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Abstract

Suppose V and U are two independent mean zero random variables, where

V has an asymmetric distribution with two mass points and U has a symmetric

distribution. We show that the distributions of V and U are nonparametrically

identified just from observing the sum V +U , and provide a rate root n estimator.

We apply these results to the world income distribution to measure the extent

of convergence over time, where the values V can take on correspond to country

types, i.e., wealthy versus poor countries. We also extend our results to include

covariates X, showing that we can nonparametrically identify and estimate cross

section regression models of the form Y = g(X,D∗)+U , where D∗ is an unobserved

binary regressor.
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1 Introduction

We propose a method of nonparametrically identifying and estimating cross section

regression models that contain an unobserved binary regressor, or equivalently an un-

observed random effect that can take on two values. No instruments or proxies for the

unobserved binary regressor are observed. Identification is obtained by assuming that

the regression function errors are symmetrically distributed, while the distribution of

the unobserved random effect is asymmetric. Moment conditions are derived based on

these assumptions, and are used to construct either an ordinary generalized method

of moments (GMM) estimator, or in the presence of covariates, a nonparametric local

GMM estimator for the model.

Ignoring covariates for the moment, suppose Y = h + V + U , where V and U are

independent mean zero random variables and h is a constant. The random V equals

either b0 or b1 with unknown probabilities p and 1 − p respectively, where p does not

equal a half, i.e., V is asymmetrically distributed. U is assumed to have a symmetric

distribution. We observe a sample of observations of the random variable Y , and so can

identify the marginal distribution of Y , but we do not observe h, V , or U .

We first show that the constant h and the distributions of V and U are nonparamet-

rically identified just from observing Y . The only regularity assumption required is that

some higher moments of Y exist.

We also provide estimators for the distributions of V and U . We show that the

constant h, the probability mass function of V , moments of the distribution of U , and

points of the distribution function of U can all be estimated using GMM. Unlike common

deconvolution estimators that can converge at slow rates, we estimate the distributions

of V and U , and the density of U (if it is continuous) at the same rates of convergence

as if V and U were separately observed, instead of just observing their sum.

We do not assume that the supports of V or U are known, so estimation of the
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distribution of V means identifying and estimating both of its support points b0 and b1,

as well as the probabilities p and 1− p, respectively, of V equaling b0 or b1.

To illustrate these results, we empirically apply them to the world economy conver-

gence issue of whether less developed economies are catching up with richer economies

over time. Cross country GDP data in different time periods are used in this application,

where p in each time period is an estimate of the fraction of countries that are in the

poor group, b1 − b0 provides a measure of the average difference in GDP between rich

and poor countries, and the variance of U is a measure of the dispersion of countries

within each group. Decreases in these numbers over time would indicate different forms

of income convergence. A feature of these estimates is that they do not require an a

priori definition of poor vs. rich, or any assignment of individual countries into the rich

or poor groups.

The remainder of the paper then describes how these results can be extended to

allow for covariates. If h depends on X while V and U are independent of X, then we

obtain the random effects regression model Y = h (X) + V + U , which is popular for

panel data, but which we identify and estimate just from cross section data.

More generally, we allow both h and the distributions of V and U to depend on X.

This is equivalent to nonparametric identification and estimation of a regression model

containing an unobserved binary regressor. The regression model is Y = g(X, D∗) + U ,

where g is an unknown function, D∗ is an unobserved binary regressor that equals zero

with unknown probability p (X) and one with probability 1− p(X), and U is a random

error with an unknown symmetric mean zero conditional distribution FU (U | X). The

unobserved random variables U and D∗ are conditionally independent, conditioning upon

X. By defining h (x) = E (Y | X = x) = E [g(X, D∗) | X = x], V = g(X,D∗) − h(X)

and U = Y −h (X)−V , this regression model can then be rewritten as Y = h (X)+V +U ,

where h (x) is a nonparametric regression function of Y on X, and the two support points

3



of V conditional on X = x are then bd (x) = g(x, d)− h(x) for d = 0, 1.

The assumptions this regression model imposes on its error term U are standard,

e.g., they hold if the error U is normal, and allow for the error U to be heteroskedastic

with respect to X. Also, measurement errors are often assumed to be symmetric and U

may be interpreted as measurement error in Y .

One possible application of these extensions is a wage equation, where Y is log wage

and D∗ indicates whether an individual is of low or high unobserved ability, which could

be correlated with some covariates X such as education. This model may show how

much wage variation could be explained by unobserved ability.

Another example is a stochastic frontier model, where Y is the log of a firm’s output,

X are factors of production, and D∗ indicates whether the firm operates efficiently at the

frontier, or inefficiently. Existing stochastic frontier models obtain identification either

by assuming functional forms for the distributions of V and U , or by using panel data

and assuming that each firm’s individual efficiency level is a fixed effect that is constant

over time. See, e.g., Kumbhakar et. al. (2007) and Simar and Wilson (2007). In

contrast, with our model one could estimate a nonparametric stochastic frontier model

using cross section data, given the restriction that unobserved efficiency is indexed by a

binary D∗.

Dong (2008) identifies and estimates a model where Y = h (X)+V +U , and applies

her results to data where Y is alcohol consumption, and the binary V is an unobserved

indicator of health consciousness. Our results formally prove identification of Dong’s

model, and our estimator is more general in that it allows V and the distribution of U

to depend in arbitrary ways on X. Hu and Lewbel (2007) also identify some features

of a model containing an unobserved binary regressor. They employ two identification

strategies, both of which differ from ours. One of their strategies employs a type of in-

strumental variable, while the other exploits an assumption of conditional independence
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of low order moments, including homoskedasticity. They also use different estimators

from ours, and the type of applications they focus on are also different.

Models that allocate individuals into various types, as D∗ does, are common in the

statistics and marketing literatures. Examples include cluster analysis, latent class anal-

ysis, and mixture models (see, e.g., Clogg 1995 and Hagenaars and McCutcheon 2002).

Also related is the literature on mismeasured binary regressors, where identification

generally requires instruments. An exception is Chen, Hu and Lewbel (2008). Like our

Theorem 1 below, they exploit error symmetry for identification, but unlike this pa-

per they assume that the binary regressor is observed, though with some measurement

(classification) error, instead of being completely unobserved. A more closely related

result is Heckman and Robb (1985), who like us use zero low order odd moments to

identify a binary effect, though their’s is a restricted effect that is strictly nested in our

results. Error symmetry has also been used to obtain identification in a variety of other

econometric contexts, e.g., Powell (1986).

There are a few common ways of identifying the distributions of random variables

given just their sum. One method of identification assumes that the exact distribution

of one of the two errors is known a priori, (e.g., from a validation sample as is common in

the statistics literature on measurement error; see, e.g., Carroll, et. al. 2006) and using

deconvolution to obtain the distribution of the other one. For example, if U were normal,

one would need to know a priori its mean and variance to estimate the distribution of V .

A second standard way to obtain identification is to parameterize both the distributions

of V and U , as in most of the latent class literature or in the stochastic frontier literature

(see, e.g., Kumbhakar and Lovell 2000) where a typical parameterization is to have V

be log normal and U be normal. Panel data models often have errors of the form V + U

that are identified either by imposing specific error structures or assuming one of the

errors is fixed over time (see, e.g., Baltagi 2008 for a survey of random effects and
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fixed effects panel data models). Past nonparametric stochastic frontier models have

similarly required panel data for identification, as described above. In contrast to all

these identification methods, in our model both U and V have unknown distributions,

and no panel data are required.

The next section contains our main identification result. We then provide moment

conditions for estimating the model, including the distribution of V (its support points

and the associated probability mass function), using ordinary GMM. Next we provide

estimators for the distribution and density function of U . We empirically apply these

results to estimating features of the distribution of per capita GDP across countries

and use the results to examine the convergence hypothesis. This is followed by some

extensions showing how our identification and estimation methods can be augmented to

allow for covariates.

2 Identification

In this section, we first prove a general result about identification of the distribution of

two variables given only their sum, and then apply it. Later we extend these results to

including regressors X.

ASSUMPTION A1: Assume the distribution of V is mean zero, asymmetric, and

has exactly two points of support. Assume E
(
Ud | V

)
= E

(
Ud

)
exists for all positive

integers d ≤ 9, and E
(
U2d−1

)
= 0 for all positive integers d ≤ 5.

THEOREM 1: Let Assumption A1 hold, and assume the distribution of Y is identi-

fied, where Y = h + V + U . Then the constant h and the distributions of U and V are

identified.

The proof of Theorem 1 is in the Appendix. Assumption A1 says that the first nine
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moments of U conditional on V are the same as the moments that would arise if U

were distributed symmetrically and independent of V . Given symmetry of U and an

asymmetric, independent, two valued V , by Assumption A1 the only regularity condition

required for Theorem 1 is existence of E (Y 9).

Let b0 and b1 be the two support points of the distribution of V , where without loss

of generality b0 < b1, and let p be the probability that V = b0, so 1−p is the probability

that V = b1. We first consider estimation of h, b0, b1, and p, and then later show how

the rest of the model, i.e., the distribution function of U , can be estimated.

We provide two different sets of moments that can be used for GMM estimation of

h, b0, b1, and p. The first set of moments is based directly on Theorem 1, while the

second provides additional moments that can be used assuming that U is symmetrically

distributed.

For the first set of moments, define ud = E
(
Ud

)
and vd = E

(
V d

)
. Then v1 =

E (V ) = b0p + b1 (1− p) = 0, so

b1 =
b0p

p− 1
, (1)

and therefore,

vd = E
(
V d

)
= bd

0p +

(
b0p

p− 1

)d

(1− p) . (2)

Now expand the expression E
[
(Y − h)d − (V + U)d

]
= 0 for integers d, noting by As-

sumption A1 that the first five odd moments of U are zero. The results are

E (Y − h) = 0 (3)

E
(
(Y − h)2 − (v2 + u2)

)
= 0 (4)

E
(
(Y − h)3 − v3

)
= 0 (5)

E
(
(Y − h)4 − (v4 + 6v2u2 + u4)

)
= 0 (6)
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E
(
(Y − h)5 − (v5 + 10v3u2)

)
= 0 (7)

E
(
(Y − h)6 − (v6 + 15v4u2 + 15v2u4 + u6)

)
= 0 (8)

E
(
(Y − h)7 − (v7 + 21v5u2 + 35v3u4)

)
= 0 (9)

E
(
(Y − h)9 − (v9 + 36v7u2 + 126v5u4 + 84v3u6)

)
= 0 (10)

Substituting equation (2) into equations (3) to (10) gives eight moments in the six

unknown parameters h, b0, p, u2, u4, and u6. The proof of Theorem 1 shows that

these eight equations uniquely identify these parameters. As shown in the proof, more

equations than unknowns are required for identification because of the nonlinearity of

these equations, and in particular the presence of multiple roots. Given estimates of

these parameters, an estimate of b1 is obtained by equation (1).

Another set of conditional moments that can be used for estimation are given by the

following Corollary.

COROLLARY 1: Let Assumption A1 hold. Assume U is symmetrically distributed

and is independent of V . Assume E [exp (TU)] exists for some positive constant T . Then

the following equation holds for all positive τ ≤ T ,

E


 exp [τ (Y − h)]

p exp (τb0) + (1− p) exp
(
τ b0p

p−1

) − exp [−τ (Y − h)]

p exp (−τb0) + (1− p) exp
(
−τ b0p

p−1

)

 = 0. (11)

By choosing a large number of values of τ ≤ T , Corollary 1 provides a large number of

additional moment conditions satisfied by the parameters h, b0, and p. Estimation could

be based on equations (3) to (10) (after substituting in equation (2)), or on moments

given by equations (3) and (11) for some set of positive values of τ ≤ T , or on a

combination of both sets of moments. In some simulations (see also Dong 2008) we found

that equation (3) along with equation (11) letting τ be about a dozen equally spaced
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values between 1 and 2.5 sufficed for identification and yielded reasonable estimates,

though formally we have only proved that identification follows from moments (3) to

(10), with moments based on equation (11) providing overidentifying information.

3 Estimation

Estimation takes the form of the standard Generalized Method of Moments (GMM,

as in Hansen 1982), since given data Y1,...Yn, we have a set of moments of the form

E [G (Y, θ)] = 0, where G is a set of known functions and θ is the vector of parameters

h, b0, p and also includes u2, u4, and u6 if equations (4) to (10) (after substituting in

equation (2)) are included in the set of moments G. Note that while all of the above

assumes Y1, ...,Yn are identically distributed, they do not need to be independent, as

GMM estimation theory permits some serial dependence in the data. To save space we

do not write out the detailed assumptions and associated limiting distribution theory

for these GMM estimators, which can be found in standard textbooks,

Estimation based on the first set of moments (3) to (10) entails estimation of the

additional parameters u2, u4, and u6, which in practice could be of direct interest.

Note that it also depends on high order moments, which may be heavily influenced by

outliers. Removing outliers from the Y data (which can be interpreted as robustifying

higher moment estimation) and rescaling Y could be useful numerically.

The second set of moments given by equations (3) and (11) for some set of positive

values of τ do not automatically follow from Theorem 1. However, they contain po-

tentially many more moments for estimation. They can be of lower order and do not

require estimation of the nuisance parameters u2, u4, and u6. Both sets of moments can

be combined into a single GMM estimator if desired.

Standard GMM limiting distribution theory provides root n consistent, asymptot-
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ically normal estimates of h, and of the distribution of V , (i.e., the support points b0

and b1 and the probability p, where b̂1 is obtained by b̂1 = b̂0p̂/ (p̂− 1) from equation 1).

We define b0 as the smaller of the two support points of V . This along with E (V ) = 0

requires that b̂0 be negative, which may be imposed in estimation.

4 The Distribution of U

As noted in the proof of Theorem 1, once the distribution of V is recovered, then

the distribution of U is identified by a deconvolution, in particular we have that the

characteristic function of U is identified by E
(
eiτU

)
= E

(
eiτ(Y−h)

)
/E

(
eiτV

)
, where

i denotes the square root of −1. However, under the assumption that U is symmet-

rically distributed, the following theorem provides a more convenient way to estimate

the distribution function of U . For any random variable Z, let FZ denote the marginal

cumulative distribution function of Z. Also define ε = V + U and define

Ψ (u) =
[Fε (−u + b0)− 1] p + Fε (u + b1) (1− p)

1− 2p
. (12)

THEOREM 2: Let Assumption A1 hold. Assume U is symmetrically distributed.

Then

FU (u) =
Ψ (u) + Ψ (−u)

2
. (13)

Theorem 2 provides a direct expression for the distribution of U in terms of b0, b1,

p and the distribution of ε, all of which are previously identified. Let I (·) denote the

indicator function that equals one if · is true and zero otherwise. Then using Y = h + ε

it follows immediately from equation (12) that

Ψ (u) = E

(
[I (Y ≤ h− u + b0)− 1] p + I (Y ≤ h + u + b1) (1− p)

1− 2p

)
. (14)
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An estimator for FU (u) can then be constructed by replacing the parameters in equation

(14) with estimates, replacing the expectation with a sample average, and plugging the

result into equation (13), that is, define

ω (Y, u, θ) = [I (Y ≤ h− u + b0)− 1] p + I (Y ≤ h + u + b1) (1− p) (15)

+ [I (Y ≤ h + u + b0)− 1] p + I (Y ≤ h− u + b1) (1− p) ,

where θ contains h, b0, b1, and p. Then the estimator corresponding to equation (13) is

F̂U (u) =
1

n

n∑

i=1

ω
(
Yi, u, θ̂

)

2− 4p̂
. (16)

Alternatively, FU (u) for a finite number of values of u, say u1, ..., uJ , can be estimated

as follows. Recall that E [G (Y, θ)] = 0 was used to estimate the parameters h, b0, b1, p

by GMM. For notational convenience, let ηj = FU (uj) for each uj. Then by equations

(13) and (14),

E
[
(2− 4p) ηj − ω (Y, uj, θ)

]
= 0. (17)

Adding equation (17) for j = 1, ..., J to the set of functions defining G, including η1, ..., ηJ

in the vector θ, and then applying GMM to this augmented set of moment conditions

E [G (Y, θ)] = 0 simultaneously yields root n consistent, asymptotically normal estimates

of h, b0, b1, p and ηj = FU (uj) for j = 1, ..., J . An advantage of this approach versus

equation (16) is that GMM limiting distribution theory then provides standard error

estimates for each F̂U (uj).

While p is the unconditional probability that V = b0, given F̂U it is straightforward

to estimate conditional probabilities as well. In particular,

Pr (V = b0 | Y ≤ y) = Pr (V = b0, Y ≤ y) / Pr (Y ≤ y)

11



= FU (y − h− b0) /Fy (y)

which could be estimated as F̂U

(
y − ĥ− b̂0

)
/F̂y (y) where F̂y is the empirical distribu-

tion of Y .

Let fZ denote the probability density function of any continuously distributed ran-

dom variable Z. So far no assumption has been made about whether U is continuous or

discrete. However, if U is continuous, then ε and Y are also continuous, and then taking

the derivative of equations (12) and (13) with respect to u gives

ψ (u) =
−fε (−u + b0) p + fε (u + b1) (1− p)

1− 2p
, fU (u) =

ψ (u) + ψ (−u)

2
, (18)

which suggests the estimators

ψ̂ (u) =
−f̂ε

(
−u + b̂0

)
p̂ + f̂ε

(
u + b̂1

)
(1− p̂)

1− 2p̂
, (19)

f̂U (u) =
ψ̂ (u) + ψ̂ (−u)

2
, (20)

where f̂ε (ε) is a kernel density or other estimator of fε (ε), constructed using data

ε̂i = Yi−ĥ for i = 1, ...n. Since densities converge at slower than rate root n, the limiting

distribution of this estimator will be the same as if ĥ, b̂0, b̂1, and p̂ were evaluated at

their true values. The above f̂U (u) is just the weighted sum of kernel density estimators,

each one dimensional, and so under standard regularity conditions will converge at the

optimal one dimensional pointwise rate n2/5. Note that it is possible for f̂U (u) to be

negative in finite samples, so if desired one could replace negative values of f̂U (u) with

zero.

A numerical problem that can arise is that equation (19) may require evaluting f̂ε
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at a value that is outside the range of observed values of ε̂i. Since both ψ̂ (u) and

ψ̂ (−u) are consistent estimators of f̂U (u) (though generally less precise than equation

(20) because they individually ignore the symmetry constraint), one could use either

ψ̂ (u) or ψ̂ (−u) instead of their average to estimate f̂U (u) whenever ψ̂ (−u) or ψ̂ (u),

respectively, requires evaluating f̂ε at a point outside the the range of observed values

of ε̂i.

5 A Parametric U Comparison

It might be useful to construct parametric estimates of the model, which could for

example provide reasonable starting values for the GMM estimation. The parametric

model we propose for comparison assumes that U is normal with mean zero and standard

deviation s.

When U is normal the distribution of Y is finitely parameterized, and so can be

estimated directly by maximum likelihood. The log likelihood function is given by

n∑

i=1

ln




p

s
√

2π
exp


−1

2

(
Yi − h− b0

s

)2

 +

1− p

s
√

2π
exp


−1

2


Yi − h− b0p

p−1

s




2




 . (21)

Maximizing this log likelihood function provides estimates of h, b0, p, and s. As before,

an estimate of b1 would be given by b̂1 = b̂0p̂/ (p̂− 1). Further, if U is normal then

u2 = s2, u4 = 3s2, and u6 = 15s2. These estimates can be compared to the GMM

estimates, which should be the same if the true distribution of U is indeed normal.
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6 An Empirical Application: World Income Distri-

bution

A large literature exists regarding the distribution of income across countries, much

of which deals with the question of convergence, that is, whether poorer countries are

catching up with richer countries as a result of increases in globalization of trade and

diffusion of technology.

To measure the extent of convergence, if any, we propose a simple descriptive model of

the income distribution across countries. Assume that there exist two types of countries,

i.e., poor versus rich, or less developed versus more developed countries. Let Iti denote

the per capita income or GDP of country i in time t, and define Yti to be either income

levels Yti = Iti, or income shares Yti = Iti/ (
∑n

i=1 Iti). Assume that a poor country’s

income in year t is given by Yti = gt0 + Uti, while that of a wealthy country is given by

Yti = gt1 +Uti, where gt0 and gt1 are the mean income levels or mean shares for poor and

rich countries, respectively, and Uti is an individual country’s deviation from its group

mean. Here Uti embodies both the relative ranking of country i within its (poor or rich)

group, and may also include possible measurement errors in Yti. We assume that the

distribution of Uti is symmetric and mean zero with a probability density function ftu.

Let ht = Et (Y ) be the mean income or income share for the whole population of

countries in year t. Then the income measure for country i in year t can be rewritten

as Yti = ht + Vti + Uti, where Vti is the deviation of rich or poor countries’ group mean

from the grand mean ht. Then Vti equals bt0 = gt0−ht with probability pt and Vti equals

bt1 = gt1 − ht with probability 1 − pt, so pt is the fraction of countries that are in the

poor group in year t, and bt1 − bt0 is the difference in mean income or income shares

between poor and wealthy countries.

This simple model provides measures of a few different possible types of convergence.
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Having pt decrease over time would indicate that on average countries are leaving the

poor group and joining the set of wealthy nations. A finding that bt1− bt0 decreases over

time would mean that the differences between rich and poor nations are diminishing,

and a finding that the spread (e.g. the variance) of the density ftu decreases over time

would mean that there is convergence within but not necessarily across the poor and

rich groups.

A feature of this model is that it does not require arbitrarily choosing a threshold

level of Y to demarcate the line between rich and poor countries, and so avoids this

potential source of misspecification. This model also allows for the possibility that a

poor country has higher income than some wealthy country in a given time period due

to random factors (e.g., natural disaster in a wealthy country i, implying a low draw of

Uti in time t). More generally, the model does not require specifying or estimating the

group to which each country belongs.

Bimodality versus unimodality of Y may be interpreted as evidence in favor of this

‘two group’ model, though note that even if U is unimodal, e.g., normal, then Y can

be either unimodal or bimodal (with possibly large differences in the heights of the two

modes), depending on p and on the magnitudes of b0 and b1. The density for Y can also

be quite skewed, even though U is symmetric.

Bianchi (1997) applies bimodality tests to the distribution of income across countries

over time, to address questions regarding evidence for convergence. For comparison we

apply our model using the same data as Bianchi’s, which consists of Iit defined as annual

per capita GDP in constant U.S. dollars for 119 countries, measured in 1970, 1980 and

1989.

For each of the three years of data we provide four different estimates: GMM1, which

is GMM based on moments (3) to (10) (after substituting in equation (2)); GMM2, which

is GMM based on moments given by equations (3) and (11) where τ takes 11 equally
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spaced values between 0.19 and 2.09;1 GMM3, which uses both these sets of moments,

and MLE, which is the maximum likelihood estimator that maximizes (21), assuming

that U is normal.

Table 1: Estimates based on the GDP per capita level data (in 10,000 1985 dollars)

p b0 b1 b1-b0 h u2 u4 u6

1970

GMM1 .8575 -.1105 .6648 .7753 .3214 .0221 .0001$ .0024
(.0352) (.0244) (.0664) (.0590) (.0284) (.0042) (.0002) (.0009)

GMM2 .8605 -.1089 .6719 .7808 .3213
(.0300) (.0199) (.0656) (.0601) (.0246)

GMM3 .8573 -.1110 .6667 .7777 .3214 .0210 .0012 .012∗

(.0329) (.0230) (.0644) (.0584) (.0287) (.0040) (.0004) (.0005)
MLE .8098 -.1334 .5679 .7013 .3213 .0199

(.0362) (.0260) (.0487) (.0477) (.0280) (.0031)

1980

GMM1 .8081 -.1722 .7252 .8974 .4223 .0294 .0016 .0017∗

(.0371) (.0322) (.0579) (.0491) (.0351) (.0043) (.0004) (.0007)
GMM2 .8129 -.1684 .7316 .900 .4222

(.0315) (.0267 (.0560) (.0493) (.0283)
GMM3 .8068 -.1742 .7275 .9017 .4221 .0277 .0010$ .0025∗

(.0396) (.0354) (.0676) (.0634) (.0371) (.0050) (.0148) (.0011)
MLE .8070 -.1692 .7077 .8769 .4222 .0350

(.0393) (.0345) (.0600) (.0544) (.0372) (.0048)

1989

GMM1 .8125 -.2114 .9159 1.1273 .4804 .0384 .0051 .0028$

(.0380) (.0424) (.1022) (.1111) (.0439) (.0118) (.0104) (.0448)
GMM2 .8183 -.2049 .9230 1.1279 .4806

(.0283) (.0293) (.0683) (.0612) (.0322)
GMM3 .8123 -.2120 .9176 1.1296 .4804 .0373 .0051 .0027$

(.0374) (.0410) (.0758) (.0697) (.444) (.0068) (.0016) (.0452)
MLE .7948 -.2192 .8491 1.0683 .4805 .0489

(.0393) (.0413) (.0754) (.0679) (.0441) (.0076)

Note: $ not significant; ∗ significant at the 5% level; all the others are significant at the 1% level.
Standard errors are in parentheses.

Table 1 reports results based on per capita levels, Yti = Iti/10, 000, while Table 2 is

based on scaled shares, Yti = 50Iti/ (
∑n

i=1 Iti).
2 For each data set, estimates based on

all three GMM estimators are quite similar, with estimates of p, b0, and b1 across the

1We found our results were relatively insensitive to the exact range and number of values of τ used.
2We scale by 10,000 or by 50 to put the Yti data in a range between zero and two. Such scalings

helped ensure that the matrices involved in estimation (e.g., the estimated weighting matrix used for
efficiency in the the second stage of GMM) were numerically well conditioned.
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Table 2: Estimates based on the scaled GDP per capita share data

p b0 b1 b1-b0 h u2 u4 u6

1970

GMM1 .8619 -.1392 .8682 1.0074 .4206 .0417 .0039$ .0057$

(.0361) (.0332) (.1009) (.0985) (.0380) (.0089) (.0068) (.0063)
GMM2 .8640 -.1392 .8844 1.0236 .4202

(.0291) (.0241) (.0909) (.0816) (.0292)
GMM3 .8579 -.1448 .8737 1.0185 .4203 .0347 .0044$ .0053$

(.0348) (.0319) (.0998) (.0976) (.0361) (.0085) (.0281) (.0246)
MLE .8098 -.1744 .7425 9169 4202 .0340

(.0383) (.0352) (.0670) (.0629) (.0377) (.0053)

1980

GMM1 .8080 -.1715 .7217 .8932 .4202 .0291 .0016 .0017
(.0374) (.0334) (.0560) (.0497) (.0364) (.0041) (.0004) (.0006)

GMM2 .8128 -.1676 .7280 8956 4202
(.0323) (.0274) (.0565) (.0496) (.0304)

GMM3 .8067 -.1734 .7240 .8974 .4200 .0274 .0009 .0025∗

(.0364) (.0322) (.0551) (.0483) (.0359) (.0041) (.0006) (.0011)
MLE .8070 -.1684 .7043 8727 4202 .0347

(.0373) (.0322) (.0570) (.0508) (.0353) (.0045)

1989

GMM1 .8117 -.1848 .7964 .9812 .4203 .0316 .0023 .0020∗

(.0360) (.0344) (.0609) (.0518) (.0388) (.0049) (.0007) (.0009)
GMM2 .8167 -.1808 .8056 .9864 .4202

(.0311) (.0276) (.0659) (.0570) (.0301)
GMM3 .8106 -.1870 .8002 .9872 .4201 .0288 .0024$ .0021$

(.0365) (.0355) (.0707) (.0680) (.0382) (.0055) (.0242) (.0015)
MLE .7948 -.1916 .7424 934 4202 .0374

(.0387) (.0355) (.0655) (.0589) (.0395) (.0058)

Note: $ not significant; ∗significant at the 5% level; all the others are significant at the 1% level.
Standard errors are in parentheses.

GMM estimators all within 2% of each other. The maximum likelihood estimates for

these parameters are also roughly comparable.

Looking across years, both Tables 1 and 2 tell similar stories in terms of percentages

of poor countries. Using either levels or shares, by GMM p is close to .86 in 1970, and

close to .81 in 1980 and 1989, showing a decline in the number of poor countries in the

1970’s, but no further decline in the 1980’s (MLE shows p close to .81 in all years).

The average difference between rich and poor, b1 − b0, increases steadily over time in

the levels data, but this may be due in part to the growth of average income over time,
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given by h. Share data takes into account this income growth over time. Estimates

based on shares in Table 2 show that b1− b0 decreased by a small amount in the 1970’s,

but then increased again in the 1980’s, so by this measure there is no clear evidence of

convergence or divergence.
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Figure 1: The estimated probability density function of U , using 1970 share data

Figure 1 shows f̂u, the estimated density of U , given by equation (20) using the

GMM1 estimates from Table 2 in 1970.3 This estimated density is compared to a normal

density with the same mode, f̂u (0). It follows that this normal density has standard

deviation (2π)−1/2
[
f̂u (0)

]−1
. With the same central tendency given by construction,

these two densities can be compared for differences in dispersion and tail behaviors.

As Figure 1 shows, the semiparametric f̂u matches the normal density rather closely

except near the tails of its distribution where data are sparse. Also shown in Figure 1

is the maximum likelihood estimate of fu, which assumes U is normal. Although close

to normal in shape, the semiparametric f̂u appears to have a larger variance than the

maximum likelihood estimate. The graphs of f̂u in other years are very similar, and they

3Graphs of other years and other GMM estimates are very similar, so to save space we do not include
them here.
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along with the variance estimates in Table 2 show no systematic trends in the dispersion

of U over time, and hence no evidence of income convergence within groups of rich or

poor countries.

In this analysis of U , note that Y is by construction nonnegative so U cannot literally

be normal; however, the value of U where Y = h + V + U crosses zero is far out in the

left tail of the U distribution (beyond the values graphed in Figure 1), so imposing the

constraint on U that Y be nonnegative (e.g., making the parametric comparison U a

truncated normal) would have no discernable impact on the resulting estimates.

In addition to analyzing levels Iti and shares Iti/ (
∑n

i=1 Iti), Bianchi (1997) also con-

siders logged data, but finds that the logarithmic transformation changes the shape of

the Yti distribution in a way that obscures any bimodality. We found similar results,

in that with logged data our model yields estimates of p close to .5, which is basically

ruled out by our model, as p = .5 would make V be symmetric and hence unidentifiable

relative to U .

7 Extension 1: h depends on covariates

We now consider some extensions of our main results. The first extension allows h to

depend on covariates X. Estimators associated with this extension will take the form

of standard two step estimators with a uniformly consistent first step, so after showing

identification we will omit technical details regarding estimator assumptions to save

space.

COROLLARY 2: Assume the conditional distribution of Y given X is identified and

its mean exists. Let Y = h (X)+V +U . Let Assumption A1 hold. Assume V and U are

independent of X. Then the function h (X) and distributions of U and V are identified.
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Corollary 2 extends Theorem 1 by allowing the conditional mean of Y to nonpara-

metrically depend on X. Given the assumptions of Corollary 2, it follows immediately

that equations (3) to (10) hold replacing h with h (X), and if U is symmetrically dis-

tributed and independent of V and X then equation (11) also holds replacing h with

h (X). This suggests two ways of extending the GMM estimators of the previous section.

One method is to first estimate h (X) by a uniformly consistent nonparametric mean

regression of Y on X (e.g., a kernel regression), then replace Y − h in equations (3) to

(10) and/or equation (11) with ε = Y − h (X), and apply ordinary GMM to the result-

ing moment conditions (using as data ε̂i = Yi − ĥ (Xi) for i = 1, ..., n) to estimate the

parameters b0, b1, p, u2, u4, and u6. Consistency of this estimator follows immediately

from the uniform consistency of ĥ and ordinary consistency of GMM. This estimator is

easy to implement because it only depends on ordinary nonparametric regression and

ordinary GMM, but note that the usual standard error formulas from the second step

GMM will not be correct because they do not account for the first stage estimation error

in h.

An alternative estimator is to note that, given the assumptions of Corollary 2, equa-

tions (3) to (10) and/or equation (11) (the latter assuming symmetry and independence

of U) hold by replacing h with h (X) and replacing the unconditional expectations in

these equations with conditional expectations, conditioning on X = x. The resulting

set of equations can be written as E [G (Y, θ, h (X)) | X = x] = 0 where G is a set of

known functions and θ is the vector of parameters b0, b1, p, and also includes u2, u4, and

u6 if equations (4) to (10) (after substituting in equation (2)) are included in the set of

moments G. This is now in the form of conditional GMM given by Ai and Chen (2003),

who provide a Sieve estimator and associated limiting distribution theory.

After replacing ĥ with ĥ (Xi), equation (16) can be used to estimate the distribution

of U , or alternatively equation (17) for j = 1, ..., J , replacing h with h (X), can be
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included in the set of functions defining G in the conditional GMM estimator. The

estimator (20) will still work for estimating the density of U if it is continuous, using as

before data ε̂i = Yi − ĥ (Xi) for i = 1, ..., n to estimate the density function fε.

If desired, this model can be easily compared to a semiparametric specification where

U is normal while h (X) is unknown. In this case the first step would still be to construct

an estimate ĥ (X) by a nonparametric regression of Y on X, and then Yi − h in the

likelihood function (21) would be replaced by Yi− ĥ (Xi) and the result maximized over

b0, p, and s to estimate those parameters.

8 Extension 2: Nonparametric regression with an

Unobserved Binary Regressor

This section extends previous results to a more general nonparametric regression model

of the form Y = g(X, D∗) + U . Specifically, we have the following corollary.

COROLLARY 3: Assume the joint distribution of Y, X is identified, and that g(X,D∗) =

E(Y | X, D∗) exists, where D∗ is an unobserved variable with support {0, 1}. Define

p (X) = E(1 − D∗ | X) and define U = Y − g(X, D∗). Assume E
(
Ud | X, D∗

)
=

E
(
Ud | X

)
exists for all integers d ≤ 9 and E

(
U2d−1 | X

)
= 0 for all positive integers

d ≤ 5. Then the functions g(X, D∗), p (X), and the distribution of U are identified.

Corollary 3 permits all of the parameters of the model to vary nonparametrically with

X. It provides identification of the regression model Y = g(X, D∗) + U , allowing the

unobserved model error U to be heteroskedastic (and have nonconstant higher moments

as well), though the variance and other low order even moments of U can only depend

on X and not on the unobserved regressor D∗. As noted in the introduction and in the

proof of this Corollary, Y = g(X, D∗)+U is equivalent to Y = h (X)+V +U but, unlike
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Corollary 2, now V and U have distributions that can depend on X. As with Theorem

1, symmetry of U (now conditional on X) suffices to make the required low order odd

moments of U be zero.

Given the assumptions of Corollary 3, equations (3) to (10), and given symmetry of

U , equation (11), will all hold after replacing the parameters h, b0, b1, p, u2, u4, and

u6 with functions h (X), b0 (X), b1 (X), p (X), u2 (X), u4 (X), and u6 (X) and replacing

the unconditional expectations in these equations with conditional expectations, condi-

tioning on X = x. We can further replace b0 (X) and b1 (X) with g(x, 0) − h (x) and

g(x, 1)−h (x), respectively, to directly obtain estimates of the function g (X,D∗) instead

of b0 (X) and b1 (X).

Let q (x) be the vector of all of the above listed unknown functions. Then these

conditional expectations can be written as

E[G (q(x), Y ) | X = x)] = 0 (22)

for a vector of known functions G. Equation (22) is again in the form of conditional

GMM which could be estimated using Ai and Chen (2003), replacing all of the unknown

functions q(x) with sieves (related estimators are Carrasco and Florens, 2000 and Newey

and Powell, 2003). However, given independent, identically distributed draws of X, Y ,

the local GMM estimator of Lewbel (2008) may be easier to use because it exploits the

special structure we have here where all the functions q(x) to be estimated depend on

the same variables that the moments are conditioning on, X = x.

We summerize here how this estimator could be implemented, while Appendix B

provides details regarding the associated limiting distribution theory. Note that this

estimator can be used when X contains both continuous and discretely distributed ele-

ments. If all elements of X are discrete, then the estimator can again be simplified to
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Hansen’s (1982) original GMM, as described in Appendix B.

1. For any value of x, construct data Zi = K (x−Xi) /b for i = 1, ..., n, where K

is an ordinary kernel function (e.g., the standard normal density function) and b is a

bandwidth parameter.4

2. Obtain θ̂ by applying standard two step GMM based on the moment conditions

E (G (θ, Y ) Z) = 0 for G from equation (22).

3. For the given value of x, let q̂(x) = θ̂.

4. Repeat these steps for every value of x for which one wishes to estimate the vector

of functions q(x). For example, one may repeat these steps for a fine grid of x points

on the support of X, or repeat these steps for x equal to each data point Xi to just

estimate the functions q(x) at the observed data points.

For comparison, one could also estimate a semiparametric specification where U

is normal but all parameters of the model still vary with x. Analogous to the local

GMM estimator, this comparison model could be estimated by applying the local GMM

estimator described in Appendix B to moment conditions defined as the derivatives of

the expected value of log likelihood function (21) with respect to the parameters, that

is, using the likelihood score functions as moments.

9 Discrete V With More Than Two Support Points

A simple counting argument suggests that it may be possible to extend this paper’s

identification and associated estimators to applications where V is discrete with more

than two points of support, as follows. Suppose V takes on the values b0, b1, ..., bK

with probabilities p0, p1,..., pK . Let uj = E (U j) for integers j as before. Then for any

positive odd integer S, the moments E (Y s) for s = 1, ..., S equal known functions of the

4As is common practice when using kernel functions, it is a good idea to first standardize the data
by scaling each continuous element of X by its sample standard deviation.
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2K + (S + 1) /2 parameters b1, b2,..., bK , p1, p2, ...,pK , u2, u4, ..., uS−1, h.5 Therefore,

with any odd S ≥ 4K + 1, E (Y s) for s = 1, ..., S provides at least as many moment

equations as unknowns, which could be used to estimate these parameters by GMM.

These moments include polynomials with up to S − 1 roots, so having S much larger

than 4K +1 may be necessary for identification, just as the proof of Theorem 1 requires

S = 9 even though in that theorem K = 1. Still, as long as U has sufficiently thin tails,

E (Y s) can exist for arbitrarily high integers s, thereby providing far more identifying

equations than unknowns.

The above analysis is only suggestive. Given how long the proof is for our model

where V takes on only two values, we do not provide a proof of identification with more

than two points of support. However, assuming a model where V takes on more than

two values is identified, the moment conditions for estimation analogous to those we

provided earlier are readily available. For example, as in the proof of Corollary 1 it

follows from symmetry of U that

E

(
exp (τ (Y − h))

exp (τV )
− exp (−τ (Y − h))

exp (−τV )

)
= 0

for any τ for which these expectations exist, and therefore GMM estimation could be

based on the moments

E

[
K∑

k=0

(
exp (τ (Y − h))

exp (τbk)
− exp (−τ (Y − h))

exp (−τbk)

)
pk

]
= 0

for a large number of different values of τ .

5Here p0 and b0 can be expressed as functions of the other parameters by probabilities summing to
one and V having mean zero. Also us for odd values of s are zero by symmetry of U .
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10 Conclusions

We have provided identification and estimators for Y = h + V + U , Y = h(X) + V + U ,

and more generally for Y = g(X,D∗) + U . In these models, D∗ or V are unobserved

regressors with two points of support, and the unobserved U is drawn from an unknown

symmetric distribution. No instruments, measures, or proxies for D∗ or V are observed.

To illustrate the results, we apply our basic model to the distribution of income across

countries, where the two values V can take on correspond to country types such as more

developed versus less developed countries. The estimates from this model provide some

summary measures for assessing whether income convergence has taken place over time.

Interesting work for the future could include derivation of semiparametric efficiency

bounds for the model, and conditions for identification when V can take on more than

two values.
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11 Appendix A: Proofs

PROOF of Theorem 1: First identify h by h = E (Y ), since V and U are mean zero.

Then the distribution of ε defined by ε = Y − h is identified, and ε = U + V . Define

ed = E
(
εd

)
and vd = E

(
V d

)
.

Now evaluate ed for integers d ≤ 9. These ed exist by assumption, and are identified

because the distribution of ε is identified. The first goal will be to obtain expressions

for vd in terms of ed for various values of d. Using independence of V and U , the fact

that both are mean zero, and U being symmetric we have

E
(
ε2

)
= E

(
V 2 + 2V U + U2

)

e2 = v2 + E
(
U2

)

E
(
U2

)
= e2 − v2

E
(
ε3

)
= E

(
V 3 + 3V 2U + 3V U2 + U3

)

e3 = v3

E
(
ε4

)
= E

(
V 4 + 4V 3U + 6V 2U2 + 4V U3 + U4

)

e4 = v4 + 6v2E
(
U2

)
+ E

(
U4

)

E
(
U4

)
= e4 − v4 − 6v2E

(
U2

)

= e4 − v4 − 6v2 (e2 − v2)

E
(
U4

)
= e4 − v4 − 6v2e2 + 6v2

2

E
(
ε5

)
= E

(
V 5 + 5V 4U + 10V 3U2 + 10V 2U3 + 5V U4 + U5

)
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e5 = v5 + 10v3E
(
U2

)
= v5 + 10v3 (e2 − v2)

e5 = v5 + 10e3e2 − 10e3v2

e5 − 10e3e2 = v5 − 10e3v2

Define s = e5 − 10e3e2, and note that s depends only on identified objects and so is

identified. Then s = v5 − 10e3v2,

E
(
ε6

)
= E

(
V 6 + 6V 5U + 15V 4U2 + 20V 3U3 + 15V 2U4 + 6V U5 + U6

)

e6 = v6 + 15v4E
(
U2

)
+ 15v2E

(
U4

)
+ E

(
U6

)

E
(
U6

)
= e6 − v6 − 15v4E

(
U2

)
− 15v2E

(
U4

)

= e6 − v6 − 15v4 (e2 − v2)− 15v2

(
e4 − v4 − 6v2e2 + 6v2

2

)

= e6 − v6 − 15e2v4 − 15e4v2 + 30v2v4 − 90v3
2 + 90e2v

2
2

E
(
ε7

)
= E

(
V 7 + 7V 6U + 21V 5U2 + 35V 4U3 + 35V 3U4 + 21V 2U5 + 7V U6 + U7

)

e7 = v7 + 21v5E
(
U2

)
+ 35v3E

(
U4

)

e7 = v7 + 21v5 (e2 − v2) + 35v3

(
e4 − v4 − 6v2e2 + 6v2

2

)

plug in v5 = s + 10e3v2 and v3 = e3 and expand:

e7 = v7 + 21 (s + 10e3v2) (e2 − v2) + 35e3

(
e4 − v4 − 6v2e2 + 6v2

2

)

= v7 + 21se2 − 21sv2 + 35e3e4 − 35e3v4

Bring terms involving identified objects ed and s left:

e7 − 21se2 − 35e3e4 = v7 − 35e3v4 − 21sv2.

Define q = e7 − 21se2 − 35e3e4 and note that q depends only on identified objects and

so is identified. Then

q = v7 − 35e3v4 − 21sv2.

Next consider e9.

E
(
ε9

)
= E


 V 9 + 9V 8U + 36V 7U2 + 84V 6U3 + 126V 5U4+

126V 4U5 + 84V 3U6 + 36V 2U7 + 9V U8 + U9
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e9 = v9 + 36v7E
(
U2

)
+ 126v5E

(
U4

)
+ 84v3E

(
U6

)

e9 = v9 + 36v7 (e2 − v2) + 126v5

(
e4 − v4 − 6v2e2 + 6v2

2

)

+84v3

(
e6 − v6 − 15e2v4 − 15e4v2 + 30v2v4 − 90v3

2 + 90e2v
2
2

)

Use q and s to substitute out v7 = q + 35e3v4 + 21sv2 and v5 = s + 10e3v2, and use

v3 = e3 to get

e9 = v9 + 36 (q + 35e3v4 + 21sv2) (e2 − v2) + 126 (s + 10e3v2)
(
e4 − v4 − 6v2e2 + 6v2

2

)

+84e3

(
e6 − v6 − 15e2v4 − 15e4v2 + 30v2v4 − 90v3

2 + 90e2v
2
2

)

Expand and bring terms involving identified objects ed, s, and q to the left:

e9 − 36qe2 − 126se4 − 84e3e6 = v9 − 36qv2 − 126sv4 − 84e3v6

Define w = e9 − 36qe2 − 126se4 − 84e3e6 and note that w depends only on identified

objects and so is identified. Then

w = v9 − 36qv2 − 126sv4 − 84e3v6

Summarizing, we have w, s, q, e3 are all identified and

e3 = v3

s = v5 − 10e3v2

q = v7 − 35e3v4 − 21sv2

w = v9 − 84e3v6 − 126sv4 − 36qv2.

Now V only takes on two values, so let V equal b0 with probability p0 and b1 with

probability p1. Probabilities sum to one, so p1 = 1− p0. Also, E (V ) = b0p0 + b1p1 = 0

because ε = V + U and both ε and U have mean zero, so b1 = −b0p0/ (1− p0). Let

r = p0/p1 = p0/ (1− p0), so

p0 = r/ (1 + r) , p1 = 1/ (1 + r) , b1 = −b0r,
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and for any integer d

vd = bd
0p0 + bd

1p1 = bd
0

(
p0 + (−r)d p1

)
= bd

0

r + (−r)d

1 + r

so in particular

v2 = b2
0r

v3 = b3
0r (1− r)

v4 = b4
0r

(
r2 − r + 1

)

v5 = b5
0r (1− r)

(
r2 + 1

)

v6 = b6
0

r + (−r)6

1 + r
= b6

0r
(
r4 − r3 + r2 − r + 1

)

v7 = b7
0r (1− r)

(
r4 + r2 + 1

)

v9 = b9
0

r + (−r)9

1 + r
= b9

0r (1− r)
(
r2 + 1

) (
r4 + 1

)

Substituting these vd expressions into the expression for e3, s, q, and w gives e3 =

b3
0r (1− r),

s = b5
0r (1− r)

(
r2 + 1

)
− 10b3

0r (1− r) b2
0r

= b5
0

(
r (1− r)

(
r2 + 1

)
− 10r (1− r) r

)

s = b5
0r (1− r)

(
r2 − 10r + 1

)

q = v7 − 35e3v4 − 21sv2

= b7
0r (1− r)

(
r4 + r2 + 1

)
− 35b3

0r (1− r) b4
0r

(
r2 − r + 1

)
− 21b5

0r (1− r)
(
r2 − 10r + 1

)
b2
0r

= b7
0

(
r (1− r)

(
r4 + r2 + 1

)
− 35r (1− r) r

(
r2 − r + 1

)
− 21r (1− r)

(
r2 − 10r + 1

)
r
)

q = b7
0r (1− r)

(
r4 − 56r3 + 246r2 − 56r + 1

)

w = v9 − 84e3v6 − 126sv4 − 36qv2

=




b9
0r (1− r) (r2 + 1) (r4 + 1)− 84 (b3

0r (1− r)) (b6
0r (r4 − r3 + r2 − r + 1))

−126 (b5
0r (1− r) (r2 − 10r + 1)) (b4

0r (r2 − r + 1))

−36 (b7
0r (1− r) (r4 − 56r3 + 246r2 − 56r + 1)) b2

0r
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= b9
0r (1− r)


 (r2 + 1) (r4 + 1)− 84 (r (r4 − r3 + r2 − r + 1))

−126 ((r2 − 10r + 1)) (r (r2 − r + 1))− 36 ((r4 − 56r3 + 246r2 − 56r + 1)) r




w = b9
0r (1− r)

(
r6 − 246r5 + 3487r4 − 10452r3 + 3487r2 − 246r + 1

)

Summarizing the results so far we have

e3 = b3
0r (1− r)

s = b5
0r (1− r)

(
r2 − 10r + 1

)

q = b7
0r (1− r)

(
r4 − 56r3 + 246r2 − 56r + 1

)

w = b9
0r (1− r)

(
r6 − 246r5 + 3487r4 − 10452r3 + 3487r2 − 246r + 1

)

These are four equations in the two unknowns b0 and r. We require all four equations

for identification, and not just two or three of them, because these are polynomials in

r and so have multiple roots. We will now show that these four equations imply that

r2 − γ + 1 = 0, where γ is finite and identified.

First we have e3 = v3 6= 0 and r 6= 1 by asymmetry of V . Also r 6= 0 because then

V would only have one point of support instead of two, and these together imply by

e3 = b3
0r (1− r) that b0 6= 0. Applying these results to the s equation shows that if s

(which is identified) is zero then r2− 10r + 1 = 0, and so in that case γ is identified. So

now consider the case where s 6= 0.

Define R = qe3/s
2, which is identified because its components are identified. Then

R =
b7
0r (1− r) (r4 − 56r3 + 246r2 − 56r + 1) b3

0r (1− r)

b5
0r (1− r) (r2 − 10r + 1) b5

0r (1− r) (r2 − 10r + 1)

=
r4 − 56r3 + 246r2 − 56r + 1

(r2 − 10r + 1)2

So

0 =
(
r4 − 56r3 + 246r2 − 56r + 1

)
−

(
r2 − 10r + 1

)2
R

0 = (1−R) r4 + (−56 + 20R) r3 + (246− 102R) r2 + (−56 + 20R) r + (1−R)

Which yields a fourth degree polynomial in r. If R = 1, then (using r 6= 0) this

polynomial reduces to the quadratic 0 = r2− 4r +1, so in this case γ = −4 is identified.

Now consider the case where R 6= 1.

32



Define Q = s3/e5
3 which is identified because its components are identified. Then

Q =
(b5

0r (1− r) (r2 − 10r + 1))
3

(b3
0r (1− r))

5 =
(r2 − 10r + 1)

3

(r (1− r))2

0 =
(
r2 − 10r + 1

)3 − (r (1− r))2 Q

0 = r6 − 30r5 + (303−Q) r4 + (2Q− 1060) r3 + (303−Q) r2 − 30r + 1

which is a sixth degree polynomial in r. Also define S = w/e2
3 which is identified because

its components are identified. Then

w

e3
3

= S =
b9
0r (1− r) (r6 − 246r5 + 3487r4 − 10452r3 + 3487r2 − 246r + 1)

(b3
0r (1− r))

3

S =
(r6 − 246r5 + 3487r4 − 10452r3 + 3487r2 − 246r + 1)

(r (1− r))2

0 =
(
r6 − 246r5 + 3487r4 − 10452r3 + 3487r2 − 246r + 1

)
− (r (1− r))2 S

0 = r6 − 246r5 + (3487− S) r4 + (2S − 10452) r3 + (3487− S) r2 − 246r + 1

which is another sixth degree polynomial in r. Subtracting the second of these sixth

degree polynomials from the other and dividing the result by r gives the fourth order

polynomial:

0 = 216r4 + (S −Q− 3184) r3 + (9392 + 2Q− 2S) r2 + (S −Q− 3184) r + 216.

Multiply this fourth order polynomial by (1−R), multiply the previous fourth order

polynomial by 216, subtract one from the other. and divide by r to obtain a quadratic

in r:

0 = 216 (1−R) r4 + (1−R) (S −Q− 3184) r3 + (1−R) (9392 + 2Q− 2S) r2

+ (1−R) (S −Q− 3184) r + 216 (1−R)− 216 (1−R) r4 − 216 (−56 + 20R) r3

−216 (246− 102R) r2 − 216 (−56 + 20R) r − 216 (1−R)

0 = ((1−R) (S −Q− 3184)− 216 (−56 + 20R)) r3

+ ((1−R) (9392 + 2Q− 2S)− 216 (246− 102R)) r2

+ ((1−R) (S −Q− 3184)− 216 (−56 + 20R)) r

0 = ((1−R) (S −Q− 3184) + 12096− 4320R) r2
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+ ((1−R) (9392 + 2Q− 2S) + 22032R− 53136) r

+ ((1−R) (S −Q− 3184) + 12096− 4320R) .

which simplifies to

0 = Nr2 − (2 (1−R) (6320 + S −Q) + 31104) r + N

where N = (1−R) (1136 + S −Q) + 7776. The components of N can be written as

1−R = 1− r4 − 56r3 + 246r2 − 56r + 1

(r2 − 10r + 1)2 =
(r2 − 10r + 1)

2 − (r4 − 56r3 + 246r2 − 56r + 1)

(r2 − 10r + 1)2

=
36r3 − 144r2 + 36r

(r2 − 10r + 1)2

1136 + S −Q

=

(
1136 +

(
(r6 − 246r5 + 3487r4 − 10452r3 + 3487r2 − 246r + 1)

(r (1− r))2

)
− (r2 − 10r + 1)

3

(r (1− r))2

)

=
1136 (r (1− r))2 + (r6 − 246r5 + 3487r4 − 10452r3 + 3487r2 − 246r + 1)− (r2 − 10r + 1)

3

(r (1− r))2

=
−216r5 + 4320r4 − 11664r3 + 4320r2 − 216r

(r (1− r))2

so

N =

((
36r3 − 144r2 + 36r

(r2 − 10r + 1)2

) (−216r5 + 4320r4 − 11664r3 + 4320r2 − 216r

(r (1− r))2

)
+ 7776

)

=
(36r3 − 144r2 + 36r) (−216r5 + 4320r4 − 11664r3 + 4320r2 − 216r)

(r2 − 10r + 1)2 (r (1− r))2

+
7776 (r2 − 10r + 1)

2
(r (1− r))2

(r2 − 10r + 1)2 (r (1− r))2

=
15552r3 + 62208r4 + 93312r5 + 62208r6 + 15552r7

(r2 − 10r + 1)2 (r (1− r))2 =
15552r3 (r + 1)4

(r2 − 10r + 1)2 (r (1− r))2

N =
15552r (r + 1)4

(r2 − 10r + 1)2 (1− r)2

The denominator of this expression for N is not equal to zero, because that would imply
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s = 0, and we have already considered that case, and ruled it out in the derivation of

the quadratic involving N . Now N could only be zero if 15552r (r + 1)4 = 0, and this

cannot hold because r 6= 0, and r > 0 (being a ratio of probabilities) so r 6= −1 is

ruled out. We therefore have N 6= 0, so the quadratic involving N can be written as

0 = r2 − γr + 1 where γ = (2 (1−R) (6320 + S −Q) + 31104) /N , which is identified

because all of its components are identified.

We have now shown that 0 = r2 − γr + 1 where γ is identified. This quadratic has

solutions

r =
1

2
γ +

1

2

√
γ2 − 4 and r =

1
1
2
γ + 1

2

√
γ2 − 4

so one of these must be the true value of r. Given r, we can then solve for b0 by

b0 = e
1/3
3 (r (1− r))1/3. Recall that r = p0/p1. By symmetry of the set up of the

problem, if we exchanged b0 with b1 and exchanged p0 with p1 everywhere, all of the

above equations would still hold. It follows that one of the above two values of r must

equal p0/p1, and the other equals p1/p0. The former when substituted into e3 (r (1− r))

will yield b3
0 and the latter must by symmetry yield b3

1. Without loss of generality

imposing the constraint that b0 < 0 < b1, shows that the correct solution for r will be

the one that satisfies e3 (r (1− r)) < 0, and so r and b0 is identified. The remainder of

the distribution of V is then given by p0 = r/ (1 + r), p1 = 1/ (1 + r), and b1 = −b0r.

Finally, given that the distributions of ε and of V are identified, the distribution of U

is identified by a deconvolution, in particular we have that the characteristic function of

U is identified by E
(
eiτU

)
= E (eiτε) /E

(
eiτV

)
.

PROOF of Corollary 1: By ε = Y − h = V + U and by symmetry of U , equation

(11) equals

E

(
exp (τε)

exp (τV )
− exp (−τε)

exp (−τV )

)
= E (exp (τU)− exp (−τU)) = 0

and τ ≤ T ensures that these expectations exist.

PROOF of Theorem 2: By the probability mass function of the V distribution,

Fε (ε) = (1− p) FU (ε− b1)+pFU (ε− b0). Evaluating this expression at ε = u+b1 gives

Fε (u + b1) = (1− p) FU (u) + pFU (u + b1 − b0) (23)

and evaluating at ε = −u+b0 gives Fε (−u + b0) = (1− p) FU (−u− b1 + b0)+pFU (−u).
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Apply symmetry of U which implies FU (u) = 1−FU (−u) to this last equation to obtain

Fε (−u + b0) = (1− p) [1− FU (U + b1 − b0)] + p [1− FU (u)] (24)

Equations (23) and (24) are two equations in the two unknowns FU (U + b1 − b0) and

FU (U). Solving for FU (U) gives equation (13).

PROOF of Corollary 2: First identify h (x) by h (x) = E (Y | X = x), since E (Y − h (X) | X = x) =

E (V + U | X = x) = E (V + U) = 0. Next define ε = Y − h (X) and then the rest of

the proof is identical to the proof of Theorem 1.

PROOF of Corollary 3: Define h (x) = E (Y | X) and ε = Y − h(X). Then h (x)

and the distribution of ε conditional upon X is identified and E (ε | X) = 0. Define

V = g(X,D∗) − h(X) and let bd(X) = g(X, d) − h (X) for d = 0, 1. Then ε = V + U ,

where V (given X) has the distribution with support equal to the two values b0(X) and

b1(X) with probabilities p(X) and 1− p(X), respectively. Also U and ε have mean zero

given X so E (V | X) = 0. Applying Theorem 1 separately for each value x that X can

take on shows that b0(x), b1(x) and p (x) are identified for each x in the support of X,

and it follows that the function g(x, d) is identified by g(x, d) = bd(x) + h (x). Applying

Theorem 1 separately for each value X can take on also directly provides identification

of p (X) and the conditional distribution of U given X.

12 Appendix B: Asymptotic Theory

Most of the estimators in the paper are either standard GMM or well known variants of

GMM. However, we here briefly summarize the application of the local GMM estimator

of Lewbel (2008) to estimation based on Corollary 3, which as described in the text

reduces to estimation based on equation (22). To motivate this estimator, which is closely

related to Gonzalo and Linton (2000), first consider the case where all the elements of

X are discrete, or more specifically, the case where X has one or more mass points and

we only wish to estimate q(x) at those points. Let q0(x) denote the true value of q(x),

and let θx0 = q0(x). If the distribution of X has a mass point with positive probability

at x, then

E[G(θx, Y ) | X = x] =
E[G(θx, Y )I(X = x)]

E[I(X = x)]
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so equation (22) holds if and only if E[G(θx0, Y )I(X = x)] = 0. It therefore follows that

under standard regularity conditions we may estimate θx0 = q0(x) using the ordinary

GMM estimator

θ̂x = arg min
θx

n∑

i=1

G(θx, Yi)
′I(Xi = x)Ωn

n∑

i=1

G(θx, Yi)
′I(Xi = x) (25)

for some sequence of positive definite Ωn. If Ωn is a consistent estimator of Ωx0 =

E[G(θx0, Y )G(θx0, Y )′I(X = x)]−1, then standard efficient GMM gives

√
n(θ̂x − θx0) →d N


0,

[
E

(
∂G(θx0, Y )I(X = x)

∂θx
′

)
Ωx0E

(
∂G(θx0, Y )I(X = x)

∂θx
′

)′]−1



Now assume that X is continuously distributed. Then the local GMM estimator

consists of applying equation (25) by replacing the average over just observations Xi = x

with local averaging over observations Xi in the neighborhood of x.

Assumption B1. Let Xi, Yi, i = 1, ..., n, be an independently, identically distributed

random sample of observations of the random vectors X, Y . The d vector X is con-

tinuously distributed with density function f(X). For given point x in the interior of

supp(X) having f(x) > 0 and a given vector valued function G(q, y) where G(q(x), y) is

twice differentiable in the vector q(x) for all q(x) in some compact set Θ(x), there exists

a unique q0(x) ∈ Θ(x) such that E[G(q0(x), Y ) | X = x] = 0. Let Ωn be a finite positive

definite matrix for all n, as is Ω = plimn→∞Ωn.

Assumption B1 lists the required moment condition structure and identification for

the estimator. Corollary 1 in the paper provides the conditions required for Assumption

B1, in particular uniqueness of q0(x). Assumption B2 below provides conditions required

for local averaging. Define e[q(x), Y ], Σ(x), and Ψ(x) by

e[q(x), Y ] = G(q(x), Y )f(x)− E[G(q(x), Y )f(X) | X = x]

Σ(x) = E
[
e(q0(x), Y )e(q0(x), Y )T | X = x

]

Ψ(x) = E

(
∂G[q0(x), Y ]

∂q0(x)T
f(X) | X = x

)

Assumption B2. Let η be some constant greater than 2. Let K be a nonnegative sym-

metric kernel function satisfying
∫

K(u)du = 1 and
∫ ||K(u)||ηdu is finite. For all q(x) ∈
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Θ(x), E[||G(q(x), Y )f(X)||η | X = x], Σ(x), Ψ(x), and V ar[[∂G(q(x), Y )/∂q(x)]f(X) |
X = x] are finite and continuous at x and E[G(q(x), Y )f(X) | X = x] is finite and twice

continuously differentiable at x.

Define

Sn(q(x)) =
1

nbd

n∑

i=1

G[q(x), Yi]K
(

x−Xi

b

)

where b = b(n) is a bandwidth parameter. The proposed local GMM estimator is

q̂(x) = arg inf
q(x)∈Θ(x)

Sn(q(x))T ΩnSn(q(x)) (26)

THEOREM 3 (Lewbel 2008): Given Assumptions B1 and B2, if the bandwidth b

satisfies nbd+4 → 0 and nbd → ∞, then q̂(x) is a consistent estimator of q0(x) with

limiting distribution

(nb)1/2[q̂(x)−q0(x)] →d N
[
0, (Ψ(x)T ΩΨ(x))−1Ψ(x)T ΩΣ(x)ΩΨ(x)(Ψ(x)T ΩΨ(x))−1

∫
K(u)2du]

]

Applying the standard two step GMM procedure, we may first estimate q̃(x) =

arg infq(x)∈Θ(x) Sn(q(x))T Sn(q(x)), then let Ωn be the inverse of the sample variance of

Sn(q̃(x)) to get Ω = Σ(x)−1, making

(nb)1/2[q̂(x)− q0(x)] →d N
[
0, (Ψ(x)T ΩΨ(x))−1

∫
K(u)2du]

]

where Ψ(x) can be estimated using

Ψn(x) =
1

nbd

n∑

i=1

∂G[q̂(x), Yi]

∂q̂(x)T
K

(
x−Xi

b

)

At the expense of some additional notation, the two estimators (25) and (26) can be

combined to handle X containing both discrete and continuous elements, by replacing

the kernel function in Sn with the product of a kernel over the continuous elements and

an indicator function for the discrete elements, as in Li and Racine (2003).
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