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1 Introduction

In an earlier paper, Baum et al. (2003), we discussed instrumental variables (IV) es-
timators in the context of Generalized Method of Moments (GMM) estimation and
presented Stata routines for estimation and testing comprising the ivreg2 suite. Since
that time, those routines have been considerably enhanced and additional routines have
been added to the suite. This paper presents the analytical underpinnings of both ba-
sic IV/GMM estimation and these enhancements and describes the enhanced routines.
Some of these features are now also available in Stata 10’s ivregress, while others are
not.

The additions include:

• Estimation and testing that is robust to, and efficient in the presence of, arbitrary
serial correlation.

• A range of test statistics that allow the user to address the problems of underiden-
tification or weak identification, including statistics that are robust in the presence
of heteroskedasticity, autocorrelation or clustering.

• Three additional IV/GMM estimators: the GMM continuously updated estimator
(CUE) of Hansen et al. (1996); limited-information maximum likelihood (LIML);
and k-class estimators.

• A more intuitive syntax for GMM estimation: the gmm2s option requests the two-
step feasible efficient GMM estimator, which reduces to standard IV/2SLS if no
robust covariance matrix estimator is also requested. The cue option requests
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2 Enhanced routines for IV/GMM estimation and testing

the continuously-updated GMM estimator, which reduces to standard LIML if no
robust covariance matrix estimator is also requested.

• A more intuitive syntax for a “GMM distance” or C test of the endogeneity of
regressors.

• An option that allows the user to “partial out” regressors: something which is
particularly useful when the user has a rank-deficient estimate of the covariance
matrix of orthogonality conditions (common with the cluster option and single-
ton dummy variables).

• Several advanced options, including options that will speed up estimation using
ivreg2 by suppressing the calculation of various checks and statistics.

• A version of the RESET regression specification test, ivreset, that (unlike official
Stata’s ovtest) is appropriate for use in an instrumental variables context.

• A test for autocorrelation in time-series errors, ivactest, that (unlike official
Stata’s estat bgodfrey) is appropriate for use in an instrumental variables con-
text.

We review the definitions of the method of instrumental variables and IV-GMM
in the next section to set the stage. The following sections of the paper discuss each
of these enhancements in turn. The last two sections provide a summary of ivreg2
estimation options and syntax diagrams for all programs in the extended ivreg2 suite.

2 IV and GMM estimation

The Generalized Method of Moments was introduced by Lars Hansen in his celebrated
1982 paper. It is now a mainstay of both econometric practice and econometrics text-
books. We limit our exposition here to the linear case, which is what ivreg2 handles.
The exposition here draws on Hayashi (2000). Alternatively, for more detail and refer-
ences see our earlier paper (Baum et al. (2003)) and Chapter 8 of Baum (2006).

2.1 Setup

The equation to be estimated is, in matrix notation,

y = Xβ + u (1)

with typical row
yi = Xiβ + ui (2)

The matrix of regressors X is n×K, where n is the number of observations. Some of
the regressors are endogenous, so that E(Xiui) 6= 0. We partition the set of regressors
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into [X1 X2], with the K1 regressors X1 assumed under the null to be endogenous and
the K2 ≡ (K −K1) remaining regressors X2 assumed exogenous, giving us

y = [X1 X2][β′1 β′2]
′ + u (3)

The set of instrumental variables is Z and is n× L. This is the full set of variables
that are assumed to be exogenous, i.e., E(Ziui) = 0. We partition the instruments
into [Z1 Z2], where the L1 instruments Z1 are excluded instruments and the remaining
L2 ≡ (L−L1) instruments Z2 ≡ X2 are the included instruments/exogenous regressors:

Regressors X = [X1 X2] = [X1 Z2] = [Endogenous Exogenous]

Instruments Z = [Z1 Z2] = [Excluded Included]

The order condition for identification of the equation is L ≥ K implying there must
be at least as many excluded instruments (L1) as there are endogenous regressors (K1)
as Z2 is common to both lists. If L = K, the equation is said to be exactly identified
by the order condition; if L > K, the equation is overidentified. The order condition is
necessary but not sufficient for identification; see Section 7 for a full discussion.

2.2 The Generalized Method of Moments

The assumption that the instruments Z are exogenous can be expressed as E(Ziui) = 0.
We are considering linear GMM only, and in this case the L instruments give us a set
of L moments:

gi(β) = Z ′iui = Z ′i(yi −Xiβ) (4)

where gi is L × 1. The exogeneity of the instruments means that there are L moment
conditions, or orthogonality conditions, that will be satisfied at the true value of β:

E(gi(β)) = 0 (5)

Each of the L moment equations corresponds to a sample moment. For some given
estimator β̂, we can write these L sample moments as

g(β̂) =
1
n

n∑
i=1

gi(β̂) =
1
n

n∑
i=1

Z ′i(yi −Xiβ̂) =
1
n

Z ′û (6)

The intuition behind GMM is to choose an estimator for β that brings g(β̂) as close to
zero as possible. If the equation to be estimated is exactly identified, so that L = K,
then we have as many equations—the L moment conditions—as we do unknowns: the
K coefficients in β̂. In this case it is possible to find a β̂ that solves g(β̂) = 0, and this
GMM estimator is in fact a special case of the IV estimator as we discuss below.
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If the equation is overidentified, however, so that L > K, then we have more equa-
tions than we do unknowns. In general it will not be possible to find a β̂ that will set all
L sample moment conditions exactly to zero. In this case, we take an L× L weighting
matrix W and use it to construct a quadratic form in the moment conditions. This
gives us the GMM objective function:

J(β̂) = ng(β̂)′Wg(β̂) (7)

A GMM estimator for β is the β̂ that minimizes J(β̂):

β̂GMM ≡ arg min
β̂

J(β̂) = ng(β̂)′Wg(β̂) (8)

In the linear case we are considering, deriving and solving the K first order conditions
∂J(β̂)

∂β̂
= 0 (treating W as a matrix of constants) yields the GMM estimator:1

β̂GMM = (X ′ZWZ ′X)−1X ′ZWZ ′y (9)

The GMM estimator is consistent for any symmetric positive definite weighting
matrix W , and thus there are there are as many GMM estimators as there are choices
of weighting matrix W . Efficiency is not guaranteed for an arbitrary W , so we refer to
the estimator defined in Equation (9) as the possibly inefficient GMM estimator.

We are particularly interested in efficient GMM estimators: GMM estimators with
minimum asymptotic variance. Moreover, for any GMM estimator to be useful, we
must be able to conduct inference, and for that we need estimates of the variance of the
estimator. Both require estimates of the covariance matrix of orthogonality conditions,
a key concept in GMM estimation.

2.3 Inference, efficiency, and the covariance matrix of orthogonality
conditions

Denote by S the asymptotic covariance matrix of the moment conditions g:

S = AV ar(g(β)) = lim
n→∞

1
n

E(Z ′uu′Z) (10)

where S is an L×L matrix and g(β) = 1
nZ ′u. That is, S is the variance of the limiting

distribution of
√

n g (Hayashi (2000), p. 203).

The asymptotic distribution of the possibly inefficient GMM estimator can be written
as follows. Let QXZ ≡ E(X ′

iZi). The asymptotic variance of the inefficient GMM
estimator defined by an arbitrary weighting matrix W is given by:

V (β̂GMM ) = (Q′XZWQXZ)−1(Q′XZWSWQXZ)(Q′XZWQXZ)−1 (11)

1. The results of the minimization, and hence the GMM estimator, will be the same for weighting
matrices that differ by a constant of proportionality.
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Under standard assumptions (see Hayashi (2000), pp. 202–203, 209) the inefficient GMM
estimator is “

√
n-consistent”. That is,

√
n (β̂GMM − β) → N [0, V (β̂GMM )] (12)

where → denotes convergence in distribution.

Strictly speaking, therefore, we should perform hypothesis tests on
√

n β̂GMM , using
equation (11) for the variance-covariance matrix. Standard practice, however, is to
transform the variance-covariance matrix (11) rather than the coefficient vector (9).
This is done by normalizing V (β̂GMM ) by 1/n, so that the variance-covariance matrix
reported by statistical packages such as Stata is in fact

V

(
1√
n

β̂GMM

)
=

1
n

(Q′XZWQXZ)−1(Q′XZWSWQXZ)(Q′XZWQXZ)−1 (13)

The efficient GMM estimator (EGMM) makes use of an optimal weighting matrix
W which minimizes the asymptotic variance of the estimator. This is achieved by
choosing W = S−1. Substitute this into Equation (9) and Equation (13) and we obtain
the efficient GMM estimator

β̂EGMM = (X ′ZS−1Z ′X)−1X ′ZS−1Z ′y (14)

with asymptotic variance

V (β̂EGMM ) = (Q′XZS−1QXZ)−1 (15)

Similarly, √
n (β̂EGMM − β) → N [0, V (β̂EGMM )] (16)

and we perform inference on
√

n β̂EGMM by using

V

(
1√
n

β̂EGMM

)
=

1
n

(Q′XZS−1QXZ)−1 (17)

as the variance-covariance matrix for β̂EGMM .

Obtaining an estimate of QXZ is straightforward: we simply use the sample analog

1
n

n∑
i=1

X ′
iZi =

1
n

X ′Z. (18)

If we have an estimate of S, therefore, we can conduct asymptotically correct inference
for any GMM estimator, efficient or inefficient. An estimate of S also makes the efficient
GMM estimator a feasible estimator. In two-step feasible efficient GMM estimation an
estimate of S is obtained in the first step, and in the second step we calculate the
estimator and its asymptotic variance using Equations (14) and (17).
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2.4 Estimating the covariance matrix of orthogonality conditions

The first-step estimation of the matrix S requires the residuals of a consistent GMM
estimator β̃. Efficiency is not required in the first step of two-step GMM estimation,
which simplifies the task considerably. But to obtain an estimate of S we must make
some further assumptions.

We illustrate this using the case of independent but possibly heteroskedastic distur-
bances. If the errors are independent, E(gig

′
j) = 0 for i 6= j, and so

S = AV ar(ḡ) = E(gig
′
i) = E(u2

i Z
′
iZi) (19)

This matrix can be consistently estimated by an Eicker–Huber–White robust covari-
ance estimator

Ŝ =
1
n

n∑
i=1

û2
i Z
′
iZi =

1
n

(Z ′Ω̂Z) (20)

where Ω̂ is the diagonal matrix of squared residuals û2
i from β̃, the consistent but not

necesxsarily efficient first-step GMM estimator. In the ivreg2 implementation of two-
step efficient GMM, this first-step estimator is β̂IV , the IV estimator. The resulting
estimate Ŝ can be used to conduct consistent inference for the first-step estimator using
Equation (11), or it can be used to obtain and conduct inference for the efficient GMM
estimator using Equations (14) and (17).

In the next section we discuss how the two-step GMM estimator can be applied
when the errors are serially correlated.

2.5 Using ivreg2 for GMM estimation

The ivreg2 command is included in the electronic supplement to this issue. The latest
version of ivreg2 can always be downloaded from the SSC Archive with the command
ssc describe ivreg2. We summarize the command’s options and syntax in Sections
11 and 12, respectively. The commands below illustrate how to use ivreg2 to obtain
the coefficient and variance-covariance estimators discussed above. The example uses
the dataset provided in Wooldridge (2003).

The first command requests the standard IV/2SLS estimator and a variance-covar-
iance matrix that assumes conditionally homoskedastic and independent errors. In this
case, IV/2SLS is the efficient GMM estimator. The second requests the IV/2SLS esti-
mator and a variance-covariance estimator that is robust to heteroskedasticity based on
an estimate of Ŝ as in equation (20); here, IV/2SLS is an inefficient GMM estimator.
The third command requests the two-step feasible efficient GMM estimator and corre-
sponding variance-covariance matrix. Ŝ is again based on equation (20). The fourth
command is equivalent to the first, illustrating that the two-step efficient GMM estima-
tor reduces to two-stage least squares when the disturbance is assumed to be i.i.d. and
S can be consistently estimated by a classical non-robust covariance matrix estimator.
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1. ivreg2 lwage exper expersq (educ=age kidslt6 kidsge6)

2. ivreg2 lwage exper expersq (educ=age kidslt6 kidsge6), robust

3. ivreg2 lwage exper expersq (educ=age kidslt6 kidsge6), gmm2s robust

4. ivreg2 lwage exper expersq (educ=age kidslt6 kidsge6), gmm2s

3 GMM and HAC standard errors

In Equation (20), we illustrated how the asymptotic covariance matrix of the GMM
estimator could be derived in the presence of conditional heteroskedasticity. We now
further extend the estimator to handle the case of non-independent errors in a time series
context. We correspondingly change our notation so that observations are indexed by t
and s rather than i. In the presence of serial correlation, E(gtg

′
s) 6= 0, t 6= s. In order to

derive consistent estimates of S, we define Γj = E(gtg
′
t−j) as the autocovariance matrix

for lag j. We may then write the long-run covariance matrix

S = AV ar(ḡ) = Γ0 +
∞∑

j=1

(Γj + Γ′j) (21)

which may be seen as a generalization of Equation (20), with Γ0 = E(gig
′
i) and

Γj = E(gtg
′
t−j), j = ±1,±2, . . . . (22)

As gt is defined as the product of Zt and ut, the autocovariance matrices may be
expressed as

Γj = E(utut−jZ
′
tZt−j) (23)

As usual, we replace the ut, ut−j by consistent residuals from first-stage estimation to
compute the sample autocovariance matrices Γ̂j , defined as

Γ̂j =
1
n

n−j∑
t=1

ĝtĝt−j =
1
n

n−j∑
t=1

Z ′tûtût−jZt−j (24)

We obviously do not have an infinite number of sample autocovariances to insert into
the infinite sum in Equation (21). Less obviously, we also cannot simply insert all
the autocovariances from 1 through n, because this would imply that the number of
sample orthogonality conditions ĝi is going off to infinity with the sample size, which
precludes obtaining a consistent estimate of S.2 The autocovariances must converge to
zero asymptotically as n increases.

2. Although a consistent estimate cannot be obtained with bandwidth equal to sample size, Hall
(2005), pp. 305–310 points out that it is possible to develop an asymptotic framework providing inference
about the parameters.



8 Enhanced routines for IV/GMM estimation and testing

The usual way this is handled in practice is for the summation to be truncated at a
specified lag q. Thus the S matrix can be estimated by

Ŝ = Γ̂0 +
q∑

j=1

κ

(
j

qn

)
(Γ̂j + Γ̂′j) (25)

where ut, ut−j are replaced by consistent estimates from first-stage estimation. The
kernel function, κ(j/qn), applies appropriate weights to the terms of the summation,
with qn defined as the bandwidth of the kernel (possibly as a function of n).3 In many
kernels, consistency is obtained by having the weight fall to zero after a certain number
of lags.

The best-known approach to this problem in econometrics is that of Newey and
West (1987b), which generates Ŝ using the Bartlett kernel function and a user-specified
value of q. For the Bartlett kernel, κ(·) = [1 − j/qn] if j ≤ qn − 1, 0 otherwise. These
estimates are said to be HAC: heteroskedasticity- and autocorrelation-consistent, as
they incorporate the standard sandwich formula (Equation (20)) in computing Γ0.

HAC estimates can be calculated by ivreg2 using the robust and bw() options with
the kernel function’s bandwidth (the bw() option) set to q.4 The bandwidth may also
be chosen optimally by specifying bw(auto) using the automatic bandwidth selection
criterion of Newey and West (1994).5,6 By default, ivreg2 uses the Bartlett kernel
function.7 If the equation contains endogenous regressors, these options will cause the
IV estimates to be HAC. If the equation is overidentified and the robust, gmm2s and
bw() options are specified, the resulting GMM estimates will be both HAC and more
efficient than those produced by IV.

The Newey–West (Bartlett kernel function) specification is only one of many feasible
HAC estimators of the covariance matrix. Andrews (1991) shows that in the class of
positive semidefinite kernels, the rate of convergence of Ŝ → S depends on the choice of
kernel and bandwidth. The Bartlett kernel’s performance is bettered by those in a subset
of this class, including the Quadratic Spectral kernel. Accordingly, ivreg2 provides a
menu of kernel choices, including (abbreviations in parentheses): Quadratic Spectral
(qua or qs), Truncated (tru); Parzen (par); Tukey–Hanning (thann); Tukey–Hamming
(thamm); Daniell (dan); and Tent (ten). In the cases of the Bartlett, Parzen, and Tukey–
Hanning/Hamming kernels, the number of lags used to construct the kernel estimate
equals the bandwidth (bw) minus one.8 If the kernels above are used with bw(1),
no lags are used and ivreg2 will report the usual Eicker–Huber–White “sandwich”
heteroskedastic–robust variance estimates. Most, but not all, of these kernels guarantee

3. For more detail on this GMM estimator, see Hayashi (2000), pp. 406–417.
4. For the special case of OLS, Newey–West standard errors are available from [TS] newey with the

maximum lag (q − 1) specified by newey’s lag() option.
5. This implementation is identical to that provided by Stata’s [R] ivregress.
6. Automatic bandwidth selection is only available for the Bartlett, Parzen and Quadratic spectral

kernels; see below.

7. A common choice of bandwidth for the Bartlett kernel function is T 1/3.

8. A common choice of bandwidth for these kernels is (q−1) ≈ T 1/4 (Greene (2003), p. 200). A value
related to the periodicity of the data (4 for quarterly, 12 for monthly, etc.) is often chosen.
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that the estimated Ŝ is positive definite and therefore always invertible; the truncated
kernel, for example, was proposed in the early literature in this area but is now rarely
used because it can generate an noninvertible Ŝ. For a survey covering various kernel
estimators and their properties, see Cushing and McGarvey (1999) and Hall (2005), pp.
75–86.

Under conditional homoskedasticity the expression for the autocovariance matrix
simplifies:

Γj = E(utut−jZ
′
tZt−j) = E(utut−j)E(Z ′tZt−j) (26)

and the calculations of the corresponding kernel estimators also simplify; see Hayashi
(2000), pp. 413–14. These estimators may perform better than their heteroskedastic-
robust counterparts in finite samples. If the researcher is satisfied with the assumption
of homoskedasticity but wants to deal with autocorrelation of unknown form, she should
use the AC correction without the H correction for arbitrary heteroskedasticity by omit-
ting the robust option. ivreg2 allows selection of H, AC, or HAC V CEs by combining
the robust, bw() and kernel options. Thus both robust and bw() must be specified to
calculate a HAC V CE of the Newey–West type, employing the default Bartlett kernel.9

To illustrate the use of HAC standard errors, we estimate a quarterly time-series
model relating the change in the U.S. inflation rate (D.inf) to the unemployment rate
(UR) for 1960q3–1999q4. As instruments, we use the second lag of quarterly GDP growth
and the lagged values of the Treasury bill rate, the trade-weighted exchange rate and
the Treasury medium-term bond rate.10 We first estimate the equation with standard
IV under the assumption of i.i.d. errors.

. use http://fmwww.bc.edu/ec-p/data/stockwatson/macrodat

. generate inf = 100 * log( CPI / L4.CPI )
(4 missing values generated)

. generate ggdp = 100 * log( GDP / L4.GDP )
(10 missing values generated)

. ivreg2 D.inf (UR=L2.ggdp L.TBILL L.ER L.TBON)

IV (2SLS) estimation

Estimates efficient for homoskedasticity only
Statistics consistent for homoskedasticity only

Number of obs = 158
F( 1, 156) = 10.16
Prob > F = 0.0017

Total (centered) SS = 60.04747699 Centered R2 = 0.1914
Total (uncentered) SS = 60.05149156 Uncentered R2 = 0.1915
Residual SS = 48.55290564 Root MSE = .5543

D.inf Coef. Std. Err. z P>|z| [95% Conf. Interval]

9. It should also be noted that Stata’s official [TS] newey does not allow gaps in time-series data. As
there is no difficulty in computing HAC estimates with gaps in a regularly spaced time series, ivreg2
handles this case properly.
10. These data accompany Stock and Watson (2003).
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UR -.155009 .0483252 -3.21 0.001 -.2497246 -.0602933
_cons .9380705 .2942031 3.19 0.001 .361443 1.514698

Underidentification test (Anderson canon. corr. LM statistic): 58.656
Chi-sq(4) P-val = 0.0000

Weak identification test (Cragg-Donald Wald F statistic): 22.584
Stock-Yogo weak ID test critical values: 5% maximal IV relative bias 16.85

10% maximal IV relative bias 10.27
20% maximal IV relative bias 6.71
30% maximal IV relative bias 5.34
10% maximal IV size 24.58
15% maximal IV size 13.96
20% maximal IV size 10.26
25% maximal IV size 8.31

Source: Stock-Yogo (2005). Reproduced by permission.

Sargan statistic (overidentification test of all instruments): 5.851
Chi-sq(3) P-val = 0.1191

Instrumented: UR
Excluded instruments: L2.ggdp L.TBILL L.ER L.TBON

In these estimates, the negative coefficient on the unemployment rate is consistent with
macroeconomic theories of the natural rate. In that context, lowering unemployment
below the natural rate will cause an acceleration of price inflation. The Sargan statistic
implies that the test of overidentifying restrictions cannot reject its null hypothesis.

An absence of autocorrelation in the error process is unusual in time series analysis,
so we test the equation using ivactest, as discussed below in Section 10. Using the
default value of one lag, we consider whether the error process exhibits AR(1) behavior.
The test statistic implies that the errors do not exhibit serial independence:

. ivactest

Cumby-Huizinga test with H0: errors nonautocorrelated at order 1
Test statistic: 25.909524
Under H0, Chi-sq(1) with p-value: 3.578e-07

Given this strong rejection of the null of independence, we reestimate the equation with
HAC standard errors, choosing a bandwidth (bw) of 5 (roughly T 1/3) and the robust
option. By default, the Bartlett kernel is used, so that these are Newey–West two-step
efficient GMM estimates.

. ivreg2 D.inf (UR=L2.ggdp L.TBILL L.ER L.TBON), gmm2s robust bw(5)

2-Step GMM estimation

Estimates efficient for arbitrary heteroskedasticity and autocorrelation
Statistics robust to heteroskedasticity and autocorrelation

kernel=Bartlett; bandwidth=5
time variable (t): date

Number of obs = 158
F( 1, 156) = 2.46
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Prob > F = 0.1185
Total (centered) SS = 60.04747699 Centered R2 = 0.1548
Total (uncentered) SS = 60.05149156 Uncentered R2 = 0.1548
Residual SS = 50.75430293 Root MSE = .5668

Robust
D.inf Coef. Std. Err. z P>|z| [95% Conf. Interval]

UR -.1002374 .0634562 -1.58 0.114 -.2246092 .0241344
_cons .5850796 .372403 1.57 0.116 -.144817 1.314976

Underidentification test (Kleibergen-Paap rk LM statistic): 7.954
Chi-sq(4) P-val = 0.0933

Weak identification test (Kleibergen-Paap rk Wald F statistic): 7.362
Stock-Yogo weak ID test critical values: 5% maximal IV relative bias 16.85

10% maximal IV relative bias 10.27
20% maximal IV relative bias 6.71
30% maximal IV relative bias 5.34
10% maximal IV size 24.58
15% maximal IV size 13.96
20% maximal IV size 10.26
25% maximal IV size 8.31

Source: Stock-Yogo (2005). Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.

Hansen J statistic (overidentification test of all instruments): 3.569
Chi-sq(3) P-val = 0.3119

Instrumented: UR
Excluded instruments: L2.ggdp L.TBILL L.ER L.TBON

It appears that by generating HAC estimates of the covariance matrix, the statistical
significance of the unemployment rate in this equation is now questioned. One important
statistic is also altered: the test for overidentification, denoted as the Sargan test in
the former estimates, is on the borderline of rejecting its null hypothesis at the 90%
level. When we reestimate the equation with HAC standard errors, various summary
statistics are “robustified” as well: in this case, the test of overidentifying restrictions,
now denoted Hansen’s J . That statistic is now far from rejection of its null, giving us
greater confidence that our instrument set is appropriate.

4 CUE, LIML and k-class estimation

4.1 CUE and LIML

Again consider the two-step feasible efficient GMM estimator. In the first step, a consis-
tent but inefficient GMM estimator, β̃, is used to estimate S, the covariance matrix of
orthogonality conditions. In the second step, the GMM objective function is maximized
using S−1 as the weighting matrix. If we write S as a function of the first-step estimator
β̃, the minimization problem in the second step of two-step efficient GMM estimation
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that defines the estimator is

β̂2SEGMM ≡ arg min
β̂

J(β̂) = ng(β̂)′(S(β̃))−1g(β̂) (27)

As noted earlier, the second-step minimization treats the weighting matrix W = (S(β̃))−1

as a constant matrix. Thus the residuals in the estimate of S are the first-stage residuals
defined by β̃, whereas the residuals in the orthogonality conditions g are the second-stage
residuals defined by β̂.

The minimization problem that defines the GMM “continuously updated estimator”
(CUE) of Hansen et al. (1996) is, by contrast,

β̂CUE ≡ arg min
β̂

J(β̂) = ng(β̂)′(S(β̂))−1g(β̂) (28)

Here, the weighting matrix is a function of the β being estimated. The residuals in S
are the same residuals that are in g, and estimation of S is done simultaneously with
the estimation of β. In general, solving this minimization problem requires numerical
methods.

Both the two-step efficient GMM and CUE GMM procedures reduce to familiar
estimators under linearity and conditional homoskedasticity. In this case, S = E(gig

′
i) =

E(u2
i Z
′
iZi) = E(u2

i )E(Z ′iZi) = σ2QZZ . As usual, QZZ is estimated by its sample
counterpart 1

nZ ′Z. In two-step efficient GMM under homoskedasticity, the minimization
becomes

β̂IV ≡ arg min
β̂

J(β̂) =
û(β̂)′PZ û(β̂)

σ̂2
(29)

where û(β̂) ≡ (y−Xβ̂) and PZ ≡ Z(Z ′Z)−1Z ′ is the projection matrix. In the minimiza-
tion, the error variance σ̂2 is treated as a constant and hence doesn’t require first-step
estimation, and the β̂ that solves (29) is the IV estimator βIV = (X ′PZX)−1X ′PZy.11

With CUE GMM under conditional homoskedasticity, the estimated error variance
is a function of the residuals σ̂2 = û′(β̂)û(β̂)/n and the minimization becomes

β̂LIML ≡ arg min
β̂

J(β̂) =
û(β̂)′PZ û(β̂)

û(β̂)′û(β̂)/n
(30)

The β̂ that solves (30) is defined as the limited information maximum likelihood (LIML)
estimator.

Unlike CUE estimators in general, the LIML estimator can be derived analytically
and does not require numerical methods. This derivation is the solution to an eigenvalue
problem (see Davidson and MacKinnon (1993), pp. 644–49). The LIML estimator
was first derived by Anderson and Rubin (1949), who also provided the first test of
overidentifying restrictions for estimation of an equation with endogenous regressors.
This Anderson–Rubin statistic (not to be confused with the test discussed below under

11. The error variance σ̂2, required for inference, is calculated at the end using the IV residuals.
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“weak identification”) follows naturally from the solution to the eigenvalue problem. If
we denote the minimum eigenvalue by λ, then the Anderson–Rubin likelihood ratio test
statistic for the validity of the overidentifying restrictions (orthogonality conditions) is
n log(λ). Since LIML is also an efficient GMM estimator, the value J of the minimized
GMM objective function also provides a test of overidentifying restrictions. The J test
of the same overidentifying restrictions is closely related to the Anderson-Rubin test;
the minimized value of the LIML GMM objective function is in fact J = n 1

1−λ . Of
course, n log(λ) ≈ n 1

1−λ .

Although CUE and LIML provide no asymptotic efficiency gains over two-step GMM
and IV, recent research suggests that their finite-sample performance may be superior.
In particular, there is evidence suggesting that CUE and LIML perform better than
IV-GMM in the presence of weak instruments (Hahn et al. (2004)). This is reflected,
for example, in the critical values for the Stock–Yogo weak instruments test discussed
below in Section 7.3.12 The disadvantage of CUE in general is that it requires numerical
optimization; LIML does not, but does require the often rather strong assumption of
i.i.d. disturbances. In ivreg2, the cue option combined with the robust, cluster,
and/or bw options generates coefficient estimates that are efficient in the presence of the
corresponding deviations from i.i.d. disturbances. Specifying cue with no other options
is equivalent to the combination of the options liml and coviv (“covariance-IV”: see
below).

The implementation of the CUE estimator in ivreg2 uses Stata’s ml routine to mini-
mize the objective function. The starting values are either IV or two-step efficient GMM
coefficient estimates. These can be overridden with the cueinit option, which takes a
matrix of starting values of the coefficient vector β as its argument. The cueoptions
option passes its contents to Stata’s ml command. Estimation with the cue option can
be slow and problematic when the number of parameters to be estimated is substantial,
and it should be used with caution.

4.2 k-class estimators

LIML, IV and OLS (but not CUE or two-step GMM) are examples of k-class estimators.
A k-class estimator can be written as follows (Davidson and MacKinnon (1993), p. 649):

βk = (X ′(I − kMZ)X)−1X ′(I − kMZ)y (31)

where M denotes the annihilation matrix I − P . LIML is a k-class estimator with
k=λ, the LIML eigenvalue; IV is a k-class estimator with k=1; and OLS is a k-class
estimator with k=0. Estimators based on other values of k have been proposed. Fuller’s
modified LIML (available with the fuller(#) option) sets k = λ− α

(N−L) where λ is the
LIML eigenvalue, L = number of instruments (included and excluded), and the Fuller
parameter α is a user-specified positive constant. The value of α = 1 has been suggested

12. With one endogenous regressor and four excluded instruments, the critical value for the Cragg–
Donald statistic for 10% maximal size distortion is 24.58 in the case of IV but only 5.44 in the case of
LIML.
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as a good choice; see Fuller (1977) or Davidson and MacKinnon (1993), pp. 649–50.
Nagar’s bias-adjusted 2SLS estimator can be obtained with the kclass(#) option by
setting k = 1 + (L−K)

N , where (L−K) is the number of overidentifying restrictions and
N is the sample size; see Nagar (1959). Research suggests that both of these k-class
estimators have a better finite-sample performance than IV in the presence of weak
instruments, though like IV, none of these k-class estimators is robust to violations of
the i.i.d. assumption. ivreg2 also provides Stock–Yogo critical values for the Fuller
version of LIML.

The default covariance matrix reported by ivreg2 for the LIML and general k-class
estimators is (Davidson and MacKinnon (1993), p. 650):

σ̂2(X ′(I − kMZ)X)−1 (32)

In fact, the usual IV-type covariance matrix

σ̂2(X ′(I −MZ)X)−1 = σ̂2(X ′PZX)−1 (33)

is also valid, and can be obtained with the coviv option. With coviv, the covariance
matrix for LIML and the other general k-class estimators will differ from that for the
IV estimator only because the estimate of the error variance σ̂2 will differ.

4.3 Example of CUE-LIML estimation

We illustrate the use of CUE-LIML estimation using the same equation we employed in
our discussion of HAC standard errors.

. ivreg2 D.inf (UR=L2.ggdp L.TBILL L.ER L.TBON ), cue robust bw(5)

initial: neg GMM obj function -J = -3.285175
rescale: neg GMM obj function -J = -2.8716146
Iteration 0: neg GMM obj function -J = -2.8716146
Iteration 1: neg GMM obj function -J = -2.793201
Iteration 2: neg GMM obj function -J = -2.7931805
Iteration 3: neg GMM obj function -J = -2.7931798
Iteration 4: neg GMM obj function -J = -2.7931798

CUE estimation

Estimates efficient for arbitrary heteroskedasticity and autocorrelation
Statistics robust to heteroskedasticity and autocorrelation

kernel=Bartlett; bandwidth=5
time variable (t): date

Number of obs = 158
F( 1, 156) = 0.55
Prob > F = 0.4577

Total (centered) SS = 60.04747699 Centered R2 = 0.0901
Total (uncentered) SS = 60.05149156 Uncentered R2 = 0.0901
Residual SS = 54.6384785 Root MSE = .5881

Robust
D.inf Coef. Std. Err. z P>|z| [95% Conf. Interval]



Christopher F. Baum, Mark E. Schaffer and Steven Stillman 15

UR -.0483119 .0644743 -0.75 0.454 -.1746792 .0780555
_cons .2978451 .3804607 0.78 0.434 -.4478442 1.043534

Underidentification test (Kleibergen-Paap rk LM statistic): 7.954
Chi-sq(4) P-val = 0.0933

Weak identification test (Kleibergen-Paap rk Wald F statistic): 7.362
Stock-Yogo weak ID test critical values: 10% maximal LIML size 5.44

15% maximal LIML size 3.87
20% maximal LIML size 3.30
25% maximal LIML size 2.98

Source: Stock-Yogo (2005). Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.

Hansen J statistic (overidentification test of all instruments): 2.793
Chi-sq(3) P-val = 0.4246

Instrumented: UR
Excluded instruments: L2.ggdp L.TBILL L.ER L.TBON

When this estimator is employed, the magnitude of the point estimate of the UR co-
efficient falls yet farther, and it is no longer significantly different from zero at any
reasonable level of significance.

5 GMM distance tests of endogeneity and exogeneity

The value J of the GMM objective function evaluated at the efficient GMM estimator
β̂EGMM is distributed as χ2 with (L −K) degrees of freedom under the null hypoth-
esis that the full set of orthogonality conditions are valid. This is known variously
as the Sargan statistic, Hansen J statistic, Sargan-Hansen J test or simply a test of
overidentifying restrictions.13

A C or GMM distance test can be used to test the validity of a subset of orthogo-
nality conditions. Say the investigator wishes to test the validity of LB orthogonality
conditions. Denote J as the value of the GMM objective function for the efficient GMM
estimator that uses the full set of orthogonality conditions and JA as the value of the
efficient GMM estimator that uses only the LA = L−LB orthogonality conditions that
the investigator is not questioning. Then under the null that the LB suspect orthogo-
nality conditions are actually satisfied, the test statistic (J −JA) ∼ χ2 with LB degrees
of freedom. If the Ŝ matrix from the estimation using the full set of orthogonality con-
ditions is used to calculate both GMM estimators, the test statistic is guaranteed to be
nonnegative in finite samples.

Our 2003 paper discusses how ivreg2’s orthog option can be used to conduct a C
test of the exogeneity of one or more regressors or instruments. To recapitulate, the

13. If the test statistic is required for an inefficient GMM estimator (e.g., an overidentifying restric-
tions test for the IV estimator that is robust to heteroskedasticity), ivreg2 reports the J statistic for
the corresponding efficient GMM estimator; see our 2003 paper. This J statistic is identical to that
produced by estat overid following official Stata’s ivregress gmm.
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orthog option takes as its argument the list of exogenous variables ZB whose exogeneity
is called into question. If the exogenous variable being tested is an instrument, the
efficient GMM estimator that does not use the corresponding orthogonality condition
simply drops the instrument. This is illustrated in the following pair of estimations
where the second regression is the estimation implied by the orthog option in the first:

ivreg2 y x1 x2 (x3 = z1 z2 z3 z4), orthog(z4)
ivreg2 y x1 x2 (x3 = z1 z2 z3)

If the exogenous variable that is being tested is a regressor, the efficient GMM estimator
that does not use the corresponding orthogonality condition treats the regressor as
endogenous, as below; again, the second estimation is implied by the use of orthog in
the former equation:

ivreg2 y x1 x2 (x3 = z1 z2 z3 z4), orthog(x2)
ivreg2 y x1 (x2 x3 = z1 z2 z3)

Sometimes the researcher wishes to test whether an endogenous regressor can be
treated as exogenous. This is commonly termed an “endogeneity test”, but as we dis-
cussed in our earlier paper (Baum et al. (2003), pp. 24–27), it is equivalent to estimating
the same regression but treating the regressor as exogenous, and then testing the cor-
responding orthogonality condition using the orthog option. Although the procedure
described there is appropriate, it is not very intuitive. To address this, we have added
a new ivreg2 option, endog, to conduct endogeneity tests of one or more endogenous
regressors. Under the null hypothesis that the specified endogenous regressors can ac-
tually be treated as exogenous, the test statistic is distributed as χ2 with degrees of
freedom equal to the number of regressors tested. Thus, in the following estimation,

ivreg2 y x1 x2 (x3 = z1 z2 z3 z4), endog(x3)

the test statistic reported for the endogeneity of x3 is numerically equal to the test
statistic reported for the orthog option in

ivreg2 y x1 x2 x3 ( = z1 z2 z3 z4), orthog(x3)

The endog option is both easier to understand and more convenient to use.

Under conditional homoskedasticity, this endogeneity test statistic is numerically
equal to a Hausman test statistic: see Hayashi (2000), pp. 233–34 and Baum et al.
(2003), pp. 19–22. The endogeneity test statistic can also be calculated after ivreg
or ivreg2 by the command ivendog. Unlike the Durbin–Wu–Hausman versions of the
endogeneity test reported by ivendog, the endog option of ivreg2 can report test statis-
tics that are robust to various violations of conditional homoskedasticity. The ivendog
option unavailable in ivreg2 is the Wu–Hausman F -test version of the endogeneity test.

To illustrate this option, we use a data set provided in Wooldridge (2003). We es-
timate the log of females’ wages as a function of the worker’s experience, (experience)2

and years of education. If the education variable is considered endogenous, it is in-
strumented with the worker’s age and counts of the number of pre-school children and
older children in the household. We test whether the educ variable need be considered
endogenous in this equation with the endog option:
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. use http://fmwww.bc.edu/ec-p/data/wooldridge/mroz.dta

. ivreg2 lwage exper expersq (educ=age kidslt6 kidsge6), endog(educ)

IV (2SLS) estimation

Estimates efficient for homoskedasticity only
Statistics consistent for homoskedasticity only

Number of obs = 428
F( 3, 424) = 7.49
Prob > F = 0.0001

Total (centered) SS = 223.3274513 Centered R2 = 0.1556
Total (uncentered) SS = 829.594813 Uncentered R2 = 0.7727
Residual SS = 188.5780571 Root MSE = .6638

lwage Coef. Std. Err. z P>|z| [95% Conf. Interval]

educ .0964002 .0814278 1.18 0.236 -.0631952 .2559957
exper .042193 .0138831 3.04 0.002 .0149827 .0694033

expersq -.0008323 .0004204 -1.98 0.048 -.0016563 -8.33e-06
_cons -.3848718 1.011551 -0.38 0.704 -2.367476 1.597732

Underidentification test (Anderson canon. corr. LM statistic): 12.816
Chi-sq(3) P-val = 0.0051

Weak identification test (Cragg-Donald Wald F statistic): 4.342
Stock-Yogo weak ID test critical values: 5% maximal IV relative bias 13.91

10% maximal IV relative bias 9.08
20% maximal IV relative bias 6.46
30% maximal IV relative bias 5.39
10% maximal IV size 22.30
15% maximal IV size 12.83
20% maximal IV size 9.54
25% maximal IV size 7.80

Source: Stock-Yogo (2005). Reproduced by permission.

Sargan statistic (overidentification test of all instruments): 0.702
Chi-sq(2) P-val = 0.7042

-endog- option:
Endogeneity test of endogenous regressors: 0.019

Chi-sq(1) P-val = 0.8899
Regressors tested: educ

Instrumented: educ
Included instruments: exper expersq
Excluded instruments: age kidslt6 kidsge6

In this context, we estimate the equation treating educ as endogenous, and merely name
it in the endog varlist to perform the C (GMM distance) test. The test cannot reject
its null that educ may be treated as exogenous. In contrast, we may calculate this same
test statistic with the earlier orthog option:

ivreg2 lwage exper expersq educ (=age kidslt6 kidsge6), orthog(educ)

Using orthog, we again list educ in the option’s varlist, but we must estimate the
equation with that variable treated as exogenous: an equivalent but perhaps a less
intuitive way to perform the test.



18 Enhanced routines for IV/GMM estimation and testing

6 The FWL theorem and a rank-deficient S matrix

According to the Frisch–Waugh–Lovell (FWL) theorem (Frisch and Waugh (1933),
Lovell (1963)) the coefficients estimated for a regression in which some exogenous re-
gressors, say X2A, are partialled out from the dependent variable y, the endogenous
regressors X1, the other exogenous regressors X2B , and the excluded instruments Z1

will be the same as the coefficients estimated for the original model for certain estima-
tors. That is, if we denote a partialled-out variable with a tilde so that ỹ ≡ M2Ay, the
coefficients estimated for the partialled-out version of the model

ỹ = [X̃1 X̃2B ][β′1 β′2B ]′ + ũ (34)

with instruments Z̃1 and X̃2B will be the same as the shared coefficients estimated for
the original model

y = [X1 X2][β′1 β′2]
′ + u (35)

with instruments Z1 and X2. It is even possible to partial-out the full set of included
exogenous variables X2, so that the partialled-out version of the model becomes

ỹ = X̃1β1 + ũ (36)

with no exogenous regressors and only excluded instruments Z̃1, and the estimated β̂1

will be the same as that obtained when estimating the full set of regressors.

The FWL theorem is implemented in ivreg2 by the new partial(varlist) option,
which requests that the exogenous regressors in the varlist should be partialled out from
all the other variables (other regressors and excluded instruments) in the estimation. If
the equation includes a constant, it is automatically partialled out as well.

The partial option is most useful when the covariance matrix of orthogonality con-
ditions S is not of full rank. When this is the case, efficient GMM and overidentification
tests are infeasible as the optimal GMM weighting matrix W = S−1 cannot be calcu-
lated. In some important cases, partialling out enough exogenous regressors can make
the covariance matrix of the remaining orthogonality conditions full rank, and efficient
GMM becomes feasible.

The invariance of the estimation results to partialling-out applies to one- and two-
step estimators such as OLS, IV, LIML and two-step GMM, but not to CUE or to
GMM iterated more than two steps. The reason is that the latter estimators update
the estimated S matrix. An updated S implies different estimates of the coefficients on
the partialled-out variables, which imply different residuals, which in turn produce a dif-
ferent estimated S. Intuitively, partialling-out uses OLS estimates of the coefficients on
the partialled-out variables to generate the S matrix, whereas CUE would use more effi-
cient HOLS (“heteroskedastic OLS”) estimates.14 Partialling out exogenous regressors
that are not of interest may still be desirable with CUE estimation, however, because
reducing the number of parameters estimated makes the CUE numerical optimization
faster and more reliable.
14. We are grateful to Manuel Arellano for helpful discussions on this point. On HOLS, see our 2003
paper.
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One common case calling for partialling-out arises when using cluster and the
number of clusters is less than L, the number of (exogenous regressors + excluded
instruments). This causes the matrix S to be rank deficient (Baum et al. (2003), pp. 9–
10). The problem can be addressed by using partial to remove enough exogenous
regressors for S to have full rank. A similar problem arises if a robust covariance matrix
is requested when the regressors include a variable that is a singleton dummy, i.e., a
variable with one value of 1 and (N − 1) values of zero or vice versa. The singleton
dummy causes the robust covariance matrix estimator to be less than full rank. In this
case, partialling out the variable with the singleton dummy solves the problem.

The partial option has two limitations: it cannot be used with time-series opera-
tors, and post-estimation [R] predict can be used only to generate residuals.

7 Underidentification, weak identification, and instrument
relevance

7.1 Identification and the rank condition

For Equation (1) to be estimable, it must be identified. The order condition L ≥ K
is necessary but not sufficient; the rank condition must also be satisfied. The rank
condition states that the matrix QXZ ≡ E(X ′

iZi) is of full column rank, i.e., QXZ must
have rank K. Since X2 ≡ Z2, we can simplify by partialling them out from X1 and Z1,
and the rank condition becomes ρ(QX̃1Z̃1

) = K1. There are several ways of interpreting
this condition.

One interpretation is in terms of correlations: the excluded instruments must be
correlated with the endogenous regressors. In the simplest possible case of a single
endogenous regressor, a single excluded instrument, and partialling-out any exogenous
regressors including the constant, L1 = K1 = 1 and QX̃1Z̃1

is a scalar. As the constant
has been partialled out, E(Xi) = E(Zi) = 0 and QX̃1Z̃1

is a covariance. The rank
condition in this simple case requires that the correlation or covariance between X̃1 and
Z̃1 is nonzero.

This interpretation can be extended to the general case of L1,K1 ≥ 1 using canonical
correlations (Anderson (1984), Chapter 12; Hall et al. (1996), p. 287; [MV] canon). The
canonical correlations ri between X̃1 and Z̃1, i = 1, . . . . , K1 represent the correlations
between linear combinations of the K1 columns of X̃1 and linear combinations of the
L1 columns of Z̃1.15 In the special case of L1 = K1 = 1 (and partialling-out the
constant), the canonical correlation between X̃1 and Z̃1 is the usual Pearson correlation
coefficient. In the slightly more general case of L1 ≥ 1 and K1 = 1, the canonical
correlation between X̃1 and Z̃1 is simply R: the square root of R2 in a regression of
X̃ on Z̃. In the general case of L1,K1 ≥ 1, the squared canonical correlations may be

15. As X2 ≡ Z2, these variables are perfectly correlated with each other. The canonical correlations
between X and Z before partialling out would also include the L2 ≡ K2 correlations that are equal to
unity.
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calculated as the eigenvalues of (X̃ ′
1X̃1)−1(X̃ ′

1Z̃1)(Z̃ ′1Z̃1)−1(Z̃ ′1X̃1). The rank condition
can then be interpreted as the requirement that all K1 of the canonical correlations
must be significantly different from zero. If one or more of the canonical correlations is
zero, the model is underidentified or unidentified.

An alternative and useful interpretation of the rank condition is to use the reduced
form. Write the set of reduced form (“first stage”) equations for the regressors X as

X = ZΠ + v (37)

Using our partitioning of X and Z, we can rewrite this as

X1 = [Z1 Z2] [Π′11 Π′12]
′ + v1 (38)

X2 = [Z1 Z2] [Π′21 Π′22]
′ + v2 (39)

The equation for X2 is not very interesting: because X2 ≡ Z2, it follows that Π21 =
0 and Π22 = I. The rank condition for identification comes from the equation for
the endogenous regressors X1. The L × K1 matrix Π11 must be of full column rank
(ρ(Π11) = K1). If ρ(Π11) < K1, the model is again unidentified.

The consequence of utilizing excluded instruments that are uncorrelated with the
endogenous regressors is increased bias in the estimated IV coefficients (Hahn and Haus-
man (2002)) and worsening of the large-sample approximations to the finite-sample dis-
tributions. In this case, the bias of the IV estimator is the same as that of the OLS
estimator and IV becomes inconsistent (ibid.). In this case, instrumenting only aggra-
vates the problem, as IV and OLS share the same bias but IV has a larger mean squared
error (MSE) by virtue of its larger variance. Serious problems also arise if the corre-
lations between the excluded instruments and endogenous regressors are nonzero but
“weak”. Standard IV/GMM methods of estimating β1 suffer from serious finite sample
bias problems and alternative methods should be considered.

In rest of this section we show how to use ivreg2 to conduct tests for underidentifi-
cation and weak identification, and how ivreg2 provides a procedure for inference that
is robust to weak identification.

7.2 Testing for underidentification and instrument redundancy

Of course, we do not observe the true QXZ or Π11 matrices; these matrices must be
estimated. Testing whether or not the rank condition is satisfied therefore amounts to
testing the rank of a matrix. Do the data enable the researcher to reject the null hypoth-
esis that the equation is underidentified, i.e., that ρ(Π̂11) = (K1 − 1), or, equivalently,
ρ(Q̂X̃Z̃) = (K1− 1)? Rejection of the null implies full rank and identification; failure to
reject the null implies the matrix is rank-deficient and the equation is underidentified.

If the reduced-form errors v are i.i.d., two approaches are available for testing the
rank of QX̃Z̃ : Anderson’s (1951) canonical correlations test and the related test of Cragg
and Donald (1993). In Anderson’s approach, H0 : ρ(Q̂X̃Z̃) = (K1 − 1) is equivalent to
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the null hypothesis that the smallest canonical correlation rK1 is zero. A large sample
test statistic for this is simply nr2

K1
. Under the null, the test statistic is distributed

χ2 with (L − K + 1) degrees of freedom, so that it may be calculated even for an
exactly-identified equation. A failure to reject the null hypothesis suggests the model
is unidentified. Not surprisingly given its “N ×R2” form this test can be interpreted as
an LM test.16

The Cragg–Donald (1993) statistic is an alternative and closely related test for the
rank of a matrix that can also be used to test for underidentification. Whereas the
Anderson test is an LM test, the Cragg–Donald test is a Wald test, also derived from an
eigenvalue problem. Poskitt and Skeels (2002) show that in fact the Cragg–Donald test
statistic can be stated in terms of canonical correlations as nr2

K1
/(1− r2

K1
) (see Poskitt

and Skeels (2002), p. 17). It is also distributed as χ2(L−K + 1).

Both these tests require the assumption of i.i.d. errors, and hence are reported if
ivreg2 is invoked without the robust, cluster or bw options. The Anderson LM χ2

statistic is reported by ivreg2 in the main regression output while both the Anderson
LM and Cragg–Donald Wald χ2 statistics are reported with the first option.

If the errors are heteroskedastic or serially correlated, the Anderson and Cragg–
Donald statistics are not valid. This is an important shortcoming, because these viola-
tions of the i.i.d. assumption would typically be expected to cause the null of underi-
dentification to be rejected too often. Researchers would face the danger of interpreting
a rejection of the null as evidence of a well-specified model that is adequately identified,
when in fact it was both underidentified and misspecified.

Recently, several robust statistics for testing the rank of a matrix have been pro-
posed. Kleibergen and Paap (2006) have proposed the rk statistic for this purpose.
Their rk test statistic is reported by ivreg2 if the user requests any sort of robust
covariance estimator. The LM version of the Kleibergen–Paap rk statistic can be con-
sidered as a generalization of the Anderson canonical correlation rank statistic to the
non-i.i.d. case. Similarly, the Wald version of the rk statistic reduces to the Cragg–
Donald statistic when the errors are i.i.d. The rk test is implemented in Stata by the
ranktest command of Kleibergen and Schaffer (2007) which ivreg2 uses to calculate
the rk statistic. If ivreg2 is invoked with the robust, bw or cluster options, the
tests of underidentification reported by ivreg2 are based on the rk statistic and will be
correspondingly robust to heteroskedasticity, autocorrelation or clustering. For a full
discussion of the rk statistic, see Kleibergen and Paap (2006).

It is useful to note that in the special case of a single endogenous regressor, the
Anderson, Cragg–Donald, and Kleibergen–Paap statistics reduce to familiar statistics
available from OLS estimation of the single reduced form equation with an appropriate
choice of V CE estimator. Thus the Cragg–Donald Wald statistic can be calculated by
estimating (38) and testing the joint significance of the coefficents Π11 on the excluded
instruments Z1 using a standard Wald test and a traditional non-robust covariance es-

16. Earlier versions of ivreg2 reported an LR version of this test, where the test statistic is −n log(1−
r2
K1

). This LR test has the same asymptotic distribution as the LM form. See Anderson (1984), pp.
497-8.
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timator. The Anderson LM statistic can be obtained by calculating an LM test of the
same joint hypothesis.17 The Kleibergen–Paap rk statistics can be obtained by perform-
ing the same tests with the desired robust covariance estimator. For example, estimating
(38) using OLS and testing the joint significance of Z1 using a heteroskedastic-robust
covariance estimator yields the heteroskedastic-robust Kleibergen–Paap rk Wald statis-
tic.18

The same framework may also be used to test a set of instruments for redundancy
as shown by Breusch et al. (1999). In an overidentified context with L ≥ K, if some of
the instruments are redundant then the large-sample efficiency of the estimation is not
improved by including them. It is well known, moreover, that using a large number of
instruments or moment conditions can cause the estimator to have poor finite sample
performance. Dropping redundant instruments may therefore lead to more reliable
estimation.

The intuition behind a test for instrument redundancy is straightforward. As above,
assume we have partialled out any exogenous regressors X2. Partition the excluded
instruments Z̃1 into [ Z̃1A Z̃1B ], where Z̃1B is the set of possibly-redundant instruments
after X2 has been partialled-out. Breusch et al. (1999), p. 106 show that the redundancy
of Z̃1B can be stated in several ways: (a) plim 1

n Z̃ ′1BMZ̃1A
X̃1 = 0; (b) the correlations

between Z̃1B and X̃1 (given Z̃1A) are zero; (c) in a regression of X̃1 on the full set of
excluded instruments Z̃1, the coefficients on Z̃1B are zero. It is easy to see that the
FWL theorem can be used to restate this last condition without the partialling-out of
X2: (d) in a regression of X1 on the full set of included and excluded instruments Z,
i.e., the reduced form Equation (38), the coefficients on Z1B are zero. Note that, as
Hall and Peixe (2003) point out, redundancy is a conditional concept. Z1B either is or
is not redundant conditional on Z1A.

The above suggests a straightforward test of redundancy: simply estimate Equa-
tion (38) using OLS and test the significance of Z1B using a large-sample LM, Wald
or LR test. For example, the redundancy test proposed by Hall and Peixe (2003) is
simply the LR version of this test. These test statistics are all distributed as χ2 with
degrees of freedom equal to the number of endogenous regressors times the number of
instruments tested. As usual, implementing this test is easy for the case of a single
endogenous variable, as only a single OLS estimation is necessary. The tests of the
coefficients can be made robust to various violations of i.i.d. errors in the usual way.
However, this procedure is more laborious (though still straightforward) if K1 > 1 as it
is then necessary to jointly estimate multiple reduced-form equations.

17. This can be done very simply in Stata using ivreg2 by estimating (38) with only Z2 as regressors,
Z1 as excluded instruments and an empty list of endogenous regressors. The Sargan statistic reported
by ivreg2 will be the Anderson LM statistic. See our 2003 article for further discussion.
18. See the on-line help for ranktest for examples. These test statistics are “large-sample” χ2 tests and
can be obtained from OLS regression using ivreg2. Stata’s regress command reports finite-sample t
tests. Also note that the robust rk LM statistic can be obtained as described in the preceding footnote.
Invoke ivreg2 with X1 as the dependent variable, Z2 as regressors, Z1 as excluded instruments and
no endogenous regressors. With the robust option the reported Hansen J statistic is the robust rk
statistic.
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Fortunately, a simpler procedure is available that will generate numerically equiv-
alent test statistics for redundancy. Define a matrix X̆ as X with both X2 and Z1A

partialled-out. Then condition (a) can be restated as (e) plim 1
n Z̆ ′1BX̆1 = 0 or (f) that

the correlations between Z̆1B and X̆1 (given Z1A and Z2) are zero. The redundancy
of Z1B can be evaluated using the ranktest command to test the null hypothesis that
the rank of QX̆Z̆ is zero. Rejection of the null indicates that the instruments are not
redundant. The LM version of the Anderson canonical correlations test is reported if
the user indicates that the errors are i.i.d. In this case the LM test statistic is n times
the sum of the squared canonical correlations between Z̆1B and X̆1. If the user estimates
the equation with robust, bw or cluster, an LM version of the Kleibergen–Paap rk
statistic is reported that is correspondingly robust to heteroskedasticity, autocorrelation
or clustering.

7.3 Testing for weak identification

The weak instruments problem arises when the correlations between the endogenous
regressors and the excluded instruments are nonzero but small. In the past 10–15 years,
much attention in the econometrics literature has been devoted to this topic. What
is surprising is that, as Bound et al. (1995), Staiger and Stock (1997) and others have
shown, the weak instruments problem can arise even when the correlations between X
and Z are significant at conventional levels (5% or 1%) and the researcher is using a
large sample. For more detailed discussion of the weak instruments problem, see Staiger
and Stock (1997), Stock et al. (2002), or Dufour (2003). Thus rejecting the null of
underidentification using the tests in the previous section and conventional significance
levels is not enough; other methods are called for.

One approach that has been advanced by Stock and Yogo (2005) is to test for the
presence of weak instruments. The difference between this approach and the aforemen-
tioned underidentification tests is not in the basic statistic used, but in the finite sample
adjustments and critical values and in the null hypothesis being tested. Moreover, the
critical values for a weak instruments test are different for different estimators because
the estimators are not affected to the same degree by weak instruments. Specifically,
the LIML and CUE estimators are more robust to the presence of weak instruments
than are IV and two-step GMM.

The test statistic proposed by Stock and Yogo (2005) is the F -statistic form of the

Cragg and Donald (1993) statistic,
(

N−L
L2

r2
K1

1−r2
K1

)
. ivreg2 will report this statistic for

an estimation that assumes i.i.d. disturbances. The null hypothesis being tested is that
the estimator is weakly identified in the sense that it is subject to bias that the inves-
tigator finds unacceptably large. The Stock–Yogo weak instruments tests come in two
flavors: maximal relative bias and maximal size, where the null is that the instruments
do not suffer from the specified bias. Rejection of their null hypothesis represents the
absence of a weak instruments problem. The first flavor is based on the ratio of the
bias of the estimator to the bias of OLS. The null is that instruments are weak, where
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weak instruments are defined as instruments that can lead to an asymptotic relative
bias greater than some value b. Because this test uses the finite sample distribution
of the IV estimator, it cannot be calculated in certain cases. This is because the mth

moment of the IV estimator exists if and only if m < (L−K + 1).19

The second flavor of the Stock–Yogo tests is based on the performance of the Wald
test statistic for β1. Under weak identification, the Wald test rejects too often. The test
statistic is based on the rejection rate r (10%, 20%, etc.) that the researcher is willing
to tolerate if the true rejection rate should be the standard 5%. Weak instruments are
defined as instruments that will lead to a rejection rate of r when the true rejection rate
is 5%.

Stock and Yogo (2005) have tabulated critical values for their two weak identification
tests for the IV estimator, the LIML estimator, and Fuller’s modified LIML estimator.
The weak instruments bias in the IV estimator is larger than that of the LIML estima-
tors, and hence the critical values for the null that instruments are weak are also larger.
The Stock–Yogo critical values are available for a range of possible circumstances (up
to 3 endogenous regressors and 100 excluded instruments).

The weak identification test that uses the Cragg–Donald F statistic, like the cor-
responding underidentification test, requires an assumption of i.i.d. errors. This is a
potentially serious problem, for the same reason as given earlier: if the test statistic is
large simply because the disturbances are not i.i.d., the researcher will commit a Type I
error and incorrectly conclude that the model is adequately identified.

If the user specifies the robust, cluster or bw options in ivreg2, the reported
weak instruments test statistic is a Wald F statistic based on the Kleibergen–Paap rk
statistic. We are not aware of any studies on testing for weak instruments in the presence
of non-i.i.d. errors. In our view, however, the use of the rk Wald statistic, as the robust
analog of the Cragg–Donald statistic, is a sensible choice and clearly superior to the
use of the latter in the presence of heteroskedasticity, autocorrelation or clustering. We
suggest, however, that when using the rk statistic to test for weak identification, users
either apply with caution the critical values compiled by Stock and Yogo (2005) for the
i.i.d. case, or refer to the older “rule of thumb” of Staiger and Stock (1997) that the
F -statistic should be at least 10 for weak identification not to be considered a problem.

ivreg2 will report in the main regression output the relevant Stock and Yogo (2005)
critical values for IV, LIML and Fuller-LIML estimates if they are available. The re-
ported test statistic will be the Cragg–Donald statistic if the traditional covariance
estimator is used or the rk statistic if a robust covariance estimator is requested. If
the user requests two-step GMM estimation, ivreg2 will report an rk statistic and the
IV critical values. If the user requests the CUE estimator, ivreg2 will report an rk
statistic and the LIML critical values. The justification for this is that IV and LIML are
special cases of two-step GMM and CUE respectively, and the similarities carry over to
weak instruments: the literature suggests that IV and two-step GMM are less robust
to weak instruments than LIML and CUE. Again, however, users of ivreg2 may again

19. See Davidson and MacKinnon (1993), pp. 221–222.
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wish to exercise some caution in applying the Stock–Yogo critical values in these cases.

7.4 Weak-identification-robust inference: the Anderson-Rubin test

The first-stage ivreg2 output also includes the Anderson and Rubin (1949) test of the
significance of the endogenous regressors in the structural equation being estimated (not
to be confused with the Anderson and Rubin (1949) overidentification test discussed
earlier). In the form reported by ivreg2, the null hypothesis tested is that the coeffi-
cients β1 of the endogenous regressors X1 in the structural equation are jointly equal
to zero. It is easily extended to testing the equality of the coefficients of X1 to other
values, but this is not supported explicitly by ivreg2; see the next section for further
discussion.

The development of this Anderson and Rubin (1949) test is straightforward. Substi-
tute the reduced-form expression (38) for the endogenous regressors X1 into the main
equation of the model

y = Xβ + u = X1β1 + Z2β2 + u = ([Z1 Z2] [Π′11 Π′12]
′ + v1)β1 + Z2β2 + u (40)

and rearrange to obtain

y = Z1Π11β1 + Z2(Π12β1 + β2) + (v1β1 + u) (41)

Now consider estimating a reduced form equation for y with the full set of instruments
as regressors:

y = Z1γ1 + Z2γ2 + η (42)

If the null H0 : β1 = 0 is correct, Π11β1 = 0, and therefore γ1 = 0. Thus the Anderson
and Rubin (1949) test of the null H0 : β1 = 0 is obtained by estimating the reduced
form for y and testing that the coefficients γ1 of the excluded instruments Z1 are jointly
equal to zero. If we fail to reject γ1 = 0, then we also fail to reject β1 = 0.

The Anderson–Rubin statistic is robust to the presence of weak instruments. As
instruments become weak, the elements of Π11 become smaller, and hence so does
Π11β1: the null H0 : γ1 = 0 is less likely to be rejected. That is, as instruments become
weak, the power of the test declines, an intuitively appealing feature: weak instruments
come at a price. ivreg2 reports both the χ2 version of the Anderson–Rubin statistic
(distributed with L1 degrees of freedom) and the F -statistic version of the test. ivreg2
also reports the closely-related Stock and Wright (2000) S-statistic. The S statistic
tests the same null hypothesis as the A-R statistic and has the same distribution under
the null. It is given by the value of the CUE objective function (with the exogenous
regressors partialled out). Whereas the A-R statistic provides a Wald test, the S statistic
provides an LM or GMM distance test of the same hypothesis.

Importantly, if the model is estimated with a robust covariance matrix estimator,
both the Anderson–Rubin statistic and the S statistic reported by ivreg2 are corre-
spondingly robust. See Dufour (2003) and Chernozhukov and Hansen (2005) for further
discussion of the Anderson–Rubin approach. For related alternative test statistics that
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are also robust to weak instruments (but not violations of the i.i.d. assumption), see
the condivreg and condtest commands available from Moreira and Poi (2003) and
Mikusheva and Poi (2006).

7.5 An example of estimation with weak instruments using ivreg2

We illustrate the weak instruments problem with a variation on a log wage equation
illustrated in Hayashi (2000). The explanatory variables are s (completed years of
schooling), expr (years of work experience), tenure in the current job (in years), rns
(a dummy for residency in the Southern U.S.), smsa (a dummy for urban workers), the
worker’s iq score, and a set of year dummies. Instruments include the worker’s age and
mrt (marital status: 1=married) as instruments.

. use http://www.stata-press.com/data/imeus/griliches, clear
(Wages of Very Young Men, Zvi Griliches, J.Pol.Ec. 1976)

. ivreg2 lw s expr tenure rns smsa _I* (iq = age mrt), ffirst robust redundant(
> mrt)

Summary results for first-stage regressions

Variable | Shea Partial R2 | Partial R2 | F( 2, 744) P-value
iq | 0.0073 | 0.0073 | 2.93 0.0539

NB: first-stage F-stat heteroskedasticity-robust

Underidentification tests
Ho: matrix of reduced form coefficients has rank=K1-1 (underidentified)
Ha: matrix has rank=K1 (identified)
Kleibergen-Paap rk LM statistic Chi-sq(2)=5.90 P-val=0.0524
Kleibergen-Paap rk Wald statistic Chi-sq(2)=5.98 P-val=0.0504

Weak identification test
Ho: equation is weakly identified
Kleibergen-Paap Wald rk F statistic 2.93
See main output for Cragg-Donald weak id test critical values

Weak-instrument-robust inference
Tests of joint significance of endogenous regressors B1 in main equation
Ho: B1=0 and overidentifying restrictions are valid
Anderson-Rubin Wald test F(2,744)= 46.95 P-val=0.0000
Anderson-Rubin Wald test Chi-sq(2)=95.66 P-val=0.0000
Stock-Wright LM S statistic Chi-sq(2)=69.37 P-val=0.0000

NB: Underidentification, weak identification and weak-identification-robust
test statistics heteroskedasticity-robust

Number of observations N = 758
Number of regressors K = 13
Number of instruments L = 14
Number of excluded instruments L1 = 2

IV (2SLS) estimation

Estimates efficient for homoskedasticity only
Statistics robust to heteroskedasticity

Number of obs = 758
F( 12, 745) = 4.42
Prob > F = 0.0000

Total (centered) SS = 139.2861498 Centered R2 = -6.4195
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Total (uncentered) SS = 24652.24662 Uncentered R2 = 0.9581
Residual SS = 1033.432656 Root MSE = 1.168

Robust
lw Coef. Std. Err. z P>|z| [95% Conf. Interval]

iq -.0948902 .0418904 -2.27 0.024 -.1769939 -.0127865
s .3397121 .1183267 2.87 0.004 .1077959 .5716282

expr -.006604 .0292551 -0.23 0.821 -.0639429 .050735
tenure .0848854 .0306682 2.77 0.006 .0247768 .144994

rns -.3769393 .1559971 -2.42 0.016 -.682688 -.0711906
smsa .2181191 .1031119 2.12 0.034 .0160236 .4202146

_Iyear_67 .0077748 .1663252 0.05 0.963 -.3182166 .3337662
_Iyear_68 .0377993 .1523585 0.25 0.804 -.2608179 .3364165
_Iyear_69 .3347027 .1637992 2.04 0.041 .0136622 .6557432
_Iyear_70 .6286425 .2468458 2.55 0.011 .1448336 1.112451
_Iyear_71 .4446099 .1861877 2.39 0.017 .0796887 .809531
_Iyear_73 .439027 .1668657 2.63 0.009 .1119763 .7660778

_cons 10.55096 2.781762 3.79 0.000 5.098812 16.00312

Underidentification test (Kleibergen-Paap rk LM statistic): 5.897
Chi-sq(2) P-val = 0.0524

-redundant- option:
IV redundancy test (LM test of redundancy of specified instruments): 0.002

Chi-sq(1) P-val = 0.9665
Instruments tested: mrt

Weak identification test (Kleibergen-Paap rk Wald F statistic): 2.932
Stock-Yogo weak ID test critical values: 10% maximal IV size 19.93

15% maximal IV size 11.59
20% maximal IV size 8.75
25% maximal IV size 7.25

Source: Stock-Yogo (2005). Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.

Hansen J statistic (overidentification test of all instruments): 1.564
Chi-sq(1) P-val = 0.2111

Instrumented: iq
Included instruments: s expr tenure rns smsa _Iyear_67 _Iyear_68 _Iyear_69

_Iyear_70 _Iyear_71 _Iyear_73
Excluded instruments: age mrt

In the first stage regression results, the Kleibergen–Paap underidentification LM and
Wald tests fail to reject their null hypotheses at the 95% level, suggesting that even in
the case of overidentification via the order condition the instruments may be inadequate
to identify the equation. The Anderson–Rubin Wald test and Stock–Wright LM test
readily reject their null hypothesis and indicate that the endogenous regressors are
relevant. However, given that those null hypotheses are joint tests of irrelevant regressors
and appropriate overidentifying restrictions, the evidence is not so promising. In the
main equation output, the redundant(mrt) option indicates that mrt provides no useful
information to identify the equation. This equation may be exactly identified at best.
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7.6 The relationship between weak-identification-robust inference
and overidentification tests

The Anderson–Rubin weak-identification-robust test (and its related alternatives) relies
heavily on the orthogonality of the excluded instruments Z1. If the orthogonality condi-
tions are violated, the Anderson–Rubin test will tend to reject the null H0 : β1 = 0 even
if the true β1 = 0. The reason is easy to see: if Z1 is correlated with the disturbance u,
it will therefore also be correlated with the reduced form error η, and so the estimated
γ̂1 will be biased away from zero even if in reality β1 = 0.

More generally, in a test of overidentification, the maintained hypothesis is that the
model is identified, so that a rejection means rejecting the orthogonality conditions.
In the weak-identification-robust test of β1, the maintained hypothesis is that the in-
struments are valid, so that a rejection means rejecting the null that β1 equals the
hypothesized value.

This relationship between weak identification and overidentification tests can be
stated precisely in the case of CUE or LIML estimation. We have been careful in the
above to state that the two Anderson–Rubin tests should not be confused, but in fact
they are, in a sense, based on the same statistic. Assume that the exogenous regressors
X2, if any, have been partialled-out so that β1 ≡ β. The value of the CUE GMM
objective function at β̂CUE provides a test of the orthogonality conditions; the LIML
LR version of this test is the Anderson–Rubin overidentifying restrictions test. The
value of the CUE GMM objective function at some other, hypothesized β̃ provides a
test H0 : β = β̃. This is the Stock and Wright (2000) S statistic, which is a Lagrange
Multiplier (LM) version of the Anderson–Rubin weak-instruments-robust test.

This can be illustrated using the Hayashi–Griliches example below. We assume con-
ditional homoskedasticity and estimate using LIML. The Anderson–Rubin LR overiden-
tification statistic (distributed with one degree of freedom) is small, as is the Sargan–
Hansen J statistic, suggesting that the orthogonality conditions are valid:

. use http://www.stata-press.com/data/imeus/griliches, clear
(Wages of Very Young Men, Zvi Griliches, J.Pol.Ec. 1976)

. qui ivreg2 lw s expr tenure rns smsa _I* (iq = age mrt), ///
> fwl(s expr tenure rns smsa _I*) liml

. di e(arubin)
1.1263807

. di e(j)
1.1255442

The Anderson–Rubin test of H0 : βIQ = 0 is calculated automatically by ivreg2 with
the ffirst option, and is equivalent to estimating the reduced form for lw and testing
the joint significance of the excluded instruments age and mrt:

. qui ivreg2 lw s expr tenure rns smsa _I* (iq = age mrt), liml ffirst

. di e(archi2)
89.313862
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. qui ivreg2 lw s expr tenure rns smsa _I* age mrt

. test age mrt

( 1) age = 0
( 2) mrt = 0

chi2( 2) = 89.31
Prob > chi2 = 0.0000

The Stock–Wright S statistic is a LM or GMM distance test of the same hypothesis.
This LM version of the Anderson–Rubin Wald test of age and mrt using the reduced
form estimation above is asymptotically equivalent to an LM test of the same hypothesis,
available using ivreg2 and specifying these as excluded instruments (see Baum et al.
(2003) for further discussion). It is this LM version of the Anderson–Rubin weak-
instruments-robust test that is numerically identical to the value of the GMM objective
function at the hypothesized value βIQ = 0:

. qui ivreg2 lw s expr tenure rns smsa _I* (=age mrt)

. di e(j)
79.899445

. mat b[1,1]=0

. qui ivreg2 lw s expr tenure rns smsa _I* (iq = age mrt), ///
> fwl(s expr tenure rns smsa _I*) b0(b)

. di e(j)
79.899445

Note that for J(β0) to be the appropriate test statistic, it is necessary for the exogenous
regressors to be partialled out with the fwl() option.

7.7 Additional first-stage options

To aid in the diagnosis of weak instruments, the savefirst option requests that the
individual first-stage regressions be saved for later access using the [R] estimates com-
mand. If saved, they can also be displayed using first or ffirst and the ivreg2 replay
syntax. The regressions are saved with the prefix “ ivreg2 ” unless the user specifies
an alternative prefix with the savefprefix(prefix) option. The saved estimation re-
sults may be made the active set with estimates restore, allowing commands such
as [R] test, [R] lincom and [R] testparm to be used.

The rf option requests that the reduced form estimation of the equation be dis-
played. The saverf option requests that the reduced form estimation is saved for later
access using the [R] estimates command. If saved, it can also be displayed using the
rf and the ivreg2 replay syntax. The regression is saved with the prefix “ ivreg2 ”
unless the user specifies an alternative prefix with the saverfprefix(prefix) option.
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8 Advanced ivreg2 options

Two options are available for speeding ivreg2 execution. nocollin specifies that the
collinearity checks not be performed. This option should be used with caution. noid
suspends calculation and reporting of the underidentification and weak identification
statistics in the main output.

The b0(matrix) option allows the user to specify that the GMM objective function,
J , should be calculated for an arbitrary parameter vector. The parameter vector must
be given as a matrix with appropriate row and column labels. The b0() option is most
useful if the user wishes to conduct a weak-instruments-robust test of H0 : β1 = b0,
where b0 is specified by the user. For example, in the illustration given in Section 7.6, the
null hypothesis that the coefficient on iq is 0.05 can be tested simply by replacing the line
mat b=J(1,1,0) with mat b=J(1,1,0.05). A heteroskedastic-robust S-statistic can be
obtained by specifying robust along with b0(b). To construct a weak-instruments-
robust confidence interval, the user can simply conduct a grid search over the relevant
range for β1.20

Two options have been added to ivreg2 for special handling of the GMM estimation
process. The wmatrix(matrix) option allows the user to specify a weighting matrix
rather than computing the optimal weighting matrix. Estimation with the wmatrix
option yields a possibly inefficient GMM estimator. ivreg2 will use this inefficient
estimator as the first-step GMM estimator in two-step efficient GMM when combined
with the gmm2s option; otherwise, ivreg2 reports this inefficient GMM estimator.

The smatrix(matrix) option allows the user to directly specify the matrix S, the
covariance matrix of orthogonality conditions. ivreg2 will use this matrix in the cal-
culation of the variance-covariance matrix of the estimator, the J statistic, and if the
gmm2s option is specified, the two-step efficient GMM coefficients. The smatrix option
can be useful for guaranteeing a positive test statistic in user-specified GMM-distance
tests as described in Section 5.

As Ahn (1997) shows, Hansen’s J test has an LM interpretation but can also be
calculated as the result of a Wald test. This is an application of the Newey and West
(1987a) results on the equivalence of LM, Wald and GMM distance tests. In the context
of an overidentified model, the J statistic will be identical to a Wald χ2 test statistic
from an exactly identified model in which the additional instruments are included as
regressors as long as the same estimate of S is used in both estimated equations. As an
example:

. use http://www.stata-press.com/data/imeus/griliches, clear
(Wages of Very Young Men, Zvi Griliches, J.Pol.Ec. 1976)

. qui ivreg2 lw (iq=med kww age), gmm2s

20. It is important to note that an Anderson–Rubin confidence region need not be finite nor connected.
The test provided in condivreg (Moreira and Poi (2003), Mikusheva and Poi (2006)) is uniformly most
powerful in the situation where there is one endogenous regressor and i.i.d. errors. The Anderson–
Rubin test provided by ivreg2 is a simple and preferable alternative when errors are not i.i.d. or there
is more than one endogenous regressor.
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. di e(sargan)
102.10909

. mat S0 = e(S)

. qui ivreg2 lw med age (iq=kww), gmm2s smatrix(S0)

. test med age

( 1) med = 0
( 2) age = 0

chi2( 2) = 102.11
Prob > chi2 = 0.0000

. qui ivreg2 lw kww age (iq=med), gmm2s smatrix(S0)

. test kww age

( 1) kww = 0
( 2) age = 0

chi2( 2) = 102.11
Prob > chi2 = 0.0000

. qui ivreg2 lw med kww (iq=age), gmm2s smatrix(S0)

. test med kww

( 1) med = 0
( 2) kww = 0

chi2( 2) = 102.11
Prob > chi2 = 0.0000

9 The RESET specification test in the IV context

The ivreset command performs various flavors of Ramsey’s regression error specifi-
cation test (RESET) as adapted by Pesaran and Taylor (1999) and Pagan and Hall
(1983) for instrumental variables (IV) estimation. The RESET test is sometimes called
an omitted variables test (as in official Stata’s ovtest) but probably is best interpreted
as a test of neglected nonlinearities in the choice of functional form (Wooldridge (2002),
pp. 124–5). Under the null hypothesis that there are no neglected nonlinearities, the
residuals should be uncorrelated with low-order polynomials in ŷ, where the ŷs are pre-
dicted values of the dependent variable. In the ivreset implementation of the test, an
equation of the form y = Xβ + Y γ + v is estimated by IV, where the Y s are powers of
ŷ, the fitted value of the dependent variable y. Under the null hypothesis that there are
no neglected nonlinearities and the equation is otherwise well-specified, γ should not be
significantly different from zero.

As Pesaran and Taylor (1999) and Pagan and Hall (1983) point out, however, a
RESET test for an IV regression cannot use the standard IV predicted values ŷ ≡ Xβ̂
because X includes endogenous regressors that are correlated with u. Instead, the RE-
SET test must be implemented using “forecast values” of y that are functions of the
instruments (exogenous variables) only. In the Pagan–Hall version of the test, the fore-
cast values ŷ are the reduced form predicted values of y, i.e., the predicted values from
a regression of y on the instruments Z. In the Pesaran–Taylor version of the test, the
forecast values ŷ are the “optimal forecast” values. The optimal forecast (predictor) ŷ is
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defined as X̂β̂, where β̂ is the IV estimate of the coefficents and X̂ ≡ [ZΠ̂ Z2], i.e., the
reduced form predicted values of the endogenous regressors plus the exogenous regres-
sors. Note that if the equation is exactly identified, the optimal forecasts and reduced
form forecasts coincide, and the Pesaran–Taylor and Pagan–Hall tests are identical.

The ivreset test flavors vary according to the polynomial terms (square, cube,
fourth power of ŷ), the choice of forecast values (Pesaran–Taylor optimal forecasts or
Pagan–Hall reduced form forecasts), test statistic (Wald or GMM-distance), and large
vs. small sample statistic (χ2 or F -statistic). The test statistic is distributed with
degrees of freedom equal to the number of polynomial terms. The default is the Pesaran–
Taylor version using the square of the optimal forecast of y and a χ2 Wald statistic with
one degree of freedom.

If the original ivreg2 estimation was heteroskedastic-robust, cluster-robust, AC or
HAC, the reported RESET test will be as well. The ivreset command can also be
used after OLS regression with [R] regress or ivreg2 when there are no endogenous
regressors. In this case, either a standard Ramsey RESET test using fitted values of y
or a robust test corresponding to the specification of the original regression is reported.

We illustrate use of ivreset using a model fitted to the Griliches data:

. use http://fmwww.bc.edu/ec-p/data/hayashi/griliches76.dta
(Wages of Very Young Men, Zvi Griliches, J.Pol.Ec. 1976)

. quietly ivreg2 lw s expr tenure rns smsa (iq=med kww), robust

. ivreset
Ramsey/Pesaran-Taylor RESET test
Test uses square of fitted value of y (X-hat*beta-hat)
Ho: E(y|X) is linear in X
Wald test statistic: Chi-sq(1) = 4.53 P-value = 0.0332
Test is heteroskedastic-robust

. ivreset, poly(4) rf small
Ramsey/Pagan-Hall RESET test
Test uses square, cube and 4th power of reduced form prediction of y
Ho: E(y|X) is linear in X
Wald test statistic: F(3,748) = 1.72 P-value = 0.1616
Test is heteroskedastic-robust

The first ivreset takes all the defaults, and corresponds to a second-order polynomial
in ŷ with the Pesaran–Smith optimal forecast and a Wald χ2 test statistic which rejects
the null at better than 95%. The second employs a fourth-order polynomial and requests
the Pagan–Hall reduced form forecast with a Wald F -statistic, falling short of the 90%
level of significance.

10 A test for autocorrelated errors in the IV context

The ivactest command performs the Cumby and Huizinga (1992) generalization of a
test proposed by Sargan (1988) for serial independence of the regression errors, which in
turn generalizes the test proposed by Breusch and Godfrey (estat bgodfrey) applicable
to OLS regressions. Sargan’s extension of the Breusch–Godfrey test to the IV context,
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the SC test, is described as a “general misspecification chi-squared statistic” by Pesaran
and Taylor (1999), p. 260. The SC test statistic is based upon the residuals of the
instrumental variables regression and its conventional V CE. Cumby and Huizinga
extend Sargan’s test to cases in which the IV V CE was estimated as heteroskedasticity-
robust, autocorrelation-robust or HAC.

In the words of Cumby and Huizinga (1992), the null hypothesis of the test is “that
the regression error is a moving average of known order q ≥ 0 against the general
alternative that autocorrelations of the regression error are nonzero at lags greater than
q. The test . . . is thus general enough to test the hypothesis that the regression error
has no serial correlation (q = 0) or the null hypothesis that serial correlation in the
regression error exists, but dies out at a known finite lag (q > 0).” (p. 185).

The Cumby–Huizinga test is especially attractive because it can be used in three
frequently encountered cases where alternatives such as the Box–Pierce test ([TS] wn-
testq), Durbin’s h test (estat durbinalt) and the Breusch–Godfrey test (estat bgodfrey)
are not applicable. One of these cases is the presence of endogenous regressors, which
renders each of these tests invalid. A second case involves the overlapping data com-
monly encountered in financial markets where the observation interval is shorter than
the holding period, which requires the estimation of the induced moving average (MA)
process. The Cumby–Huizinga test avoids estimation of the MA process by utilizing only
the sample autocorrelations of the residuals and a consistent estimate of their asymp-
totic covariance matrix. The third case involves conditional heteroskedasticity of the
regression error term, which is also handled without difficulty by the Cumby–Huizinga
test.

If the prior estimation command estimated a V CE under the assumption of i.i.d.
errors, the Cumby–Huizinga statistic becomes the Breusch-Godfrey statistic for the
same number of autocorrelations, and will return the same result as estat bgodfrey.
That special case of the test was that proposed by Sargan in an unpublished working
paper in 1976 (reprinted in Sargan (1988)).

Two parameters may be specified in ivactest: s, the number of lag orders to be
tested, and q, the lowest lag order to be tested.21 By default, ivactest takes s=1 and
q=0 and produces a test for AR(1). A test for AR(p) may be produced with s=p. Under
the null hypothesis of serial independence for lags q− (q + s), the Cumby–Huizinga test
statistic is distributed χ2 with s degrees of freedom.

We illustrated the use of ivactest in Section 3 above.

11 A summary of ivreg2 estimation options

The version of ivreg2 accompanying this paper uses a different syntax for specifying
the type of estimator to be employed. In earlier versions (including those circulated
with Stata Journal software updates in issues 4:2 and 5:4), the gmm option implied a

21. If the previous command estimated a V CE under the assumption of i.i.d. errors, q must be 0.
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heteroskedasticity-robust estimator. When the gmm option was combined with the bw
option, estimates were autocorrelation-robust but not heteroskedasticity-robust. This
version of ivreg2 uses a new taxonomy of estimation options, summarized below. Note
that the gmm2s option by itself produces the IV (2SLS) estimator, as described in Section
2.2. One of the options [robust, cluster, bw] must be added to generate two-step
efficient GMM estimates.

The following table summarizes the estimator and the properties of its point and
interval estimates for each combination of estimation options.

Estimator Covariance matrix option(s)
option (none) robust, cluster, bw, kernel

(none) IV/2SLS IV/2SLS with
SEs consistent under homoskedasticity robust SEs

liml LIML LIML with
SEs consistent under homoskedasticity robust SEs

gmm2s IV/2SLS Two-step GMM with
SEs consistent under homoskedasticity robust SEs

cue LIML CUE GMM with
SEs consistent under homoskedasticity robust SEs

kclass k-class estimator k-class estimator with
SEs consistent under homoskedasticity robust SEs

wmatrix possibly inefficient GMM Inefficient GMM with
SEs consistent under homoskedasticity robust SEs

gmm2s + Two-step GMM Two-step GMM with
wmatrix with user-specified first step robust SEs

SEs consistent under homoskedasticity

11.1 ivreg2 vs. ivregress

Stata’s official [R] ivregress command in Stata 10.0 now provides a LIML and GMM
estimator in addition to two-stage least squares. The GMM estimator can produce
HAC estimates, as discussed above in Section 3, but cannot produce AC estimates.
The [R] ivregress command does not support the general k-class estimator nor GMM-
CUE but provides an “iterative GMM” estimator. Overidentification tests and first-
stage statistics are available as estat subcommands. ivreg2’s ability to partial out
regressors via the partial option is not available in [R] ivregress.
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A number of tests performed by ivreg2 are not available from [R] ivregress. These
include the “GMM distance” tests of endogeneity/exogeneity discussed in Section 5,
the general underidentification/weak identification test of Kleibergen and Paap (2006)
discussed in Section 7 and tests for instrument relevance. In diagnosing potentially weak
instruments, ivreg2’s ability to save the first-stage regressions is also unique.

12 Syntax diagrams

These diagrams describe all of the programs in the ivreg2 suite, including those which
have not been substantially modified since their documentation in Baum et al. (2003).

ivreg2 depvar
[
varlist1

]
(varlist2=varlist iv)

[
weight

][
if

][
in

][
, gmm2s bw(# | auto) kernel(string) liml fuller(#) kclass(#) coviv

cue cueinit(matrix) cueoptions(string) b0(matrix) robust cluster(varname)

orthog(varlist ex) endog(varlist en) redundant(varlist ex) partial(varlist ex)

small noconstant smatrix(matrix) wmatrix(matrix) first ffirst savefirst

savefprefix(string) rf saverf saverfprefix(string) nocollin noid level(#)

noheader nofooter eform(string) depname(varname) plus
]

overid
[
, chi2 dfr f all

]
ivhettest

[
varlist

][
, ivlev ivsq fitlev fitsq ph phnorm nr2 bpg all

]
ivendog

[
varlist

]
ivreset

[
, polynomial(#) rform cstat small

]
ivactest

[
, s(#) q(#)

]
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