside parking policy.15

3.1 Social optimum

Since travel demand is perfectly inelastic, the social optimum entails minimizing resource

costs per unit area-time. There are three components to resource costs per unit area-time:

garage costs per unit area-time (GC), walking costs per unit area-time (WC), and in-transit

travel costs per unit area-time (TT ):

RC = GC +WC + TT : (12)

It is assumed that the presence of parking garages does not alter the distance drivers travel

over city streets, or the optimality of on-street parkers parking at their destinations, or the

14An obvious direction for future research is to investigate the situations where all garage parking is
provided by the public sector, and where some is provided publicly and some privately.

15Less formal derivation of the results is provided in Arnott (2006).
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spatial homogeneity of tra¢ c �ow16. These assumptions together imply that the steady-state

equilibrium condition for the simple model, T = �t(T; 0; P )D, continues to hold. Denoting

the corresponding congested equilibrium in-transit density as a function of P by T �(P ) gives

TT = �T �(P ).

E¢ ciency entails identical parking garages being symmetrically arrayed over space, with

diamond-shaped market areas. Let s be the grid or Manhattan distance between parking

garages, x the capacity of each parking garage, and K(x) the minimum cost per unit time

of a garage as a function of capacity. Each garage services an area of s2=2. With demand

in�ow D per unit area-time and parking duration �, the total number of parking spaces in

a garage�s service area is D�s2=2. Since Ps2=2 curbside parking spaces are provided in the

service area, garage capacity is x = (D��P )s2=2 and GC = K((D��P )s2=2)�s2=2. Since
the demand for garage parking is uniformly distributed over space, the average distance

walked by a garage parker is 2s=3 so that average walking time is 2s=(3w), where w is

walking speed, and WC = 2�s(D � P=�)=(3w). Combining the above results gives

RC =
K((D�� P ) s2

2
)

s2

2

+ 2�s
D � P

�

3w
+ �T �(P ) : (13)

Solution of the social optimum entails minimizing (13) with respect to P and s. The optimum

may entail no curbside allocated to parking, all curbside allocated to parking, or only a

fraction of curbside being allocated to parking. In the last case, the �rst-order condition

with respect to P is

�K 0 � 2�s

3�w
+ �

dT �

dP
= 0 : (14)

Expanding curbside parking capacity by one unit per unit area results in garage capacity

being reduced by one unit per unit area, leading to a saving per unit area-time in garage

costs of K 0 and in walking costs of 2�s=(3�w), but in less curbside being allocated to tra¢ c,

resulting in an increase in in-transit travel costs of �dT �=dP (an expression for which is

provided below (4)). With a realistic garage construction technology, the optimal spacing

between parking garages solves the �rst-order condition of (13) with respect to s:

2(D�� P )K 0

s
� 4K
s3
+
2�(D � P

�
)

3w
= 0 :

16Solving for optimal tra¢ c �ow over space, taking into account the spatial inhomogeneity introduced by
parking garages, would be formidably di¢ cult.
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Dividing through by 2(D � P=�)=s and using x = (D�� P )s2=2 yields

�K 0 � �K
x
+
�s

3w
= 0 : (15)

The social optimum minimizes resource costs per unit area-time. Since the input rate per

unit area is constant, it also minimizes resource costs per driver. And since, in the choice of s,

P and hence the ratio of garage parkers to drivers, is �xed, the optimal choice of s minimizes

resource costs per garage parker. Since in-transit travel costs are independent of the spacing

between parking garages, the optimal spacing between parking garages minimizes garage

plus walking costs per garage parker. Let aGC and mGC be the average and marginal

garage costs per garage parker, and de�ne aWC and mWC accordingly. Since an average

is minimized where the marginal equals the average, the optimal spacing between parking

garages solves

aGC + aWC = mGC +mWC ; (16)

which coincides with (15) since aGC = �K=x,mGC = �K 0, aWC = 2�s=(3w), andmWC =

�s=w because the marginal garage parker walks to the boundary of the garage service area.

3.2 Equilibrium

Parking garage structures are prohibitively costly to relocate and very costly to expand.

Thus, the natural way to model spatial competition between parking garages is as a dy-

namic two-stage game with growing market demand. In each period�s second stage, garages

compete in fee schedules, taking the location and capacity of other garages as �xed. In each

period�s �rst stage, potential entrants decide simultaneously on entry, capacity, and loca-

tion, anticipating the future evolution of market equilibrium. Since this game is intractable,

a familiar spatial competition game that Tirole (1988) ascribes to Salop (1979), but which

is discussed in Vickrey (1964) and probably has more distant origins, is adapted instead.

The model is at least tractable and generates an equilibrium that seems reasonable. In the

second stage, garages play a Bertrand-Nash game in mill prices, taking as given the location

of their neighbors, who are by assumption arrayed symmetrically, and ignore the e¤ects of

their actions on tra¢ c conditions. In the �rst stage, the number of garages, and hence the

spacing between them, adjusts such that garage pro�ts are zero.

Assume that the on-street parking fee is set below the marginal cost of a garage parking

space, so that parking garages would �nd it unpro�table to undercut on-street parking17.

17Calthrop (2001) considers the pro�t-maximizing pricing of a monopoly parking garage, taking into
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Consider a particular garage, garage 0. It has eight nearest neighbors, each of which is

located a grid distance s away and charges the same amount S for a car to park for the

period �. Reasoning that each garage parker will choose to park in the garage with the

lowest full parking price, which includes the garage charge and the cost of walking from the

garage to the destination and back again, it calculates the distance of the boundary of its

market area, b, to be related to its own parking charge, S0, according to

b(S0;S) =
w(S � S0)

4�
+
s

2
; (17)

and its market area to be 2b(S0;S)2. Since the on-street parking fee is below garage marginal

cost undercuting on-street parking is unpro�table. Garage 0 then reasons that its per-period

pro�ts are related to its parking charge according to

� = 2S0(D �
P

�
)b(S0;S)

2 �K(2(D�� P )b(S0;S)2) : (18)

In its choice of S0, garage 0 trades o¤ a larger service area against a larger pro�t per

inframarginal parker. Maximizing pro�ts with respect to S0 yields

S0 = �K
0 +

2�b(S0;S)

w
: (19)

The Bertrand-Nash equilibrium is solved by setting S = S0 in (19), yielding

Se = �K 0 +
�s

w
: (20)

Thus, equilibrium in the second-stage price game entails garages charging a markup over

marginal garage cost equal to the walking cost incurred by a driver at the boundary between

service areas. In the �rst stage of the game, entry and exit occur, driving pro�ts to zero:

� = (D � P
�
)(�K 0 +

�s

w
)
s2

2
�K = 0 : (21)

Dividing (21) through by (D � P=�)s2=2 yields

aGC = mGC +mWC : (22)

Comparing (16) and (22) implies that, under this form of spatial competition, parking garage

market areas are ine¢ ciently small.

account that the pro�t-maximizing strategy may entail undercutting on-street parking.
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It is assumed that, with discrete parking garages, curbside parkers drive to their destination

block and then circle that block cruising for parking, as was the case with continuous parking

garages, and that at each location (indexed by grid distance from the closest parking garage,

m) the in-transit travel time is the same for curbside parkers as for garage parkers18. Under

these assumptions, the stock of cars cruising for parking at location m adjusts to equilibrate

the full prices of garage and curbside parking there. In contrast to the simple model, the

full price of garage parking now includes walking costs. The parking equilibrium condition

at location m is then

Se +
2�m

w
= f�+

�C(m)�

P
; (23)

where C(m) is the density of cars cruising for parking at location m, and Se is given by (20),

so that

C(m) = (Se +
2�m

w
� f�) P

��
: (24)

To close the model, T (m), the equilibrium density of cars in transit at each location, must

be derived. Since there is no nice way to do this, it is assumed that T (m) is the congested

solution to the analog of the steady-state equilibrium condition at location m:

T (m)� �t(T (m); C(m); P )D = 0 :

In-transit travel costs per unit area are obtained by averaging �T (m) over the garage market

area, and cruising-for-parking costs per unit area (CP ) are obtained analogously.

3.3 Second-best parking policy

Regulation of private garage pricing, capacity, and location is not considered. Government

intervention is restricted to curbside parking policy. Since modeling the full game between

a local parking authority, with strategy variables f and P , and private parking garages,

with strategy variables S and x, would be complex19, the only policy to be investigated will

be the local parking authority�s second-best optimal choice of P on the assumption that

the government behaves as a Stackleberg leader and that the meter rate is set su¢ ciently

18Properly, the equilibrium spatial pattern of tra¢ c �ow with drivers optimizing over route and cruising-
for-parking strategy should be determined, but this problem is intractable.

19Calthrop (2001) considers the pro�t-maximizing pricing of a garage monopolist in the face of an exoge-
nous on-street meter rate, ignoring the discreteness of parking garages. If the meter rate is set above a critical
level, it is pro�table for the garage monopolist to undercut the meter rate. In the context of the model of
this section, the full game between a local parking authority and private parking garages would need to take
this undercutting possibility into account, and the equilibrium might involve garages undercutting on-street
parking close to the parking garage but not further away.
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low that parking garages do not have an incentive to undercut it. Relative to the social

optimum, there are three sources of distortion. The underpricing of curbside parking and

the overpricing of garage parking induce cruising for parking, which generates cruising-for-

parking costs and increases in-transit travel costs. Also, spatial competition between parking

garages results in parking garages being ine¢ ciently closely spaced.

Let GC�(P ) denote garage costs per unit area-time, as a function of P in the social optimum,

etc., and GCe(P ) the spatial competition equilibrium, etc. The second-best optimal level of

P , P ��, minimizesRCe(P ) = GCe(P )+WCe(P )+TT e(P )+CP e(P ). IfRCe(P ) has a unique

local, interior minimum, then [dRCe(P )=dP ]P � > 0 is a necessary and su¢ cient condition

for P �� < P �. Letting DWL(P ) denote the deadweight loss in the spatial competition

equilibrium relative to the social optimum, as a function of P , we have that

DWL(P ) = RCe(P )�RC�(P )
= [GCe(P ) +WCe(P )�GC�(P )�WC�(P )]

+[TT e(P ) + CP e(P )� TT �(P )] (25)

� \DWL(P ) +\\DWL(P ) :

where \DWL(P ) is the deadweight loss related to garages being ine¢ ciently close in the

spatial competition equilibrium, and
\\DWL(P ) is that related to cruising for parking. Since

[dRC�(P )=dP ]P � = 0, [dDWL(P )=dP ]P � = [dRCe(P )=dP ]P �. Thus, if RCe(P ) has a unique

local, interior minimum, a necessary and su¢ cient condition for P �� < P � is that deadweight

loss be increasing in P at P �. It can be shown that
\\DWL(P ) is increasing20 in P , but the

sign of the derivative of \DWL(P ) is ambiguous, depending in a complicated way on the
properties of the garage cost function. The next section provides several numerical examples

in which the second-best level of P is less than the �rst-best level but also one in which the

second-best level exceeds the �rst-best level.

The analysis of this section�s model was fairly complete but two thorny game-theoretic issues

were sidestepped. The �rst concerns the modeling of spatial competition between parking

garages. The game form analyzed was chosen on the basis of tractability and not because

it is the most compelling. The second concerns the modeling of the game between private

garage operators and the local authority. The paper considered the choice of the authority

qua Stackleberg leader concerning how much curbside to allocate to parking but took the on-

20It can be shown that in the spatial competition equilibrium, dC=dP > 0. It then follows from the

convexity of the congestion function in T , C, and P that
\\DWL(P ) is increasing in P .
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street meter rate as �xed. Modeling a complete game between private garage operators and

the local parking authority will be di¢ cult. And this di¢ culty will be compounded when the

parking authority�s policy instruments are expanded to include regulation of parking garage

fees, locations, and capacity, and when the political economy considerations that a¤ect the

authority�s policy choices are taken into account.

4 Numerical Examples

4.1 Calibration

Arnott and Inci (2006) present numerical examples for a model similar to the one employed

here, except that all parking is on street and demand is price-sensitive. This paper adopts

all their values for the common parameters and functions, and adds a parameterized garage

cost function and the level of demand as well.

The following parameters are employed. The units of measurement are hours for time, miles

for distance, and dollars for value.

� = 2:0 � = 2:0 f = 1:0 � = 20:0 P = 3712

The in-transit travel distance is 2.0 miles; the parking duration is 2.0 hours; the on-street

parking fee is $1.00 per hour; the value of time is $20.00 per hour; and the number of

curbside parking spaces is 3712 per square mile in the base case. We do not know of data

on mean non-residential parking duration over the entire downtown area, but two hours

seems reasonable when account is taken of non-work trips and auto trips taken by downtown

employees during the working day. Since the model ignores downtown residents, the ratio of

one mile traveled on downtown streets per hour parked seems reasonable too. The hourly

meter rate for curbside parking is that employed in Boston. The value of time of $20.00

per hour might seem high, but the average downtown parker is more highly paid and busier

than the typical traveler21. The value of P chosen is for the base case, for which parking is

on one side of the street, and requires explanation. Assuming 8 city blocks per mile on a

Manhattan grid, a street width of 33 feet, a parking space length of 21 feet, and allowance

21Small, Winston, and Yan (2005) �nd slightly higher mean values of travel time on the California State
Route 91 Freeway in Orange County. The standard rule of thumb, based on many empirical studies, is that
the value of travel time is half the wage rate, and the mean e¤ective wage rate in the downtowns being
considered must be around $40.00 per hour, corresponding to an annual salary (48 weeks a year and 35
hours per week) of $67200.
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for crosswalks, 29 cars can be parked on one side of a block. With parking on one side of

the street, there are 58 curbside parking spaces around each block. And with 64 blocks per

square mile, there are 3712 curbside parking spaces per square mile.

The value of D is taken to be 7424 per ml.2-hr. Since parking duration is two hours, this

implies that the stock of parking spaces needed to accommodate the exogenous demand is

14848 per square mile. Thus, in the base case, one-quarter of the cars park on street and

three-quarters o¤ street.

The form of the congestion function employed was described earlier, in fn. 9. It is

t =
t0

1� V
Vj

with Vj = 
(1�
P

Pmax
) and V = T + �C : (26)

This congestion function has four parameters, all of which are the same as in Arnott and

Inci (2006):

t0 = 0:05 
 = 5932:38 Pmax = 11136 � = 1:5

A value of t0, free-�ow travel time per mile, of 0.05 corresponds to a free-�ow travel speed

of 20 m.p.h. 
 is jam density in the absence of on-street parking. Vj is jam density with

on-street parking, which is assumed to equal jam density in the absence of on-street parking

times the proportion of street space available for tra¢ c, 1 � P=Pmax. Pmax is calculated
on the basis that a 33-foot-wide, one-way road can accommodate three lanes of tra¢ c and

that parking on one side of the street reduces this to two lanes of tra¢ c. In Arnott and

Inci (2006), the above value of 
 was calculated to obtain cruising-for-parking results similar

to those reported in Shoup (2005), but is also consistent with more basic tra¢ c engineering

reasoning.22 � is the in-transit PCE�s (passenger-car equivalents) of a car cruising for parking.

Since we know of no studies of its value, our estimate is a guess.

22With the street geometry assumed, excluding intersections there are about 15.2 street-miles per square
mile. 
 = 5932.38 then corresponds to one car every 13.5 feet of street. Since, in the absence of on-street
parking, a street has three lanes of tra¢ c, this corresponds to one car every forty feet in a lane or 132
cars per lane-mile. In the absence of cruising for parking, with the assumed congestion function capacity
throughput is achieved at one-half jam density or 66 cars per lane-mile, and the associated velocity and
�ow are 10 m.p.h. and 660 cars per lane-hour, respectively. These �gures accord with those given in Table
16-17 of the Transportation and Tra¢ c Engineering Handbook (Institute of Transportation Engineers, 1982),
"Maximum Lane Service Volumes on Urban Arterials Based on 50% Cycle Split and Average Density and
Speed Criteria."
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The garage cost function is assumed to have the form23

K̂(x; h) = R(A0 +
ax

h
) + (k0 + k1h)x+ F0 + F1h ;

where K̂ is the amortized (per hour) cost, x garage capacity, h garage height (number of

�oors of parking), R land rent, A0 the area used for the central ramp, a the �oor area needed

for each additional car, F0+F1h the cost of constructing the central ramp in a parking garage

with h �oors of parking, and k0+k1h the unit cost of an additional parking space in a garage

of h �oors. We assume that an additional car needs 400 square feet of �oor space, 200 square

feet of parking space per se and 200 square feet of added space for tra¢ c circulation, yielding

a = 1:44 � 10�5 square miles, and that the parking ramp has a radius of 20 feet and therefore
an area of 400� square feet, yielding A0 = 4:52 � 10�5. In choosing cost parameter values,

we draw heavily on Shoup (2005), Chapter 6. Table 6-1 gives an average cost in 2002 dollars

per space added for garages constructed on the UCLA Campus between 1977 and 2002 of

about24 $28000. Amortizing this cost, assuming that the garage is used for 8 hours a day,

200 days a year and that the annual user cost of capital is 0.05, which is consistent with a

real interest rate of 4% and a 40-year life25, yields a �gure for (k0 + k1h) + (F0 + F1h)=x of

$0.875/hr. It is assumed that k1 = 0:125k0, F1 = 0:125F0, and F0 = 10k0. That leaves two

parameters, k0 and R. The values k0 = 0:5 and26 R = $2:5 � 105 are chosen. For a parking

structure with 1000 spaces, which corresponds to the average at UCLA, the cost-minimizing

height is 7.55 �oors, so that the average amortized construction cost computed according to

the above formula is $0.982/hr. The amortized cost of land per garage space is $0.488/hr.

The ratio of land to construction costs seems reasonable. Average garage cost (corresponding

to K=x in the theory) is therefore $1.470/hr., and marginal garage cost (corresponding to

K 0 in the theory) $1.449/hr27. Though the parameters chosen for the garage cost function

23Chapter 14 of the Tra¢ c Engineering Handbook (Institute of Transportation Engineers, 2004), "Parking
and Terminals", discusses the design of parking garages but does not provide engineering cost data. The
form of the cost function in (27) was chosen for its ease of interpretation and analysis, and not on the basis
of engineering data.

24In calculating this number, Shoup divided construction costs by the number of added parking spaces,
on the assumption that the land was previously used as an on-ground parking lot.

25The real interest rate and the amortization period are those chosen by Shoup, Table 6-3, and he judged
these to probably underestimate the user cost of capital.

26This is the amortized cost per ml.2-hr. It has been assumed that a garage space is utilized for 1600
hours per year. Thus, the land rent per ml.2-yr. is $4:0 � 108. Since there are 640 acres per square mile,
this corresponds to a land rent of $6:25 � 105 per acre-year. Since land does not depreciate, an interest
rate of 4% should be applied. Assume that land rent grows at the rate of 1% per year and that the property
tax rate is 1% per year. Under these assumptions, the value of land per acre is $15.625 million.

27Cost-minimizing building height increases as capacity increases. If building height were held �xed,
marginal cost would be constant. The �exibility of building height causes marginal cost to fall. Average cost
falls too, due to this e¤ect and the �xed cost of the central ramp.
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yield reasonable results, there is evidently considerable scope for improvement28.

What kind of city does this parameterization correspond to? Parking in Boston (Boston

Transportation Department, 2001) reports that in 1997/8 per square mile the number of

employees in Downtown Boston was 160000 and the number of o¤-street, non-residential,

non-hotel parking spaces was 29000. Downtown Boston Transportation Plan (Boston Trans-

portation Department, 1995) reports that, in 1990, 36% of Downtown workers drove alone

and 11% carpooled or vanpooled. On the assumption of no on-street parking, if all down-

town workers had commuted by car, the required number of o¤-street parking spaces would

have been about 62000 per square mile. This �gure indicates that the calibrated city has

a considerably lower employment density than Boston. Furthermore, applying the ratio for

Boston of the o¤-street parking spaces if all downtown workers had commuted by car to

the number of employees, suggests that an o¤-street parking density of 11136 per square

mile corresponds to an employment density of around 29000 per square mile. According to

Demographia (2007), such downtown employment densities are found in Winnipeg, Perth,

San Diego, Sacramento, and Phoenix.

4.2 Numerical results

4.2.1 Base case outcomes

All the numerical exercises are for the central model. Table 1 presents the numerical results

with the base case set of parameter values. Each of the columns corresponds to a di¤erent

exercise. Each row gives the value for a particular variable across the various exercises.

Column 1 describes the social optimum with the base case allocation of curbside to parking

space of P = 3712, corresponding to curbside parking on one side of the street. The social

optimum is de�ned to have no cruising for parking. Column 2 provides the numbers for the

social optimum with the �rst-best allocation of curbside to parking. Column 3 presents the

base case equilibrium. Column 4 displays results for the same case as column 3 but with

the allocation of curbside to parking optimized. Column 5 gives the results for the base case

equilibrium, but with the meter rate raised from $1.00 to $1.50 per hour. Finally, column 6

shows the equilibrium for the same case as column 5 but with the allocation of curbside to

parking optimized.

28Since Shoup�s assumptions on the real interest rate and the amortization period likely underestimate
the user cost of capital, and since administrative, operating, and maintenance costs (which for the UCLA
parking garages add about 35% to costs �see Shoup, Table 6-3) have been ignored, it seems likely that the
base case parameterization underestimates garage costs. In the numerical examples, the case in which garage
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Table 1: Numerical results with base case parameter values

1 2 3 4 5 6

SO

P = 3712
SO(P �)

E

f = 1

P = 3712

E(P ��)

f = 1

E

f = 1:5

P = 3712

E(P ��)

f = 1:5

s 0.150 0.152 0.104 0.096 0.104 0.115

x 125 124 60 65 60 54

h 7.30 7.30 7.03 7.06 7.03 6.97

S 3.59 3.54 3.59 3.67

P 4144 718 6694

v 15.0 14.5 12.6 14.6 13.8 12.5

CP=(TT + CP ) 0 0 0.14 0.033 0.084 0.14

GC=D 2.42 2.33 2.70 3.37 2.70 2.02

WC=D 0.50 0.49 0.35 0.41 0.35 0.28

TT=D 2.67 2.76 3.18 2.74 2.89 3.21

CP=D 0 0 0.51 0.095 0.26 0.53

RC=D 5.59 5.58 6.73 6.61 6.20 6.04

F 7.23 6.71 6.95 7.39

Notes:

1. The unit of time is an hour, of distance a mile, and of value a dollar.

2. GC=D is the garage cost per driver (including those who park on street) or average

garage cost. Similarly, WC=D is average walking cost, CP=D average cruising-for-parking

cost, TT=D average in-transit travel cost, and RC=D average resource cost.

3. A driver�s in-transit travel time per mile is calculated as his in-transit travel cost (TT=D),

divided by ��, and v, velocity, as the reciprocal of in-transit travel time. CP=(TT + CP )

measures the mean proportion of tra¢ c �ow that is cruising for parking. And F , the average

full price of a trip, is calculated as average resource cost per driver plus curbside parking

revenue per driver.

4. Blank cells correspond to variables that are not relevant for the exercise.

Consider �rst the social optimum, described in column 1, in which curbside parking is permit-

ted on one side of every street, so that one-quarter of drivers park on street. The Manhattan

spacing between parking garages is 0.15 miles, and each garage holds 125 cars and has 7.30

costs are 40% higher than those of the base case is treated and seems to yield more reasonable results.
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�oors. All tra¢ c is in transit and travel speed is 15.0 m.p.h. GC is garage cost per unit

area-time, and D is throughput in cars per unit area-time, so that GC=D is garage cost

per driver (or, equivalently, per trip), including those who park on street, or average garage

cost. Similarly, WC=D is average walking cost, TT=D average in-transit travel cost, CP=D

average cruising for parking cost, and RC=D average resource cost. Average garage cost is

$2.42, average walking cost $0.50, average in-transit travel cost $2.67, average cruising-for-

parking cost zero since there is no cruising for parking in the social optimum, and average

resource cost $5.59. The cells for S (the garage parking charge) and F (the average full

price of a trip) are blank since the social optimum allocation does not entail prices, and

P is blank since its value is exogenous. The relative importance of average garage parking

cost (GC=D +WC=D) to average driving cost (TT=D + CP=D) re�ects the ratio of travel

distance to parking duration, which in the example is set at 1.0.

Column 2 describes the social optimum in which the amount of curbside parking is chosen

to minimize resource costs. Comparing columns 1 and 2 indicates that the optimal amount

of curbside to allocate to parking is not very di¤erent from that assumed in the base case,

4144 parking spaces per square mile (55.8% of curbside) rather than 3712. Not surprisingly,

therefore, optimizing the amount of curbside parking results in only small resource savings.

Because more drivers park on street, average garage parking costs fall but average in-transit

travel cost increases by almost the same amount, resulting in an average resource savings of

only about $0.01.

Column 3 describes the equilibrium in which the meter rate (the hourly on-street parking fee)

is $1.00/hr. and curbside parking is on one side of the street. Comparison of columns 3 and 1

is particularly interesting since it indicates the e¤ects of moving from the social optimum to

the equilibrium, holding constant the proportion of curbside allocated to parking. There are

two qualitative di¤erences between the equilibrium and the social optimum. First, spatial

competition results in suboptimal spacing between parking garages. Second, since curbside

parking is underpriced and garage parking overpriced, there is cruising for parking in the

equilibrium, with the stock of cars cruising for parking adjusting such that the full prices of

on- and o¤-street parking are equalized, and the cars cruising for parking slow down cars in

transit.

In this equilibrium, the capacity of each parking garage is about half that in the social opti-

mum, while the spacing between them is about two-thirds that in the social optimum. Since

average garage parking cost is $2.92 in the social optimum and $3.05 in the equilibrium,

average social cost associated with this distortion is relatively small, $0.13. The distortion
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generated by cruising for parking is considerably larger29. The distortion has two compo-

nents. The �rst, average cruising-for-parking cost is, $0.51. The second, the increase in

average in-transit travel cost due to the increased congestion caused by the cars cruising for

parking, is $0.51 (that these two numbers are identical is a coincidence). The average dead-

weight loss caused by cruising for parking is therefore $1.02, which is an order of magnitude

larger than that generated by the suboptimal spacing between parking garages. Cars cruis-

ing for parking constitute 14% of the tra¢ c density and slow down tra¢ c from 15.0 to 12.6

m.p.h. The results indicate that even a relatively small (compared to the numbers presented

in Shoup, 2005, Table 11-5) proportion of cars cruising for parking can cause a substantial

increase in congestion. Since free-�ow travel speed is 20.0 m.p.h., congestion causes travel

speed to fall by 5.0 m.p.h. in the social optimum and by 7.4 m.p.h. in the equilibrium.

Thus, even though they constitute only 14% of cars on the road, cars cruising for parking

generate an almost 50% increase in the time loss due to congestion. This result is due to the

convexity of the congestion function. The combined e¤ect of the two distortions is to raise

average resource cost by $1.14, slightly more than 20% relative to the social optimum. The

full price of travel exceeds average resource cost because of the curbside parking fee, which

is a transfer from curbside parkers to the government. One-quarter of drivers pay $2.00 for

curbside parking, causing the full price of travel to exceed average resource cost by $0.50.

Column 4 gives the second-best equilibrium, in which the meter rate remains at $1.00 and

the proportion of curbside allocated to parking is optimized conditional on the distorted

meter rate. Comparing columns 3 and 4 indicates by how much the deadweight loss due to

the two distortions is reduced by optimizing the amount of curbside allocated to parking. It

is second-best e¢ cient to substantially reduce the amount of curbside allocated to parking �

to 9.7% of curbside �in order to reduce the stock of cars cruising for parking. Since a larger

proportion of drivers then park o¤ street, the average garage parking cost increases from

$3.05 to $3.78, but this is more than o¤set by the decrease in average driving costs, with

average cruising-for-parking cost decreasing from $0.51 to $0.10 and average in-transit travel

cost from $3.18 to $2.74. Average resource cost falls from $6.73 to $6.61. Thus, optimizing

the amount of curbside parking reduces the deadweight loss from the two distortions by

about ten percent.

29In section 3.3, the deadweight loss was decomposed into that associated with cruising for parking and
that associated with the ine¢ cient spacing of parking garages. This decomposition might give the misleading
impression that the deadweight loss associated with private provision of parking garages is small. Cruising
for parking derives from not only the underpricing of curbside parking but also the overpricing of garage
parking. In the example being considered, for the two-hour visit, the curbside parking charge is $2.00, the
marginal cost of garage parking is $2.90, and the garage parking charge is $3.59. Thus, 43% of cruising-
for-parking costs are attributable to the overpricing of garage parking. In the example of column 5, all
cruising-for-parking costs are attributable to the overpricing of garage parking.
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Column 5 shows the equilibrium when one side of the street is allocated to curbside parking,

as in the base case, and the parking fee is raised from $1.00/hr. to $1.50/hr. Raising the

parking fee has no e¤ect on average garage or walking cost, but, by reducing the di¤erence

between the on- and o¤-street parking prices, almost halves the stock of cars cruising for

parking, which reduces congestion and hence average in-transit travel time cost. It is of

particular interest to examine the "revenue multiplier" �the ratio of the increase in social

bene�t to the increase in parking fee revenue due to the rise in the meter rate, holding �xed

the curbside allocated to parking. Average meter fee revenue rises by $0.25 and average

social bene�t by $0.53. The revenue multiplier is therefore about 2.1; for every extra dollar

of revenue raised from the increase in the meter rate, social bene�t rises by about $2.10.

This seems almost too good to be true, but re�ects how distortionary is the wedge between

the on- and o¤-street parking rates.

Comparing columns 5 and 6 shows how the equilibrium changes when the allocation of

curbside to parking is optimized conditional on the higher on-street meter rate rather than

being set at its base level. Comparing columns 4 and 6 shows how the equilibrium changes

when the meter rate increases, with the allocation of curbside to parking being optimized

conditional on the meter rate. The most notable feature of the results is the almost ten-fold

increase in the optimal allocation of curbside to parking with the increase in the meter rate.

Holding P �xed at 718, the increase in the meter rate would cause the di¤erence between

the garage parking fee and the meter price of on-street parking, S� fl, to fall from $1.54 to
$0.54. Since the increase in the stock of cars cruising for parking induced by an increase in

curbside parking would then be reduced by almost two-thirds, it is e¢ cient to allocate more

curbside to parking. When the curbside allocated to parking is optimized conditional on the

parking fee, raising the parking fee causes average resource cost to fall by $0.57.

It is also noteworthy that the second-best amount of curbside parking with f = 1.5 exceeds

the �rst-best level. Since there is cruising for parking in the second-best equilibrium but

not in the social optimum, this must (recall the discussion of section 3.3) derive from the

increase in curbside parking reducing the deadweight loss from the ine¢ cient spacing of

parking garages.

Now consider particular rows across the six allocations. First, the di¤erences for s, x, and

h are greater between the optimal and equilibrium allocations than among the equilibrium

allocations. Second, the di¤erences for s, x, and h across the equilibrium allocations follow

directly from the amounts of curbside parking and hence the amounts of garage space needed.

Third, recalling that the garage parking charge entails a markup over the marginal cost of a

garage space equal to the cost of walking the boundary of the garage market area, the small
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di¤erences in the garage parking charge across equilibrium allocations can be explained by

di¤erences in the marginal cost and the markup. Fourth and obviously, across the equilibrium

allocations, average garage parking cost is strongly and positively a¤ected by the proportion

of drivers who park o¤ street. Fifth, across the equilibrium allocations, travel time (the

reciprocal of v), the proportion of cars cruising for parking, cruising for parking costs per

capita, and in-transit travel costs per capita move together and are directly related to the

stock of cars cruising for parking. Sixth, across the equilibrium allocations, tra¢ c congestion

is moderate. In the least congested equilibrium allocation, 3% of cars in tra¢ c are cruising

for parking and travel speed is 14.6 m.p.h.; in the most congested equilibrium allocation,

14% of cars in tra¢ c are cruising for parking and travel speed is 12.5 m.p.h.

Examining all six allocations simultaneously, what is most striking is the dominant impor-

tance of cruising for parking, even though the proportion of cars cruising for parking is less

than 15% in all the equilibrium allocations. Almost 90% of the higher resource costs in the

base-case equilibrium compared to the base-case social optimum are due to the cruising for

parking induced by the wedge between on- and o¤-street parking charges. Also, the sensi-

tivity of the second-best amount of curbside parking to the meter rate is driven by cruising

for parking. As well, under even the moderate tra¢ c congestion of the examples, the social

cost of the increased congestion caused by cruising for parking can be more than double the

direct cruising-for-parking costs.

4.2.2 Outcomes with higher garage construction costs

The aim of the numerical examples is to come up with reasonable numbers in order to pro-

vide insight into the absolute and relative magnitudes of various policy changes. When we

looked at the results of the base case, we judged the garage parking fees to be unrealistically

low. To correct this, all the garage cost parameters, R, F0, F1, k0, and k1 were �rst dou-

bled. With a meter rate of $1.00 per hour, an equilibrium does not exist. More expensive

garage construction (and land) results in a higher garage parking fee, increasing the price

di¤erential between on- and o¤-street parking and inducing more cruising for parking. With

the increased cruising for parking caused by doubling the garage cost parameters, the ex-

ogenous level of throughput D could not be supported by the street system30. The garage

construction costs parameters were then lowered to 40% above their base case levels31, for

30In terms of Figure 1, at least at some locations, the steady-state locus (the graph of (1) in T �C space)
and the parking equilibrium locus (the graph of (2)) did not intersect.

31The garage parking fee is still lower than that observed in major downtown areas. To obtain an allocation
for which equilibrium exists with a realistic garage parking fee would require either price-sensitive demand
or mass transit.
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which equilibrium did exist for all cases. The results are displayed in Table 2.

Table 2: Numerical results with garage construction costs 40 percent higher than in base
case

1 2 3 4 5 6

SO

P = 3712
SO(P �)

E

f = 1

P = 3712

E(P ��)

f = 1

E

f = 1:5

P = 3712

E(P ��)

f = 1:5

s 0.168 0.172 0.116 0.106 0.116 0.111

x 157 153 75 83 75 78

h 7.36 7.35 7.13 7.17 7.13 7.15

S 4.84 4.76 4.84 4.80

P 4506 0 2188

v 15.0 14.0 10.4 15.0 12.2 13.5

C=(T + C) 0 0 0.18 0 0.15 0.10

GC=D 3.32 3.09 3.63 4.76 3.63 4.10

WC=D 0.56 0.53 0.39 0.47 0.39 0.42

TT=D 2.67 2.86 3.84 2.67 3.29 2.97

CP=D 0 0 0.84 0 0.59 0.34

RC=D 6.55 6.48 8.69 7.90 7.89 7.82

F 9.19 7.90 8.64 8.27

Notes: See previous table.

How the increased garage costs alter the social optimal allocations is straightforward. Since

unit transport costs remain unchanged while unit garage costs increase, the social optimum

entails a substitution away from garage costs towards transport costs, which is achieved

by allocating more curbside to parking. Increased garage costs have two con�icting e¤ects

on the qualitative properties of the equilibrium allocations. On one hand, there is the

same substitution away from garage costs towards transport costs. On the other hand,

the increased garage costs cause an increase in the marginal cost of a garage space, hence

on the garage parking charge, hence on the price di¤erential between on- and o¤-street

parking, and hence on cruising-for-parking time costs. The latter e¤ect dominates. Holding

the proportion of curbside allocated to parking �xed, cruising for parking increases, and to

o¤set this it is e¢ cient to reduce the number of on-street parking spaces. This e¤ect is so

strong that with f = 1 it is second-best e¢ cient to have no on-street parking. With one-half

the curbside allocated to parking, the revenue multiplier associated with raising the parking
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fee from $1.00/hr. to $1.50/hr. is 3.2. Parking fee revenue rises by $0.25 per capita while

resource costs fall by $0.80. The higher garage costs result in the base case equilibrium being

more congested. The increase in the meter rate causes the same reduction in the stock of

cars cruising for parking but, because the congestion technology is convex, causes a greater

reduction in in-transit travel time costs. The increase in garage costs causes the various

equilibria to change in the ways that would be expected from earlier discussion. There is,

however, one noteworthy qualitative di¤erence between Tables 1 and 2. When f = 1:5, with

the base case garage costs the �rst-best amount of curbside parking falls short of the second-

best level, but with the higher garage costs the �rst-best amount of curbside parking exceeds

the second-best level. The higher garage construction costs more than double the equilibrium

price di¤erential between on- and o¤-street parking, which causes cruising for parking to be

more of a problem. With cruising-for-parking more of a problem, it is second-best optimal

to devote less curbside to parking.

The numerical results for the equilibria are unrealistic in one important respect � travel

speeds are too high. Under the assumptions that the demand in�ow is inelastic and that

travel is congested rather than hypercongested, and with the assumed form of the congestion

function, equilibrium travel speed is never below 10 m.p.h. But in heavily congested down-

town areas, average travel speeds of 6 m.p.h. and even lower are not uncommon. Realistic

travel speeds can be achieved by making trip demand sensitive to the full price of a trip32,

as was done in Arnott and Inci (2006).

Another feature of the numerical analysis is that in none of our exercises was the proportion

of cars in tra¢ c that are cruising for parking as high as the average 30% that the cruising-

for-parking studies cited in Shoup (2005) found. This derives from the choice of parameter

values. It can be shown33 that, in the base case, the maximum value of C=T that can be

achieved is 22%. To achieve higher values of C=T , the parameter values would have to be

adjusted.

32The equilibria associated with low travel speeds would then correspond to hypercongestion. The parking
equilibrium condition ties down C. There are then two levels of T corresponding to a given level of �ow or
throughput, with the higher level corresponding to hypercongestion.

Whether steady-state hypercongested equilibria can be stable remains a matter of dispute. Verhoef
(2001) proves for one model that steady-state hypercongested equilibria are unstable. Arnott and Inci believe
that they have proved that the equilibria they identify as hypercongested in Arnott and Inci (2006) are stable.

33With P �xed, the maximized value of C=T consistent with (1) can be shown to be Vg=(4�Dt0�)� 1=�.
The maximized value of C=T is therefore increasing in Vg and decreasing in �, D, t0, and �. Note too that,
in this maximized value, �, D, and t0 enter as their product, which is aggregate free-�ow travel time per
unit area-time. In the simple model, with P variable, the maximized value of C=T consistent with both (1)
and (3) can be calculated by maximizing C=T subject to (1), (3), and Vg = 
(1�P=Pmax), with respect to
C, T , P , and f.
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Cruising for parking stems from the underpricing of curbside parking and the overpricing

of garage parking. The most extreme case considered (Table 2, column 3) is not extreme

compared to actual tra¢ c conditions in the downtown areas of major cities. The price

di¤erential between on- and o¤-street parking for the two-hour stay was $2.84 (considerably

less than that in downtown Boston, for example), the proportion of cars cruising for parking

was 18%, and travel speed was 10.4 m.p.h. The per-trip resource cost was $2.14 higher in the

equilibrium than in the corresponding social optimum, with $0.84 of the cost increase being

cruising-for-parking time cost, $1.17 higher in-transit cost due to the increased congestion

caused by the cars cruising for parking, and $0.13 higher garage parking costs deriving from

ine¢ cient spacing of parking garages. Raising the meter rate from $1.00 to $1.50 per hour

resulted in social savings of $0.80 per driver. Eliminating curbside parking entirely with the

$1.00 meter rate had almost exactly the same bene�t. Since they are expressed in per driver

terms, these numbers might appear small. But under the assumptions that there is an entry

rate to downtown of 7424 drivers per square mile and that downtown operates at capacity

for 1600 hours per year, a $0.80 social saving per trip translates into almost $10 million per

square mile every year.

Why do local governments almost everywhere persist in setting the curbside parking rate

so low? We have posed this question to several seminar audiences and have received two

related answers. The �rst is that the downtown merchants�association lobbies city hall to

set the meter rate low because they fear loss of customers to suburban shopping centers.

But in the model of this paper lowering the meter rate increases the full price of a trip

downtown. It has no e¤ect on the full price of parking and increases tra¢ c congestion. Do

downtown merchants simply not understand this or is some essential consideration missing

from our model?34 The second answer we have received is that downtown merchants favor a

combination of low meter rates and curbside parking time limits to facilitate short shopping

visits. We shall examine these issues in the sequel to this paper that considers heterogeneous

drivers.

A broader question is why local governments do not simply manage all garage parking

themselves, since they would then have direct control over both curbside and garage parking

and capacity.

34Downtown merchants often pay for shoppers�garage parking by validating their parking tickets. Perhaps
they view low curbside meter rates as a complementary policy, for shorter shopping trips.
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5 Directions for Future Research

This paper is the fourth of an integrated series that investigates the steady-state equilibrium

of downtown parking and tra¢ c congestion when the underpricing of on-street parking leads

to cruising for parking. Chapter 2 of Arnott, Rave, and Schöb (2005) is a preliminary essay

that presents the basic model framework, discusses some aspects of the economics, and puts

forward a tentative research agenda. Arnott and Inci (2006) looks at a variant of the model

with price-sensitive demand for downtown travel and only on-street parking. Arnott (2006)

provides a detailed derivation of the spatial competition equilibrium among parking garages,

and discusses how the model might be extended to analyze the economic e¤ects of Boston�s

downtown parking policy. The next paper in the series will extend the model of this paper

to treat driver heterogeneity and the paper after that will add mass transit. The stage will

then almost35 be set to apply the model to simulate the e¤ects of various downtown parking

policies in an actual city, Boston, which is the ultimate goal of the project.

Incorporating driver heterogeneity in the value of time and visit duration will add richness

to the model. First, heterogeneous drivers distribute themselves across on- and o¤-street

parking in a systematic way. Those with higher values of time are willing to pay a higher

premium to avoid cruising for parking and therefore choose garage parking. In the absence of

time restrictions, those with longer visit lengths choose to park curbside since they amortize

the �xed cost of cruising for parking over a longer period. Second, parking garage operators

choose their parking fee schedules accounting for driver heterogeneity. Third, since the stock

of cars cruising for parking adjusts to equalize the full prices of on- and o¤-street parking

for the marginal driver, the positive e¤ects of policies will depend on the characteristics of

marginal drivers. Fourth, equity considerations come into play. And �fth, on-street parking

time limits are an additional policy tool.

Adding mass transit will be essential in policy application to all cities outside the southern

and western United States. Buses interact directly with cars on city streets, and light rail

does too but to a lesser extent, while with subways there is no congestion interaction. All

forms of mass transit exhibit economies of scale. Fares are policy instruments, and even with

�xed networks capacity can be varied too, by altering schedule frequency and rolling stock.

In policy application, four general issues related to downtown transportation modeling will

come to the fore.

35The assumptions of temporal and spatial homogeneity will be retained but some other ingredients will
be added: downtown residence, resident and hotel parking, subsidized employer-provided parking, downtown
freight delivery, and perhaps taxis and pedestrians.
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1. How should downtown tra¢ c congestion be modeled? The inadequacy of applying

models of freeway tra¢ c to downtown tra¢ c is becoming increasingly apparent. Mi-

crosimulation models that follow individual cars through the downtown road network

are an improvement, but is there not an aggregate representation of downtown tra¢ c

congestion that provides a suitable approximation?

2. There is an ebb and �ow to downtown tra¢ c over the course of the day but steady-state

models are much easier to deal with than intra-day dynamic models. Is there a steady-

state model that in reduced form incorporates intra-day dynamics satisfactorily?

3. Even streets in Manhattan exhibit considerable variation in their capacity and geom-

etry. What is an appropriate method of aggregation?

4. Trip chaining and non-work trips are becoming increasingly important. How should

they be modeled?

This paper has presented and utilized a model of downtown parking and tra¢ c congestion.

The garage parking fee and the full price of parking are determined by spatial competition

between private parking garages. Curbside parking is priced below its social opportunity cost.

The combination of overpriced garage parking and underpriced curbside parking generates

cruising for parking, with the cost of cruising for parking adjusting to equalize the full prices

of on-and o¤-street parking. Because cars cruising for parking further clog city streets, the

deadweight loss associated with the price wedge between on- and o¤-street parking can be

several times the cruising-for-parking costs it induces. Since the stock of cars cruising for

parking is proportional to the amount of curbside parking, a second-best policy response is

to reduce or eliminate curbside parking.

The paper points to very substantial e¢ ciency gains from raising curbside parking fees (meter

rates). Are these potential gains real or is some essential factor missing from the model?
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