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1 Introduction

Suppose a researcher seeks to measure the e¤ect of one variable on another from non-experimental

data. When measurements on these variables alone do not su¢ ce to identify e¤ects of interest,

what additional variables (if any) can one measure to identify and estimate e¤ects? This pa-

per addresses this question by studying the ways in which causal structures can yield observed

variables that permit identifying and estimating causal e¤ects.

Our focus here is not on how moment conditions permit identi�cation of causal e¤ects; rather,

we study how the structure itself and the causal roles played by the variables of this structure

give rise to such moment conditions. Speci�cally, we provide an exhaustive characterization of

the possible ways in which various exclusion and exogeneity restrictions permit identi�cation of

e¤ects. In some cases, the cause and its response (the dependent variable) su¢ ce to identify

e¤ects. In other cases, additional variables play a key role. Because of their instrumental role in

identifying e¤ects and because they may not be traditional exogenous instruments, we call such

variables extended instrumental variables (XIVs). Our characterization provides a taxonomy for

the di¤erent types of XIVs and corresponding XIV estimators.

We emphasize the role that unobserved variables play in identifying e¤ects. Classical struc-

tural systems do not specify structural equations for unobserved variables but only their joint

distribution or some of its features (Hurwicz, 1950; Chesher, 2003). Correspondingly, classical

identi�cation results (cf. Hausman and Taylor, 1983) employ restrictions on the covariances or

dependence of certain unobserved variables. But because such systems do not specify how de-

pendence patterns among unobserved variables arise, they are not fully informative as to what

additional measurements may aid in identi�cation. Thus, researchers may make opaque or unin-

formed statistical assumptions in attempting to identify economically meaningful objects.

Typically, however, economic theory can specify structural relations without regard to the

measurement abilities of outside observers. This knowledge provides insight into statistical de-

pendence relations holding among all variables, both observed and unobserved. This then makes

explicit the causal relations underlying the identi�cation of e¤ects and exposes both obstacles and

opportunities for causal identi�cation that could otherwise be missed.

For clarity and simplicity and because a self-contained analysis would not otherwise be pos-

sible, we formally treat only linear structures. Nevertheless, as we explain, the insights gained

apply generally to nonlinear and nonseparable structures. Among our speci�c contributions are:

(1) We give new necessary and su¢ cient moment conditions for identi�cation of e¤ects in

triangular structural systems using potentially non-classical (extended) instrumental variables

(XIVs), without requiring the instruments to drive the cause of interest. (2) These results suggest

feasible Hausman-Taylor-type XIV estimators. We give new consistency and asymptotic normality

results for this class under conditions permitting arbitrary misspeci�cation.

We then study how the identifying moment conditions can arise. (3) First, we specify all

possible exogeneity relations that can identify e¤ects of interest. These involve the unobserved

causes of the response of interest together with conditionally exogenous and conditioning instru-

2



ments. Either or both of these may be endogenous and therefore non-classical. (4) Second, we

study exclusion restrictions involving the observed variables. This leads to a taxonomy of XIVs

that (a) precede the cause of interest (pre-cause), (b) mediate the e¤ect of the cause of interest

(intermediate-cause), or (c) succeed the response (post-response).

(5) The cases we study exhaust the possibilities for identifying causal e¤ects based on exogene-

ity and exclusion restrictions, providing a comprehensive framework for identifying e¤ects that

encompasses standard IV, control function, and other, less familiar approaches. Like Angrist, Im-

bens, and Rubin (1996, AIR), we provide a causal account of the role of each system component,

but our account extends well beyond the standard IV framework considered by AIR.

(6) Our analysis reveals an important distinction between observed instruments and proxies

for unobserved instruments. The latter fall outside the AIR framework. With linearity, proxy

instruments can deliver consistent ILS-based estimates of e¤ects, even though they are endogenous

in the reduced form. In more general nonlinear or nonseparable systems, multiple proxies are

needed to identify e¤ects of interest (see Schennach, White, and Chalak, 2009).

(7) Our results explain the genesis of control variables (covariates) ensuring unconfoundedness

(e.g., Rubin, 1974) or identi�cation as in Altonji and Matzkin (2005) or Hoderlein and Mammen

(2007). Here, the distinction between observed and unobserved confounders is important. When

these are unobserved, we distinguish between structural and predictive proxies. Structural proxies

mediate the e¤ects of confounders on the cause or response, as in Pearl�s (1995) �back-door�

method. Predictive proxies complement and extend Pearl�s back-door methods. In this context,

we explain how the standard treatment of �omitted variables�bias is incomplete and why not all

regression coe¢ cients need have signs and magnitudes that make economic sense.

(8) We highlight the utility of Pearl�s (1995) �front-door�method. In these structures, vari-

ables that mediate the e¤ect of the endogenous treatment on the response (intermediate-cause

instruments) can ensure identi�cation. (9) We extend the Hausman-Taylor (1983) framework by

showing that conditional covariance restrictions can also identify causal e¤ects.

The plan of the paper is as follows. Section 2 speci�es the data generating structural equation

system. Section 3 gives necessary and su¢ cient moment conditions for identi�cation of causal

e¤ects based on XIVs. Section 4 studies asymptotic properties of feasible XIV estimators with

possible misspeci�cation. Section 5 characterizes all possible exogeneity and exclusion restrictions

ensuring causal identi�cation. Sections 6 and 7 analyze these methods in detail, with particular

attention to how causal relations among unobservables create opportunities and obstacles for

identi�cation. Section 6 treats single XIV methods; section 7 studies double XIV methods. Section

8 concludes with �nal remarks and a discussion of directions for future research. The Appendices

contain formal proofs and a number of results supporting the discussion of the text.

2 Causal Data Generating Systems

We consider data generated by a triangular structural system S � (V0; r). For this, let N =

f0; 1; :::g denote the integers, let N+ denote the positive integers, and let �N+ � N+ [ f1g:
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Assumption 2.1 : Data Generation The triangular structural system S generates a k0 � 1
random vector V0; k0 2 �N+; and kj � 1 random vectors Vj ; kj 2 N+; j = 1; :::; J; J 2 N+; as

V1
c
= r1(V0)

V2
c
= r2(V1; V0)

...

VJ
c
= rJ(VJ�1; :::; V1; V0);

where structural response functions r � (r1; :::; rJ) are unknown vector-valued measurable functions:

Triangular structures have long been of interest in economics and econometrics. Recent work of

Imbens and Newey (2009) provides discussion and some instructive examples.

We use the c
= notation to distinguish these relations from purely probabilistic relations, such

as regression equations, and to emphasize that these structural equations represent directional

�causal links�(Goldberger, 1972, p.979): the right-hand side direct causes V0; :::; Vk�1 mechanis-

tically determine the value of the corresponding left-hand side response Vk; but the converse is

not true, i.e., Vk does not determine Vj for any j � k. Conceptually, the right-hand side variables
of a structural relation can be manipulated without modifying any of the other relations.

This enables de�nition of causal e¤ects as changes in Vk resulting from hypothetical interven-

tions where Vj is set to some di¤erent value, V �j . Following the literature, we seek to measure

features of the distribution of the e¤ect of Vj on Vk. For example, when the derivative exists, we

are interested in conditional averages of the marginal e¤ect of continuously distributed Vj on Vk,

Djrk(Vk�1; :::; Vj ; :::; V0);

where Dj � (@=@vj). White and Chalak (2009b) and Chalak and White (2009) provide a rigorous
formalization; references here to notions of cause and e¤ect are as formally de�ned there.

In triangular systems, there is an inherent ordering: �predecessor�variables may determine

�successor�variables, but not vice versa. In particular, Vj does not cause Vk when j � k (including
k = 0). For j < k, we say that Vj does not directly cause Vk if rk(Vk�1; : : : ; V0) de�nes a function

constant in Vj . Otherwise, we say that Vj directly causes Vk. The variables V0 are not determined

by any other variable in the system1. Following White and Chalak (2009b), we call V0 fundamental

variables. Triangularity (also called �recursivity�or �acyclicality�) also ensures that total or full

e¤ects, that is, the e¤ect of one variable on another, channeled via all routes in the system, both

direct and indirect, are well de�ned (see Chalak and White, 2009).

For now, we do not specify whether or not realizations of the random variables V0; V1; : : : ; VJ
are observed. Classically, structural systems do not specify causal relations among unobserved

variables, apart from requiring that they do not depend on observed variables (e.g., Hurwicz,

1950). Thus, unobserved variables are fundamental in classical structural systems.

1The necessary existence of such variables for triangular systems is a consequence of Bang-Jensen and Gutin
(2001, prop. 1.4.2).
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In contrast, here we explicitly specify causal relations among all variables, observed or not.

There are several reasons for this. First, structural relations emerge from the economic behavior

of agents. In non-experimental settings, we view this behavior as logically prior to issues of

observability by researchers. That is, we focus on situations where economic behavior is not

a¤ected by the econometrician�s ability to observe some variables and not others; indeed, di¤erent

researchers may have di¤erent observational abilities, due to di¤ering access to data or di¤ering

budget or time constraints. Thus, though we may refer to �observables�or �unobservables,�we

understand these designations to be relative to an outside observer and not absolute.

Second, recursivity guarantees that causal notions are well de�ned. To ensure this for the

entire system, one must specify structural relations for all variables, not just some. A related

point is that, as Chalak and White (2009) prove, recursivity ensures the validity of Reichenbach�s

(1956) principle of common cause. This states that two random variables can exhibit correlation

(or, more generally, stochastic dependence) only if one causes the other or if they share a common

cause. Thus, stochastic dependence among unobserved variables implies the existence of causal

relations. These relations may further entail dependence between observed and unobserved causes

(endogeneity) for a given structural equation. Neglecting to understand this structure may cause

one to overlook situations that present di¢ culties for identi�cation. Further, as we show in detail

below, the precise nature of the causal relations holding among the unobserved variables also

creates opportunities for identi�cation that are not evident otherwise.

Consequently, a main message from our analysis is that su¢ ciently specifying the causal rela-

tions governing unobserved variables is of central importance to identifying causal e¤ects. Indeed,

it is precisely the systematic examination of the causal relations that may hold among unobserv-

ables that makes it possible to characterize the ways in which e¤ects of interest can be identi�ed.

We thus do not favor researchers simply including �random disturbances�in their structural

relations. Instead, we view such variables as unobserved causes, and we recommend that economic

theory be used to the maximum extent to identify both the variables relevant to a given phenom-

enon and the structure relating them, e.g., exclusion restrictions and conditional independence.

Throughout, we focus on identifying and estimating suitable measures of the e¤ect of one

observable on another. In nonseparable systems of the sort speci�ed in Assumption 2.1, �ne

details of the system structure (e.g., nonlinearity, separability, monotonicity) critically determine

the precise form and meaning of the identi�able e¤ects. The work of Heckman (1997), Abadie

(2003), Matzkin (2003, 2004, 2008), Heckman and Vytlacil (2005), Hoderlein (2005), Heckman,

Urzua, and Vytlacil (2006), Hoderlein and Mammen (2007), Imbens and Newey (2009), White

and Chalak (2009a), Schennach, White, and Chalak (2009), and Song, Schennach, and White

(2009), among others, demonstrates the rich possibilities and nuance that can arise.

Here, our main goal is to understand broadly how di¤erent exogeneity and exclusion restric-

tions can identify causal e¤ects. As the work just cited shows, exploring the �ne details of general

structural systems requires more space than is available here. Thus, to achieve our main goal, we

operate under assumptions that remove this sensitive dependence on structural details without
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sacri�cing insight into how and why e¤ects of interest are identi�able in some cases and not in

others. For this, an e¤ective strategy is to suppose that the system equations are linear. In this

case, the identi�able e¤ect measure is always interpretable as the marginal e¤ect of Vj on Vk.

Given linearity, this is also the average marginal e¤ect, as well as the e¤ect corresponding to

the average marginal e¤ect of treatment on the treated, etc. Nothing essential for understanding

causal identi�cation broadly is lost by the coincidence of these e¤ect measures. Further, because

the various exogeneity and exclusion restrictions ensuring identi�cation do not critically depend

on linearity, the insights gained apply to the general nonseparable case.

In some structures, linearity may facilitate identi�cation of e¤ects, masking complications

that arise in more general cases. We carefully identify such situations. This provides insight into

the robustness of identi�cation methods to the form of the structural equations. When linearity

merely simpli�es exposition, the conditions ensuring identi�cation of e¤ects and the relation to

other results in the literature, particularly classical results, become quite transparent.

A further advantage of imposing linearity is that the resulting estimators are parametric

(rather than nonparametric, as they must necessarily be in the general case), so that the relation

of these estimators to more familiar cases also becomes transparent. These advantages combine

to make possible a clear and accessible exposition of the key principles a¤ording identi�cation

generally that would otherwise be impossible in a self-contained article.

We now impose linear structure.

Assumption 2.2 : Linearity For j = 1; : : : ; J , assume that rj is linear, so that

V1
c
= �1V0

V2
c
= �2;1V1 + �2V0

...

VJ
c
= �J;J�1VJ�1 + :::+ �J;1V1 + �JV0;

where, for j = 1; : : : ; J; �j is an unknown real kj�k0 matrix, and for j = 2; : : : ; J , i = 1; :::; j�1;
�j;i are unknown real kj � ki matrices. Let E(V0) = 0; so E(Vj) = 0; j = 1; :::; J:

3 A Theorem for XIV Identi�cation

We now focus attention on a single structural equation of interest:

Vj
c
= �j;j�1Vj�1 + :::+ �j;1V1 + �jV0:

To proceed, we adapt our notation. Let Y � Vj denote the scalar response of interest. Let

X � [X1; : : : ; Xk]0; k 2 N+; denote observed causes of Y , let the vector Uy (p�1; p 2 �N � N[f1g)
denote the remaining causes of Y , and write " � U 0y�o; for an unknown vector �o; so that

Y
c
= X 0�o + ";
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where the unknown vector �o is the e¤ect of interest. By convention, X omits observables known

not to cause Y; ensuring that Y c
= X 0�o + " embodies known exclusion restrictions.

We let Z � [Z1; : : : ; Z`]0 and W � [W1; : : : ;Wm]
0 (`;m 2 N) denote observed variables poten-

tially instrumental to identifying e¤ects of interest, generated as in Assumptions 2.1 and 2.2. In

Section 5, we formally distinguish Z and W based on their roles in identifying �o.

We now state a result giving necessary and su¢ cient conditions for identifying �o.

Theorem 3.1 Suppose Assumptions 2.1 and 2.2 hold with Y c
= X 0�o + ":

Let ~Z (k�1) and ~W ( ~m�1; ~m 2 N) be given by [ ~Z 0; ~W 0]0 = A [Y;X 0; Z 0;W 0]0; for given matrix

A, where E[Z�(Y;X 0)] <1; with Z� � ~Z � E( ~Z j ~W ) (Z� � ~Z if ~m = 0). Then

(a) EfZ�"g exists and is �nite.
(b) EfZ�"g = 0 if and only if �o satis�es

E(Z�X 0)�o � E(Z�Y ) = 0: (1)

(c) If EfZ�"g = 0, then full identi�cation holds (that is, there is a unique �o satisfying eq.

(1)) if and only if E(Z�X 0) is non-singular. Then

�o = E(Z
�X 0)�1E(Z�Y ):

This result shares many common elements with classical treatments of IV methods, but it

di¤ers from classical formulations in two important ways. First, Theorem 3.1 explicitly uses the

extended instrumental variables (XIVs) [ ~Z 0; ~W 0]0 = A [Y;X 0; Z 0;W 0]0 to construct �derived� or

�residual�instruments, Z� � ~Z � E( ~Z j ~W ), analogous to those of Hausman and Taylor (1983).
As we demonstrate, the possible roles of Y; Z; andW in determining Z� and the conditioning on ~W

can be non-classical. Second, we do not require Z� to be a cause of X uncorrelated with ": Instead,

we focus on the crucial partial identi�cation condition EfZ�"g = 0; and we leave open the causal
relations underlying X and Z�. By considering which causal structures admit a matrix A yielding

EfZ�"g = 0 based on certain exclusion and exogeneity restrictions, we arrive at a characterization
of causal structures identifying �o that include a variety of interesting non-classical cases.

For this, we must also treat causal e¤ects that are functions of other identi�ed e¤ects.

Corollary 3.2 Suppose Assumptions 2.1 and 2.2 hold with Y c
= X 0�o+", as in Theorem 3.1. For

H 2 N+; let �1; :::; �H be vectors of structural coe¢ cients of S, and let b(�) be a known measurable
vector-valued function such that �o = b(�1; :::; �H). If �1; :::; �H are each fully identi�ed as in

Theorem 3.1, then �o is fully identi�ed as b(�1; :::; �H).

4 Asymptotic Properties of XIV Estimators

The results of the previous section immediately suggest useful estimators. Thus, before embarking

on a detailed examination of identi�cation issues, we describe these brie�y. This also helps to
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highlight the di¤erence between structural and non-structural relations that may hold for given

data and to further motivate the search for structures where causal e¤ects can be identi�ed.

The plug-in XIV estimator suggested by Theorem 3.1 is

�̂
XIV

n � [Z�0X]�1[Z�0Y];

where X; Y; and Z� denote n� k; n� 1; and n� k matrices containing n identically distributed
observations on X; Y; and Z�; respectively. Generally, Z� may be unknown, so in practice we

replace Z� with an estimator, say Ẑ�; giving a feasible XIV estimator

�̂
FXIV

n � [Ẑ�0X]�1[Ẑ�0Y]:

To construct Ẑ�; we may need estimates of ~Z; ~W; and E( ~Z j ~W ): To keep a tight focus here,
however, we will abstract from all but the simplest statistical issues associated with this estimation,

leaving the more involved aspects as interesting topics for further research.

We begin by noting that any useful feasible estimator should have the property that replacing

Z� with its estimator Ẑ� generally leaves the probability limit unchanged: �̂
FXIV

n ��̂XIVn
p! 0: The

next simple result, apparently not elsewhere available, shows that any such estimator is associated

with a stochastic relation resembling a structural equation but with no structural content.

Proposition 4.1 Suppose (X;Y; Z�) are random vectors such that S � E(Z�Y ) is �nite, and

Q � E(Z�X 0) is �nite and non-singular. Then �y � Q�1S exists and is �nite, and there exists a
random variable � such that E(Z��) = 0 and

Y = X 0�y + �:

If in addition fZ�iX 0
ig and fZ�i Yig obey the law of large numbers (i.e., Z�0X=n

p! Q and Z�0Y=n
p!

S); then �̂
XIV

n
p! �y. If also �̂

FXIV

n � �̂XIVn
p! 0 then �̂

FXIV

n
p! �y:

This result shows that any random vectors satisfying mild conditions can appear to obey a

spurious �structural�equation

Y = X 0�y + �

with proper instruments Z� (E(Z�X 0) nonsingular and E(Z��) = 0). But this relation is simply

a mathematical construct with no economic (i.e., structural) or causal content. Interventions to

X need not impact Y; as Assumption 2.1 is not in force. Moreover, interventions to � are not

even well de�ned, unless perhaps accomplished by manipulating X and/or Y:

The only symbolic di¤erence between this relation and the structural relation of interest,

Y
c
= X 0�o + ";

is the c
= appearing above, signaling the structure imposed by Assumption 2.1. Indeed, we use c

=

precisely because there is otherwise no explicit way to tell that one of these relations is structural
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and the other isn�t. Our search for structures where causal e¤ects can be identi�ed is in fact the

search for the economic relationships that force �y to equal �o:

Estimating Z� generally has consequences for the asymptotic distribution of the feasible es-

timator. To illustrate, suppose that ~m > 0; that ~Z and ~W do not require estimation, and that

the regression of ~Z on ~W is linear. That is, E( ~Z j ~W ) = �� ~W; where �� � E( ~Z ~W 0)E( ~W ~W 0)�1

is unknown. The plug-in estimator for �� is �̂n � ~Z0 ~W( ~W0 ~W)�1; where ~Z and ~W are n� ` and
n� ~m matrices whose rows are identically distributed observations on ~Z 0 and ~W 0; corresponding

to the observations on Y and X: Then

~�
FXIV
n � [(~Z� ~W�̂0n)

0X]�1(~Z� ~W�̂0n)
0Y

= [~Z0(I� ~W( ~W0 ~W)�1 ~W0)X]�1[~Z0(I� ~W( ~W0 ~W)�1 ~W0)Y]:

Under plausible conditions ~�
FXIV
n

p! ��; say, and if in fact E( ~Z j ~W ) = �� ~W; then �� = �y:
We now give asymptotic distribution results for ~�

FXIV
n ; again without imposing any causal

structure. For this, let ��i � Yi �X 0
i�
�; ��i � ~Zi � �� ~Wi; and ~�i � ��i � ~W 0

i E(
~W ~W 0)�1E( ~W��);

i = 1; :::; n: By the de�nitions of �� and ��; E(��i �
�
i ) = 0 and E(�

�
i
~W 0
i ) = 0; so E(�

�
i ~�i) = 0:

Theorem 4.2 Suppose f ~W;X; Y; ~Zg are random vectors such that E[ ~W ( ~W 0; X 0; Y )] < 1 and

E[ ~Z( ~W 0; X 0; Y )] <1, and E[ ~W ~W 0] and Q� = E[��X 0] are non-singular. Suppose further that

(i) f ~Wi( ~W
0
i ; X

0
i; Yi)g and f ~Zi( ~W 0

i ; X
0
i; Yi)g obey the law of large numbers; and

(ii) n�1=2
Pn
i=1 �

�
i �
�
i = Op(1) and n

�1=2Pn
i=1 �

�
i ~�i

d! N(0; V �); where V � is �nite and positive

de�nite. Then

n1=2(~�
FXIV
n � ��) d! N(0; Q��1V �Q�0�1):

This result is also apparently new, as it gives the asymptotic distribution of standard or Hausman-

Taylor-type IV estimators with arbitrary misspeci�cation. (For ~m = 0; put ~Wi � 1:) Using �̂n to
construct ~�

FXIV
n introduces additional terms into V �, as ~�i = �

�
i when �

� is known.

Asymptotic distribution results also hold for feasible plug-in XIV estimators for e¤ects identi-

�ed by Corollary 3.2, say ~�
FXIV
n = b(~�

FXIV
n ); where ~�

FXIV
n is a vector of FXIV estimators. These

results follow easily from results for ~�
FXIV
n by the delta method. The asymptotic covariance ma-

trix can be complicated, so we give this result in Appendix B for easy reference.

To gain further insight, consider what happens when causal structure is present. Speci�cally,

suppose the conditions of Proposition 4.1 hold and that Y c
= X 0�o + ": Then

�y � Q�1E[Z�(X 0�o + ")] = �o +Q
�1E(Z�"): (2)

Thus, �̂
XIV

n converges generally to the true e¤ect, �o, plus an �e¤ect bias,� �
� � Q�1E(Z�"):

This vanishes if and only if E(Z�") = 0:

As is easily seen, a su¢ cient condition for E(Z�") = 0 is conditional non-correlation of ~Z and

"; given ~W , E( ~Z " j ~W ) = E( ~Z j ~W )E(" j ~W ): (Rewrite this as E[( ~Z � E( ~Z j ~W ))" j ~W ] = 0;

and take expectations.) It is also obvious that this must hold for some ~W (including ~W = 1),
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since if this fails with ~W = 1; we have E(Z�") = E( ~Z ") 6= E( ~Z)E(") = 0: Although conditional2

non-correlation is thus necessary and su¢ cient to identify �o when E(Z
�X 0) is nonsingular, this

is a special feature of the assumed linear structure.

In general nonlinear or nonseparable cases, the necessary and su¢ cient identifying condition

is not conditional non-correlation, but conditional independence (cf. White and Chalak, 2009a,

theorem 4.1). Even in linear structures, conditional independence is key for identifying other

than average e¤ects, such as quantile e¤ects. It is even necessary for identifying average e¤ects

in linear structures, if the distribution of (Uy; ~W; ~Z) can be arbitrary, as we show in Appendix

C. Thus, in what follows, we explicitly study which structures can generate ~Z and ~W ensuring

conditional independence3, ~Z ? Uy j ~W . We call this conditional exogeneity; strict exogeneity, a
classical condition, holds when ~m = 0; so that ~Z ? Uy.

5 Exogeneity and Exclusion Restrictions in Structural Systems

Theorem 3.1 shows that e¤ects of interest are identi�ed if and only if E(Z�") = 0 and E(Z�X 0)

is non-singular. But it does not specify exactly how Z and W are generated. Nor does it specify

how ~Z and ~W are to be chosen. We now study the possible ways a system can admit (conditional)

exogeneity, ~Z ? Uy j ~W; for speci�c choices of ~W and ~Z, so that E(Z�") = 0. We also study how Z

and W are generated, with particular attention to both the causal relations among unobservables

and the exclusion restrictions embodied in S. The latter bears on the non-singularity of E(Z�X 0);

the former has implications for conditional exogeneity.

We �rst consider structures where at least one relation ~Z ? Uy j ~W holds. Recall that

[ ~Z 0; ~W 0]0 = A[Y;X 0; Z 0;W 0]0; without essential loss of generality, let A form ~Z and ~W as lin-

ear combinations of mutually exclusive groupings of Y;X;Z; and W . We distinguish Z and W

by requiring that W not appear in ~Z and that Z not appear in ~W: Accordingly, we call Z

(un)conditional instruments and W conditioning instruments. There are fourteen possibilities

involving W , represented in Table I. Omitting W yields fourteen more relations (not tabulated).

Table I: Possible Conditional Independence Relations

(X;Y; Z) ? Uy jW (X;Y ) ? Uy jW (X;Z) ? Uy jW � (Y; Z) ? Uy jW

X ? Uy jW � Y ? Uy jW Z ? Uy jW �

(Y; Z) ? Uy j (W;X) Y ? Uy j (W;X) Z ? Uy j (W;X) �

(X;Z) ? Uy j (W;Y ) X ? Uy j (W;Y ) Z ? Uy j (W;Y ) �

Z ? Uy j (W;X; Y ) �

2We take the unconditional case to be the special case of conditioning on a constant.
3Following Dawid (1979), we write ~Z ? Uy j ~W to denote that ~Z is independent of Uy given ~W . If desired, one

can interpret this as conditional non-correlation in strictly linear contexts.
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Because Y c
= X 0�o + " where " � U 0y�o; we can rule out some of these possibilities a priori.

In all but exceptional cases, the fact that Uy directly causes Y implies Y /?Uy and Y /?Uy j X
(see Chalak and White, 2009). This then implies (X;Y ) /?Uy; (Y; Z) /?Uy; (X;Y; Z) 6? Uy, and

(Y; Z) /?Uy j X: Similarly, X /?Uy j Y; as conditioning on a common response generally renders X
and Uy dependent (see Chalak and White, 2009). This then implies (X;Z) /?Uy j Y . Except when
W fully determines system variables, similar dependence holds when further conditioning on W .

Six possibilities remain, denoted by � in Table I, along with their six analogs omitting W .

Table II provides a complete list of these twelve possible exogeneity relations, the basis of our

characterization of identi�able structures.

Table II: Unconditional and Conditional Exogeneity Relations

Exogenous Causes (XC) X ? Uy

Exogenous Instruments (XI) Z ? Uy

Exogenous Causes and Instruments (XCI) (X;Z) ? Uy

Conditionally Exogenous Causes given
Conditioning Instruments (XCjI) X ? Uy jW

Conditionally Exogenous Instruments given
Causes (XIjC) Z ? Uy j X

Conditionally Exogenous Instruments given
Response (XIjR) Z ? Uy j Y

Conditionally Exogenous Instruments given
Causes and Response (XIjCR) Z ? Uy j (X;Y )

Conditionally Exogenous Instruments given
Conditioning Instruments (XIjI) Z ? Uy jW

Conditionally Exogenous Causes and Instruments
given Conditioning Instruments (XCIjI) (X;Z) ? Uy jW

Conditionally Exogenous Instruments given
Causes and Conditioning Instruments (XIjCI) Z ? Uyj(X;W )

Conditionally Exogenous Instruments given
Response and Conditioning Instruments (XIjRI) Z ? Uy j (Y;W )

Conditionally Exogenous Instruments given Causes,
Response, and Conditioning Instruments (XIjCRI) Z ? Uy j (X;Y;W )

11



Observe that XC, XI, XCI, XCjI, XIjC, XIjR, and XIjCR involve a single type of instrumental
variable: either (un)conditional instruments Z or conditioning instruments W but not both. On

the other hand, XIjI, XCIjI, XIjCI, XIjRI, and XIjCRI involve both conditional and conditioning
instruments. We refer to XIV methods that use a single type of instrumental variable as single

XIV methods and to those that make use of both types as double XIV methods. In Section 6, we

study single XIV methods. We study double XIV methods in Section 7.

To systematically analyze how system variables can be generated, we use the system�s direct

causality matrix CS = [cgh]. This is an adjacency matrix in which every variable has a corre-

sponding row and column. For simplicity, let kj = 1; j > 0; for now. Then (V 00 ; V1; : : : ; VJ)
0 is

G�1; G � k0+J , so CS is G�G. An entry cgh = 0 says that the row g variable does not directly
cause the column h variable. An entry cgh = 1 says that the row g variable is (or may be) a

direct cause of the column h variable. By convention, a variable does not cause itself, so cgg = 0,

g = 1; : : : ; G. As we now explain, the direct causality matrix CS for a system S generated under
Assumption 2.1 has the form

CS =

�
CS;1 CS;2
CS;3 CS;4

�
=

V01 ::: V0k0 V1 ::: VJ
V01 � ::: �
... 0

...
. . .

...
V0k0 � ::: �
V1 0 � �
... 0

...
. . . �

VJ 0 ::: 0

Since V0 is a vector of fundamental variables, these are not caused by any system variable. This

implies that CS;1 and CS;3 are zero matrices. Unspeci�ed entries (�) in CS;2 and CS;4 indicate
elements taking either the values 0 or 1. In CS;2; the � entries re�ect that elements of V0 may
or may not directly cause V1; :::; VJ . Last, the assumed triangularity of S makes CS;4 upper

triangular, with zeros along the diagonal (cgg = 0). Thus, CS can explicitly specify all possible

direct causality relationships, including those holding among unobserved variables, as speci�ed in

Assumption 2.1. It also re�nes Assumption 2.1 by explicitly specifying exclusion restrictions.

The recursivity of S can be concisely expressed in terms of CS :

Proposition 5.1 Acyclicality Suppose that Assumption 2.1 holds for a structural system S with
corresponding G�G direct causality matrix CS . Then CS is such that for each h � G and each

set of h distinct elements, say fg1; : : : ; ghg, of f1; : : : ; Gg, cg1g2 � cg2g3 � :::� cghg1 = 0.

To illustrate how Assumptions 2.1 and 2.2 operate when, as is usual, only some variables are

observed, suppose we observe X; Y; and Z; each driven by its own unobservable, Ux; Uy; and

Uz; respectively. Although the unobservables need not be fundamental, we adopt the common

convention that they are not caused by observables (if not, we can usually ensure this by suitable

substitutions). We also specify that Y does not cause X: The direct causality matrix is then
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DS =

�
DS;1 DS;2
DS;3 DS;4

�
=

Ux Uy Uz X Y Z
Ux 0 � � 1 0 0
Uy � 0 � 0 1 0
Uz � � 0 0 0 1
X 0 0 0 0 � �
Y 0 0 0 0 0 �
Z 0 0 0 � � 0

As X;Y; and Z each have their own unobservable, DS;2 = I: As unobservables are not caused by

observables, DS;3 = 0: As Y does not cause X; the (2; 1) element of DS;4 is 0.

Now consider the possible causal relations among X;Y; and Z speci�ed by DS;4 = [djk].

By Proposition 5.1, acyclicality imposes three constraints djk � dkj = 0 and two constraints

djk � dk` � d`j = 0; j; k; ` 2 f1; 2; 3g: Assume X is a cause of Y , either direct or indirect; then

d12 = 1 and/or d13 � d32 = 1: Since d21 = 0, there are 9 possibilities that we depict in Table

III, using arrows to denote direct causality in the obvious way. We label these cases in relation

to instruments Z. These include the �pre-cause,� �intermediate cause,� and �post-response�

instrument cases. Structures not excluding Z from the structural equation for Y appear in the

second column of the �rst, second, and third rows. We refer to entry (1; 1) of Table III as the

non-causal case, entry (1; 2) as the joint cause case, and entry (1; 3) as the joint response case.

We also sometimes refer to entry (2; 2) as the common cause instrument case.

Classically, unobservables are treated as fundamental, either ruling out or ignoring causal

relations among them. Considering just the presence or absence of statistical dependence among

the unobservables, as is traditional, yields eight possibilities. Interacting these with the nine

possibilities of Table III gives 72 possible systems.

But DS;1 exposes a rich set of causal possibilities generating dependence patterns among

unobservables. By Proposition 5.1, DS;1 = [d0jk] satis�es three constraints d
0
jk � d0kj = 0 and two

constraints d0jk � d0k` � d0`j = 0; j; k; ` 2 f1; 2; 3g. This gives 25 possible structures among the
unobservables. Interacting these with the possibilities of Table III gives 225 causal structures.
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Each of these structures entails not only stochastic dependence but also conditional dependence

among the unobservables, a¤ording useful knowledge that would otherwise be unavailable.

In what follows, we study in detail leading examples of these structures, as well as more

general structures with conditioning instruments, W: As a concise visual representation of the

causality matrix, we use a form of causal graph suggested by White and Chalak (2009) in the

spirit of Wright (1921, 1923), Spirtes, Glymour, and Scheines (1993), and Pearl (2000). To avoid

misunderstanding, we emphasize that these graphs play no formal role in our analysis. They are

solely a convenient means of depicting structural relations.

To describe these graphs, let V � (V 00 ; V1; : : : ; VJ). The graph GS for system S consists of
a set of vertices (nodes), one for each element of V , and a set of arrows faghg, corresponding
to ordered pairs of distinct vertices. An arrow agh denotes that Vg directly causes Vh. We use

solid nodes for observables and dashed nodes for unobservables. We link unobservables using a

line with no arrow to indicate that these are stochastically dependent, without fully specifying

their genesis. Here, this is due to either (i) one variable causing the other or (ii) both sharing a

common cause that we do not depict. In the absence of structure to the contrary, the absence of

lines between unobservables denotes independence.

For convenience, our graphs may represent vectors of variables as a single �vector�node. In

this case, solid nodes denote observable vectors and dashed nodes denote vectors with some or all

elements unobserved. An arrow from vector node Z to vector node X indicates that at least one

component of Z is a direct cause of at least one element of X. A line with no arrow linking two

dashed vector nodes denotes that these are dependent without specifying how this arises.

6 Single Extended Instrumental Variables

In this section, we study identi�cation in the single XIV cases, XC, XI, XCI, XCjI, XIjC, XIjR,
and XIjCR, paying particular attention to the causal role of the instruments.

Let Ux � [Ux1 ; : : : ; Uxk ]
0, Uz � [Uz1 ; : : : ; Uz` ]

0, and Uw � [Uw1 ; : : : ; Uwm ]
0 denote the unob-

served causes of X, Z, and W; respectively. By assumption, each of these has mean zero.

6.1 Exogenous Causes

The simplest case is the classical exogenous cause (XC) case, where simple regression identi�es

the e¤ect of X on Y . We represent this with the system S1 and its causal graph G1:

(1) X
c
= �xUx

(2) Y
c
= X 0�o + U

0
y�o;

where Ux ? Uy:

Uy

YX

Ux

Graph 1 (G1)
 Exogenous Causes (XC)
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Given S1(1) and Ux ? Uy, we have strict exogeneity by Dawid (1979, �D�) lemma 4.2(i):

(XC ) Exogenous Causes: X ? Uy:

�o is then fully identi�ed if and only if E(XX
0) is non-singular. The plug-in estimator for �o is

the usual OLS estimator, �̂
XC

n = (X0X)�1(X0Y).

The analog of E(XX 0)�1E(XY ) in nonseparable structures is DxE[Y j X = x]: Under XC,

this is also a structurally meaningful average marginal e¤ect (e.g., Altonji and Matzkin, 2005).

Although S1 doesn�t specify how Ux ? Uy arises, this independence does have causal content,
due to Reichenbach�s (1956) principle of common cause. Here, X and Y are correlated. Now, Y

does not cause X. If Ux ? Uy because neither Ux nor Uy causes the other and Ux and Uy have

no common cause, then neither can X and Y have a common cause (other than Ux, mediated

solely by X). Thus, correlation between X and Y can only arise from the e¤ect of X on Y:

Alternatively, Ux ? Uy can hold even with a direct causal relation or common cause for Ux and

Uy, as the converse of Reichenbach does not hold (see Chalak and White, 2009). Nevertheless,

Ux ? Uy ensures that the e¤ects of any common cause for X and Y; except one operating via X;

are �neutralized.�Again, the association between X and Y can only be due to the e¤ect of X.

In experimental studies, randomization can ensure XC. In observational studies, XC is less

plausible. To examine the failure of XC from a causal standpoint, consider S2 and its graph G2:

(1) X
c
= �xUx

(2) Y
c
= X 0�o + U

0
y�o;

where Ux /? Uy:

Uy

YX

Ux

Graph 2 (G2)
 Endogenous Causes

For simplicity, let Ux /? Uy imply E(UxU 0y) 6= 0; so generally E(XU 0y�o) 6= 0. XC therefore fails,
and �o is not even partially identi�ed, as moments involving unobservables appear in the moment

equation E(XY ) = E(XX 0)�o + E(XU
0
y�o). Further, S2 does not specify how Ux /? Uy arises.

By Reichenbach, either (i) Ux causes Uy; (ii) Uy causes Ux, or (iii) Ux and Uy share unobserved

common causes, say U0. Ux and Uy may also be dependent because they share common elements.

Thus, the correlation between X and Y is due not just to X causing Y; but also or instead to the

joint response of X and Y to Uy, to Ux, or to U0.

In standard parlance, failure of XC is called regressor endogeneity and X is endogenous. In the

treatment e¤ect literature, this is confoundedness of causes. In S2, Uy; Ux; or U0 are confounding
causes. Thus, under Assumption 2.1, an endogenous cause shares an unobserved common cause

with the response. Simultaneity is absent and is thus not responsible for endogeneity.

For XC, then, the presence of causal relations among unobservables creates obstacles for

identi�cation, whereas their absence creates opportunities.
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6.2 Exogenous Instruments

When causes are endogenous, XC cannot identify �o. But it is classical that �proper�instruments

Z causing X can ensure identi�cation. Z is proper if it is �valid,�i.e. E(Z") = 0, and �relevant,�

i.e. E(ZX 0) 6= 0 (e.g., Hamilton, 1994 p.238; Hayashi, 2000 p.191; Wooldridge, 2002 p.83-84).
Wright (1928) �rst used instruments, which he called �curve shifters,�to identify supply and

demand elasticities (see Morgan, 1990; Angrist and Krueger, 2001; Stock and Trebbi, 2003).

Wright states: �Such additional factors may be factors which (A) a¤ect demand conditions with-

out a¤ecting cost conditions or (B) a¤ect cost conditions without a¤ecting demand conditions�

(Wright, 1928, p.312; our italics). Clearly, Wright had in mind causality, not just correlation.

As we discuss next, standard IV methods fall into one of two causally meaningful subcategories,

relating to instrument observability. As we show, the �rst case accords with the classical indirect

least squares (ILS) interpretation for IV (Haavelmo, 1943, 1944). The second case extends this

to situations where a suitable proxy for an unobserved instrument is available.

6.2.1 Observed Exogenous Instruments

Consider the classical triangular system S3 and its associated causal graph G3:

(1) Z
c
= �zUz

(2) X
c
= 
xZ + �xUx

(3) Y
c
= X 0�o + U

0
y�o;

where Ux /? Uy
and (Ux; Uy) ? Uz

Z

Uy

YX

Uz

Ux

Graph 3 (G3)
Observed Exogenous Instruments (OXI)

where 
x is k � k (so ` = k). As Ux /? Uy; X is endogenous. Although S3 does not specify how
this dependence arises, strict exogeneity holds, as D lemma 4.2(i) implies

(XI) Exogenous Instruments: Z ? Uy:

Full identi�cation holds if and only if E(ZX 0) is non-singular, embodying the standard rank and

order conditions. From S3(1) and S3(2); E(ZX 0) = E(ZZ 0)
x + E(ZU
0
x)�x = E(ZZ 0)
x: The

non-singularity of 
x and E(ZZ
0) is thus necessary and su¢ cient for non-singularity of E(ZX 0).

The plug-in estimator is the familiar IV estimator, �̂
XI

n = (Z0X)�1(Z0Y).

In S3, Z satis�es the following three causal properties essential to identifying �o:

CP:OXI (Causal Properties for Observed Exogenous Instruments) (i) Z causes X, and
the e¤ect of Z on X is identi�ed via XC; (ii) Z indirectly causes Y , and the (total) e¤ect of Z

on Y is identi�ed via XC; (iii) Z causes Y only via X.
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Condition (i) holds by S3(1; 2); (ii) holds by substituting S3(2) into S3(3); giving

(4) Y
c
= Z 0�o + U

0
x�

0
x�o + U

0
y�o;

where �o � 
0x�o. Condition (iii) enforces the exclusion restriction that Z does not enter S3(3).
Failure of any of these conditions results in XI failing to identify �o in S3: Among other things,
the presence of causal relations between Uz and (Ux; Uy) creates obstacles for identi�cation; their

absence creates opportunities.

When it holds, CP:OXI justi�es the classical ILS interpretation for IV (Haavelmo, 1943, 1944),

as �o = 

0�1
x �o; with 
x and �o identi�ed by XC. Thus,

�o = 

0�1
x �o = fE(ZZ 0)�1E(ZX 0)g�1fE(ZZ 0)�1E(ZY )g = E(ZX 0)�1E(ZY ):

This motivates the construction of �derivative ratio� (DR) e¤ects in more general settings. For

example, Heckman (1997) and Heckman and Vytlacil (1999, 2001, 2005, 2007) have proposed

local ILS (also called �local IV�) estimators for such cases. Schennach, White, and Chalak (2009)

give a detailed analysis of DR e¤ects identi�ed by XI in the general nonseparable case.

As Z is observable, we call Z observed exogenous instruments (OXI).

OXI Example Angrist (1990) provides an example of OXI where all causal elements are

clear. Angrist is interested in the e¤ect of Vietnam War military service on a veteran�s post-war

civilian wage.

Graph 4 (G4)
OXI for the Effect of Military

Service on Veteran’s Wage

Draft lottery

number

Ability and other

determinants

Veteran’s

wages

Military

service

Lottery’s random

process

Civilian work

opportunities

Vietnam War service and civilian wage could be confounded by variables such as individual ability

or education, as either might a¤ect both joining the military and civilian wages. As military

service is thus potentially endogenous, Angrist employs the Vietnam draft lottery number as an

instrument. This number was randomly assigned by birth date; those whose lottery number fell
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below a certain threshold were �draft-eligible.�Those with a lottery number above the threshold

were not required to serve in the military.

Angrist (1990) assumes that the randomness of the lottery number makes it independent of

unobserved factors a¤ecting military service or civilian wages, and that the lottery number does

not a¤ect veteran�s wages except via military service, as in G4. If the data are indeed generated

in this way, the lottery number satis�es CP:OXI and is a legitimate OXI.

6.3 Proxies for Unobserved Exogenous Instruments

Satisfying CP:OXI in S3 requires that XC for Z identi�es 
x and �o; as when Z is randomized.
But randomized Z�s can be just as hard to justify as randomizedX�s. On the other hand, Theorem

3.1, as is standard (e.g., Heckman, 1996), does not require Z ? Ux: the e¤ect of Z on X, usually
estimated from a ��rst stage�regression, need not be identi�ed, as we now demonstrate.

Consider S5 and its graph G5:

(1) Ux
c
= �yUy + �zUz

(2) Z
c
= �zUz

(3) X
c
= 
xZ + �xUx

(4) Y
c
= X 0�o + U

0
y�o;

where Uy ? Uz; Graph 5 (G5)
Proxies for Unobserved Exogenous Instruments (PXI)

Z

Uy

YX

Uz

Ux

with 
x k � k (so ` = k). Whereas in S3 we have Ux ? Uz, here Ux /? Uz. A key feature is that

the dependence relations among Ux, Uy, and Uz arise because Uy and Uz are independent joint

causes of Ux: Unlike S1 and S3, S5 speci�es explicit causal relations among the unobservables.
It is easy to see that XI is satis�ed, as Z ? Uy. As we also have Z /? X, Z is a proper

instrument. Thus, Theorem 3.1 applies with ~Z = Z and ~m = 0; identifying �o.

The key di¤erence between S5 and S3 is that the causal properties making Z instrumental for
identifying �o in S5 are satis�ed not by Z but by Uz. If these were observable, they could act as
proper instruments. In their absence, Z acts as their proxy. Accordingly, we call Z in S5 proxies
for (unobserved) exogenous instruments (PXI). The necessary4 causal properties are now:

CP:PXI (Causal Properties for Proxies for Exogenous Instruments) (i) Uz indirectly
causes X, and the total e¤ect of Uz on X could be identi�ed via XC had Uz been observed; (ii)

Uz indirectly causes Y , and the total e¤ect of Uz on Y could be identi�ed via XC had Uz been

observed; (iii) Uz causes Y only via X.

4CP:OXI and CP:PXI account for both the successes and failures of standard IV. Appendix D contains a
detailed causal description of how identi�cation of �o fails in the �irrelevant instrument,��invalid instrument,�and
�under-identi�ed�cases. XI holds in the latter, but the exclusion restrictions are violated, so E(Z�X 0) is singular.
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The CP:PXI conditions are analogs of CP:OXI with Uz replacing Z. In (i) and (ii); we refer to

the total e¤ect of Uz on X and Y . In (i), this includes not only the e¤ect of Uz on X through Z,

but also through Ux, and similarly for the e¤ect on Y in (ii); ensured by the reduced form

(5) Y
c
= Z 0�o + U

0
x�

0
x�o + U

0
y�o

c
= U 0z(�

0
z�o + �

0
z�
0
x�o) + U

0
y(�o + �

0
y):

CP:PXI(iii) enforces the exclusion restriction on Z, but Z need not (indirectly) cause Y .

The classical ILS account fails for Z in S5, as Ux /? Uz prevents XC from identifying either 
x
or �o. Indeed, if we were to follow Pearl (2000, p.153-154), who advocates identi�cation strategies

that recover causal e¤ects as functions only of identi�ed e¤ects, we would proceed no further.

Interestingly, however, these identi�cation failures exactly o¤set here. Since 
x = E(XZ 0)

E(ZZ 0)�1 � �xE(UxZ 0)E(ZZ 0)�1 and �o = E(ZZ 0)�1E(ZY )� E(ZZ 0)�1E(ZU 0x)�0x�o = 
0x�o;

E(ZX 0)�1E(ZY ) = fE(ZZ 0)�1E(ZX 0)g�1E(ZZ 0)�1E(ZY )
= f
0x + E(ZZ 0)�1E(ZU 0x)�0xg�1f
0x + E(ZZ 0)�1E(ZU 0x)�0xg�o
= �o:

This even permits 
x = 0, so Z need not cause X, whereas 
x had to be invertible in S3.
Thus, for PXI, the presence of speci�c causal relations among unobservables identi�es �o.

PXI Example A number of applied papers that use standard IV implicitly employ PXI.

Consider, for example, measuring the e¤ect of education on future wages, as in Butcher and Case

(1994, BC). As BC note, years of education and wages can be confounded by unobservables such

as ability, making years of education potentially endogenous.

Graph 6 (G6)
PXI for the effect of Education of wages

Sibling sex
composition

WagesYears of

education

Parental preferences

and borrowing

constrains

Education

financing

Ability and other

determinants

To address this, BC employ an individual�s sibling sex composition as an instrument. BC discuss

a variety of mechanisms by which household composition may be associated with children�s edu-

cational attainment. These include parental preferences, investment in children�s education under
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borrowing constraints, and developmental psychology. Further, BC argue that this association is

unlikely to be related to future wages by means other than educational attainment.

In our terms, BC exploit correlation between a child�s educational attainment and sibling sex

composition without requiring this correlation to be solely due to the e¤ect of one on the other.

For example, parental preferences and their capacity to help �nance their children�s�education

may generate a correlation between education level and sibling sex composition, as in G6. If

so, then sibling composition is a valid proxy for the unobserved exogenous instruments, parental

preferences and borrowing constraints.

6.3.1 Nonseparability and Further Comments

The key di¤erences between OXI and PXI become more stark when the response functions are

nonparametric and nonseparable. For simplicity, let ` = k = 1 and suppose Ux
c
= rux(Uy; Uz); Z

c
=

rz(Uz); X
c
= rx(Z;Ux); Y

c
= ry(X;Uy); and Uy ? Uz as in S5. Thus, Z is a standard valid and

relevant instrument, but it does not ensure identi�cation: The PXI derivative ratio DzE(Y j
Z = z)=DzE(X j Z = z) is no longer a meaningful e¤ect measure, as neither the numerator nor
denominator have structural meaning, nor are they identically a¤ected by the confounding. The

cancellation that occurs for ILS in the linear PXI case does not hold generally. Instead, the ratio

DuzE(Y j Uz = uz)=DuzE(X j Uz = uz) has structural meaning parallel to the OXI case. The

challenge is that this involves unobservables, Uz: Schennach, White, and Chalak (2009) show that

in the nonseparable case, observing two proxies Z1 and Z2 for Uz su¢ ces to fully identify this

ratio. Here, the linear case masks deeper aspects of the general case.

Angrist, Imbens, and Rubin (1996) (AIR) provide an explicit causal account of IV in which

they list su¢ cient conditions for the IV estimator to have a causal interpretation, namely that of

�an average causal e¤ect for a subgroup of units, the compliers.�AIR do not impose linearity or

separability and consider the case of binary treatment and observed exogenous binary assignment

to treatment. Interestingly, PXI falls outside of AIR�s framework, as the instrument proxy need

not be random and need not determine the treatment. Chalak (2009b) provides a generalization

of AIR to cases where only such proxies are available.

These substantive di¤erences between OXI and PXI underscore the critical importance of the

causal structure relating the unobservables: PXI di¤ers from OXI primarily with respect to the

causal links among the unobservables, and, consequently, with respect to the causal role of Z.

We call any Z satisfying OXI or PXI an unconditional instrumental variable, to distinguish it

from the conditional instrumental variables discussed in Section 6.5 and Section 7.

For brevity, we omit treating the XCI case here (i.e., (X;Z) ? Uy), taking this as a special

case of XCIjI (i.e., (X;Z) ? Uy jW ), studied in Section 7.2.

6.4 Conditioning Instruments

In S1 and S3; treatment randomization neutralizes confounding (Fisher, 1935, ch.2); but random-
ization is rare in observational studies. In these studies, matching observations from treatment

20



and control groups that share common causes or attributes provides a way forward. Conditioning

on the information in these confounding variables permits interpreting the remaining conditional

association between the potential cause and its response as the causal e¤ect. Developments along

these lines include ignorability and the propensity score (Rubin, 1974; Rosenbaum and Rubin,

1983), selection on observables (Barnow, Cain, and Goldberger, 1980; Heckman and Robb, 1985),

control functions (Heckman and Robb, 1985; Imbens and Newey, 2009), the back-door method

(Pearl, 1995), and predictive proxies (White, 2006; Chalak and White, 2007). Especially in labor

economics, matching methods are well known and have been applied to study the distribution

of earnings, policy evaluation, and the returns to education and training programs (Roy, 1951;

Griliches, 1977; Heckman and Robb, 1985; Heckman, Ichimura, and Todd, 1998). Abadie and

Imbens (2006) study large sample properties of matching estimators.

A crucial challenge for applications is to understand when control variables (also called �co-

variates�) can be used to ensure unconfoundedness and what covariates to use. We address this

issue by studying structures where conditioning instruments W proxy for unobserved confounding

variables, ensuring conditional exogeneity and identi�cation.

6.4.1 Observed Common Causes

Consider S2, where X is endogenous because Ux /? Uy. Suppose that Ux /? Uy arises because

Ux and Uy have a common cause. To gain insight, suppose we observe this confounding common

cause, W . This violates our convention that observables do not cause unobservables, so this is

just temporary. Thus, consider system S7a and its causal graph G7a:

(1) W
c
= �wUw

(2) Ux1
c
= 
x1W

(3) Uy1
c
= 
y1W

(4) X
c
= �x1Ux1 + �x2Ux2

(5) Y
c
= X 0�o + U

0
y1�o1 + U

0
y2�o2;

where Uw ? Ux2 ; Uw ? Uy2 ; and Ux2 ? Uy2 ;
with Ux � (U 0x1 ; U

0
x2)

0; Uy � (U 0y1 ; U
0
y2)

0:
Graph 7a (G7a)

Conditioning Instruments

W

Uy

YX

Uw

Ux

Regressor endogeneity (X /? Uy) arises from correlation between Ux1 and Uy1 ; resulting from the

common cause W . The unobservables Ux2 and Uy2 ensure that X is not entirely determined by

W and that Y is not entirely determined by X and W . (Below, we drop explicit reference to such

independent sources of variation; their presence will be implicitly understood.)

In S7a, conditioning on W ensures that the remaining association between X and Y can only

be interpreted as the causal e¤ect of X on Y . S7a ensures the key condition:

(XCjI) Conditionally Exogenous Causes given Conditioning Instruments: X ? Uy j W:
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We callW �conditioning instruments�to emphasize their instrumental role in ensuring identi�ca-

tion. Imbens and Newey (2009) call such variables �control variables,�also known as covariates.

Although W has been called �exogenous�in the literature, Imbens (2004, p.5) notes that this is

non-standard. Indeed, W is endogenous, as W /? Uy. By instead referring to X as conditionally

exogenous, to W as conditioning instruments, and to XCjI as a conditional form of exogeneity,

we avoid confusion, clarify the causal roles of the variables involved, and facilitate the distinction

between these instruments, standard instruments, and other extended instruments discussed here.

Putting ~Z = X and ~W =W; the analysis of Section 4 shows that �o is fully identi�ed as

�o = [E(fX � E(X jW )gX 0)]�1E(fX � E(X jW )gY )

if and only if E(fX � E(X j W )gX 0) is non-singular. In the nonseparable case, XCjI identi�es
the derivative DxE[Y j W;X = x] as an average marginal e¤ect analogous to �o.

A feasible plug-in estimator for �o based on linearity of E(X jW ) is

�̂
XCjI
n � fX0(I�W(W0W)�1W0)Xg�1fX0(I�W(W0W)�1W0)Yg:

This is the Frisch-Waugh (1933) partial regression estimator, obtained by regressing Y on the

residuals from the regression of X onW. This is also the OLS estimator for �o in the regression

of Y on X and W . This regression emerges naturally from S7a by performing the substitutions
enforcing our convention that observables do not cause unobservables, as represented in S7b:

(1) W
c
= �wUw

(2) X
c
= 
xW + �xUx

(3) Y
c
= X 0�o +W

0
o + U
0
y�o;

where Uw ? Ux;
Uw ? Uy; and Ux ? Uy;

Graph 7b (G7b)
Conditioning Instruments

W

Uy

YX

Uw

Ux

In writing S7b, we adjust the notation in the natural way. With the assumed independence,
Theorem 3.1 applies with5 ~Z = (X;W ) satisfying XC ( ~m = 0). In S7b, both �o, the direct (and
full) e¤ect of X on Y , and 
o, the direct e¤ect of W on Y , are identi�ed.

Momentarily shifting attention to the e¤ects of W; note that the full e¤ect of W on Y is


o + 

0
x�o, identi�ed from a regression of Y on W only. Interestingly, in this regression, omitting

the causally relevant X results in omitted variable bias only if one is interested in the direct rather

than the full e¤ect of W: When the full e¤ect of W is of interest, including a variable caused by

W results in included variable bias. The proper choice of variables thus depends on the speci�c

e¤ect of interest. The traditional account of the omitted variables �problem�is incomplete.
5 In S7b and S8a below, W appears in ~Z; abusing our convention that W not appear in ~Z: But this is just for

convenience, as the underlying identifying condition is indeed XCjI: X ? Uy jW:
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6.4.2 Proxies for Unobserved Common Causes

Structural Proxies S7a (S7b) is not necessary for XCjI. Pearl�s (1995; 2000, pp. 79-81) back-
door structures, where an observable (W ) mediates a link between X and Y , also ensure XCjI.
Here, W acts either as a common cause (G7a, G7b), or as a response to the unobserved common

cause and a cause of either Y or X (G8a, G8b). XCjI holds in G8a and G8b, as the unobserved
confounding common cause causes Y via W (G8a) or X via W (G8b). As W is a structurally

relevant proxy for the unobserved common cause, we may refer to W as a �structural proxy.�

Speci�cally, let S8a be given by

(1) W
c
= �wUw

(2) X
c
= �xUx

(3) Y
c
= X 0�o +W

0
o + U
0
y�o;

where Uw /? Ux;
Uw ? Uy; and Ux ? Uy: Graph 8a (G8a)

Conditioning Instruments
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Uy

YX

Uw

Ux

Similarly, let S8b be given by

(1) W
c
= �wUw

(2) X
c
= 
xW + �xUx

(3) Y
c
= X 0�o + U

0
y�o;

where Uw ? Ux;
Uw /? Uy; and Ux ? Uy:

Graph 8b (G8b)
Conditioning Instruments

W

Uy

YX

Uw

Ux

Note that in S8a, the causal relation between Ux and Uw is unspeci�ed, so S8a corresponds to
three possible back-door structures each generating Uw /? Ux. But in each case, X and W jointly

satisfy XC in (3), so Theorem 3.1 holds with ~Z = (X;W ) and ~m = 0. We can identify �o from

the regression of Y on X and W: Here, W is a relevant exogenous variable correlated with X, so

omitting W leads to omitted variable bias in measuring the direct (and full) e¤ect �o of X: Just

as in S7b, however, the traditional account of omitted variables is not the whole story.
Similarly, S8b corresponds to three possible back-door structures, each generating Uw /? Uy:

For concreteness, suppose Uy causes Uw. Now both X and W are endogenous, as X /? Uy and W
/? Uy. According to the textbooks, regressing Y on X and W should yield nonsense, due to this
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endogeneity. Nevertheless, this regression identi�es �o, because XCjI holds for ~Z = X; ~W = W;

despite the failure of XC for ~Z = (X;W ).

What about the regression coe¢ cients for W? In S8b, these have no causal interpretation, but
only a predictive interpretation (see, e.g., White (2006) and White and Chalak (2009a)). Thus,

some regression coe¢ cients have causal meaning (those for the conditionally exogenous X), but

others do not (those for the conditioning instruments W ). That is, though all regression coe¢ -

cients have predictive meaning, only some have structural meaning. This is an important example

of what Heckman (2006) has termed �Marschak�s maxim�: we can identify some economically

meaningful components of a structure (�o) without having to identify the entire structure. Thus,

not all regression coe¢ cients need have signs and magnitudes that make causal sense. This has

signi�cant implications for how researchers can and should assess validity of regression results.

Predictive Proxies Pearl�s back-door method does not exhaust the possibilities for XCjI. Using
�predictive proxies�(White, 2006; Chalak and White, 2007; White and Chalak, 2009a) can also

be viable. Structures such as S9, which violates Pearl�s back-door criterion, can ensure XCjI:

(1) W
c
= �w1Uw1 + �w2Uw2

(2) Ux1
c
= �x1Uw1

(3) X
c
= �x1Ux1 + �x2Ux2

(4) Uy1
c
= �y1Uw1

(5) Y
c
= X 0�o + U

0
y1�o1 + U

0
y2�o2;

where Uw1 ? Uw2 ; Uw2 ? Ux2
Uw2 ? Uy2 ; and Ux2 ? Uy2 ; Graph 9 (G9)

Conditioning Instruments

W

Uy

YX

Uw

Ux

with Uw � (U 0w1 ; U
0
w2)

0; Ux � (U 0x1 ; U
0
x2)

0; and Uy � (U 0y1 ; U
0
y2)

0 so that W /? Uy, and X /? Uy.
In S9, Uw1 is an unobserved common cause for X and Y ; the predictive proxy W may be a

mismeasured version of Uw1 , for example. Again, both X and W are endogenous, but now W

is structurally irrelevant. In S9; Uw1 is the confounding common cause of X and Y . Had Uw1
been observable, XCjI would ensure identi�cation, as X ? Uy j Uw1 . The structure of S9 need
not always ensure X ? Uy j W; so predictive proxies W may not always be viable conditioning

instruments. Nevertheless, further conditions may ensure this. The key is W�s ability to predict

either X or Uy su¢ ciently well that neither contains additional information useful in predicting

the other. Heuristically, W should contain the information in Uw1 whose knowledge makes X

and Y conditionally independent and should not contain further information that may induce

dependence between X and Y (see Chalak and White, 2007, theorem 2.8 and corollary 2.9). A

simple case where this holds is when �w2 = 0 and W is a one-to-one function of Uw1 .

Just as in S8b, the regression coe¢ cients associated with the conditionally exogenous regressors
X have causal meaning, whereas the others do not: not all regression coe¢ cients need have signs

and magnitudes that make causal sense.
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Although XCjI permits identi�cation, the results of Hausman and Taylor (1983) do not apply.
Their necessary order condition (prop. 4) fails here, as the number of unconstrained coe¢ cients

in S9(5) (k > 0) exceeds the number (zero) of �predetermined�(uncorrelated with Uy) variables.
Similarly, as S9 imposes no error covariance restrictions (Ux /? Uy, Ux /? Uz, and Uy /? Uz),

Hausman and Taylor (1983, prop. 6) doesn�t apply, and their su¢ cient condition for identi�cation

in the full information context (prop. 9) is not satis�ed. Instead, a restriction on the conditional

covariance of the unobserved causes, speci�cally Ux ? Uy j Uw, ensures XCjI here, identifying �o.

6.4.3 Further Comments

XCjI enables matching. Let Yx be the value Y would take had X been set to x (the �potential

outcome�). E.g., in S9(5), Yx = x0�o + Uy: This and XCjI imply the key unconfoundedness
(ignorability) condition Yx ? X j W of Rosenbaum and Rubin (1983) (White, 2006, prop. 3.2).

Note that here, as in Hirano and Imbens (2004), treatments need not be binary.

Given its role as an observable proxy for unobserved common causes of X and Y , we call W

a vector of common cause instruments. Note that in contrast to XI, XCjI does not require ` = k.
Because XCjI is so straightforward (in particular, there are no necessary exclusion restrictions),

we do not provide causal properties for XCjI parallel to CP:OXI or CP:PXI. Nevertheless, we
conjecture that in S9=G9 XCjI implies (possibly with mild additional conditions) that X cannot

cause W (see S9(1)). In particular, observe that if X causes W in S9; then conditioning on W ,
a common response of X and Uw; generally renders X and Uw dependent given W (see Chalak

and White, 2009). As Uw causes Uy, this may lead XCjI to fail.
Systems S7b, S8a, S8b, and S9 are prototypical examples where identi�cation via conditioning

instruments obtains. In each, the presence of speci�c causal relations among the unobservables is

key to ensuring XCjI. Chalak and White (2007) and White and Chalak (2009a) present further
substantive analysis for the general nonlinear, nonseparable case.

6.5 Conditional Instruments

We now examine how conditional instruments Z can identify the e¤ect of endogenous X on Y as

the product of the e¤ect of X on Z and that of Z on Y . To illustrate, consider system S10:

(1) X
c
= �xUx

(2) Z
c
= 
zX + �zUz

(3) Y
c
= Z 0�o + U 0y�o;

where Uz ? Ux;
Uz ? Uy; and Ux /? Uy:

Graph 10 (G10)
Conditional Instruments

Z

Uy

YX

Uz

Ux
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Substituting S10(2) into S10(3) with �o � 
0z�o gives

(4) Y
c
= X 0�o + U

0
z�
0
z�o + U

0
y�o:

S10 doesn�t specify how dependence between Ux and Uy arises. Clearly, X and Z are endogenous

in (4), so neither XC nor XI can identify �o. Also, XCjI fails, as X /? Uy j Z. But S10 ensures

(XIjC) Conditionally Exogenous Instruments given Causes: Z?Uy j X

Theorem 3.1 applies with ~Z = Z and ~W = X: This identi�es �o from S10(4) by XCjI with causes
Z and conditioning instruments X. If 
z can also be identi�ed, then identi�cation of �o � 
0z�o
follows from Corollary 3.2. But 
z is identi�ed from S10(2) by XC, as X ? Uz. In contrast to XI
but like XCjI, XIjC does not require ` = k.

The feasible plug-in estimator with linearity of E(Z j X) is:

�̂
XIjC
n � f(X0X)�1(X0Z)g � f[Z0(I�X(X0X)�1X0)Z]�1[Z0(I�X(X0X)�1X0)Y]g:

Although XIjC uses a single XIV Z to identify �o, both Z and X play dual roles. Z is both a

response for X and a cause for Y . The causes X are exogenous with respect to Uz in S10(2) and
are conditioning instruments with respect to Uy in S10(3).

Just as for XI, a succinct set of causal properties characterizes structural identi�cation:

CP:XIjC (Causal Properties of Conditionally Exogenous Instruments Given Causes)
(i) The e¤ect of X on Z is identi�ed via XC with exogenous causes Z; (ii) that of Z on Y is

identi�ed via XCjI with conditioning instruments X; (iii) If X causes Y , it does so only via Z.

Note the exclusion restriction enforced by (iii). As is easily seen, S10 satis�es CP:XIjC.
XIjC corresponds to Pearl�s (1995, 2000) �front-door�method. Whereas the treatment e¤ect

literature applies XCjI (e.g., back door) to identify e¤ects using covariates W una¤ected by

treatment to neutralize confounding, XIjC (front door) uses variables that are a¤ected by (indeed,
mediate) treatment. We thus call such Z�s intermediate-cause instruments.

The structure of S10 can be analyzed via Hausman and Taylor (1983). As 
z is identi�ed by
XC in S10(2) and Uz ? Uy, Hausman and Taylor (1983, prop. 6) ensures that residuals from a

regression based on S10(2) can play the role of derived instruments for Z in S10(3); identifying �o.
With nonseparability, XIjC identi�es DxE(Z j X = x)�DzE(Y j X = x; Z = z) as an analog

of �o � 
0z�o: The structural content of this has yet to be explored. We also leave for future

study structures where only proxies for mediating instruments are observed. There, the presence

of causal relations among unobservables may help ensure identi�cation, as for PXI.

6.5.1 XIjC Examples

Whereas standard IV methods exploit exogenous variation preceding a possibly endogenous policy

to identify e¤ects, XIjC exploits the way that the policy implementation channels the policy e¤ects.
Speci�cally, consider a policy that is endogenous, as it is a¤ected by unobserved drivers of the
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policy outcome, as in G11. E.g., consider the e¤ect of per pupil funding on students�performance

measured by standardized test scores (see e.g. Gordon and Vegas, 2005). Each school district

collects taxes that determine per pupil funding. Because tax rates and family income correlate

with household characteristics that can a¤ect student performance, we may suspect that education

funding is endogenous.

Graph 11 (G11)
Policy Evaluation by means of XI|C
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One can recover the policy e¤ect using policy-driven intermediate-cause instruments that in

turn a¤ect the policy outcome. These XIVs should not be driven by the unobserved common

confounding causes of the policy and the response of interest, other than through the policy. In

the education funding example, potential intermediate-cause instruments could be educational

attainment and training of teachers, school investment in new technology, class size, etc.

XIjC (and XIV methods generally) can also be used to test the validity of imposed assumptions.
For instance, a controversial topic in experimental economics is whether to use cognition data in

studying decisions or to only use classic choice data. Here, XIjC can be used to test whether

information search fully reveals strategic thinking in experimental studies (e.g., Crawford, 2008).

In these experiments, players must click on computer screen windows to access information (e.g.,

payo¤s), yielding records of search patterns (occurrence, duration, adjacency, or repetition). If

search patterns fully mediate strategic thinking, XIjC can identify e¤ects of treatment on players�
decisions. If treatments are also randomized across players, one has an over-identifying restriction

useful for testing whether information search is fully revealing or if instead either information

search and players�decisions are driven by other factors or treatment a¤ects players�decisions

through a channel other than information search.

6.6 Conditionally Exogenous Instruments given Response

We now study using Z ? Uy j Y (XIjR) to identify �o. A structure generating this is one where
Z (with ` = 1) is a post-response instrument, as in S12:
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(1) X
c
= �xUx

(2) Y
c
= X 0�o + U

0
y�o;

(3) Z
c
= Y 
z + U

0
z�z

where Uz ? (Ux; Uy)
and Ux /? Uy:

Graph 12 (G12)
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Substituting S12(2) into S12(3) with �o � �o
z gives

(4) Z
c
= X 0�o + U

0
y�o
z + U

0
z�z:

This structure might look promising, as one may consider identifying �o � �o=
z by methods

analogous to ILS. Nevertheless, Z ? Uy j Y cannot identify �o here. Given the (implied) linearity
of E(Z j Y ), the relevant moment equation for �o is

fE(ZY 0)� E(ZY 0)E(Y Y 0)�1E(Y Y 0)g � fE(ZX 0)� E(ZY 0)E(Y Y 0)�1E(Y X 0)g�o = 0:

But E(ZY 0) � E(ZY 0)E(Y Y 0)�1E(Y Y 0) = 0 and E(ZX 0) � E(ZY 0)E(Y Y 0)�1E(Y X 0) = 0; so

condition (c) of Theorem 3.1 fails, leaving �o undetermined. The problem is that �o is not

identi�ed, as X and Z are confounded by the unobserved common cause of X and Y . Prop. 7

of Hausman and Taylor (1983) also rules out identifying �o using the estimated residuals from a

regression based on S12(3) as derived instruments, as Y ? Uz.
We also have Z ? Uy j (X;Y ) (XIjCR) in S12. Letting ~W = [X 0; Y ]0; a similar analysis gives

fE(ZY 0)� E(Z ~W 0)E( ~W ~W 0)�1E( ~WY 0)g � fE(ZX 0)� E(Z ~W 0)E( ~W ~W 0)�1E( ~WX 0)g�o = 0:

But condition (c) of Theorem 3.1 again fails, as E(ZY 0) � E(Z ~W 0)E( ~W ~W 0)�1E( ~WY 0) = 0 and

E(ZX 0)� E(Z ~W 0)E( ~W ~W 0)�1E( ~WX 0) = 0:

In neither of these cases do post-response instruments identify e¤ects. But the obstacle is

essentially the lack of causal relations between Uz and (Ux; Uy). As Chalak (2009a) shows, the

presence of speci�c causal structure relating these can either partially or fully identify �o. A

similar result holds for the case of joint response instruments of Table III. As the details are

involved, we refer the interested reader to Chalak (2009a).

This exhausts the possibilities for structural identi�cation for single XIVs.

7 Double Extended Instrumental Variables Methods

Economic theory can also suggest structures that permit identi�cation of causal e¤ects by jointly

using conditional instruments, Z; and conditioning instruments, W . We now examine these.
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7.1 Conditionally Exogenous Instruments Given Conditioning Instruments

As for single XIVs, we distinguish between cases where we observe conditionally exogenous in-

struments and others where we only observe their proxies. For conditioning instruments, we focus

on the use of predictive proxies, omitting explicit discussion of structural proxies for brevity.

7.1.1 Observed Conditionally Exogenous Instruments

Our �rst case is that of observed conditionally exogenous instruments given conditioning instru-

ments (OXIjI). To illustrate, consider S13a with associated graph G13a:

(1) Uz
c
= �zUw

(2) [U 0x; U
0
y]
0 c= �x;yUw

(3) W
c
= �wUw

(4) Z
c
= �zUz;

(5) X
c
= 
xZ + �xUx

(6) Y
c
= X 0�o + U

0
y�o

Graph 13a (G13a)
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Substituting S13a(5) into S13a(6) and setting �o � 
0x�o also gives

(7) Y = Z 0�o + U
0
x�

0
x�o + U

0
y�o:

S13a speci�es that Ux and Uy share a common cause, Uw, but leaves other causal or stochastic
dependence between Ux and Uy unspeci�ed. Nevertheless, Z ? Uy j Uw. When W is a su¢ ciently

good predictor for Uw; hence Z and Uy; this gives the key exogeneity relation:

(XIjI) Conditionally Exogenous Instruments given Conditioning Instruments: Z ? Uy j W

Taking ~Z = Z and ~W =W; it follows from Theorem 3.1 that �o is identi�ed as

�o = [E(fZ � E(Z jW )gX 0)]�1E(fZ � E(Z jW )gY )

if and only if E(fZ � E(Z jW )gX 0) is nonsingular. Note that, as for XI, ` = k is necessary.

No previous method can identify �o in this case, as none of the other admissible conditional

independence relationships hold in S13a.
A feasible plug-in for �o based on linearity of E(Z jW ) is

�̂
XIjI
n � [Z0(I�W(W0W)�1W0)X]�1[Z0(I�W(W0W)�1W0)Y]:

This is a Hausman-Taylor estimator, but Hausman and Taylor�s (1983) conditions need not hold.
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In S13a, Z satis�es causal properties that parallel CP:OXI:

CP:OXIjI (i) Z causes X, and the e¤ect of Z on X is identi�ed via XCjI with conditioning
instruments W ; (ii) Z indirectly causes Y , and the e¤ect of Z on Y is identi�ed via XCjI with
conditioning instruments W ; (iii) Z causes Y only via X.

Similar to XI, the exclusion restriction (iii) plays a key role, and the e¤ect of X on Y is identi�ed

as the ILS derivative ratio of the identi�ed e¤ects �o and 
x, �o = (
0x)
�1�o: Note that the

conditioning instruments need not be identical in (i) and (ii).

7.1.2 Proxies for Unobserved Conditionally Exogenous Instruments

As for all XIV methods, and as for XI and XCjI in particular, the true underlying instrument
need not be observed; a suitable proxy su¢ ces. For example, consider S13b with graph G13b:

(1) Uz
c
= �zUw

(2) Uy
c
= �yUw

(3) Ux
c
= �x1Uw + �x2Uz + �x3Uy

(4) W
c
= �wUw

(5) Z
c
= �zUz

(6) X
c
= 
xZ + �xUx

(7) Y
c
= X 0�o + U

0
y�o

Graph 13b (G13b)
Proxy for Unobserved Conditionally Exogenous

Instruments Given Conditioning Instruments (PXI|I)

Z

Uz

Uy

YX

W

Uw

Ux

Substituting S13b(6) into S13b(7) and setting �o � 
0x�o also gives

(8) Y
c
= Z 0�o + U

0
x�

0
x�o + U

0
y�o

c
= U 0z(�

0
z�o + �

0
x2�

0
x�o) + U

0
y(�o + �

0
x3�

0
x�o) + U

0
w�

0
x1�

0
x�o:

Here, S13b speci�es causal relations between Ux and Uy. XIjI holds when W is a suitable

predictor for Uw, as Z ? Uy j Uw. As for OXIjI, Theorem 3.1 applies with ~Z = Z and ~W = W .

Although CP:OXIjI fails for Z, Uz plays the key identifying role, and Z is its proxy. We thus call
this the PXIjI case. The key causal properties are:

CP:PXIjI (i) Uz indirectly causes X, and the full e¤ect of Uz on X could be identi�ed via XCjI
with conditioning instruments W had Uz been observed; (ii) Uz indirectly causes Y , and the full

e¤ect of Uz on Y could be identi�ed via XCjI with conditioning instruments W had Uz been

observed; (iii) Uz causes Y only via X.

CP:PXIjI parallels CP:PXI, but identi�cation in (i) and (ii) is via XCjI, not XC. As in CP:OXIjI,
the conditioning instruments in (i) and (ii) may di¤er. (iii) imposes the key exclusion restriction.

Our comments about PXI and ILS also apply here: the ILS derivative ratio of two inconsistent

XCjI estimators remains informative for �o in the linear case, but not in the nonseparable case.
As with PXI, Z is not required to cause X in S13b.
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7.2 Conditionally Exogenous Causes and Instruments Given Instruments

When conditioning instruments W render only a subvector X2 of X � [X 0
1; X

0
2]
0 conditionally ex-

ogenous, no previous method identi�es �o � [�01; �02]0. But identi�cation obtains given conditional
instruments Z for X1 that are conditionally exogenous given W . Consider S14 :

(1) Uz
c
= �zUw

(2) Ux2
c
= �x2Uw

(3) Uy
c
= �y1Uw + �y2Ux1

(3) W
c
= �wUw

(2) Z
c
= �zUz

(3) X1
c
= 
x1Z + �x1Ux1

(4) X2
c
= �x2Ux2

(5) Y
c
= X 0

1�1 +X
0
2�2 + U

0
y�o;

where Ux1?Uw: Graph 14 (G14)
Conditionally Exogenous Instruments and Causes

Given Conditioning Instruments (XCI|I)

Z

Uy

Uz

YX2

W

Uw

Ux2

X1

Ux1

S14 ensures (Z;X2) ? Uy j Uw. Provided W is a suitable predictive proxy, this ensures

(XCIjI) Conditionally Exogenous Causes and Instruments
given Conditioning Instruments: (Z;X2) ? Uy j W:

XCIjI is the special case of XIjI in which X2 plays the role of a conditional instrument for itself.
Letting ~Z = [Z 0; X 0

2]
0 and ~W =W , Theorem 3.1 ensures that �o is identi�ed as

�o = [E(f ~Z � E( ~Z jW )gX 0)]�1E(f ~Z � E( ~Z jW )gY )

if and only if E(f ~Z �E( ~Z jW )gX 0) is nonsingular. Again, ` = k is necessary. The XCIjI plug-in
estimator with linearity for E( ~Z jW ) is

�̂
XCIjI
n � [~Z0(I�W(W0W)�1W0)X]�1[~Z0(I�W(W0W)�1W0)Y]:

An analogous result holds for the XCI case ( ~Z ? Uy) with �o identi�ed as �o = E( ~ZX 0)�1E( ~ZY ).

The XCI plug-in estimator is �̂
XCI

n � (~Z0X)�1(~Z0Y).

7.3 Conditionally Exogenous Instruments Given Causes and Conditioning In-
struments

A generalization of XIjC occurs when XIjC fails but conditioning instruments W and regressors

X jointly render extended instruments Z conditionally exogenous, as in S15:
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(1) Uz
c
= �zUw

(2) Uy
c
= �y1Uw + �y2Ux

(3) W
c
= �wUw

(4) X
c
= �xUx

(5) Z
c
= 
zX + �zUz

(6) Y
c
= Z 0�o + U 0y�o

where Ux ? Uw: Graph 15 (G15)
Conditionally Exogenous Instruments given Causes

and Conditioning Instruments (XI|CI)

Z

Uz

Uy

YX

W

Uw

Ux

Substituting S15(3) into S15(4) with �o � 
0z�o also gives

(7) Y
c
= X 0�o + U

0
z�
0
z�o + U

0
y�o:

The conditional exogeneity relationship ensured by S15 is:

(XIjCI) Conditionally Exogenous Instruments given Causes
and Conditioning Instruments: Z ? Uy j (X;W ):

Letting ~Z = Z and ~W = [X 0;W 0]0; Theorem 3.1 identi�es �o as

�o = [E(fZ � E(Z j ~W )gX 0)]�1E(fZ � E(Z j ~W )gY ):

Since X ? Uz; XC identi�es 
z as E(ZX
0)E(XX 0)�1: Clearly, X ? Uz can be replaced by a

conditional relationship, such as XCjI: X ? Uz j W1, with suitable W1.

Like XIjC, XIjCI embodies Pearl�s (1995, 2000) front-door method. Corollary 3.2 gives

�o = E(XX
0)�1E(XZ 0)� [E(fZ � E(Z j ~W )gX 0)]�1E(fZ � E(Z j ~W )gY ):

The feasible plug-in estimator based on linearity of E(Z j ~W ) is

�̂
XIjCI
n � (X0X)�1X0Z� [Z0(I� ~W( ~W0 ~W)�1 ~W0)X]�1[Z0(I� ~W( ~W0 ~W)�1 ~W0)Y]:

The causal properties for XIjCI parallel those of CP:XIjC. In particular, the exclusion restriction
that X causes Y only through Z remains necessary.

7.4 Conditionally Exogenous Instruments Given Causes, Response, and Con-
ditioning Instruments

Analysis parallel to Section 6.5 shows that without speci�c structure among the unobservables,

XIjRI (Z ? Uy j (Y;W )) and XIjCRI (Z ? Uy j (X;Y;W )) need not identify �o. Nevertheless,
suitable structure among the unobservables can partially or fully identify �o; see Chalak (2009a).
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7.5 Further Remarks and Summary

Reinforcing a main theme, we note that all of the double XIV methods rely on speci�c causal

structure among the unobservables to identify �o.

We also observe that XC, XI, XCI, XCjI, XIjI, and XCIjI form an exhaustive set of primitives,
as other XIV methods, such as XIjC and XIjCI, identify causal e¤ects as functions of e¤ects
identi�ed by one or more of these primitives.

In the nonseparable case, double XIV methods can give structural meaning to derivatives of

standard conditional expectations and ratios or products of these, analogous to our discussions in

Section 6. The interpretation of these objects depends on the speci�c system structure; exploration

of their detailed causal content is an area for further research.

As a helpful summary, Table IV displays the various XIV estimators of Sections 6 and 7.
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8 Summary and Directions for Further Research

This paper examines the ways in which structural systems can yield observed variables that, along

with the cause and response of interest, can play an instrumental role in identifying and estimating

causal e¤ects. We focus speci�cally on how structures can yield exogeneity and exclusion restric-

tions that ensure moment conditions supporting identi�cation. This provides a comprehensive

framework for constructing useful instruments and control variables. Because our results exhaust

the possibilities, we ensure that there are no other opportunities for identi�cation based on exo-

geneity and exclusion restrictions still to be discovered. We introduce notions of conditional and

conditioning extended instrumental variables (XIVs). These need not be traditional instruments,

as they may be endogenous. They nevertheless permit identi�cation and estimation of causal

e¤ects. We analyze methods using these XIVs either singly or jointly.

As we show, it is important to distinguish between observed XIVs and proxies for unobserved

XIVs. This distinction permits us to characterize the role of instruments in indirect least squares-

like methods and to extend Pearl�s (1995) back-door method. A main message emerging from

our analysis is the central importance of su¢ ciently specifying the causal relations governing the

unobservables, as these play a crucial role in creating obstacles or opportunities for identi�cation.

Among the useful insights that emerge from our analysis is the understanding that in the

presence of conditioning instruments, not all regression coe¢ cients need have causal meaning.

Thus, not all regression coe¢ cients need have signs or magnitudes that make economic sense. We

also see that the standard account of the �problem�of omitted variables is incomplete and possibly

misleading. In order to properly understand what e¤ects one is estimating with a given regression

including or excluding causally relevant variables, it is necessary to have a clear understanding

of the underlying causal relations. Another contribution is the demonstration that the Hausman-

Taylor framework can be extended by considering conditional covariance restrictions.

In related work (White and Chalak, 2009a; Schennach, White, and Chalak, 2009; Song, Schen-

nach, and White, 2009), we analyze nonparametric identi�cation and estimation of e¤ects for

certain nonseparable versions of the cases discussed here. Investigating the remaining cases is an

interesting focus for future work. White (2006), White and Chalak (2006), and White and Xu

(2009) give conditional exogeneity tests. It is of interest to extend these for use with XIV methods.

Here, we study identi�cation of e¤ects in causal structures speci�ed a priori. By instead studying

which causal matrices agree with a collection of given (observed) conditional independence rela-

tionships, one can develop methods for suggesting or ruling out potential causal structures. We

leave this to future work.

Finally, XIV methods o¤er strategies for dealing with weak instruments: when standard in-

struments are weak, there may be extended instruments that are either less weak or not at all weak

for identifying e¤ects of interest. More generally, when one form of XIV is weak (e.g., E(Z�X 0) is

near singularity) there may be another XIV that is either less or not at all weak. This is another

interesting avenue for further research.
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Appendix A: Mathematical Proofs

Proof of Theorem 3.1: (a) We have EfZ�"g = EfZ�(Y � X 0�o)g = E(Z�Y ) � E(Z�X 0)�o:

By Assumption 2.2, �o is �nite; since E[Z
�(Y;X 0)] < 1, EfZ�"g < 1. (b) Since EfZ�"g =

E(Z�Y ) � E(Z�X 0)�o, the result follows immediately. (c) Given EfZ�"g = 0; E(Z�X 0)�o �
E(Z�Y ) = 0: This system admits a unique solution �o if and only if E(Z

�X 0) is non-singular. �

Proof of Corollary 3.2: Immediate. �

Proof of Proposition 4.1: The existence and �niteness of �y is trivial under the conditions
given. De�ne � � Y � X 0�y: Then Y = X 0�y + �: Also, E(Z��) = E(Z�(Y � X 0�y)) = S �
QQ�1S = 0: Given Z�0X=n

p! Q and Z�0Y=n
p! S; �̂

XIV

n
p! Q�1S � �y by Slutsky�s theorem.

�̂
FXIV

n � �̂XIVn
p! 0 then immediately implies �̂

FXIV

n
p! �y: �

Proof of Theorem 4.2: By de�nition of ~�
FXIV
n and ��, and with Q̂n � n�1(~Z� ~W�̂0n)

0X;

~�
FXIV
n � �� = [Q̂�1n n�1

nX
i=1

( ~Zi � �̂n ~Wi)Yi]� ��:

Letting Q�n � n�1(~Z� ~W��0)0X and adding and subtracting, we have

~�
FXIV
n � �� = [Q��1n n�1

nX
i=1

( ~Zi � �� ~Wi)Yi]� ��

+ [Q̂�1n n�1
nX
i=1

( ~Zi � �̂n ~Wi)Yi]� [Q��1n n�1
nX
i=1

( ~Zi � �� ~Wi)Yi]:

Replacing Yi with X 0
i�
� + ��i gives

~�
FXIV
n � �� = Q��1n n�1

nX
i=1

( ~Zi � �� ~Wi)�
�
i

+ [Q̂�1n n�1
nX
i=1

( ~Zi � �̂n ~Wi)�
�
i ]� [Q��1n n�1

nX
i=1

( ~Zi � �� ~Wi)�
�
i ]:

Adding and subtracting again and multiplying by n1=2 gives

n1=2(~�
FXIV
n � ��) = Q��1n n�1=2

nX
i=1

( ~Zi � �� ~Wi)�
�
i

+ (Q̂�1n �Q��1n ) n�1=2
nX
i=1

( ~Zi � �� ~Wi)�
�
i � Q̂�1n n1=2(�̂n � ��) n�1

nX
i=1

~Wi�
�
i :

Now n�1=2
Pn
i=1(

~Zi��� ~Wi)�
�
i = Op(1); Q

�
n

p! Q�; Q̂n
p! Q�; and n�1

Pn
i=1

~Wi�
�
i
p! E( ~W��); so

n1=2(~�
FXIV
n � ��) = Q��1 n�1=2

nX
i=1

( ~Zi � �� ~Wi)�
�
i �Q��1 n1=2(�̂n � ��) E( ~W��) + op(1);
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provided n1=2(�̂n � ��) = Op(1): We now verify this. With ��i � ~Zi � �� ~Wi; we have

n1=2(�̂n � ��) = n�1=2
nX
i=1

��i ~W
0
i [n

�1
nX
i=1

�i ~Wi
~W 0
i ]
�1 = n�1=2

nX
i=1

��i ~W
0
i E( ~W ~W 0)�1 + op(1);

given that n�1=2
Pn
i=1 �

�
i
~W 0
i is Op(1) and n

�1Pn
i=1

~Wi
~W 0
i

p! E( ~W ~W 0); which hold under our

assumptions. It follows that n1=2(�̂n � ��) = Op(1): This further implies

n1=2(~�
FXIV
n � ��) = Q��1 n�1=2

nX
i=1

( ~Zi � �� ~Wi)�
�
i

� Q��1 n�1=2
nX
i=1

��i ~W
0
i E( ~W ~W 0)�1 E( ~W��) + op(1);

so that with ~�i � ��i � ~W 0
i E(

~W ~W 0)�1E( ~W��);

n1=2(~�
FXIV
n � ��) = Q��1 n�1=2

nX
i=1

��i ~�i + op(1):

As f��i ~�ig obeys the central limit theorem by assumption, the result follows. �

Proof of Proposition 5.1: Let h � G and let fg1; : : : ; ghg be a set of h distinct elements of
f1; : : : ; Gg such that cg1g2 � cg2g3 � :::� cghg1 = 1. Then there exist rg1 ; :::; rgh with

rg1(Vg1�1; :::; Vgh ; :::; V1; V0)

rgi(Vgi�1; :::; Vgi�1 ; :::; V1; V0); i = 2; :::; h

such that rg1(Vg1�1; :::; Vgh ; :::; V1; V0) is not constant in Vgh and rgi(Vgi�1; :::; Vgi�1 ; :::; V1; V0) is

not constant in Vgi�1 for i = 2; :::; h. But this violates Assumption 2.1, a contradiction. �

Appendix B: FXIV Estimators for E¤ects Identi�ed by Corollary 3.2

Estimators for e¤ects identi�ed by Corollary 3.2 are ~�
FXIV
n � b(~�FXIVn ); where ~�

FXIV
n � (~�FXIV 01;n ;

:::; ~�
FXIV 0
H;n )0 is a vector of estimators covered by Theorem 4.2. To give a result, let

~�
FXIV
h;n � [(~Zh � ~Wh�̂

0
h;n)

0Xh]
�1[(~Zh � ~Wh�̂

0
h;n)

0Yh]; h = 1; :::;H;

where �̂h;n � ~Z0h ~Wh( ~W
0
h
~Wh)

�1 and for ~�
FXIV
h;n ; let Q�h and �

�
hi ~�hi denote the analogs of Q

� and ��i
~�i de�ned for Theorem 4.2. Finally, let Q� � diag(Q�1; :::; Q�H) and Zi � ((��1i~�1i)0; :::; (��Hi~�Hi)0)0:

Proposition B.1 Let the conditions of Theorem 4.2 hold for each element of ~�
FXIV
n and let

�� � plim ~�
FXIV
n . If n�1=2

Pn
i=1Zi

d! N(0; V �); where V � is �nite and positive de�nite, then

n1=2(~�
FXIV
n � ��) d! N(0; Q��1V �Q�0�1):

Suppose further that b is continuously di¤erentiable at �� such that rb(��) (the gradient of b at
��) has full column rank. Then with ~�

FXIV
n = b(~�

FXIV
n ) and �� = b(��);

n1=2(~�
FXIV
n � ��) d! N(0;rb(��)0Q��1V �Q�0�1rb(��)):
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Appendix C: Necessity of Conditional Exogeneity for Identi�cation in Linear Systems

We state the next result for generic random vectors (U;W;Z): For conciseness, we understand

that �admissible�distributions are those satisfying the speci�ed hypotheses. The absolute value

of a matrix denotes the matrix of its absolute values.

Proposition C.1 Suppose (U;W;Z) are random vectors such that E(U) = 0; E(Z 0Z) <1; and
Z is not a function solely of W: Let Z� � Z �E(Z jW ) and suppose that jE(Z�U 0)j <1: Then
E(Z�U 0) = 0 for all admissible distributions of (U;W;Z) if and only if Z ? U jW .

Proof : To prove E(Z�U 0) = 0 for all (U;W;Z) such that Z ? U jW is easy and is omitted. For

the converse, let U;W; and Z be scalars without loss of generality, and write

E(Z�U) =

Z
(z � �(w))u dF (u j w; z) dF (w; z) =

Z
(z � �(w)) f

Z
u dF (u j w; z)g dF (w; z);

where �(w) � E(Z j W = w) and F (u j w; z) and F (w; z) denote the distribution functions of
U j (W;Z) and (W;Z); respectively. Suppose that Z 6? U jW ; we show that there exist admissible
F (u j w; z) and F (w; z) such that E(Z�U) 6= 0:

Speci�cally, choose F (u j z; w) such that
R
u dF (u j z; w) = z � �(w): This choice is possible,

as Z 6? U j W: It is admissible, as this implies E(U) = E(E(U j W;Z)) = E(Z � �(W )) =
E(E[Z � �(W ) jW ]) = 0 and

E(Z�U) =

Z
(z � �(w))2 dF (w; z);

which is easily shown to be �nite by the conditional Jensen and Minkowski inequalities, given

E(Z 0Z) <1: As Z is not solely a function of W; there exists a distribution for (W;Z) such that
E(Z�U) =

R
(z � �(w))2 dF (w; z) > 0; and the proof is complete. �

Appendix D: Failures of Identi�cation via XI from a Causal Perspective

Here we examine how identi�cation of �o via the XI method fails in the standard �irrelevant

instrument,��invalid instrument,�and �under-identi�ed�cases.

D.1 Irrelevant Exogenous Instruments
System S16 and its causal graph G16 depict the irrelevant XI case and demonstrate how an

irrelevant XI satis�es neither CP:OXI nor CP:PXI. Let S16 be given by:

(1) Z
c
= �zUz

(2) X
c
= �xUx

(3) Y
c
= X 0�o + U

0
y�o;

where Ux /? Uy;
Ux ? Uz; and Uy ? Uz; Graph 16 (G16)

Irrelevant Exogenous Instruments

Z

Uy

YX

Uz

Ux
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Although Z is valid and satis�es XI, it fails to identify �o, because the e¤ect of X on Y cannot

be represented as the �ratio�of the e¤ect of Z (resp. Uz) on Y and the e¤ect of Z (resp. Uz) on

X, as both of these are zero. In S16, neither CP:OXI(i) nor CP:PXI(i) hold, since neither Z nor
Uz cause X, justifying the label �irrelevant exogenous variables.�When ` = k (as assumed here),

condition (c) fails in Theorem 3.1. From S16(3) we have

E(ZY )� E(ZX 0)�o = 0;

but E(ZY ) = 0 and E(ZX 0) = 0, so identi�cation via XI fails.

D.2 Endogenous Instruments
We next examine failure of XI, Z /? Uy. Such endogenous Z�s can occur in several ways.

First, a potential instrument Z can be both irrelevant and endogenous, e.g., when Z doesn�t

cause X and Uz ? Ux, but both Ux and Uz cause Uy. For relevant instruments, consider S17:

(1) Z
c
= �zUz

(2) X
c
= 
xZ + �xUx

(3) Y
c
= X 0�o + U

0
y�o;

where Ux /? Uy, Ux /? Uz, and Uy /? Uz. Substituting S17(2) into S17(3) with �o � 
0x�o gives

(4) Y
c
= Z 0�o + U

0
x�

0
x�o + U

0
y�o:

Because Uy /? Uz, XI fails for Z. This can occur in several ways. For example, correlation between
Uz and Uy can arise because either Uy causes Uz (G17a, G17b) or Ux causes both Uz and Uy (G17c).

CP:OXI(ii) fails, as Z and Y are confounded; and CP:PXI(ii) fails, as Uz and Y are confounded.

CP:PXI(i) also fails, as Uz and X are also confounded.

Graph 17a (G17a)
Endogenous Instruments

Z

Uy

YX

Uz

Ux

Graph 17b (G17b)
Endogenous Instruments

Z

Uy

YX

Uz

Ux

Graph 17c (G17c)
Endogenous Instruments

Z

Uy

YX

Uz

Ux

Alternatively, Z is endogenous when Uz a¤ects Uy via a channel other than X. As we assume

Z can�t cause Uy, we need consider only the case where Uz causes Y via an intermediate cause

other than X (G17d and G17e). Now CP:OXI(ii) fails as Z and Y are confounded. CP:PXI(iii)

fails as Uz causes Y via an intermediate cause other than X; the e¤ect of X on Y is thus no
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longer the ratio of the e¤ect of Uz on Y and that of Uz on X.

Graph 17e (G17e)
Endogenous Instruments

Z

Uy

YX

Uz

Ux

Graph 17d (G17d)
Endogenous Instruments

Z

Uy

YX

Uz

Ux

From S17(3) we have
E(ZY ) = E(ZX 0)�o + E(ZU

0
y�o);

but E(ZU 0y�o) does not vanish, so identi�cation via XI fails.

D.3 Under-Identi�ed Exogenous Instruments
Finally, consider what happens when instruments Z are valid and relevant, but the exclusion

restriction (condition (i)) of Theorem 3.1 fails. Speci�cally, consider the system S18:

(1) Z
c
= �zUz

(2) X
c
= �xUx

(3) Y
c
= X 0�o + Z

0
o + U
0
y�o;

where Ux /? Uy;
Ux /? Uz; and Uy ? Uz;

Graph 18 (G18)
Under­identified XI

Z

Uy

YX

Uz

Ux

In this case, the regressors X are endogenous, as Ux /? Uy, but we have that Z is relevant

since X /? Z, and valid since Z ? Uy. It follows from S18(3); however, that

E(ZY ) = E[Z(X 0�o + Z
0
o + U

0
y�o)]

= E(ZX 0)�o + E(ZZ
0)
o:

Once again, stochastic identi�cation of �o via XI fails, this time due to the presence of the

unknown (non-zero) 
o. The problem is that Z (or Uz) causes Y but not solely via X. This

violates CP:OXI(iii) and CP:PXI(iii).

When E(ZX 0) is nonsingular, we can also write

E(ZX 0)�1E(ZY ) = �o + E(ZX
0)�1E(ZZ 0)
o:
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Viewed in this way, the lack of stochastic identi�cation appears as a form of �omitted variables

bias,� resulting from the failure to include Z in the instrumental variables regression. But one

cannot resolve this problem by including Z, as then one is attempting to identify both �o and


o, and there are not enough proper instruments for this. This is the classical �under-identi�ed�

case in which there are more right-hand side variables than valid instruments.
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