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Abstract

We introduce the financial economics of market microstructure into the financial
econometrics of asset return volatility estimation. In particular, we use market mi-
crostructure theory to derive the cross-correlation function between latent returns and
market microstructure noise, which feature prominently in the recent volatility lit-
erature. The cross-correlation at zero displacement is typically negative, and cross-
correlations at nonzero displacements are positive and decay geometrically. If market
makers are sufficiently risk averse, however, the cross-correlation pattern is inverted.
We derive model-based volatility estimators, which we apply to stock and oil prices.
Our results are useful for assessing the validity of the frequently-assumed independence
of latent price and microstructure noise, for explaining observed cross-correlation pat-
terns, for predicting as-yet undiscovered patterns, and for microstructure-based volatil-
ity estimation.
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1 Introduction

Recent years have seen substantial progress in asset return volatility measurement, with im-

portant applications to asset pricing, portfolio allocation and risk management. In particular,

so-called realized variances and covariances (“realized volatilities”), based on increasingly-

available high-frequency data, have emerged as central for several reasons.1 They are, for ex-

ample, largely model-free (in contrast to traditional model-based approaches such as GARCH

or stochastic volatility), they are computationally trivial, and they are in principle highly

accurate.

A tension arises, however, linked to the last of the above desiderata. Econometric theory

suggests the desirability of sampling as often as possible to obtain highly accurate volatility

estimates, but financial market reality suggests otherwise. In particular, market microstruc-

ture noise (MSN), such as bid-ask bounce associated with ultra-high-frequency sampling, may

contaminate the observed price, potentially rendering naively-calculated realized volatilities

unreliable.

Early work (e.g., Andersen, Bollerslev, Diebold, and Ebens, 2001a; Andersen, Bollerslev,

Diebold, and Labys, 2001b, 2003, Barndorff-Nielsen and Shephard, 2002a,b) addressed the

sampling issue by attempting to sample often, but not “too often,” typically resulting in use

of five- to thirty-minute returns. Much higher-frequency data are usually available, however,

so reducing the sampling frequency to insure against MSN discards potentially valuable

information.

To use all information, more recent work has emphasized MSN-robust realized volatilities

that use returns sampled at very high frequencies. Examples include Zhang, Mykland, and

Aı̈t-Sahalia (2005), Bandi and Russell (2008), Aı̈t-Sahalia, Mykland, and Zhang (2011),

Hansen and Lunde (2006), and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008,

2011b). That literature is almost entirely statistical, however, which is unfortunate because

it makes important assumptions regarding the nature of the latent price, the MSN, and their

interaction, and purely statistical thinking offers little guidance. A central example concerns

the interaction (if any) between latent price and MSN. Some authors such as Bandi and

Russell assume no correlation (perhaps erroneously), whereas in contrast Barndorff-Nielsen

et al. (2008); Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011a) allow for correlation

(perhaps unnecessarily).

1Several surveys are now available, ranging from the comparatively theoretical treatments of Barndorff-
Nielsen and Shephard (2007) and Andersen, Bollerslev, and Diebold (2010) to the applied perspective of
Andersen, Bollerslev, Christoffersen, and Diebold (2006).
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To improve this situation, we explicitly recognize that MSN results from the behavior

of economic agents, and we push toward integration of the financial economics of market

microstructure with the financial econometrics of volatility estimation. In particular, we ex-

plore the implications of microstructure theory for the relationship between latent price and

MSN, characterizing the cross-correlation structure between latent price and MSN, contem-

poraneously and dynamically, in a variety of leading environments, including those of Roll

(1984), Glosten and Milgrom (1985), Kyle (1985), Easley and O’Hara (1992), and Hasbrouck

(2002).2

We proceed as follows. In Section 2 we introduce our general framework, which nests a

variety of microstructure models. In Sections 3 and 4 we provide detailed analyses of models

of private information, distinguishing two types of latent prices based on the implied level

of market efficiency. In particular, we treat strong form efficiency in Section 3 and semi-

strong form efficiency in Section 4. In Section 5 we discuss the relationship between price

change frequency and sampling frequency. Based on this, we suggest several microstructure-

founded estimators and apply them to stock and oil market data in Section 6. We conclude

in Section 7.

2 The Framework

We begin in Section 2.1 by introducing a general framework relating latent prices, observed

prices, and MSN in a wide range of market-making environments. We then provide, in Sec-

tion 2.2, a generic (model-free) statistical result on the nature of correlation between latent

price and MSN. Finally, in Section 2.3, we introduce market makers, or – more generally –

learning market participants, who are central in the subsequent analyses.

2.1 Latent Prices, Observed Prices and Microstructure Noise

Let p∗t denote the (logarithm of the) strong form efficient price of some asset in the calendar

(or business) time period t. This price, strictly exogenously changing every T th-period, could

stem from sampling increments of standard Brownian motion every T periods, in which case

the standard deviation σ would be proportional to T . At time t, p∗t is known only to the

2For insightful surveys of the key models, see O’Hara (1995) and Hasbrouck (2007). For an interesting
related perspective, see Engle and Sun (2007). Their approach and environment (conditional duration
modeling), however, are very different from ours.
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informed traders, and follows the process

p∗t =

p∗t−1 + σεt, ∀t = κT, κ ∈ Z

p∗t−1, otherwise
(1)

with εt ∼iid (0, 1). (2)

This price process is very restrictive. For simplicity of exposition we do not model jumps,

time-varying volatility (σt), or time-varying sampling intervals (Tt), which are the subject

of sophisticated models of market microstructure theory. In all its simplicity, however, this

process is the discrete time analogue of the latent price process that estimators of integrated

volatility (IV) are based on. As we show later in this paper, different assumptions about

the nature of the latent price process will lead to different estimates of IV. In particular,

the properties of the latent price relevant in many applications depend on the information

set. In this paper we aim to bridge the gap between market microstructure theory and IV

estimation by introducing for the first time a simple price determination framework founded

on market microstructure theory to IV estimation.

Microstructure noise (MSN) is the difference between the observed market return and

the latent return. Instead of ad-hoc assumptions about the properties of the strong form

noise

∆ut ≡ ∆pt −∆p∗t , (3)

which are common in the IV estimation literature, we add additional market microstructure

that helps explain key properties of MSN.

Let qt denote the direction of the trade in period t, where qt = +1 denotes a buy, qt = −1

a sell, and qt = 0 a no-trade period. Define pet as the expected efficient price directly before

the trade occurs. The semi-strong form efficient price, which summarizes the knowledge of

the market maker after the trade,3 is in logarithmic terms

p̃et = pet + λtqt, (4)

where λt ≥ 0 captures the response to asymmetric information revealed by the trade direction

qt. The admittedly stylized assumption that quantities do not matter for market maker

3This terminology is borrowed from the asset pricing literature. In contrast to the strong form effi-
cient price, which incorporates all public and private information, the semi-strong form efficient price only
incorporates all publicly available information (Fama, 1970).
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learning obtains e.g. in a pooling equilibrium of informed with uninformed traders (Kelly

and Steigerwald, 2004). It fits the observation that in recent years order-splitting into many

small trades has become dominant. Because the estimators we derive rely (at most) on trade

direction data, further model detail would not add to our results.

At the beginning of each trading round, additional information about p∗t and εt might

be revealed by information diffusion from other sources, e.g. other markets. With this

information, summarized by ωt, the market maker revises his price expectation for the next

period according to

pet = p̃et−1 + ωt. (5)

In periods in which p∗t−1 becomes public information, (5) becomes pet = p∗t−1 + ω̃t. Assuming

that the price quotes in logarithmic terms are symmetric around the expected efficient price

before the trade, the observed transaction price can be written as

pt = pet + stqt, (6)

where st is one-half of the spread. In particular, the bid price is pbidt = pet − st, the ask price

is paskt = pet + st, and the midprice is pet . These prices and their relationships are illustrated

by Figure 1. We assume throughout that market conditions are stable and that transaction

prices pt adjust sufficiently fast so that the noise process ∆ut is covariance stationary.

Figure 1: Timing of Information and Prices

-

Strong Form
Efficient Price

Information Flow

Semi-strong Form
Efficient Price

Transaction Price
? ? ?

? ? ? ? ? ?

p∗t

ωt qt

pet p̃et

pet + stqt

p∗t+1

ωt+1 qt+1

pet+1 p̃et+1

pet+1 + st+1qt+1

p∗t+2

ωt+2 qt+2

pet+2 p̃et+2

pet+2 + st+2qt+2

time

1

Our stylized setup covers three levels of information: full, intermediate (market maker),

and public information. Of course, in reality market participants are more heterogeneous

with respect to their information sets. Consider, for example, the difference between traders

with to those without access to Nasdaq level II screens. The former traders cannot see the

order book, whereas the latter can. We model for concreteness’ sake the intermediate price
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as the market maker’s price. It could, of course, also reflect some other information set, e.g.

the one of traders with access to a semi-public market information source.

Strong form efficient returns in periods t = κT are therefore

∆p∗t ≡ p∗t − p∗t−1 = σεt, (7)

and zero in all other periods. Semi-strong form efficient returns are

∆p̃et ≡ p̃et − p̃et−1 = λtqt + ωt, (8)

and semi-strong form noise is accordingly

∆ũt ≡ ∆pt −∆p̃et . (9)

We use the term “latent price” as a general term comprising both types of efficient

prices. The two latent prices defined here are conceptually very distinct and appeal to

distinct audiences. For example, on the one hand, a pure theorist may want to understand

the properties of the full-information price, and is thus interested in an estimate of the

volatility of the strong form efficient return (7). One the other hand, a market maker may

need a volatility measure to calculate his risk exposure, thus his relevant price for the asset

is p̃et , the price at which he keeps the asset on his accounts. It is the volatility of (8), and

not of (7), that affects his balance sheet.

Semi-strong form noise (9) differs fundamentally in its cross-correlation properties from

(3). It is therefore essential for a researcher to be clear what type of latent price the object

of interest is, because each requires different procedures to remove MSN appropriately.

Observed market returns are

∆pt ≡ pt − pt−1 = ∆pet + stqt − st−1qt−1.

A convenient estimator of the variance of the strong form efficient return, σ2, and there-

fore of the IV of the underlying continuous time process, is the realized volatility (RV) as in

Andersen et al. (2001b). RV during the time interval [0, T̄ ] is defined as the sum of squared

market returns over the interval, i.e. as

V ar(∆pt) =
T̄∑
t=1

∆p2
t .
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In the presence of MSN, the RV is generally a biased estimate of σ2. To see this, decompose

the noise into two components, one uncorrelated and one correlated with the latent price, so

that ∆ut = ∆uut + ∆uct . The uncorrelated component, ∆uut , reflects for example the bid-ask

bounce in a market populated with uninformed traders only. The correlated component,

∆uct , reflects for example the effect of asymmetric information. RV can now be decomposed

– here shown for the strong form efficient price – as

V ar(∆pt) = V ar(∆p∗t + ∆uut + ∆uct)

= σ2 + V ar(∆uut ) + V ar(∆uct) + 2Cov(∆p∗t ,∆u
c
t).

The bias of RV can stem from any of the last three terms, which are all nonzero in general.

IV estimation under the independent noise assumption accounts for the second and third

positive terms, but ignores the last term, which is typically negative (Hansen and Lunde,

2006). Correcting the estimates for independent noise only, always reduces the volatility

estimate. But because such a correction ignores the last term, which is the second channel

through which asymmetric information affects the IV estimate, the overall reduction might

be too much. Further, serial correlation of noise, or equivalently a cross-correlation between

noise and latent returns at nonzero displacement, requires the use of robust estimators for

both the variance and the covariance terms. In this paper we determine what correlation

and serial correlation market microstructure theory predicts, and how market microstructure

theory can be useful for improving IV estimates.

2.2 Statistical Characterization of Return/Noise Correlations

We focus in this paper on the cross-correlation between latent returns and noise contem-

poraneously and at all displacements. Throughout, we refer to this quantity simply as the

“cross-correlation”.

Under very general conditions the contemporaneous cross-correlation for the price pro-

cesses given by (1)–(6) is positive only if the market return, ∆pt, is more volatile than the

latent return. More precisely, for strong form efficient returns

Corr(∆p∗t ,∆ut) > 0⇔ E(∆pt∆p
∗
t ) > V ar(∆p∗t )⇔ Corr(∆pt,∆p

∗
t ) >

√
V ar(∆p∗t )

V ar(∆pt)
. (10)

Cross-correlations at displacements τ ≥ 1 are positive if and only if the current transaction

price responds stronger in the direction of a latent price change τ periods ago than the
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current latent price itself. More precisely, for strong form efficient returns

Corr(∆p∗t−τ ,∆ut) > 0⇔ E(∆pt∆p
∗
t−τ ) > 0. (11)

The conditions for semi-strong form efficient returns are analogous (see Diebold and Strasser,

2010). Whereas the price processes as defined in the previous subsection suffice to mechan-

ically derive expressions for their cross-correlation, this reduced form setup alone does not

give much guidance about sign and time pattern of these cross-correlations. In the financial

economic environments that will concern us the properties of prices are determined by the

market microstructure. Hence we introduce it now in some detail.

2.3 Introducing Markets and Market Makers

Whereas the strong form efficient price (1) is an exogenous stochastic process, the semi-

strong form efficient price (4) and the transaction price (6) are an outcome of the market

participants’ optimizing behavior. As such the latter are not time series of unknown proper-

ties generated by a black box. Instead, key properties of the data generator – the financial

market – are often observable and allow inferring properties of these price series. This is

what we do in this paper.

Generally speaking, the transaction price depends on the information available about

the strong form efficient price and the market participants’ response to this information.

Three features of the information process matter in particular: First, information content,

second, the diffusion speed of information into public knowledge, and third, the duration

of its validity. The price updating rule determines how, and how quickly, transaction prices

respond to new information. Of particular importance is whether the market maker can

quote prices dependent on the direction of trade, i.e. whether he is free to charge any

spread, because direction-dependent quotes allow prices to react instantaneously.

We focus here on a stylized limit-order market, populated by informed and uninformed

traders. Market makers are the counterparty of all trades. Each trading round they quote

price pet and spread st for one unit of the asset. Thereafter, as shown in Figure 2, informed

traders screen the market with probability α for profitable trading opportunities. They buy

if p∗t > paskt , sell if p∗t < pbidt , and refuse to trade otherwise. In periods of no informed

trade, uninformed traders trade instead with probability β, buying and selling with equal

probability.

When trading with an informed trader the market maker always loses. His expected loss
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Figure 2: Sequence of Informed and Uninformed Trading Decisions
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Informed
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55
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��

p∗ < pbid
// Informed

Sell q = −1

α

??

1− α
��

No
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Trading

q = 0
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Traders
Inactive

//
No

Informed
Trading

1− β
66

β/2
//

β/2 ))

Uninformed
Buy q = +1

Uninformed
Sell q = −1

1

is

Ln
[
pt, F (·; p∗, p∗)

]
= −

∫ p

p

|(pt − p∗t )E(qt |p∗t , pt, st )|n f (p∗t ) dp
∗
t , (12)

where E(qt |pet + st < p∗t ) = α, E(qt |pet − st > p∗t ) = −α, E(qt |pet − st ≤ p∗t ≤ pet + st ) = 0,

and n reflects the risk aversion of the market maker. F (·) and f(·) denote the cdf and pdf

with support
[
p, p
]

of the market maker’s belief about the latent price. Similar to Aghion,

Bolton, Harris, and Jullien (1991), the market maker faces a tradeoff between avoiding losses

today and learning quickly.4

Because price quotes are only for limited quantities, and the market maker can in principle

update his price quote after every trade, his risk exposure is usually small. Accordingly, we

assume risk neutrality (n = 1) throughout the paper, and relegate the implications of risk

aversion to Section 3.3.2. As shorthand notation for the probability of a trade we define

φt = E(q2
t ) = E [Prob(|qt| = 1)] = β + (1− β)α [1− F (pet + st) + F (pet − st)] .

4Diebold and Strasser (2010) describe the market setup and maker problem in more detail.
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Note that the model can be recast in tick-time by setting φt = 1 ∀t. We add the following

assumption, which simplifies the model without affecting its basic behavior.

Assumption 1 Ex ante, a buy and a sell is equally likely, so that E(qt) = 0. There is no

“momentum” in uninformed trading, and thus trades are serially uncorrelated beyond the

time of a strong form efficient price change, i.e. E(qκT+τ1|qκT−τ2) = 0 ∀κ, τ1 ∈ N0, ∀τ2 ∈ N.

In the following Sections 3 and 4 we look at specializations of this general market maker

problem and examine the effect of various model setups on the cross-correlation function.

For both strong form and semi-strong form efficient returns we first examine the multiperiod

case, where private information is not revealed until after many periods. We then specialize

to the one-period case, a case where private information becomes public, and worthless, after

only one period, where we specifically address the effect of risk-aversion.

3 Return-Noise Correlations in Financial Economic

Environments I: Strong Form Efficient Prices

Here we characterize cross-correlations in an environment of strong form efficient prices. We

calculate the cross-correlations between strong form efficient returns (7) and the correspond-

ing noise (3) in various market settings. To study the effect of one efficient price change

in isolation, suppose for now that there is a change in the strong form efficient price at a

commonly known time at which the previous change becomes public knowledge. To fix ideas,

let this change occur also every T periods.

3.1 The General Multi-Period Case

The cross-correlations, as shown in Web Appendix A.0.1, follow directly from the price and

noise processes. The contemporaneous cross-covariance is

Cov(∆p∗t ,∆ut) =
σ

T
[s0E(q0ε0)− σ + E(ω0ε0)] . (13)

For cross-covariance at higher displacements τ ∈ [1;T − 1] we get

Cov(∆p∗t−τ ,∆ut) =
σ

T
[(λτ−1 − sτ−1)E(qτ−1ε0) + sτE(qτε0) + E(ωτε0)] , (14)

9



for cross-covariance at displacement T , which is when private information becomes public,

Cov(∆p∗t−T ,∆ut) =
σ

T

[
σ − sT−1E(qT−1ε0)−

T−2∑
i=0

λiE(qiε0)−
T−1∑
i=0

E(ωiε0)

]
, (15)

and for all higher order displacements τ > T

Cov(∆p∗t−τ ,∆ut) = 0. (16)

Combining (13) with the noise variance derived in the Web Appendix gives the contem-

poraneous cross-correlation

Corr(∆p∗t ,∆ut) =
s0E(q0ε0)− σ + E(ω0ε0)√

T V ar(∆ut)
. (17)

All other cross-correlations can be obtained analogously.

The term E(qτε0) enters the expressions for the cross-covariance (13)–(15) linearly but

the denominator of the cross-correlation under a square root. Because this term decreases

in the share of uninformed trades, the contemporaneous cross-correlation is the smaller, the

less informed traders are active. In absence of both informed traders (E(qτε0) = 0) and of

extra information (E(ω0ε0) = 0), the market microstructure reduces to a bid-ask bounce,

as in Roll (1984). Even in this case, shown in the first row of Table 1, the latent price

and noise are not independent. The contemporaneous cross-correlation (17) is negative, the

cross-correlations at displacement T is positive and all other cross-correlations are zero.

Because of order splitting, effective spreads have become very small for liquid assets. If

no extra information is available and the spread sufficiently small, then the contemporaneous

cross-correlation is negative even in presence of informed traders, because pt does not react

sufficiently to ∆p∗t . It is strictly larger than negative one, because the delayed response of

∆pt to ∆p∗t−τ generates cyclical noise with – absent other market microstructure effects – up

to twice the variance of ∆p∗t . Likewise, if the spread roughly matches the adverse selection

coefficient, by (14) the cross-correlations at displacements one up to T−1 are positive, which

reflects that the more the market maker learns, the closer pt gets to p∗t , and the more noise

shrinks to zero. If, additionally, the adverse selection coefficient λ and extra information ω

in all periods are sufficiently small, i.e. if some private information persists until period T ,

then by (15) the cross-correlation at displacement T is positive as well.

In general, however, the sign of the cross-correlations depends on the behavior of market
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makers and traders. We now turn to models that allow us to introduce these explicitly.

3.2 Special Multi-Period Cases of Informed Trading

The market maker does not observe the strong form efficient price, p∗t , directly, but only

signals which allow him to narrow down the range of the current p∗t level. He observes in

particular the response of traders to his previous price quote and uses this signal to revise

his quote. Because in this section p∗t by assumption does not change after the initial jump

for T periods, the market maker can use the entire sequence of signals to learn p∗t over time.

The market maker has an incentive to find out p∗t , because he loses in every trade with an

informed trader. His optimization task is to quote prices that minimize his losses by learning

about p∗t as quickly as possible.

He learns over time “by experimentation” about the informed traders’ private information

by setting prices and observing the resulting trades (Aghion et al., 1991; Aghion, Espinosa,

and Jullien, 1993). We will see that rational behavior of market participants and the market

setup pins down the cross-correlation sign pattern. Only the absolute value of the cross-

correlation differs depending on how market participants interact.

The recursive problem of the market maker is hard to solve, and in particular there are

in general no closed form policy functions pbidt and paskt . Therefore we follow the market

microstructure literature by discussing interesting polar cases, which can be solved because

f(p∗t ) is degenerate. In particular, we limit our discussion to the midprice under a constant

spread.

3.2.1 No Strategic Traders

Consider first a market in which the market maker observes only a noisy signal of whether

p∗t has changed, but in which traders do not behave strategically. The market maker has to

learn both about the quality of the signal and about the latent price. A useful illustration

is the stylized model of Easley and O’Hara (1992). As in our general setup in Section 2.3

informed traders are active with probability α. In this model, the strong form efficient price

is not a martingale. The latent price can assume one of two possible levels, namely p∗t = p∗

or p∗t = p∗ > p∗. These levels, as well as the probability γ of p∗t = p∗, are publicly known,

but the actual realization of p∗t is not.5

5The case of signal certainty, which implies the absence of any uninformed traders, is trivial here: Because
p∗t can assume only one of two price levels, the first trade reveals the true strong form efficient price. Until
the first trade occurs, the expected efficient price is γp∗ + (1− γ)p∗.
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The direction-of-trade signal, qt, is thereby noisy in two ways. Not only does the market

maker not know if a specific trade originates from informed traders, thereby being informa-

tive; the market maker does not even know if there are any informed traders. He learns by

updating in a Bayesian manner his belief about the probabilities that nobody observed a

signal, that informed traders observed p∗t = p∗, or that they observed p∗t = p∗, using his in-

formation set of all previous quotes and trades. Even no-trade intervals contain information

about p∗t , because they lower the probability that informed traders are active.6

Denote βτ,{p∗} ∈ [0, 1] the belief at time t+ τ that a high latent price has been observed,

βτ,{p∗} the belief that a low latent price has been observed and βτ,{} the belief that nobody

has observed any signal, all conditional on the market maker’s information set. The market

maker sets the bid price, for example, under perfect competition to

pbidτ − p∗ = βτ,{p∗}(1− βτ,{})p∗ + βτ,{p∗}(1− βτ,{})p∗ + βτ,{}
p∗ + p∗

2
− p∗

=

(
βτ,{p∗} +

βτ,{}
2

)(
p∗ − p∗

)
.

A sufficiently large τ allows invoking a law of large numbers for the observations included in

the market maker believes. Easley and O’Hara (1992) show for the case that traders observed

a low latent price that βτ,{p∗} = exp(−r1τ) and βτ,{} = exp(−r2τ) for some r1, r2 > 0. For

large τ the bid price pbidt converges exponentially to p∗ almost surely at the learning rate

r = min(r1, r2). They derived this for market makers sampling in calendar time. Market

makers sampling tick-by-tick have the same correlation pattern, but a lower learning rate,

because they miss the no-trade periods, which reveal information as well. An analogous

result applies to the convergence of the ask price to p∗.

Overall, transaction prices converge to the strong form efficient price in clock time at

exponential rates for large τ . The following proposition summarizes the cross-correlations in

Easley and O’Hara (1992)-type models. It considers only the dominant exponential learning

pattern, and ignores lower order terms which disappear at faster rates as τ gets large.

Proposition 1 (Cross-correlations in the Easley-O’Hara model)

The contemporaneous cross-correlation in the Easley and O’Hara (1992) model is

Corr (∆p∗t ,∆ut) = −1 + e−r(T−1)

2
√
K

< 0,

6A variation of this setup is the model of Diamond and Verrecchia (1987), where short selling constraints
cause periods of no trading to be a noisy signal of a low latent price.
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and the cross-correlations at sufficiently large nonzero displacements follow

Corr
(
∆p∗t−τ ,∆ut

)
=
er − 1

2
√
K
e−rτ > 0, ∀τ ∈ [1, T − 1]

Corr
(
∆p∗t−T ,∆ut

)
=
e−r(T−1)

2
√
K

> 0,

where K = K(r, T ).

Proof: The proofs to all propositions are collected in Web Appendix A.

As before, the contemporaneous correlation is negative, and approaches its minimum for

small r and small T . Furthermore, the cross-correlation of the strong form efficient price

decays geometrically to zero until τ = T :

Corr
(
∆p∗t−τ ,∆ut

)
= e−r(τ−1)Corr

(
∆p∗t−1,∆ut

)
∀τ ∈ [1, T − 1].

We graph this cross-correlation function in the first row of Figure 3. The cross-correlation

pattern in the upper left panel is for a learning rate of r = 0.5 , and in the upper right panel

for a faster learning rate of r = 2. Often, optimal learning stops before p∗t is reached (Aghion

et al., 1991), e.g. if the spread is large or if market maker risk aversion is small. In that case

the cross-correlations cut off at some τ < T .

This decay pattern is not unique to the Easley and O’Hara (1992)-model. Glosten and

Milgrom (1985) show more generally that if learning is costless, the expectations of market

makers and traders necessarily converge as the number of trades increases. Because of the

uncertainty of whether a trade reflects information or just noise, the market maker faced

with a noisy signal adjusts only partially. Therefore, whereas the cross-correlations under

a noisy signal have the same signs as under signal certainty, their absolute values are all

dampened toward zero.

3.2.2 Strategic Traders

Because the market maker cannot distinguish informed from uninformed trades, informed

traders can act strategically. Informed traders aim to make the signals about p∗t conveyed

by their orders as noisy as possible, while still executing the desired trades. By mimicing

uninformed traders they keep the market maker unaware about the change in p∗t . Because the

market maker observes the order flow and uses it to detect informed trading, the informed
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Figure 3: Cross-Correlation Functions ρτ of the Strong Form Efficient Price

(a) Noisy Signal (r=0.5, T=5)
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(c) Strategic Traders (T=5)
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(e) Low Risk Aversion (T=1)
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traders strategically stretch their orders over a long time period such that detecting an

abnormal trading pattern is difficult. The market maker will, of course, notice the imbalance

in trades over time. By sequentially updating his belief about p∗t based on the history of

trades he still learns about p∗t , but very slowly, because of the strategic behavior of traders.

Markets of this type have been described in Kyle (1985) and Easley and O’Hara (1987).

In the following we discuss the cross-correlation function implied by the Kyle (1985) model.

The strategic behavior described by Kyle (1985) requires that exactly one trader is informed,

or that all informed traders coordinate trading in a monopolistic manner. Here, the market

maker does not maximize a particular objective function, he merely ensures market efficiency,

i.e. sets the transaction price such that it equals the expected strong form efficient price, pet ,

given the observed aggregate trading volume from informed and uninformed traders. The

only optimizing agent in this model is a risk neutral, informed trader who optimally spreads

his orders over the day to minimize the unfavorable price reaction of the market maker.

Doing so, he maximizes his expected total daily profit using his private information and

taking the price setting rule of the market maker as given. Effectively, the informed trader

trades most when the sensitivity of prices to trading quantity is small.

Kyle (1985) assumes a linear reaction function of the market maker, which implies λt = λ

∀t ∈ [1, T ], and a linear reaction function for the informed trader, which implies qt = q

∀t ∈ [0, T − 1]. Under these assumptions he shows that in expectation the transaction price

approaches the latent price linearly, not exponentially. The reason for this difference to

the previous subsection is that there the market maker updates his beliefs in a Bayesian

manner, whereas here the market maker’s actions are constrained to market clearing. The

other feature of strategic trading is that just before p∗t becomes public the transaction price

reflects all information.

More specifically, from the continuous auction equilibrium in Kyle (1985) the price change

at time t is

dpe(t) =
p∗ − pe(t)
T − t dt+ σdz, t ∈ [0, T ].

The innovation term dz is white noise with dz ∼ N(0, 1) and reflects the price impact of

uninformed traders. This stochastic differential equation has the solution7

pe(t) =
t

T
p∗ +

T − t
T

pe(0) + (T − t)
∫ t

0

σ

T − sdBs,

7The third term reflects uninformed trading. It has an expected value of zero, and the impact of this
random component increases during the early trading day and decreases lateron – its contribution to pe(t)
is therefore hump-shaped over time.
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where dBs ≡ dz. The increments of the expected price over a discrete interval of time follow

therefore

∆peτ =
∆p∗0
T

+ (T − τ)

∫ τ

τ−1

σ

T − sdBs −
∫ τ−1

0

σ

T − sdBs. (18)

This implies the following cross-correlations:

Proposition 2 (Cross-correlations in the Kyle model)

The contemporaneous cross-correlation in Kyle (1985) is

Corr (∆p∗t ,∆ut) = −
√

T

T 2 + 1
,

the cross-correlations at displacements τ ∈ [1;T ] are

Corr
(
∆p∗t−τ ,∆ut

)
=

√
1

T (T 2 + 1)
,

and all higher order cross-correlations are zero.

The cross-covariance at nonzero displacements is a positive constant. It is positive be-

cause of market maker learning. It is constant because of the strategic behavior of traders,

which spread new information equally over time. This maximizes the time it takes the market

maker to include the entire strong form efficient price change in his quotes. The more peri-

ods, the more pronounced is the negative contemporaneous cross-correlation, and the smaller

are the cross-correlations at nonzero displacements. We plot the cross-correlation function

given by Proposition 2 in the second row of Figure 3. We show the cross-correlation function

a Kyle (1985)-type model under modestly frequent changes in the latent price (T = 5) in

the left panel, and for more frequent changes (T = 2) in the right panel.

Table 1 compares the cross-correlation patterns of standard multiperiod market mi-

crostructure models: The Roll (1984) model in row 1, the Glosten and Milgrom (1985)

model in row 2, the Easley and O’Hara (1992) model in row 3, and the Kyle (1985) in row

4, which includes oscillating, linearly decaying and exponentially decaying patterns.

3.3 One-Period Case

In this section we return to the general latent price process, and consider the extreme case

that p∗t automatically becomes public information at the end of each period, i.e. ωt =
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Table 1: Cross-Correlations between ∆p∗t and MSN in Multi-period Models

p∗t mar- signal traders ρ0 ρτ ρT ρτ
tingale strat. τ ∈ [1, T − 1] τ > T

Roll yes none n.a. ρ0 < 0 0 −ρ0 0

G-M yes
certain/

noisy
no ρ0 < 0 ρτ−1 > ρτ > 0 ρT > 0 0

E-O no noisy no −1+e−r(T−1)

2
√
K(r,T )

−e−rτ+e−r(τ−1)

2
√
K(r,T )

e−r(T−1)

2
√
K(r,T )

0

Kyle yes noisy yes −
√

T
T 2+1

√
1

T (T 2+1)

√
1

T (T 2+1)
0

p∗t−1− p̃et−1 and T = 1. This allows us to investigate the impact of risk aversion for the cross-

correlation pattern. p∗t−1 is thus known when the market maker decides on pt, which removes

any incentive for informed traders to behave strategically. They therefore react immediately,

which implies that E(qt−τεt) = 0 ∀τ 6= 0 and that all trades are serially uncorrelated, i.e.

E(qt|qt−1) = 0. For the market maker all periods are identical, and therefore the spread and

reaction parameters are both constant over time, i.e. st = s and λt = λ ∀t.
The cross-correlation function inherits its shape from (13)–(16). At displacement one

it has the opposite sign and same absolute value as contemporaneously, and it is zero at

displacements larger than one. In order to pin down the value of the contemporaneous

cross-correlation, we now turn to specific models.

3.3.1 No Market Maker Information

We start with our baseline assumption that the market maker at time t has no information

whatsoever about ∆p∗t . Plugging T = 1, st = s, and λt = λ, and thus φt = φ, into the

general multiperiod results of Section 3.1 gives

Proposition 3 (Strong form cross-correlation, one period model)

Corr(∆p∗t ,∆ut) =
1√
2

sE (qtεt)− σ√
φs2 + σ2 − 2sσE(qtεt)

, (19)

Corr(∆p∗t−1,∆ut) = −Corr(∆p∗t ,∆ut).

If there is trading in every period (β = 1, and thus φ = 1), then the cross-correlation

(19) is bounded from above and below by
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Proposition 4 (Bounds of contemporaneous cross-correlation)

− 1√
2
≤ Corr(∆p∗t ,∆ut) ≤ 0.

The cross-correlation reaches the lower bound for zero spread. Thus for midprices, or

extremely small spreads due to order splitting, the cross-correlation is highest. For transac-

tion prices the contemporaneous cross-correlation is less pronounced. The contemporaneous

cross-correlation for midprices is negative, because pet does not react instantaneously to the

change in the strong form efficient price in the same period. This is an instance of the

price stickiness that Bandi and Russell (2006) show to generate “mechanically” a negative

contemporaneous cross-correlation. It differs from negative unity because transaction prices

move in adjustment to the strong form efficient return one period earlier.

Table 2: Cross-Correlations between Latent Prices and MSN in One-period Models

latent s λ loss ρ0 ρ1 ρτ
price function τ > 1

p∗t

0 any any − 1√
2

1√
2

0

≥ 0 any any − 1√
2
≤ ρ0 < 0 −ρ0 0

≥ 0 any
high n+
extra info

ρ0 > 0 −ρ0 0

p̃et

≥ 0 λopt quadratic − 1√
2
≤ ρ0 ≤ 1√

2
−ρ0 0

∈ [0, λ[ > λopt

2
any ρ0 < 0 ρ1 > 0 0

∈ [0, λ[ < λopt

2
any ρ0 > 0 ρ1 > 0 0

λ any any 0 0 0

≥ λ > λopt

2
any ρ0 > 0 ρ1 < 0 0

≥ λ < λopt

2
any ρ0 < 0 ρ1 < 0 0

We summarize these results in the upper two rows of Table 2. Compared to the multi-

period case in Table 1 the absolute value of the cross-correlation at lag one is large, because

all information is revealed. Cross-correlations at any displacement beyond one are, in con-

trast, necessarily all zero.
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3.3.2 Incomplete Market Maker Information and Risk Aversion

Throughout this paper we assume a risk-neutral market maker. In this subsection we lift

this assumption, which can be justified in times of market turbulence. If extreme events

occur, strong form efficient prices become highly correlated across assets, or, to stay with

our maintained example, stocks. Although the market maker is bound by his quote only up

to a fixed quantity on an individual stock, the total exposure of a market maker that has

quotes outstanding in many markets might be non-trivial.

Without information about ∆p∗t risk aversion does not change the market maker behavior.

Extra information, however, e.g. about the direction of the change in the latent price,

{sgn(εt)}, can under risk aversion invert the cross-correlation pattern. Knowing {sgn(εt)}
the market maker adjusts his quotes before informed traders can take advantage of the latent

price change. The market maker updates his prior about p∗t , summarized by the distribution

p∗t ∼ f(p∗t−1, σ
2), with the signal {sgn(εt)}. For convenience of exposition we use

Assumption 2 The probability density function of εt is symmetric around its zero mean,

monotonically increasing on ]−∞; 0] and monotonically decreasing on [0;∞[.

The updated belief f̃(·) differs from f(·) in that it is truncated from below or above at

p∗t = p∗t−1 when sgn(εt) > 0 or sgn(εt) < 0, respectively. After observing signal and p∗t−1, the

market maker quotes a bid and an ask price for the following period, taking the spread s as

given:

pt = p∗t−1 + sqt +R({sgn(εt)}). (20)

This equation resembles (6), with ωt = −p̃et−1 + p∗t−1 + R({sgn(εt)}). The market maker

response R(·) to the extra information depends in particular on the market maker’s risk

aversion, n.

An approximation8 to the problem of choosing pet (n) based on loss function (12) is

pe(n) = argmax
x∈[p∗,p∗]

−
∫ x

p∗
(x− p∗)n f(p∗)dp∗ −

∫ p∗

x

(p∗ − x)n f(p∗)dp∗. (21)

The higher the risk aversion n, the more sensitive is the expected loss, Ln
[
pt, F (·, p∗, p∗)

]
,

to the support of p∗t , that is, to p∗ and p∗. For some values of n, explicit solutions to (21)

8This approximation is exact for s = 0 or, more generally, for∫ pe(n)

pe(n)−s
(pe(n)− p∗)

n
f(p∗)dp∗ +

∫ pe(n)+s

pe(n)

(p∗ − pe(n))
n
f(p∗)dp∗ = 0.
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are available. A well-known result is that the optimal choice for a risk neutral market maker

(n = 1) is to set pet equal to the median of f(·), and for a modestly risk averse market maker

(n = 2) to the mean. An extremely risk averse (n → ∞) market maker follows the most

robust pricing role possible: He minimizes his expected loss at the price in the middle of the

support of f(·), i.e. pt =
p∗+p∗

2
. We summarize this in

Proposition 5 (Optimal Midprice) The optimal midprice, pe(n), monotonically shifts

from the median to the midpoint of the support of p∗t with increasing risk aversion. In

particular,

pe(1) = Median(p∗t )

pe(2) = E(p∗t )

pe(∞) = Midsupport(p∗t ).

Figure 4, which plots the transaction price as a function of risk aversion n, illustrates this

increasing sensitivity. For a right-skewed distribution f(·) with infinite support, namely the

halfnormal distribution, pe(n) increases in n, starting from the median for n = 1, monoton-

ically without bound. If, in contrast, f(·) has finite support, then pe(n) increases from the

median monotonically toward a finite asymptote pe(∞). This is shown in the right panel of

Figure 4 for the right-triangular distribution defined on [0, 1]. For left-skewed distributions

the result is analogous. This has implications for the possible cross-correlations:

Proposition 6 (Cross-correlation under market maker information) If the distri-

bution of the expected latent price with ex-ante support [p∗
t
, p∗t ] satisfies[

p∗
t

+ p∗t

2
− p∗t−1

]
sgn(εt) > s+

σ

E(|εt|)
, (22)

then ∃n0 > 1 such that ∀n > n0 it holds that Corr(∆p∗t ,∆ut) > 0.

Condition (22) holds, for example, for normally distributed, but not for tent distributed

∆p∗t . This is reflected in Figure 4, where the price in the left panel quickly reaches the cutoff
σ

E(|ε|) , plotted as dashed line, whereas in the right panel it never does.

Comparing these results in the third row of Table 2 with the other models, it appears

that even though the contemporaneous cross-correlation can be positive for high risk aversion

levels, the usual case is that it is negative. For the halfnormal distribution, for example, we

need a rather high risk aversion of n ≥ 8. Nevertheless, changes in risk aversion of the
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Figure 4: Optimal Mid-Price for Right-Skewed Expected Latent Price Distributions
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market maker have a distinctive impact on the cross-correlation. Hansen and Lunde (2006)

note as their “Fact IV” that “the properties of the noise have changed over time.” Because

they base this observation on a comparison of year 2000 with year 2004 it is possible that

the underlying cause is a change in risk aversion.

The link between properties of noise and risk aversion offers itself as a way to estimate

the time path of risk aversion from the cross-correlation pattern of transaction prices. In

stable periods with low risk aversion the contemporaneous cross-correlation is negative, but

as uncertainty shoots up, contemporaneous cross-correlation shoots up with it. In periods of

crisis this can lead to the extreme case of an inverted cross-correlation pattern that we have

described in this section. The lower row of Figure 3 illustrates this inversion: it shows the

typical cross-correlation pattern of strong form efficient prices in a one-period model with

modest risk aversion on the left, and under higher risk aversion on the right.

In summary we have shown in this section that many market properties leave their mark

on the cross-correlation pattern: The displacement beyond which correlation is zero gives an

indication of the frequency of information events. The larger the correlation is in absolute

value terms the fewer uninformed trades occur in the market. If contemporaneous strong

form cross-correlation is positive, then market makers are very risk averse and have access

to extra information. If the cross-correlations at nonzero displacements decay quickly, then

market makers learn fast. If they do not decay at all, then informed traders act strategically.
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4 Return-Noise Correlations in Financial Economic

Environments II: Semi-Strong Efficient Prices

Now we base the cross-correlation calculation on another latent price, the semi-strong form

efficient price, p̃et . Equivalently this setup can be seen as an endogenous latent price process,

determined by an exogenous trading process qt, because then the strong-form efficient price

remains unobserved and enters the model only via the informed trades. It is closely related

to the “generalized Roll model” in Hasbrouck (2007). To keep the terms manageable, we

assume no extra information here, i.e. ωt = 0 ∀t.

4.1 Multi-Period Case

Simple calculations (see the Web Appendix A.0.2) give for the contemporaneous covariance

of semi-strong form efficient prices

Cov(∆p̃et ,∆ũt) =
1

T
{−φ0λ0(λ0 − s0) + σ(λ−1 − s−1)E(q−1ε−T )

−
−T∑
i=−1

(λ−1 − s−1)λiE(qiq−1)

+
T−1∑
i=1

(−φiλi(λi − si) + λi(λi−1 − si−1)E(qiqi−1))

}
, (23)

for covariance at higher displacements τ ∈ [1, T − 1]

Cov(∆p̃et−τ ,∆ũt) =
1

T
{−λ0(λτ − sτ )E(q0qτ )

+ λ0(λτ−1 − sτ−1)E(q0qτ−1) + λT−τ (λT−1 − sT−1)E(qT−τqT−1)

+
T−1∑
i=τ+1

[λi−τ (−λi + si)E(qi−τqi) + λi−τ (λi−1 − si−1)E(qi−τqi−1)]

}
, (24)

for covariance at displacement T

Cov(∆p̃et−T ,∆ũt) =
1

T
λ0 (λT−1 − sT−1)E(q0qT−1), (25)

and for all higher order displacements τ > T

Cov(∆p̃et−τ ,∆ũt) = 0.
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The cross-correlations for semi-strong form efficient prices stem from a gap between the

spread, st, and the adverse selection parameter, λt. Such a gap can result from processing

costs (st > λt), from legal restrictions (st < λt), or merely from suboptimal behavior of

the market maker. Noisy signals or strategic behavior do not affect the semi-strong cross-

correlations, as for example in Easley and O’Hara (1992), where prices are semi-strong form

efficient by definition. Under semi-strong market efficiency (st = λt ∀t) the cross-correlation

function is zero for all displacements.

The Kyle (1985) model assumptions λt = λ and st = s ∀t give with (24)

Cov(∆p̃et−τ ,∆ũt) =
λ(λ− s)

T

{
E(qT−τqT−1) +

T−1∑
i=τ

[E(qi−τqi−1)− E(qi−τqi)]

}
.

If λ = 0, then this cross-correlation is flat at zero. Likewise, if additionally E(qi−τqi) is a

positive constant between the time of the latent price change and its public announcement,

the cross-correlation is flat and proportional to λ(λ−s)
T

. If E(qiqj) > E(qi−τqj) > 0 ∀i ≤ j,

∀τ > 0, the cross-correlation decreases in τ .

4.2 One-Period Case

The simpler case of markets in which all information is revealed after one period without

any extra information, i.e.

∆p̃et = λ(qt − qt−1) + σεt−1, (26)

∆ũt = (s− λ)(qt − qt−1). (27)

offers itself again for illustration of these cross-correlation effects. Unlike their strong form

counterpart the semi-strong form efficient prices are not a martingale. We see in the following

proposition that in contrast to the strong form correlations, the absolute value of semi-strong

form cross-correlation at displacement zero and one usually differs even in one-period models.

Proposition 7 (Semi-strong form cross correlation, one-period model)

The contemporaneous cross-correlation is

Corr(∆p̃et ,∆ũt) =
2φλ− σE(qtεt)√

σ2 − 2σλE(qtεt) + 2φλ2

sgn(s− λ)√
2φ

.
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The cross-correlation at displacement one equals

Corr(∆p̃et−1,∆ũt) =
−φλ√

σ2 − 2σλE(qtεt) + 2φλ2

sgn(s− λ)√
2φ

.

All cross-correlations at higher displacements are zero.

Bounds on the contemporaneous cross-correlation can be obtained by assuming a specific

market marker loss function and then solving for the market maker’s optimal λ. For example,

suppose the market maker has a quadratic loss function, then

λopt = argmin
λ

E
[
(p̃et − p∗t )2

]
,

which becomes

λopt = argmin
λ

φλ2 − 2σλE (qtεt) ,

and therefore λopt = σ
φ
E (qtεt) > 0. At λopt we have

Corr(∆p̃et ,∆ũt) = E(qtεt)
sgn(s− λopt)√

2φ
,

Corr(∆p̃et−1,∆ũt) = −E(qtεt)
sgn(s− λopt)√

2φ
,

and because 0 ≤ E (qtεt−τ ) < 1, ∀t, τ 9

|Corr(∆p̃et ,∆ũt)| =
∣∣Corr(∆p̃et−1,∆ũt)

∣∣ ≤ 1√
2φ
.

Under a quadratic market maker loss function and an uninterrupted flow of trades (φ = 1),

the absolute value of cross-correlations is bounded from above by 1√
2
.

The contemporaneous cross-correlation is positive as in Diebold (2006) for s > λ >
σ
2φ
E(qtεt) = λopt

2
and for s < λ < λopt

2
. Proposition 7 shows that the size of the spread matters

only relative to the adverse selection parameter. The cross-correlation at displacement one,

for example, is negative if and only if the spread exceeds the adverse selection cost. For

these parameters again an inverted (compared to Hansen and Lunde (2006)) cross-correlation

function obtains as in the lower right panel of Figure 3. Either parametrization reflects a

plausible market situation. A large spread scenario without violating the market maker’s

9Note that by Jensen’s inequality 0 ≤ E (qtεt−τ ) < E (|εt−τ |) <
√
E
(
|εt−τ |2

)
= 1.
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zero-profit condition can be the result of high risk aversion. By the same reasoning as in

Section 3.3.2, there exists a risk aversion level n0 such that all n > n0 generate a spread

s > λ. Whereas the spread is likely to exceed the trade response, because the spread must

cover the order processing cost, also the small spread scenario could obtain in some markets

from competition or regulatory constraints.

We summarize the results in the lower four rows of Table 2. Unlike for the strong-

form efficient prices, positive contemporaneous cross-correlation for semi-strong form efficient

prices obtains even in situations where the market maker does not observe a signal.

Summing up, what sign of contemporaneous cross-correlation does market microstruc-

ture theory predict? Positive contemporaneous cross-correlations occur for (1) strong form

efficient prices under sufficiently high risk aversion if a signal is observed, and (2) semi-strong

form efficient prices for several parameterizations. Bandi and Russell (2006) and Diebold

(2006) rightly wonder whether a negative cross-correlation is inevitable. We have seen that

for latent price processes different from Brownian motion a positive cross-correlation is not

unlikely. For strong form efficient prices a positive cross-correlation is possible, but a neg-

ative cross-correlation appears most realistic. Markets in which Bandi and Russell (2008)

find no “obvious evidence of a significant, negative correlation,” are likely subject to an

extraordinary microstructure effect such as high risk aversion.

5 The Relationship between Price Change Frequency

and Sampling Frequency

In this section we discuss the implications that the frequency of price changes in financial

markets has for the choice of sampling frequency. We begin with a discussion of the effects

of incompletely observed latent price changes, turn then to the effect of sampling frequency

on return-noise correlations, and finally examine the implications of trade frequency for

econometric theory.

5.1 Infrequent Latent Price Disclosure

For clarity of exposition in most of this paper we discuss models, where p∗t−1 becomes public

information just before it changes. In general, however, its exact value might never become

public. In this case, because Corr(p∗t ,∆p
∗
t−τ ) > 0 ∀τ > 0, the past p∗t−τ contain unrevealed

information about p∗t . As p∗t−τ is not precisely known itself, potentially the entire history of
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observed transaction prices contains information about the current p∗t .

More specifically, suppose that exact values of the κ most recent latent prices are not

fully revealed and therefore partly private information. This changes the market maker’s

problem in two ways: First, informed trades now convey the signal {sgn(p∗t − pt)}, distinct

from the signal {sgn(εt)}. Second, the larger κ, the more spread out is ceteris paribus the

distribution of the market maker’s belief about p∗t .

This signal conveyed by a trade mixes information on ∆p∗t with the κ previous latent

price changes, ∆p∗t−iT , i ∈ [1, κ]. The contemporaneous cross-correlation is dampened toward

zero, because the covariance between latent prices and noise does not offset the higher noise

variance. A potentially wider spread dampens the cross-correlation further.

By (11) the signs of the cross-correlations at displacements τ > 0 remain unchanged as

long as learning induces pt to move in the same direction as p∗t−τ . They are the closer to zero,

the less informative the signal conveyed by the current trade is about past latent returns.

That is, the closer to zero the cross-correlation Corr(pt,∆p
∗
t−τ ) is, and ultimately, the more

often p∗t changes during the period.

Overall, slowly decaying private information keeps the cross-correlation sign pattern un-

changed, but dampens its absolute values toward zero.

5.2 Sampling Frequency and Return-Noise Correlations

We have so far assumed that pt, p̃
e
t and pet are all updated at the same frequency and chose

this as our sampling frequency. Sampling at faster or slower rates will affect the shape of

cross-correlation functions. Because for example the reaction speed of the market maker

is generally unknown, econometric sampling may proceed at faster or slower rates. This

has immediate implications for the shape of empirically estimated (sample) cross-correlation

functions. Clearly, the cross-correlations are the smaller in absolute value, the more variation

from other periods increases the variance of ∆ut without increasing its covariance with ∆p∗t−τ .

Consider first the effects of sampling “too fast”, in particular more frequently than trades

occur. Suppose we sample m times during an interval of no changes in market prices, and for

that matter, latent prices. Recording each time the most recent observed price, all returns

but the first in each interval are zero and thus the cross-correlation function becomes a

spread-out version of the cross-correlation functions derived in the previous sections: after

each dampened non-zero cross-correlation follow m− 1 zero cross-correlations. Zeros in the

middle of a cross-correlation function thus indicate overly fast sampling.

A variant of sampling “too fast” is sampling faster than information evolves. That is,
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sampling at trading frequency, i.e. the frequency of pt, although the market maker updates

pet only infrequently, for example only every m-th trade. A single change of peim (i ∈ N) now

reflects the information about ∆p∗0 conveyed by trading activity between (i − 1)m and im.

∆pm is thus more correlated with ∆p∗0 than under period-by-period updating. But because

the quote is fixed during (i−1)m+1 and im, the trades in the interim period jointly provide

less information than under period-by-period updating. Because further the variance of

noise increases due to the delayed accumulated market maker response, the cross-correlation

function oscillates between dampened values.

Now consider the effects of sampling “too slowly”. Suppose, for example, that we sample

in the one-period model of Section 4.2 only every m-th tick, where t̂ indexes the m-tick

blocks. Then (26) becomes

∆p̃et̂ =
t̂m∑

i=(t̂−1)m+1

∆p̃ei = λ(qt̂m − q(t̂−1)m) + σ
t̂m−1∑

i=(t̂−1)m

εi,

and the variance increases to V ar(∆p̃e
t̂
) = mσ2 − 2σλE(qtεt) + 2φλ2. Assuming that the

statistical properties of the interim periods are the same as the properties of the sampled peri-

ods, the expressions for noise (27), its variance V ar(∆ut̂), and the covariance Cov(∆p̃e
t̂
,∆ut̂)

remain unchanged. Increasing the sampling interval averages the initial transaction price

reaction with later price changes, thereby dampening the entire cross-correlation pattern

toward zero:

∣∣Corr(∆p̃et̂ ,∆ũt̂)∣∣ =

∣∣∣∣∣ 2φλ− σE(qtεt)√
2φ
√
mσ2 − 2σλE(qtεt) + 2φλ2

∣∣∣∣∣ < |Corr(∆p̃et ,∆ut)| .
Hansen and Lunde (2006) find a negative contemporaneous cross-correlation between

returns and noise, which diminishes as more ticks are combined into one transaction price

sample. Our results show that this can stem from two different sources: Either from the av-

eraging effect across latent price changes just described, or from cross-correlations at nonzero

displacements offsetting the contemporaneous correlation for the same latent price change.

This ambiguity can be resolved by evaluating the entire cross-correlation function, which

shows the importance of not limiting noise analysis to the contemporaneous cross-correlation.

Standard RV is unbiased if sampling frequency is sufficiently low so that microstructure

effects are averaged out. Applying “noise-corrected” RV estimators to data at lower fre-

quencies results in biased estimates, because at lower frequencies slow moving features of
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the price process are removed, not microstructure noise. Thus they should only be applied

to data sampled at frequencies at which microstructure effects can conceivably exist, e.g.

above 1/100 seconds.

The upshot is that sampling frequency does not change the sign pattern of cross-correla-

tions but can severely impact their absolute values. Our results suggest that sampling at a

rate detached from the updating frequency of prices and information, in particular sampling

too fast or too slow, mutes complications as well as information originating from dependent

noise, and effectively changes the properties of the data. Sampling frequency should therefore

be chosen based on the price updating frequency of the market.

5.3 Sampling Frequency and Asymptotic Theory

The previous section has shown that the microstructure of a market implies a natural sam-

pling frequency. In practice, sampling frequency is also central for econometric theory. Infill

asymptotic theory, for example, requires the number of sampling intervals during a fixed

time span to go to infinity. Sampling at an infinite frequency is impossible in real financial

markets, but as trading keeps becoming faster and faster we can view it as the trading fre-

quency limit in the infinite future. Can econometric theory gain anything from examining

the developments in financial markets?

Consider the Zhou (1996)-estimator as an example. Its consistency hinges on the ratio

of the lag length measured by the number of sample periods to sampling frequency going

to zero as sampling becomes infinitely frequent. That is, under infill asymptotics, the time

span that the lag window spans must asymptotically shrink to zero. It is commonly argued

that this assumption is “inappropriate” for financial markets (e.g. Hansen and Lunde, 2006,

p.139). Effectively, the question comes down to whether MSN decays according to a tick-

time or a calendar-time schedule. Linking econometrics to market structure, we argue in the

following that tick-time dependence is reasonable in many cases.

When deriving the limiting behavior of IV estimators, econometric theory commonly

assumes that the properties of transaction prices are invariant to the sampling frequency.

This might be correct in many instances, but just as often it is not. In the case of financial

markets, the maximum feasible sampling frequency is dictated by the trading frequency.

As the trading frequency in a given market changes, other features of that market change

as well. Therefore asymptotic theory must account for the possibility that price behavior

changes as feasible sampling frequency increases.

To verify the relevance of this possibility, let us revisit the economics of financial mar-
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kets. The analogue of shrinking the interval length in infill asymptotics is a higher trading

frequency in financial markets, which implies a higher feasible sampling frequency. In the

following three examples, we examine how a higher feasible sampling frequency affects noise

persistence. We consider a slow and a fast market: The slow market is rather illiquid, so

that a trade is observed only once during a five-minute interval. The fast market is more

liquid, and trades are observed once every minute. The latent price process is the same in

both markets. In fact, both slow and fast market might be the very same market at different

points in time. The latent price moves more between two trades in the slow market, which

means that there the IV over the shortest possible sampling interval is higher.

Consider first a bid-ask bounce. Bid-ask bounces are purely mechanic, and directly linked

to observed trades. In the slow market, the possible rebounce occurs five minutes after the

original trade, whereas in the fast market it occurs after only one minute. Thus the market

microstructure noise (MSN) is autocorrelated for five minutes in the slow market, but only

for one minute in the fast market.

Next, consider asymmetric information. If learning of market participants is automated

and limited to information extracted from trade signals, then the amount of learning grows in

the number of trade signals observed, not in the time that has passed. For a specific example,

suppose the market maker needs ten trades to include half of the latent price change into his

price quote. This will take 50 minutes in the slow, but only ten minutes in the fast market.

MSN persistence measured in calendar time is thus much shorter in the faster market.

Our third example shows that this applies only to tick-dependent MSN, i.e. to situations

where private information is revealed by trades only and where the speed of information

processing is not a binding constraint. Some properties of MSN, however, might be invariant

to sampling frequency. For example, the time that strategic informed traders allocate to fully

reveal their information might be exogenous to the trading frequency. Instead, its optimal

value might be a function of the speed of information diffusion outside the market, e.g. due

to reporting delays, which are fixed in calendar time. Thus the autocorrelation of MSN

generated by strategic informed traders is the same in calendar time in the slow and the fast

market; it does not shrink as sampling frequency increases.

Overall, the autocorrelation of MSN to due a bid-ask bounce and asymmetric informa-

tion without strategic traders shrinks in calendar time as the feasible sampling frequency

increases. The autocorrelation of MSN due to strategic traders does not.

This has an important implication for the asymptotic theory of IV estimators of the

Zhou (1996)- and Hansen and Lunde (2006)-type. When private information is revealed by
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trades only, the necessary lag length is fixed in terms of ticks, not calendar time. Therefore,

the ratio of lag length to sampling frequency approaches zero when sampling infinitely fast.

In these cases the estimators are consistent. They must be modified to ensure consistency

when relevant information transmission occurs outside of the financial market, e.g. by sub-

sampling (Barndorff-Nielsen et al., 2011b) or kernel-based downweighting of higher-order

autocovariances (Barndorff-Nielsen et al., 2008).

6 Practical Implications and Empirical Application

We have already drawn some econometric implications insofar as we have shown that mar-

ket microstructure models predict rich cross-correlation patterns between latent prices and

market microstructure noise (MSN), which have yet to be investigated empirically. Here

we go farther, sketching some specific aspects of such empirics, including strategies for us-

ing microstructural information to obtain improved “structural” volatility estimators, and

comparative aspects of structural and non-structural volatility estimators. We apply our

methodology to the stock and the oil futures market.

6.1 Structural Volatility Estimation via Microstructural Restric-

tions

In the introduction we highlighted the key issue of estimation of integrated volatility (IV )

using high-frequency data, the potential problems of the first-generation estimator (simple

realized volatility – RV ) in the presence of MSN, and subsequent attempts to “correct” for

MSN.

In an important development, Barndorff-Nielsen et al. (2008) suggest making RV robust

to serial correlation via realized kernel estimation methods, which are asymptotically justi-

fied under very general conditions. That asymptotic generality is, however, not necessarily

helpful in finite samples. Indeed the frequently unsatisfactory finite-sample performance

of nonparametric HAC estimators leads Bandi and Russell (2011) to suggest sophisticated

alternative statistical approaches.

Here we explore aspects of a different approach that specializes the estimator in ac-

cordance with the implications of market microstructure theory. We follow the idea of

Aı̈t-Sahalia, Mykland, and Zhang (2005) of modeling MSN explicitly in a fully parametric

framework, which makes sampling as often as possible optimal. No claim is made about
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optimality; instead we show the practical relevance of tailoring the estimator to the market

at hand.

Consider strong form noise given by (3), so that ∆pt = ∆p∗t +∆ut. Then we have, absent

insider information, using the notation γi ≡ E(∆pt∆pt−i) and RV ≡ γ0, that the variance

of strong form efficient returns (7) is

σ2 = RV + 2
k∑
i=1

γi − 2E(ut∆ut−k)− 2E(∆p∗tut+k). (28)

Proof: See Web Appendix B.1.

If MSN is asymptotically uncorrelated, i.e. if lim
k→∞

E(ut∆ut−k) = 0 and lim
k→∞

E(∆p∗tut+k) =

0, then Equation (28) simplifies to

σ2 = RV + 2
∞∑
i=1

γi. (29)

This is equivalent to the constant realized kernel estimator discussed in Hansen and Lunde

(2006). Without insight in the market microstructure all higher order autocovariances are

potentially important. Empirically most will be noisy estimates of zero (Barndorff-Nielsen

et al., 2008). Without insights in what patterns in transaction prices are caused by MSN, a

noise correction like (29) will remove all. But actual transaction prices consist not only of a

martingale strong form efficient price plus MSN, but also of other disturbances of unknown

form. These other disturbances might not be part of any microstructure model. In fact, their

existence might not even be known. Lacking better knowledge by any market participant,

these must be considered risk, and therefore be part of the volatility estimate of the latent

price. A noise correction as Equation (29) “corrects” price features that are not MSN, but

an essential part of the volatility of the latent price process.

The key point we stress in this paper is that it is indispensable to sort out the market

microstructure before choosing a noise correction. This applies no matter whether MSN is

dependent on the latent price or not.

In the following we consider ten potential sources of MSN, five of which are independent,

and five are dependent on the latent price. We start with a discussion of two examples of

parsimonious noise-robust estimators for realized volatility, both of which are special cases

of (29), before providing an overview of estimators in Table 3.

Consider first a “bid-ask bounce estimator”, based on a one-period model without extra

information and constant spread. From (3), (5) and (6) we obtain ∆ut = σ(εt−1 − εt) +
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s(qt − qt−1), and this implies a variance of strong form efficient returns of

E
[
(∆p∗t )

2
]

= E
[
(∆pt −∆ut)

2] = E
(
∆p2

t

)
+ 2s [σE(qtεt)− φs] .

Simple calculations reveal that the last term equals twice the first-order autocorrelation of

market returns, so that, even if E(qtεt) 6= 0, an unbiased estimator for IV = σ2 is10

ÎV = RV + 2γ1. (30)

It is interesting to note the resemblance to estimators of Roll (1984), based on standard

asymptotic theory, and Zhou (1996), based on infill asymptotic theory.

As another example, consider an estimator for a market with nonstrategic incompletely

informed traders. Absent any exogenous noise, the transaction price follows an MA(∞)

process in the innovations of the latent price:

∆pt = (β + σ)εt + β(α− 1)
∞∑
i=0

αiεt−i−1 (31)

This parsimonious form of ∆pt accommodates very persistent cross-correlations, similar to

the idea behind the examples in Oomen (2006). If our knowledge of the market is this

comprehensive, we can obtain an unbiased estimate for IV from (31) in a GMM framework

using three moments.11 More specifically, a standard exponential learning model (e.g. Easley

and O’Hara, 1992) imposes α = e−r and β = −σ, so that

∆pt = 0 · σεt + σ (er − 1)
∞∑
i=1

e−riεt−i =
∞∑
i=1

[
−e−ri + e−r(i−1)

]
σεt−i.

The resulting estimate of IV is a scaled version of standard RV

ÎV =
er̂ + 1

er̂ − 1
·RV =

RV + γ1

RV − γ1

·RV, (32)

10Hasbrouck (1993) and recently Hansen, Large, and Lunde (2008) show how to embed (30) into general
moving average (MA)-based estimators. Such general MA-estimators are warranted if the researcher has
only limited information about the microstructure of the market or has interest different from IV estimation,
such as forecasting the latent price process. If, however, the microstructure is known and interest centers on
estimating IV, as we assume here, then our estimators may be more appealing.

11The proof, which we sketch here, is straightforward. Recast the price process (1) and (2) in continuous
time, so that ∆pt = ∆p∗t + ∆ut/

√
m, with m denoting the number of subintervals, tm equal to one unit of

calendar time, and the scale of t suitably redefined. Then, following the considerations of Section 5.3, under
standard assumptions r is invariant to m and local infill asymptotic theory can be applied.
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where the scaling factor requires a consistent estimate of only one additional parameter, the

market maker’s learning rate, r. It is interesting to note the resemblance to the estimator

of Hansen et al. (2008), which is also a scaled variant of RV. In contrast to our approach,

they do not exploit (that is, condition on) a specific market microstructure, but attempt to

achieve robustness to a wide range of possible microstructures.

Estimator (32) offers a structural interpretation to estimates of noise and IV. The learn-

ing model predicts that the MSN at all lags decreases with the learning rate. Slow learning

implies a very persistent cross-correlation between noise and latent returns, and hence per-

sistent autocorrelation of noise, so that fluctuations in MSN tend to dominate the IV.

Figure 5 provides some perspective. It is based on the noise-to-IV ratios reported by

Hansen and Lunde (2006), which are (unfortunately) derived under the assumption of inde-

pendent noise. The ratio of noise to IV shrinks with the number of price-changing quotes

per day. If the number of times that the market maker changes his price quote during a

trading day is indicative of his speed of learning, then MSN indeed decreases as the learning

rate of the market maker increases. This supports the multiperiod learning model.

Figure 5: Ratio of Noise to Integrated Variance, as a Function of Quotes per Day

Notes: The vertical axis measures the noise-to-signal ratio as 100 times noise divided by IV under the

assumption of independent noise. The horizontal axis gives the number of quotes per day with a price

change. Data are for 30 NYSE and NASDAQ equities in 2000, obtained from Hansen and Lunde (2006)

Tables 1 and 3. The solid line is a fitted trend.

Furthermore, the recent decline in noise-induced bias of RV (Hansen and Lunde’s (2006)

fact III) suggests that the learning rate r has increased. Adding to this Meddahi’s (2002)
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finding that the standard deviation of the bias is large relative to the IV suggests that the

learning rate itself may have fluctuated considerably around its increasing trend.

Our example uses a MA process with only two free coefficients, but the large sample sizes

typical with high frequency data can accommodate much richer specifications. Empirical

work in market microstructure tends to favor extreme parameterizations, ranging from the

very parsimonious as in the regressions of Glosten and Harris (1988), to the profligate as

in the vector autoregressions of Hasbrouck (1996). For RV noise correction the most useful

parameterizations may be intermediate, imposing a general correlation pattern but avoiding

highly situation-specific assumptions.

Dynamic market microstructure models imply much richer noise structure than the two

polar cases of immediate and slow decay that we just discussed. These restrictions can

be exploited to construct tailored volatility estimators. In Table 3 we do so by suggesting

parsimonious estimators for a variety of market microstructures. Whereas these estimators

inevitably also remove price features that are empirically indistinguishable from modelled

MSN, their parsimony ensures that this miscorrection is kept to a minimum.

The table is structured as follows: The left column gives the estimator, the middle column

an example of independent MSN, to which this estimator applies, and the right column an

example of dependent MSN. Interestingly, for many market microstructures that generate

dependent noise there is a corresponding market structure with independent noise to which

the same estimator fits. The Web Appendix B shows that all these estimators are unbiased.

They are consistent under the conditions discussed in Section 5.3 or under subsampling

(Barndorff-Nielsen et al., 2011b).

We only discuss the dependent noise cases here, because these are – as we have shown in

this paper – the ones of relevance in actual financial markets. The first row of Table 3 shows

that the Zhou (1996)-estimator is the most parsimonious way to deal with a market in which

the only MSN stems from the bid-ask bounce, even if trades are driven by private information.

The geometric decay of MSN over time under learning is covered by rows two and three,

for various exogenous noise processes. The decay becomes linear if traders act strategically,

reflected in row four. These three learning estimators specialize to the Zhou (1996)-estimator

with γ2 = 0 for nonstrategic, and with γ1 = γ2 or S = 1 for strategic informed traders.

Likewise, the noise process we discussed earlier in Equation (32), ut = αut−1 − σεt, is a

special case of the nonstrategic incomplete informed trader case, with β = −σ and vt = 0.

Finally, the estimator for strategic informed traders collapse to the estimator for linear

independent noise decay if γ2 = 2γ1.
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The contribution of the delayed price responses to the learning RV estimators in rows

two and three can be expressed by any pair of autocovariances, γi, γi+1, i ≥ 2. Whereas in

the table we show the most parsimonious expression, replacing the last term by an average

stabilizes the estimates. For example, in the nonstrategic incompletely informed trader case,

we can use γ0 + 2γ1
1
S

∑S
i=1

γi
γi−γi+1

, for any S ≥ 1.

With strategic informed traders choosing the correct length of the private information

period is critical for unbiased results, as noted already by Kelly and Steigerwald (2004). In

our setup in row four S can be estimated by Ŝ =

√(
3γ1−γ2

2(γ2−γ1)

)2

+ 2
γ2−γ1

∞∑
i=1

γi − 3γ1−γ2
2(γ2−γ1)

.

The MSN in the upper four rows of Table 3 is asymptotically uncorrelated, so IV can be

expressed by Equation (29). This equation does not hold in market maker inventory models,

as the ones in the bottom row. There, MSN follows a unit root process with ∆ut = αqt so

that E(ut∆ut−i) = α2 ∀i. In this case autocovariances alone are not sufficient, and ˆIV must

be based on the general Equation (28).

A common argument for using estimators that, contrary to Equation (29), downweight

autocovariances at non-zero displacements is that it rules out the possibility of a negative

volatility estimate. Starting the analysis with such an estimator, however, strips the re-

searcher of the chance to falsify his assumptions on the market microstructure. After all, a

negative variance estimate first and foremost indicates that the estimator is misspecified for

the microstructure of the market under analysis, and that it should be refined. We therefore

suggest starting with microstructure-inspired estimators as the ones in Table 3, and resort

to microstructure-free estimators if the market microstructure appears to obey to none of

the common models.

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009) notice that their IV estima-

tor’s ability of detecting properties of volatility depends crucially on the bandwidth: “The

’strength’ of this ’microscope’ is controlled by the bandwidth parameter, and the realized

kernel gradually looses its ability to detect volatility at the local level as ... [the bandwidth]

is increased.” (Barndorff-Nielsen et al., 2009, p.C27) In effect, there is a tradeoff between

the loss of local volatility information and the MSN bias. Utilizing prior knowledge about

the market microstructure, Table 3 allows an informed bandwidth choice instead of having

to rely exclusively on statistical arguments.
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Table 3: Noise-Robust Estimators for Realized Volatility

IV Independent – Strong-Form Noise – Dependent

γ0 + 2γ1

Measurement Error/ Dependent Measurement Error
Discrete Data ut = αεt + vt
ut = vt Bid-Ask Bounce
Bid-Ask Bounce from Informed Traders

ut = αqt, qt ∈ {−1,+1} iid ut = αqt, qt =

{
−1 if εt < 0

+1 if εt > 0

γ0 + 2
γ21

γ1−γ2

Autoregressive Noise Nonstrategic Incompletely
Informed Traders

ut = αut−1 + vt ut = αut−1 + β(εt + vt)

γ0 + 2γ1 + 2
γ22

γ2−γ3

Autoregressive Noise Autoregressive Noise with
with Measurement Error One-Period Private Information

ut =
∞∑
i=0

αivt−i + wt ut =
∞∑
i=0

αivt−i + βεt + wt

Nonstrategic Informed Traders

ut = α
∞∑
i=0

βiεt−i + vt

Linear Noise Decay
over S Periods

γ0 + S(S + 1)γ1
ut = α

t−S∑
i=t

i−t+S
S

vi
Strategic Informed Traders
with S-Period Private Information

γ0 + S(3− S)γ1
ut = α

t−S∑
i=t

i−t+S
S

(εi + vi)+S(S − 1)γ2

Market Maker Inventory
from Noise Trading

γ0 − γ∗0
2 ut = α

∞∑
i=0

qt−i,

qt ∈ {−1,+1} iid Market Maker Inventory
from Informed Trading

π
π−2

(
γ0 − γ∗0

2
) ut = α

∞∑
i=0

qt−i, εt ∼iid N(0, 1)

qt =

{
−1 if εt < 0

+1 if εt > 0

The estimators are based on the observable moments γi ≡ E(∆pt∆pt−i) and γ∗i ≡ E(∆ptqt−i). They are
based on the assumption that the latent price changes every period (T = 1), and remains unobserved for
one or more periods, depending on the noise specification. The probability of no latent price change has
measure zero. The two white noise processes are vt ∼iid (0, η2v) and wt ∼iid (0, η2w), where E(vswt) = 0 ∀s, t.
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6.2 On Structural vs. Non-Structural Volatility Estimators

Here we emphasize that the more the econometrician knows about the price process of

relevance, the more the noise correction can be tailored to it by exploiting microstructure

theory. This is important, because as discussed in Section 2, the price process of interest

may differ across users of volatility estimates. Many users are likely to be interested in price

processes different from (1), which has implications for appropriate volatility estimation.

The variance of strong form efficient returns, E(∆p∗t ) = σ2

T
, the price under full information,

differs both conceptually and numerically from the variance of semi-strong form efficient

returns,

E
[
(∆p̃et )

2
]

=
1

T

σ2 +
T−1∑
i=0

φiλ
2
i + E

( −T∑
i=−1

λiqi

)2
− 2σ

−T∑
i=−1

λiE(qiε−T )

 , (33)

which is the volatility that affects the balance sheet of the market maker. It might therefore

be more applicable to studies of market maker behavior than E [(∆p∗t )
2]. To take a simple

example, consider again one-period private information, T = 1, in which case strong form

volatility is σ2 and semi-strong volatility (33) simplifies to

E
[
(∆p̃et )

2
]

= σ2 + 2φλ2 − 2σλE(qtεt) 6= σ2. (34)

The RV estimator of Zhou (1996) is

RVAC(1) = E(∆p2
t ) + E(∆pt−1∆pt) + E(∆pt∆pt+1),

which is equivalent to Equation (30). For T = 1 it is

E
(
RVAC(1)

)
= E {[s(qt − qt−1) + σεt−1]× [σ(εt + εt−1 + εt−2) + s(qt+1 − qt−2)]} = σ2.

Hence although RVAC(1) is unbiased for σ2, it is in general biased with ambiguous direction

for V ar(∆p̃et ) in (34). The same applies to a noise-robust estimator with a large, potentially

infinite, lag window, which removes any microstructure and other correlation effect. For these

estimators to work, the latent return process of interest must follow a martingale difference

sequence. Semi-strong form prices do not; they are serially correlated and inevitably RVAC(1)

is biased relative to V ar(∆p̃et ).

37



What could an estimator of semi-strong form volatility look like? Consider, for example,

a market where the strong form efficient price become public after two periods. From (4)–(9),

we obtain ∆pt = ∆p̃et + ∆ut with noise given by (27). It follows that

E
[
(∆p̃et )

2
]

= E
(
∆p2

t

)
+ 2sφ(λ− s).

As p̃et is generated by a more complex process that p∗t , we need additional market data.

Using the autocorrelations of prices, additional market information such as an estimate of

the spread and of the trade frequency φ, an unbiased estimator for IV of the semi-strong

form efficient price is

ÎV = RV + 2γ1 − 2
γ1γ2

γ2 + s2φ
. (35)

The obvious difference to the estimators in Table 3 emphasizes the importance of carefully

defining the latent price series of interest.12 This is where market microstructure theory

can contribute new insights to IV estimation. By providing distinctive but flexible rela-

tionships between MSN and latent returns, and using additional market information, the

agnostic statistical noise estimate can be decomposed into its various MSN and fundamental

components.

6.3 Empirical Application

Estimates of volatility are important in many areas. They are, for example, central to risk

management or serve as input to policy making. In this section we use market microstructure-

based estimators in two real-world applications. We first compare our estimators’ properties

with the standard RV and a statistical IV estimator in a well-known stock market dataset.

12To avoid confusion we adhere in this paper to the convention that the strong form efficient price follows
a martingale. Therefore we introduced p̃et as another latent price series of interest. But there is no guarantee
that a price with martingale properties exists in a given market. For example, the latent price could itself
be the result of learning about random-walk fundamentals, in which case p∗t has the properties of the semi-

strong form efficient price p̃et . Specifically, let fundamentals follow χt = χt−1 + εt with εt ∼iid (0, σ2). Then
the latent price process, known only to the best informed market participants, is

∆p∗t = σ

T∑
i=1

[
−e−r1i + e−r1(i−1)

]
εt−i.

If market makers are well informed (pet = p∗t ) and the bid-ask bounce follows Equation (6), then mechanically
calculating RVAC(T ) gives the variance of the fundamental, not the variance of the strong form efficient
price. Obviously, a purely statistical noise correction cannot distinguish between cross-correlation caused by
fundamentals and cross-correlation caused by MSN.
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After this, we turn to a current policy debate centering on the volatility in the oil futures

market.

6.3.1 Alcoa Stock

As a first application, we compare microstructure-based estimates with statistical estimates

of IV of Alcoa Inc. (AA) stock.13 We use prices on the New York Stock Exchange for the

year 2004 from Barndorff-Nielsen et al. (2009). All overnight returns and days with less than

five hours of trading were removed from this dataset, which means that the IV -estimates

apply only to the price process within trading days. They do not capture the overall riskiness

of the stock, because price changes between trading days are excluded.

The estimators in Tables 4 to 7 are for daily IV, i.e. E[(∆p∗t )
2], averaged across the

year. RV Standard is simple realized volatility, E(∆p2
t ), RV Bid-ask is the bid-ask estimator

(30), RV Learning - Restricted the learning estimator (32), and RV Learning - Nonstr. Noisy

stands for the estimator for nonstrategic, incompletely informed traders. All microstructure-

based estimators are defined by Table 3. RV Statistical is the consistent flat-top kernel

estimator RVACNW (30) = γ0 + 2
∑30

i=1 γi + 2
∑30

i=1
30−i

30
γ30+i of Hansen and Lunde (2006). It

serves as benchmark, as a statistical estimator that removes all deviations of the transaction

price from a martingale, which might be different from the IV of the – in our terminology –

true latent price process, i.e. RV corrected for market-microstructure-induced noise only.

All estimators except the standard estimator allow for correlation between noise and

latent price. We do not implement the inventory estimators here, because the dataset does

not contain signed trades. In this section, we refer to the difference between RV Standard

and RV Statistical as “noise”, in contrast to deviations due to market microstructure effects,

which we call MSN.

Table 4 reveals that under 1/second calendar time sampling (CTS) sampling both the

restricted learning and bid-ask estimators explain one third of noise in transaction prices (in

the second column). Learning appears to be very fast (r̂ > 3), which implies that γ1 is small

compared to RV. As a result the learning and bid-ask volatility estimates are very similar.

More flexible learning estimators capture more of the noise. RV Learning - Nonstrategic,

in particular, captures more than 90% percent of what RV Statistical removes as noise.

This means that for Alcoa under CTS indeed most of the noise correction embedded in RV

13Gatheral and Oomen (2010) compare 19 IV estimators on simulated data and conclude that a realized
kernel and a maximum likelihood based estimator perform best in practice. However, they ignore microstruc-
ture noise for the most part. Patton (2011) compares four statistical IV estimators of IBM stock prices under
time-varying volatility. Absent jumps, they perform better than standard RV sampled 1/5 minutes.
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Statistical is most likely justified – it is MSN stemming from nonstrategic informed traders.

Similarly, RV Learning - Nonstr. Noisy and RV Learning - Strategic capture between two-

thirds and all of noise.

Table 4: Comparison of Realized Volatility Estimators (CTS at 1/second)

RV price mid bid ask

Standard 2.493 1.605 2.733 2.685
Statistical - ACNW (30) 2.146 2.141 2.255 2.257

Bid-ask - AC(1) 2.377 1.547 2.524 2.475
Learning - Restricted 2.379 1.548 2.532 2.483
Learning - Nonstr. Noisy 2.268 1.437 2.603 2.395
Learning - Nonstrategic 2.171 1.435 2.429 2.237
Learning - Strategic 2.361 2.363 2.368 2.409

Under tick time sampling (TTS) all microstructure-based estimators estimate IV substan-

tially lower than RV Standard and RV Statistical. But if microstructure-based estimators

remove the most common MSN types at this sampling frequency, then what does RV Sta-

tistical add back in? What positive cross-correlation between the latent price and noise

different from learning can justify the higher estimate? And this point we have to leave this

for further research, but also as a warning against a noise correction without a microstructure

interpretation in mind.

Table 5: Comparison of Realized Volatility Estimators (TTS at 1/tick)

RV price mid bid ask

Standard 2.494 1.605 2.733 2.685
Statistical - ACNW (30) 2.386 2.511 2.506 2.534

Bid-ask - AC(1) 1.813 1.603 2.313 2.238
Learning - Restricted 1.895 1.603 2.343 2.272
Learning - Nonstr. Noisy 1.938 1.602 2.424 2.194
Learning - Nonstrategic 1.816 1.677 2.208 2.096
Learning - Strategic 2.164 2.290 2.284 2.304

At lower sampling frequencies the microstructure-based estimators are less tightly linked

to the model setup under which we derived them. Whereas RV Standard and RV Statistical
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almost coincide that these frequencies, the learning estimators suggest a downward correction

under CTS (Table 6) and upward correction under TTS (Table 7).

Table 6: Comparison of Realized Volatility Estimators (CTS at 1/10 seconds)

RV price mid bid ask

Standard 2.149 1.585 2.328 2.244
Statistical - ACNW (30) 2.155 2.158 2.160 2.169

Bid-ask - AC(1) 1.970 1.764 2.160 2.102
Learning - Restricted 1.977 1.774 2.166 2.107
Learning - Nonstr. Noisy 2.094 1.848 2.190 2.141
Learning - Nonstrategic 1.983 1.994 2.168 2.132
Learning - Strategic 2.211 2.204 2.206 2.214

Table 7: Comparison of Realized Volatility Estimators (TTS at 1/10 ticks)

RV price mid bid ask

Standard 2.117 1.835 2.216 2.162
Statistical - ACNW (30) 2.364 2.232 2.227 2.242

Bid-ask - AC(1) 2.493 2.273 2.307 2.323
Learning - Restricted 2.530 2.333 2.309 2.330
Learning - Nonstr. Noisy 2.494 2.206 2.243 2.272
Learning - Nonstrategic 2.525 2.429 2.400 2.424
Learning - Strategic 2.482 2.354 2.361 2.357

Examining the structural parameter estimates (not tabulated) provides additional guid-

ance about which microstructure effects are at work at a given frequency. For example,

under TTS and transaction prices, the restricted learning estimator fits the data at sam-

pling intervals below 20 ticks (and beyond 130), whereas the strategic learning estimator at

intervals up to about 130 ticks. Under CTS, restricted learning fits at frequencies of 1/30

seconds and slower (and is thus not reliable for the frequencies reported in the tables), and

strategic learning at frequencies of 1/30 seconds and faster.

The IV estimates based on mid quotes are smaller than the other estimates at sampling

frequencies of 1/1 second or 1/1 tick, in Tables 4 and 5 respectively. This calls for caution.
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Figure 6: RV Estimators and Market Maker Learning

(a) CTS
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(b) TTS
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In the microstructure model setup we discussed, midprices are the least noisy among the

four prices. This would even be true if the spread was time-varying, as long as it was

independent of future changes in midprices, e.g. E(∆pet∆p
bid
t−1) = E(∆pet∆p

ask
t−1) = 0. If this

was the case, the noise correction would push estimates towards midprice-based estimates,

and when lowering sampling rates all IV estimates would converge to these midprice-based

values. Tables 6 and 7 reveal that the opposite is the case: At lower sampling frequencies

the midprice IV estimates reach the IV estimates of the other three price series. Because

none of our microstructure-based IV estimators acceptably corrects the midprice estimates,

we conclude that the midprices are subject to a microstructure effect that we did not take

into account in deriving the estimators. A likely explanation is an asymmetrically moving

spread, where a change in the bid price, say, is followed by an analogous change in the ask

price in a later period, thus temporarily widening the spread. The temporary uncertainty

that the wider spread represents is justified, because over longer horizons the latent price

is indeed that volatile. The unraveling of uncertainty can be seen as an instance of market

maker learning, so there is reason to hope that a learning estimator such as RV Learning

Nonstrategic improves the estimate. This is indeed the case. Figure 6 shows the deviation of

IV estimates based on midprices from the estimates based on transaction prices, expressed

by the ratio RVmid−RVtrans
RVtrans

. Under TTS, shown on the right panel, the learning estimator does

well despite its misspecification. It also improves the estimate under CTS, except at very

high frequencies, which is shown on the left panel. Estimators with wide lag windows, such

as RV Statistical and RV Learning - Strategic with estimated learning period are robust to

this kind of time-varying spread. However, as said, they remove this part of MSN jointly

with non-MSN components.
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Figure 7: Volatility Signature Plots for Transaction Prices

(a) CTS
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(b) TTS
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The volatility signature plots (Andersen, Bollerslev, Diebold, and Labys, 2000) in Figure

7 graph average daily realized volatility as a function of the underlying sampling frequency.

One might argue against the use of parsimonious, but microstructure-based, estimators on

the practical ground that they do not fully stabilize as the sampling frequency approaches

its limit, i.e. 1/tick. The volatility signature plots reveal, however, that for the given data

RV Statistical is not stable either – it moves in a range of 2.2 – 2.5 for sampling frequencies

above 1/100 seconds or ticks. Most microstructure-based estimators are just as stable.

6.3.2 Crude Oil Futures

In this subsection we apply our estimators to Light Sweet Crude Oil futures traded on the

NYMEX in Chicago (symbol CL). Our dataset consists of tick-by-tick transaction data from

Tick Data, Inc., covering the period from January 2nd, 1987 until September 24th, 2010.

It contains trades both within and outside of the main trading hours, which are Monday

through Friday from 9:00 a.m. until 2:30 p.m. Eastern Time. The oil future is a standardized

contract. One contract covers 1000 barrels with a fixed expiration date, on which oil has to

be physically delivered at Cushing, OK. 66% of trades in our sample are for one contract,

and less than 10% are for more than ten contracts.

Physical delivery is the exception, however, as most market participant roll their positions

over to a new contract. We replicate this rollover by constructing a single time series of oil

futures prices from the set of futures of different maturities simultaneously traded at a each

point in time. We switch from one contract to the contract maturing next as soon as the
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daily volume of the latter exceeds the current contract’s volume. In the following analysis,

we use TTS and exclude contract rollover and overnight returns.

Figure 8: Volatility Signature Plots of Oil Futures by Day of Week

(a) Monday
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(b) Tuesday
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Figure 9: Volatility Signature Plots of Oil Futures by Year

(a) 1989
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(b) 1999
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(c) 2009
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Comparing the IV estimates from the estimators discussed in this paper, the volatility

signature plots in Figures 8 and 9 reveal that when sampling at a rate of 1/10 ticks or

slower all estimators coincide. At higher sampling frequencies RV Standard diverges, which

vividly depicts the MSN in oil futures data. The two most restrictive learning estimators, RV

Learning - Restrictive and RV Learning - Nonstrategic Noisy, do not stabilize either at higher

frequencies, suggesting that MSN in oil futures is more complex than this. In contrast, the

estimators RV Learning - Nonstrategic, RV Learning - Strategic, and RV Statistical stabilize

as sampling frequency reaches 1/1 tick. This convergence pattern in ticks did not change
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over the years despite a decline in the time between ticks from more than one per minute in

1989 to less than one per second in 2009.

Figure 10: Integrated Variance of Oil Futures by Calendar Month, 1987-2010

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2.5

3

3.5

4

4.5

5

Month

R
V

Comparison of IV Estimators

 

 

statistical
bid−ask
learning nonstrategic
learning strategic

In the remaining analysis we sample at the highest possible frequency, i.e. 1/1 tick, and

use accordingly only the four estimators that we identified in the volatility signature plot to

converge with oil futures data. Prices of oil futures follow a pronounced seasonal volatility

pattern. Figure 10 shows that volatility during 1987–2010 is particularly high in January,

and reaches its low around July. There is no Monday effect. Instead, the volatility peaks on

Wednesdays - where it is about 20% higher than on Mondays.

The fluctuations of the IV estimates over the years summarize the recent history of oil

prices. In Figure 11 the average daily volatility of oil futures first spikes in 1990, when the

world was faced with the Gulf War. After four calm years, 1992 to 1995, it plateaued at an

intermediate level from 1996 until 2007, despite the steep increase in oil prices. The financial

crisis pushed the volatility of oil futures to unprecedented levels in 2008 and 2009. As of 2010,

the volatility is back to the plateau level from before the financial crisis. Given the seasonal

pattern in average daily realized volatility, the 2010 value has to be adjusted upwards by a

factor of about 1.5, because our dataset ends just before the Fall 2010. Even then, however,

there is no clear evidence of excess volatility in oil prices at the volatility level of 2010. Based

on the data available, regulation of derivatives in the oil market has to be justified with the

volatility during the crisis years 2008/2009 – not with the most recent data –, or with the

destabilizing effects of speculators on the market microstructure. For example, unlike in
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Figure 11: Integrated Variance of Oil Futures by Calendar Year, 1987-2010
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previous years, in 2009 the IV estimate correcting for strategic learning is smaller than the

one for nonstrategic learning (Figure 9). This indicates that strategic trading, maybe part

of speculative trading schemes, increased high-frequency market volatility.

The four estimators show a similar volatility path over time. Numerically, however, they

differ considerably. RV Bid-ask and RV Learning - Nonstrategic estimate IV to be lower from

the mid 1990s to the mid 2000s, and higher during 2008/2009 than the other two estimators.

The switch between RV Learning - Nonstrategic and RV Statistical around 2006 precedes

the financial crisis; it suggests that around that time the market structure changed. Noise

different from learning first increased volatility, but dampened it during the financial crisis.

What type of MSN can explain this change is an interesting question for further research.

For example, a cross-correlation link between the strong form efficient price and noise in

addition to learning, e.g. debt-financed trading, might have been muted during the crisis.

7 Concluding Remarks

The recent realized volatility literature provides statistical insights into market microstruc-

ture noise (MSN) and its effects. In this paper we have provided complementary economic

insights, treating MSN not simply as a nuisance, but rather as the result of financial economic

decisions, which we seek to understand. In that regard, we derived the predictions of eco-

nomic theory regarding correlation between MSN and two types of latent price, characterizing
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and contrasting the entire cross-correlation functions in a variety of market environments,

with a variety of results.

Some results are generic. For example, cross-correlations between strong form efficient

price and MSN at displacements greater than zero have sign opposite to that of the contem-

poraneous correlation.

Some results are not generic but nevertheless quite robust to model choice. For example,

all models predict negative contemporaneous correlation between latent price and MSN, so

long as the risk aversion of market makers is not too high.

Finally, some results are highly model-specific. For example, the cross-correlation pat-

terns and absolute magnitudes depend critically on the frequency of latent price changes,

the presence of bid/ask bounce, the timing of information and actions, and the degree of

market maker risk aversion.

We hope that the results of this paper will promote the use of theory in disciplining data.

As our empirical applications suggest, a standard learning model goes quite far in explain-

ing, and controlling for, MSN. We have also shown, that attention to market microstructure

theory enables us to assess the validity of the independence assumption, to offer explana-

tions of empirically observed cross-correlation patterns, to predict the existence of as-yet

undiscovered patterns, and to make informed suggestions for improving volatility estimation

methods. And conversely, of course, additional work along our lines may help promote the

use of data in disciplining theory, by helping to sift the comparative merits of various com-

peting theoretical microstructure models. Further improvements are possible as additional

market information is now widely available at high frequency, such as, for example, trade

size or trade origin data. This will allow to refine noise correction further to get an even

better microstructure-founded volatility estimate.

Other novel uses of our results may also be possible. For example, the rate of decay

of cross-correlations might be used to assess the extent to which strategic traders are ac-

tive in the market, and the sign and size of the contemporaneous correlation might be used

to assess the degree of market maker risk aversion. Indeed market maker risk aversion

might be time-varying, with associated time-varying cross-correlation structure between la-

tent price and MSN. During crises, for example, market makers may be more risk averse,

as borrowing and hedging possibilities are reduced. If so, the “normal pattern” of negative

contemporaneous cross-correlation and positive higher-order cross-correlations might switch

to a “crisis pattern” of positive contemporaneous cross-correlation and negative higher-order

cross-correlations. Such possibilities await future empirical exploration.

47



References

Aghion, P., Bolton, P., Harris, C., Jullien, B., 1991. Optimal learning by experimentation. Review of Eco-

nomic Studies 58 (4), 621–654.

Aghion, P., Espinosa, M. P., Jullien, B., 1993. Dynamic duopoly with learning through market experimen-

tation. Economic Theory 3, 517–539.

Aı̈t-Sahalia, Y., Mykland, P. A., Zhang, L., 2005. How often to sample a continuous-time process in the

presence of market microstructure noise. Review of Financial Studies 18 (2), 351–416.

Aı̈t-Sahalia, Y., Mykland, P. A., Zhang, L., 2011. Ultra high frequency volatility estimation with dependent

microstructure noise. Journal of Econometrics 160 (1), 160–175.

Andersen, T. G., Bollerslev, T., Christoffersen, P. F., Diebold, F. X., 2006. Volatility and correlation fore-

casting. In: Elliot, G., Granger, C. W. J., Timmermann, A. (Eds.), Handbook of Economic Forecasting.

Amsterdam: North-Holland, pp. 777–878.

Andersen, T. G., Bollerslev, T., Diebold, F. X., 2010. Parametric and nonparametric volatility measurement.

In: Hansen, L. P., Aı̈t-Sahalia, Y. (Eds.), Handbook of Financial Econometrics. Amsterdam: North-

Holland, pp. 67–137.

Andersen, T. G., Bollerslev, T., Diebold, F. X., Ebens, H., 2001a. The distribution of realized stock return

volatility. Journal of Financial Economics 61 (1), 43–76.

Andersen, T. G., Bollerslev, T., Diebold, F. X., Labys, P., 2000. Great realizations. Risk 13 (March), 105–108.

Andersen, T. G., Bollerslev, T., Diebold, F. X., Labys, P., 2001b. The distribution of realized exchange rate

volatility. Journal of the American Statistical Association 96, 42–55.

Andersen, T. G., Bollerslev, T., Diebold, F. X., Labys, P., 2003. Modeling and forecasting realized volatility.

Econometrica 71 (2), 579–625.

Bandi, F. M., Russell, J. R., 2006. Realized variance and market microstructure noise: Comment. Journal

of Business & Economic Statistics 24 (2), 167–173.

Bandi, F. M., Russell, J. R., 2008. Microstructure noise, realized variance, and optimal sampling. Review of

Economic Studies 75 (2), 339–369.

Bandi, F. M., Russell, J. R., 2011. Market microstructure noise, integrated variance estimators, and the

accuracy of asymptotic approximations. Journal of Econometrics 160 (1), 145–159.

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., Shephard, N., 2008. Designing realised kernels to measure

the ex-post variation of equity prices in the presence of noise. Econometrica 76 (6), 1481–1536.

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., Shephard, N., 2009. Realized kernels in practice: Trades

and quotes. Econometrics Journal 12 (3), C1–C32.

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., Shephard, N., 2011a. Multivariate realised kernels: Con-

sistent positive semi-definite estimators of the covariation of equity prices with noise and non-synchronous

trading. Journal of Econometrics 162 (2), 149–169.

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., Shephard, N., 2011b. Subsampling realised kernels.

Journal of Econometrics 160 (1), 204–219.

48



Barndorff-Nielsen, O. E., Shephard, N., 2002a. Econometric analysis of realized volatility and its use in

estimating stochastic volatility models. Journal of the Royal Statistical Society B 64 (2), 253–280.

Barndorff-Nielsen, O. E., Shephard, N., 2002b. Estimating quadratic variation using realized variance. Jour-

nal of Applied Econometrics 17, 457–477.

Barndorff-Nielsen, O. E., Shephard, N., 2007. Variation, jumps, market frictions and high frequency data

in financial econometrics. In: Blundell, R., Torsten, P., Newey, W. K. (Eds.), Advances in Economics

and Econometrics, Theory and Applications, Ninth World Congress of Econometric Society. Cambridge:

Cambridge University Press, pp. 328–372.

Diamond, D. W., Verrecchia, R. E., 1987. Constraints on short-selling and asset price adjustment to private

information. Journal of Financial Economics 18, 277–311.

Diebold, F. X., 2006. Realized variance and market microstructure noise: Comment. Journal of Business &

Economic Statistics 24 (2), 181–183.

Diebold, F. X., Strasser, G., 2010. On the correlation structure of microstructure noise: A financial economic

approach. Working Paper 16469, NBER.

Easley, D., O’Hara, M., 1987. Price, trade size, and information in securities markets. Journal of Financial

Economics 19, 69–90.

Easley, D., O’Hara, M., 1992. Time and the process of security price adjustment. Journal of Finance 47 (2),

576–605.

Engle, R. F., Sun, Z., 2007. When is noise not noise – A microstructure estimate of realized volatility,

manuscript, Stern School, New York University.

Fama, E. F., 1970. Efficient capital markets: A review of theory and empirical work. Journal of Finance

25 (2), 383–417.

Gatheral, J., Oomen, R. C. A., 2010. Zero-intelligence realized variance estimation. Finance and Stochastics

14 (2), 249–283.

Glosten, L. R., Harris, L. E., 1988. Estimating the components of the bid/ask spread. Journal of Financial

Economics 21, 123–142.

Glosten, L. R., Milgrom, P. R., 1985. Bid, ask, and transaction prices in a specialist market with heteroge-

neously informed traders. Journal of Financial Economics 14, 71–100.

Hansen, P. R., Large, J., Lunde, A., 2008. Moving average-based estimators of integrated variance. Econo-

metric Reviews 27 (1), 79–111.

Hansen, P. R., Lunde, A., 2006. Realized variance and market microstructure noise. Journal of Business &

Economic Statistics 24 (2), 127–161.

Hasbrouck, J., 1993. Assessing the quality of a security market: A new approach to transaction-cost mea-

surement. Review of Financial Studies 6 (1), 191–212.

Hasbrouck, J., 1996. Modeling market microstructure time series. In: Maddala, G. S., Rao, C. R. (Eds.),

Statistical Methods in Finance. Amsterdam: North Holland, pp. 647–692.

Hasbrouck, J., 2002. Stalking the efficient price in empirical microstructure specifications. Journal of Finan-

cial Markets 5, 329–339.

49



Hasbrouck, J., 2007. Empirical Market Microstructure. New York: Oxford University Press.

Kelly, D. L., Steigerwald, D. G., 2004. Private information and high-frequency stochastic volatility. Studies

in Nonlinear Dynamics and Econometrics 8 (1), 1–28.

Kyle, A. S., 1985. Continuous auctions and insider trading. Econometrica 53 (6), 1315–1336.

Meddahi, N., 2002. A theoretical comparison between integrated and realized volatility. Journal of Applied

Econometrics 17 (5), 479–508.

O’Hara, M., 1995. Market Microstructure Theory. Cambridge: Cambridge University Press.

Oomen, R. C. A., 2006. Realized variance and market microstructure noise: Comment. Journal of Business

& Economic Statistics 24 (2), 195–202.

Patton, A. J., 2011. Data-based ranking of realised volatility estimators. Journal of Econometrics 161 (2),

284–303.

Roll, R., 1984. A simple implicit measure of the effective bid-ask spread in an efficient market. Journal of

Finance 39 (4), 1127–1139.

Zhang, L., Mykland, P. A., Aı̈t-Sahalia, Y., 2005. A tale of two time scales: Determining integrated volatility

with noisy high frequency data. Journal of the American Statistical Association 100 (472), 1394–1411.

Zhou, B., 1996. High-frequency data and volatility in foreign-exchange rates. Journal of Business & Economic

Statistics 14 (1), 45–52.

50



Web Appendices

A Proofs of Propositions

A.0 General Multiperiod Cases

A.0.1 Multiperiod Case - Strong Form Efficient Prices

We calculate in the following cross-correlations between the strong form efficient returns (7)

∆p∗t = ∆p∗κT =

{
σεκT ∀κ ∈ Z

0 ∀κ /∈ Z
(36)

and the corresponding noise (3)

∆ut = ∆pt −∆p∗t = ∆pet + stqt − st−1qt−1 −∆p∗t . (37)

As a shorthand notation we use in the following px ≡ pκT+x ∀κ, x ∈ Z. In the period of

a change in the strong form efficient price, the expectation about this price changes by

∆pe0 = pe0 − pe−1

= σε−T −
T∑
t=2

(λ−tq−t + ω−t)− ω−1 + ω0,

and in all other periods by

∆pet = λt−1qt−1 + ωt.

From (37) we get for t = κT

∆u0 = σ(ε−T − ε0) + s0q0 − s−1q−1 −
T∑
t=2

(λ−tq−t + ω−t)− ω−1 + ω0 (38)

and ∀t 6= κT

∆ut = λt−1qt−1 + stqt − st−1qt−1 + ωt, (39)

where the first term reflects information-revealing trades, the second and third term reflect

the bid-ask bounce, and the last term new non-trade information.

This immediately gives to the cross-covariances of Section 3.1.
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In order to obtain the cross-correlations, we need V ar(∆p∗t ) and V ar(∆ut). The strong

form efficient price has unconditional variance

V ar(∆p∗t ) =
1

T
V ar(σε0) =

σ2

T
, (40)

and the corresponding noise has unconditional variance

V ar(∆ut) =
1

T

T−1∑
i=0

V ar(∆ui)

=
1

T

{
2σ2 +

T−1∑
i=0

(
φis

2
i + φi−1s

2
i−1

)
− 2σsT−1E(qT−1ε0)− 2σ

T−2∑
i=0

λiE(qiε0)

− 2σs0E(q0ε0) + 2sT−1

T−2∑
i=0

λiE(qiqT−1) + E

(T−2∑
i=0

λiqi

)2
+ E(ω2

0)

+ E

[
T−1∑
i=0

ω2
i

]
+ 2s0E(q0ω0)− 2σ

T∑
i=0

E(εiωi) + 2sT−1

T−1∑
i=0

E(qT−1ωi)

+
T−1∑
i=1

(φi−1λi−1 (λi−1 − 2si−1) + 2(λi−1 − si−1)(siE(qi−1qi) + E(qi−1ωi))

+ E(ω2
i ) + 2siE(qiωi)

)}
, (41)

where

φt = E(q2) = E [Prob(q = +1 ∨ q = −1)] = β + (1− β)α [1− F (pet + st) + F (pet − st)] .

A.0.2 Multiperiod Case - Semi-Strong Form Efficient Prices

In the period of a change in the strong form efficient price, in which also the previous strong

form efficient price becomes public information, the semi-strong form efficient return is

∆p̃e0 = λ0q0 + σε−T −
T∑
i=1

(λ−iq−i + ω−i) + ω̃0,

where the first term reflects the market maker’s guess about the new strong form efficient

return based on a trade, the second term internalizes the new information about the previous

return, and as a countermove the sum undoes the now obsolete guesses about the previous
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return. In all other periods the semi-strong form efficient price changes by

∆p̃et = λtqt + ωt.

From (9) we get for ∀t

∆ũt = (st − λt)qt − (st−1 − λt−1)qt−1, (42)

where the first two terms reflect information-revealing trades, and the second two terms

reflect the bid-ask bounce.

Using Assumption 1 this immediately leads to the cross-covariances in Section 4.1.

A.1 Proof of Proposition 1

Proposition (Cross-correlations in the Easley-O’Hara model)

The contemporaneous cross-correlation in the Easley and O’Hara (1992) model is

Corr (∆p∗t ,∆ut) = −1 + e−r(T−1)

2
√
K

< 0,

and the cross-correlations at sufficiently large nonzero displacements follow

Corr
(
∆p∗t−τ ,∆ut

)
=
er − 1

2
√
K
e−rτ > 0, ∀τ ∈ [1, T − 1]

Corr
(
∆p∗t−T ,∆ut

)
=
e−r(T−1)

2
√
K

> 0,

where K = K(r, T ).

Proof:

Following the setup in Easley and O’Hara (1992), suppose the strong form efficient price

process switches between a high state p, a neutral state, and a low state p, where χ is the

probability of a non-neutral state and γ the probability of a high state given that the state

is non-neutral.

p∗t =


p with probability χγ

γp+ (1− γ)p w.p. 1− χ
p w.p. χ(1− γ)
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Therefore, for t = κT , κ ∈ Z

∆p∗t =



p− p w.p. χ2γ(1− γ)

γ(p− p) w.p. 2χ(1− χ)(1− γ)

0 w.p. (1− χ)2 + χ2(γ2 + (1− γ)2)

γ(p− p) w.p. 2χ(1− χ)γ

p− p w.p. χ2γ(1− γ)

and ∆p∗t = 0 otherwise. Prices have the properties

E[(∆p∗t )
2] =

(p− p)2

T

[
2γ2χ(1− χ)(1− γ) + χ2γ(1− γ) + 2γ2χ(1− χ)γ + χ2γ(1− γ)

]
=

(p− p)2

T
2χγ(γ + χ− 2χγ) ≡ σ2

T
,

E(∆p∗t∆pt) = 0,

E(∆p∗t−τ∆p
∗
t ) = 0.

For ease of exposition let us focus on the case γ = 1/2 and χ = 1, i.e. latent prices are

high and low with equal probability. Using the result from Easley and O’Hara (1992) that

transaction prices converge to the strong form efficient price at an exponential rate we get

∆p0 =
p− p

2

(
e−r(T−1) − 1

)
sgn

(
p∗−T −

p+ p

2

)

∆pτ =
p− p

2

(
e−r(τ−1) − e−rτ

)
sgn

(
p0 −

p+ p

2

)
∆u0 =

p− p
2

(
e−r(T−1) − 1

)
sgn

(
p∗−T −

p+ p

2

)
−∆p∗0

∆uτ =
p− p

2

(
e−r(τ−1) − e−rτ

)
sgn

(
p0 −

p+ p

2

)
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The contemporaneous cross-covariance (τ = 0) is

Cov (∆p∗t ,∆ut) =
1

T
E (∆p∗0∆u0)

= − σ
2

2T

[
1 + e−r(T−1)

]
.

The second term inside the brackets is an artifact of p∗t not following a martingale. In

the period of the efficient price change it is optimal for the market maker to set pt to the

unconditional mean of p∗t , thereby offsetting the effect of all previous learning, which the

efficient price change rendered obsolete.

The cross-covariance for τ ∈ [1;T − 1] is

Cov
(
∆p∗t−τ ,∆ut

)
=

1

T
E (∆p∗0∆uτ )

=
σ2

2T

(
−e−rτ + e−r(τ−1)

)
,

and for τ = T we have

Cov
(
∆p∗t−T ,∆ut

)
=

1

T
E
(
∆p∗−T∆u0

)
=

σ2

2T
e−r(T−1).

The variance of the noise is

V ar(∆ut) =
1

T

[
(p− p)2

T

(
e−r(T−1) − 1

)2
+ σ2 + 2

(p− p)2

4

(
e−r(T−1) − 1

)
+

T−1∑
τ=1

(p− p)2

4

(
−e−rτ + e−r(τ−1)

)2

]

=
σ2

T

[
1

2
e−2r(T−1) +

1

2
+

1

2
(−er + 1)2 (e−2r)T−1 − 1

e−2r − 1

]
.

Denoting the term in brackets by K = K(r, T ) we get for the contemporaneous cross-

correlation

Corr (∆p∗t ,∆ut) = −1 + e−r(T−1)

2
√
K

,
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for the cross-correlation at displacements τ ∈ [1;T − 1]

Corr
(
∆p∗t−τ ,∆ut

)
=
−e−rτ + e−r(τ−1)

2
√
K

,

and for the cross-correlation at displacement T

Corr
(
∆p∗t−T ,∆ut

)
=
e−r(T−1)

2
√
K

.

Q.E.D.

A.2 Proof of Proposition 2

Proposition (Cross-correlations in the Kyle model)

The contemporaneous cross-correlation in Kyle (1985) is

Corr (∆p∗t ,∆ut) = −
√

T

T 2 + 1
,

the cross-correlations at displacements τ ∈ [1;T ] are

Corr
(
∆p∗t−τ ,∆ut

)
=

√
1

T (T 2 + 1)
,

and all higher order cross-correlations are zero.

Proof:

In order to present a closed-form solution we use continuous time, t ∈ [0, T ], but note

that Kyle (1985) discussed the discrete time case as well. The discussion is based on the

assumption of Kyle (1985) that the reaction functions for quantity demanded and prices are

linear, i.e. that λt = λ, and st = s. Nonlinear solutions might nevertheless exist as well.

We assume semi-strong market efficiency, and so s = λ. We get from (13)

Cov (∆p∗t ,∆ut) = −σ
T

(λE(qε0)− σ) < 0.

From (14) the cross-covariance function at nonzero displacements

Cov
(
∆p∗t−τ ,∆ut

)
=
σ

T
λE(qε0) > 0
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is constant ∀t ∈ [1, T − 1], and zero ∀t ≥ T .

More specifically, we derive based on (18) for the noise (assuming zero spread)

∆u0 =
∆p∗−T
T
−
∫ T−1

0

σ

T − sdBs −∆p∗0

and for τ ∈ [1, T − 1]

∆uτ =
∆p∗0
T

+ (T − τ)

∫ τ

τ−1

σ

T − sdBs −
∫ τ−1

0

σ

T − sdBs.

The variance of the noise is therefore

V ar(∆ut) =
1

T

[
E(∆u2

0) +
T−1∑
t=1

E(∆u2
t )

]

=
σ2

T

[
T + 1

T
+
T − 1

T
+

(T − 1)2

T

]
=

σ2

T 2

(
T 2 + 1

)
.

The covariances are simply, at displacement zero

Cov(∆p∗t ,∆ut) =
1

T
Cov(∆p∗0,−∆p∗0) =

−σ2

T
,

and at higher order displacements

Cov(∆p∗t−τ ,∆ut) =
1

T
Cov(∆p∗0,

∆p∗0
T

) =
σ2

T 2
,

which leads directly to the cross-correlations given by Proposition 2. Q.E.D.

A.3 Proof of Proposition 3

Proposition (Strong form cross-correlation, one period model)

Corr(∆p∗t ,∆ut) =
1√
2

sE (qtεt)− σ√
φs2 + σ2 − 2sσE(qtεt)

Corr(∆p∗t−1,∆ut) = −Corr(∆p∗t ,∆ut)
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Proof:

With T = 1, no extra information, λt = λ, st = s, and thus φt = φ ∀t, the variance term

(41) simplifies to V ar(∆ut) = 2(σ2 + φs2) − 4sσE(qtεt). Plugging this into (17) gives the

desired result. Q.E.D.

A.4 Proof of Proposition 4

Proposition (Bounds of contemporaneous cross-correlation)

− 1√
2
≤ Corr(∆p∗t ,∆ut) ≤ 0

Proof:

Negativity can be seen as follows. Uninformed traders trade randomly (E(qt|εt) = 0),

thus for them we have sE(qut εt) = 0. In contrast, informed traders buy (qt = +1) only when

σεt > s and sell (qt = −1) only when σεt < −s. Thus in a market of only informed traders

σqitεt > s ≥ 0 ∀t. Therefore we can write

1 = E(qi 2
t ε

2
t ) > E

( s
σ
qitεt

)
> E

(
s2

σ2

)
> 0,

so in particular σ > sE(qitεt) > 0. Combining informed and uninformed trades we have

σ ≥ sE(qtεt) > 0,

which implies that the contemporaneous cross-correlation (19) is negative.

Further, (19) is bounded from below by −1/
√

2, which we prove by contradiction. Sup-

pose this was not the case, then from (19)

sE (qtεt)− σ < −
√
φs2 + σ2 − 2sσE(qtεt).

Squaring both sides and simplifying gives the condition

[E (qtεt)]
2 > φ, (43)

but by Jensen’s inequality and β = 1

[E (qtεt)]
2 ≤ E

(
q2
t ε

2
t

)
= 1,
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which contradicts (43). Q.E.D.

A.5 Proof of Proposition 5

A.5.1 Optimal Midprice

Proposition (Optimal Midprice) The optimal midprice, p(n), monotonically shifts from

the median to the midpoint of the support of p∗t with increasing risk aversion. In particular,

p(1) = Median(p∗t )

p(2) = E(p∗t )

p(∞) = Midsupport(p∗t ).

Proof:

The first two equations in the proposition14 are the well-known result that the median

is the best predictor under linear (absolute) loss, whereas the mean is the best predictor

under squared loss. The third equation is obtained by first noting that for any density f(·),
which has all moments, we can apply Leibnitz’s rule. Thus we obtain for (21) the first order

condition ∫ p(n)

p

(p(n)− p∗)n−1 f(p∗)dp∗ −
∫ p

p(n)

(p∗ − p(n))n−1 f(p∗)dp∗ = 0. (44)

We suppress here the asterisk from p∗ and p∗ and replace pet (n) by p(n) to simplify notation.

Rewriting (44) as a metric

lim
n→∞

(∫ p(n)

p

(p(n)− p∗)n−1 f(p∗)dp∗

)1/(n−1)

= lim
n→∞

(∫ p

p(n)

(p∗ − p(n))n−1 f(p∗)dp∗
)1/(n−1)

,

14We assume n ≥ 1 throughout, because this implies realistic market maker preferences. However, (21)
can be solved for any n ≥ 0. In particular, p(0) is the mode of f(·) when s = 0, or the highest density
(connected) region when s > 0. For n /∈ {1, 2,∞} no explicit solution exists, and for n > 25 even obtaining
numerical solutions creates difficulty for non-trivial distribution functions f(·).
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which after taking the limit degenerates to the sup norm

sup
p∗∈[p,p(∞)]

(p(∞)− p∗) = sup
p∗∈[p(∞),p]

(p∗ − p(∞)) ,

gives

p(∞) =
p+ p

2
. (45)

Thus, by monotonicity (45) solves (44) for n→∞. Q.E.D.

A.5.2 Effect of Risk Aversion on Optimal Price

Here we show that high risk aversion pushes the optimal price toward the midpoint of the

support. In other words, if f(·) is without loss of generality right-skewed, then p(n) is

increasing in n, ∀n ≥ 1. First, note that p(n), p(n) ∈ [p, p], is continuous. If p or p are

infinite, we replace these bounds with a function of n, thereby making the domain of p

compact. As f(·) and all components of the integral are continuous functions, the theorem

of the maximum gives continuity of p(n).

Next, to evaluate how the optimal price p(n) responds to changes in risk aversion n, take

the total differential of (44) and rearrange to obtain

dp(n)

dn
=

1

n− 1
×

−
p(n)∫
p

(p(n)− p∗)n−1 ln (p(n)− p∗) f(p∗)dp∗

+

p∫
p(n)

(p∗ − p(n))n−1 ln (p∗ − p(n)) f(p∗)dp∗


/


p(n)∫
p

(p(n)− p∗)n−2 f(p∗)dp∗ +

p∫
p(n)

(p∗ − p(n))n−2 f(p∗)dp∗

 . (46)

In the following argument we use that f(·) is monotone and assume without loss of

generality that f(·) is monotonically decreasing. This means f(·) is right-skewed on
[
p, p
]
,

which occurs if the market maker has some information that the strong form efficient price

has increased. Under this assumption (46) is positive. To see this, note first that both terms

in the denominator are positive. To economize notation we replace p ≡ p(n), d ≡ p(n) − p
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and x ≡ p∗. The numerator can be broken up into three parts:

−
p∫
p

(p− x)n−1 ln (p− x) f(x)dx+

p∫
p

(x− p)n−1 ln (x− p) f(x)dx

= −
p−1∫
p−d

(p− x)n−1 ln (p− x) f(x)dx+

p+d∫
p+1

(x− p)n−1 ln (x− p) f(x)dx

−
p∫

p−1

(p− x)n−1 ln (p− x) f(x)dx+

p+1∫
p

(x− p)n−1 ln (x− p) f(x)dx

+

p∫
p+d

(x− p)n−1 ln (x− p) f(x)dx. (47)

The first term, which exists only for d > 1, gives

−
p−1∫
p−d

(p− x)n−1 ln (p− x) f(x)dx+

p+d∫
p+1

(x− p)n−1 ln (x− p) f(x)dx

= −
p+d∫
p+1

(x− p)n−1 ln (x− p) f(2p− x)dx

+

p+d∫
p+1

(x− p)n−1 ln (x− p) f(x)dx

=

p+d∫
p+1

(x− p)n−1 ln (x− p) [−f(2p− x) + f(x)] dx

≥
p+d∫
p+1

(x− p)n−1 ln (d) [−f(2p− x) + f(x)] dx

= −
p−1∫
p−d

(p− x)n−1 ln (d) f(x)dx+

p+d∫
p+1

(x− p)n−1 ln (d) f(x)dx. (48)
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The second term is for d ≥ 1

−
p∫

p−1

(p− x)n−1 ln (p− x) f(x)dx+

p+1∫
p

(x− p)n−1 ln (x− p) f(x)dx

= −
p+1∫
p

(x− p)n−1 ln (x− p) f(2p− x)dx

+

p+1∫
p

(x− p)n−1 ln (x− p) f(x)dx

=

p+1∫
p

(x− p)n−1 ln (x− p) [f(x)− f(2p− x)] dx ≥ 0. (49)

For d < 1 the last inequality of the calculations for the second term is instead

p+1∫
p

(x− p)n−1 ln (x− p) [f(x)− f(2p− x)] dx

≥
p+d∫
p

(x− p)n−1 [f(x)− f(2p− x)] dx ln (d) ≥ 0. (50)

And for the last term we can write

−
p∫

p+d

(x− p)n−1 ln (x− p) f(x)dx > −
p∫

p+d

(x− p)n−1 ln (d) f(x)dx. (51)

Using (48), (49), and (51), (47) becomes

(47) >

− p−1∫
p−d

(p− x)n−1 f(x)dx+

p∫
p+1

(x− p)n−1 f(x)dx

 ln(d)
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>

− p−1∫
p−d

(p− x)n−1 f(x)dx−
p∫

p−1

(p− x)n−1 f(x)dx

+

p+1∫
p

(x− p)n−1 f(x)dx+

p∫
p+1

(x− p)n−1 f(x)dx

 ln(d)

=

− p∫
p−d

(p− x)n−1 f(x)dx+

p∫
p

(x− p)n−1 f(x)dx

 ln(d)

= 0,

where the inequality follows from the monotonicity of f(·), and the last equality follows

from the first order condition (44).

Likewise, for d < 1, using (50) we have

(47) >

− p∫
p−d

(p− x)n−1 f(x)dx+

p∫
p

(x− p)n−1 f(x)dx

 ln(d)

= 0.

Therefore the numerator is positive and

dp(n)

dn
> 0

for right-skewed distributions. Combining this with the fact that p(1) = Median(p∗) and

p(∞) = Midsupport(p∗) we conclude that p(n) monotonically increases from the median to

the midpoint of the support of the efficient price distribution f(·), if f(·) is right-skewed.

Analogously, for left-skewed f(·), p(n) monotonically decreases from the median to the mid-

point of the support.

A.6 Proof of Proposition 6

Proposition (Cross-correlation under market maker information)

If the distribution of the expected latent price with ex-ante support [p∗
t
, p∗t ] satisfies[

p∗
t

+ p∗t

2
− p∗t−1

]
sgn(εt) > s+

σ

E(|εt|)
,
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then ∃n0 > 1 such that ∀n > n0 it holds that Corr(∆p∗t ,∆ut) > 0.

Proof:

The new information each period now consists of two parts: First, as before, information

about p∗t−1, and second extra information about ∆p∗t . To be specific, we assume that this

extra information is the direction of the latent price change {sgn(εt)}. If the distribution of

expected latent price changes at the beginning of each period is the same, we can write the

market maker response to this extra information as R(sgn(εt)) = R sgn(εt). From (20)

E (∆ptεt) = E
[(
p∗t−1 + sqt +R(·)− pt−1

)
εt
]

=
1

2
E [(sqt +R(·))εt |εt > 0] +

1

2
E [(sqt −R(·))εt |εt < 0]

= RE (|εt|) + sE (qtεt) . (52)

Plugging (52) with E (∆pt∆p
∗
t ) = σE (∆ptεt) into (10) implies that the contemporaneous

cross-covariance is positive if and only if

R >
σ − sE (qtεt)

E (|εt|)
. (53)

Because E(qtεt) > −E(|εt|) we have as sufficient condition

R > s+
σ

E (|εt|)
. (54)

To satisfy (54) we need for pet = p∗t−1 +R(·) = p∗t−1 +R sgn(εt) that

pet

> p∗t−1 + s+ σ
E(|εt|) for ε > 0

< p∗t−1 − s− σ
E(|εt|) for ε < 0.

From Proposition 5 for any p(n) ∈
[
Median(p);

p+p

2

]
there is a risk aversion level n such

that market makers will – after observing the signal {sgn(εt)} – quote this price as midprice

pet . Therefore, for all distributions f(p∗) which satisfy (22), a sufficiently large n leads to a

market maker response which satisfies (53) and thus to a positive contemporaneous cross-

covariance. Q.E.D.

A.7 Proof of Proposition 7

Proposition (Semi-strong form cross-correlation, one period model)
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The contemporaneous cross-correlation is

Corr(∆p̃et ,∆ũt) =
2φλ− σE(qtεt)√

σ2 − 2σλE(qtεt) + 2φλ2

sgn(s− λ)√
2φ

.

The cross-correlation at displacement one equals

Corr(∆p̃et−1,∆ũt) =
−φλ√

σ2 − 2σλE(qtεt) + 2λ2

sgn(s− λ)√
2φ

.

All cross-correlations at higher displacements are zero.

Proof:

The expressions for the cross-correlations follow directly from their multiperiod counter-

parts. In the setup of Section 4.1 the semi-strong form efficient price has the unconditional

variance (33) and the corresponding noise has an unconditional variance of

V ar(∆ũt) =
1

T

T−1∑
t=0

V ar(∆ũt)

=
1

T

{
T−1∑
i=0

[
φi(λi − si)2 + φi−1(λi−1 − si−1)2

]
− 2

T−1∑
i=1

E(qtqt−1)(λi − si)(λi−1 − si−1)

}
. (55)

The contemporaneous cross-correlation is

Corr(∆p̃et ,∆ũt) =
Cov(∆p̃t,∆ũt)√
V ar(∆p̃et )V ar(∆ũt)

.

where Cov(∆p̃et ,∆ũt) is given by (23). All other cross-correlation can be obtained analo-

gously.

For T = 1, spread and adverse selection parameter are constants, i.e. st = s and λt = λ

∀t, and the variance terms (33) and (55) simplify radically to

V ar(∆p̃et ) = σ2 − 2σλE(qtεt) + 2φλ2,

V ar(∆ũt) = 2φ(s− λ)2,

where we have used that qt is serially uncorrelated. Finally, from (23) and (25), we get for
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T = 1 the covariances

Cov(∆p̃et ,∆ũt) = (s− λ) [2φλ− σE(qtεt)]

and

Cov(∆p̃et−1,∆ũt) = φλ(λ− s).

Combining these with the variances immediately gives the cross-correlations stated in propo-

sition 7. Q.E.D.

B Derivation of Noise-Robust Estimators for Realized

Volatility

The estimators are based on the observable moments γi ≡ E(∆pt∆pt−i) and γ∗i ≡ E(∆ptqt−i).

They are based on the assumption that the latent price changes every period (T = 1), and

remains unobserved for one or more periods, depending on the noise specification. The

probability of no latent price change has measure zero. The two i.i.d. innovations to noise

are vt ∼iid (0, η2
v) and wt ∼iid (0, η2

w), where E(vswt) = 0 ∀s, t. All noise specification are given

in the second and third column of Table 3.

B.1 General Result

Consider the strong form efficient returns given by (7) and strong form noise given by (3).

Then we have

γ0 = σ2 + 2η2
v − 2E(utut−1) + 2E(∆p∗tut)− 2E(∆p∗tut−1),

γ1 = −η2
v + 2E(utut−1)− E(utut−2) + E(∆p∗tut+1)− E(∆p∗tut) + E(∆p∗tut−1)− E(∆p∗tut−2)

and ∀i ≥ 2

γi = 2E(utut−i)− E(utut−1−i)

+ E(∆p∗tut+i)− E(∆p∗tut−1+i) + E(∆p∗tut−i)− E(∆p∗tut−1−i).
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Recursively plugging in and solving for σ2, we get

σ2 = γ0 + 2
k∑
i=1

γi − 2E(utut−k) + 2E(utut−k−1)− 2E(∆p∗tut+k) + 2E(∆p∗tut−k−1).

Absent insider information, E(∆p∗tut−i) = 0 ∀i ≥ 1, and therefore

σ2 = γ0 + 2
k∑
i=1

γi − 2E(ut∆ut−k)− 2E(∆p∗tut+k). (56)

If – as in the upper four rows of Table 3 – the market microstructure noise is asymptotically

uncorrelated, i.e. lim
k→∞

E(ut∆ut−k) = 0 and lim
k→∞

E(∆p∗tut+k) = 0, Equation (56) simplifies

to

σ2 = γ0 + 2
∞∑
i=1

γi. (57)

Equation (57) does not hold in market maker inventory models, as the ones in the bottom row

of Table 3. There, the noise follows a unit root process with ∆ut = αqt so that E(ut∆ut−i) =

α2 ∀i. In this case autocovariances alone are not sufficient, and σ2 is given by Equation (56).

B.2 I.i.d. Measurement Error

γ0 = σ2 + 2η2
v

γ1 = −η2
v

Therefore

σ2 = γ0 + 2γ1.

B.3 Autoregressive Noise

γ0 = σ2 +
2

1 + α
η2
v

γi = αi−1α− 1

α + 1
η2
v ∀i ≥ 1

Therefore

σ2 = γ0 + 2
γ2

1

γ1 − γ2

.
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B.4 Autoregressive Noise with i.i.d. Measurement Error

γ0 = σ2 +
2

1 + α
η2
v + 2η2

w

γ1 =
α− 1

α + 1
η2
v − η2

w

γi = αi
α− 1

α + 1
η2
v ∀i ≥ 2

Therefore

σ2 = γ0 + 2γ1 + 2
γ2

2

γ2 − γ3

.

B.5 Linear Noise Decay

γ0 = σ2 +
S + 1

S
α2η2

v

γi = − i

S2
α2η2

v for i ∈ {1 . . . S}

γi = 0 ∀i > S

∞∑
i=1

γi =
S∑
i=1

γi = −S + 1

2S
α2η2

v =
S(S + 1)

2
γ1

Therefore

σ2 = γ0 + 2
∞∑
i=1

γi,

or

σ2 = γ0 + 2
S∑
i=1

γi = γ0 + S(S + 1)γ1,

where S is either known or estimated by Ŝ =

√
2
γ1

∞∑
i=1

γi + 1
4
− 1

2
. If S is estimated, this

estimator is identical to the constant realized kernel estimator (29).

B.6 Market Maker Inventory from Noise Trading

γ0 = σ2 + α2

γ1 = 0

γ∗0 = α
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γ∗1 = 0

Therefore

σ2 = γ0 − γ∗0
2 .

B.7 Dependent Measurement Error

γ0 = σ2 + 2α(1 + α)σ2 + 2η2
v

γ1 = −α(1 + α)σ2 − η2
v

γ2 = 0

Therefore

σ2 = γ0 + 2γ1.

Likewise, for the bid-ask bounce from informed traders, we have

γ0 = σ2 + 2α2 + 2ασE (|εt|)

γ1 = −α2 − ασE (|εt|)

γ2 = 0

B.8 Nonstrategic Incompletely Informed Traders

γ0 = σ2 +
2β

1 + α

(
σ2(1 + α + β) + βη2

v

)
γi = −β

i(1− α)

1 + α

(
σ2(1 + α + β) + βη2

v

)
∀i ≥ 1

Therefore

σ2 = γ0 + 2
γ2

1

γ1 − γ2

.

B.9 Autoregressive Noise with One-Period Private Information

γ0 = σ2 + 2β(1 + β)σ2 +
2

1 + α
η2
v + 2η2

w

γ1 = −β(1 + β)σ2 − 1− α
1 + α

η2
v − η2

w

γi = −αi−1 1− α
1 + α

η2
v ∀i ≥ 2
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Therefore

σ2 = γ0 + 2γ1 + 2
γ2

2

γ2 − γ3

.

Likewise, for nonstrategic informed traders, we have

γ0 = σ2 +
2α(1 + α + β)

1 + β
σ2 + 2η2

v

γ1 = −(1− β)
α(1 + α + β)

1 + β
σ2 − η2

v

γi = −βi−1(1− β)
α(1 + α + β)

1 + β
σ2 ∀i ≥ 2

The Easley and O’Hara (1992)-type learning reflected in Equation (32) is a special case

of this. Set α = −σ and β = e−r, and drop the exogenous noise process vt. Then ∀i ≥ 0

γi =
er − 1

er + 1
e−irσ2,

therefore er = γ0
γ1

and

σ2 = γ0 +
2γ1γ0

γ0 − γ1

.

Using γ1
γ2

= γ0
γ1

reveals that this expression is equivalent to γ0 +
2γ21
γ1−γ2 .

B.10 Strategic Informed Traders

γ0 = σ2 +
(2 + α)S + α

S
ασ2 +

S + 1

S
α2η2

v

γi = −S + iα

S2
ασ2 − i

S2
α2η2

v for i ∈ {1 . . . S}

γi = 0 ∀i > S

∞∑
i=1

γi =
S∑
i=1

γi = −(2 + α)S + α

2S
ασ2 − S + 1

2S
α2η2

v =
S − 1

2
ασ2 +

S(S + 1)

2
γ1

Therefore

σ2 = γ0 + 2
∞∑
i=1

γi,

or

σ2 = γ0 + 2
S∑
i=1

γi = γ0 + 2

[
S(S − 1)

2
ασ2 +

S(S + 1)

2
γ1

]
,
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which implies

σ2 = γ0 + S(3− S)γ1 + S(S − 1)γ2,

where S is either known or estimated by Ŝ =

√(
3γ1−γ2

2(γ2−γ1)

)2

+ 2
γ2−γ1

∞∑
i=1

γi − 3γ1−γ2
2(γ2−γ1)

. If S is

estimated, this estimator is identical to the constant realized kernel estimator (29).

B.11 Market Maker Inventory from Informed Trading

γ0 = σ2 + α2 + 2ασE (|εt|)

γ1 = 0

γ∗0 = α + σE (|εt|)

γ∗1 = 0

If εt ∼iid N(0, 1) we have

γ∗0 = α + σ

√
2

π

and therefore

σ2 =
π

π − 2

(
γ0 − γ∗0

2
)
.
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