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Abstract

Quantile regression has important applications in risk management, portfolio
optimization, and asset pricing. The current paper studies estimation, inference
and �nancial applications of quantile regression with cointegrated time series.
In addition, a new cointegration model with varying coe¢ cients is proposed.
In the proposed model, the value of cointegrating coe¢ cients may be a¤ected
by the shocks and thus may vary over the innovation quantile. The proposed
model may be viewed as a stochastic cointegration model which includes the
conventional cointegration model as a special case. It also provides a useful com-
plement to cointegration models with (G)ARCH e¤ects. Asymptotic properties
of the proposed model and limiting distribution of the cointegrating regression
quantiles are derived. In the presence of endogenous regressors, fully-modi�ed
quantile regression estimators and augmented quantile cointegrating regression
are proposed to remove the second order bias and nuisance parameters. Regres-
sion Wald test are constructed based on the fully modi�ed quantile regression
estimators. An empirical application to stock index data highlights the potential
of the proposed method.

JEL: C22, G1.
KeyWords: ARCH/GARCH, Cointegration, Portfolio Optimization, Quan-

tile Regression, Time Varying.

1 Introduction

Since Granger (1981) and Engle and Granger (1987), cointegration has become a

common econometric tool for empirical analysis in numerous areas (see, inter alia,

Phillips and Ouliaris 1988; Johansen 1995; and Hsiao 1997, among others), especially

in macroeconomic and �nancial applications. Well-known �nancial applications of
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cointegration include Campbell and Shiller (1987) in the study of bubbles in asset

prices, Cochrane (1994) and Lettau and Ludvigson (2001) on the predictability of

stock prices, Hall, Anderson and Granger (1992) on term structure of interest rates,

Pindyck and Rothemberg (1992), Lucas (1997) and Alexander (1999) on portfolio

allocation. Also see, inter alia, Evans (1991), Campbell, Lo, and MacKinley (1997),

Cerchi and Havenner (1988), Chowdhury (1991), Hendry (1996), on other applications

in �nance.

In applications of portfolio management, cointegration measures long run co-

movements in prices, leading to hedging methodologies that may be more e¤ective

than traditional correlation analysis-based approach in the long term. Recent re-

search (e.g. Alexander (1999)) indicate that mis-pricing and over-hedging can occur

if cointegration is ignored. When portfolios are allocated using risk criteria such as

the conditional value at risk (CVaR), the optimization problem leads to a quantile

regression.

Quantile regression method has recently attracted an increasing amount of re-

search attention in �nance. Taylor (1999) applies quantile regression approach to

estimating the distribution of multiperiod returns. Engle and Manganelli (2004) pro-

poses estimating value at risk (VaR) using quantile regression. Quantile regression

is now an important tool in modern risk management operations. For example, the

popular risk measure, value at risk (VaR), is simply a concept of quantile and can be

naturally estimated using quantile regression method. In recent years, motivated by

regulatory reasons in the �nancial sector, an in�uential axiomatic foundation raised

by Artzner, Delbaen, Eber, and Heath (1999) is the concept of �coherence". A widely

used coherent risk measure is the conditional value at risk1 (CVaR) (Rockafellar and

Uryasev (2000)) (or, in di¤erent names, Expected Shortfall, Acerbi and Tasche (2002);

tail conditional expectation, Artzner, Delbaen, Eber, and Heath (1999)). Bassett,

Koenker and Kordas (2004) recently show that, when the portfolio risk is measured

by CVaR, the managers operation can be formulated as a quantile regression of coin-

tegrated time series. Quantile cointegrating regression also provide a robust method

of index tracking in portfolio management. See, Koenker and Zhao (1996), Cher-

nozhukov and Umanstev (2001), Christo¤ersen, Hahn and Inoue (2001), Giacomini

and Komunjer (2005), for more studies on �nancial applications of quantile regression.

Although there has been a large amount of recent attempts in applying quantile

regression to �nancial time series models, there is little investigation on the statistical

validity and properties of these methods and models. The �rst contribution of this

paper is to study the statistical properties of quantile regression estimation and infer-

ence of cointegrated time series. Limiting distribution of the regression quantiles is

derived. In the presence of endogenous regressors, a fully-modi�ed quantile regression

1VaR is not a coherent risk measure.
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estimator is proposed to remove the second order bias and nuisance parameters. We

develop statistical inference based on the quantile regression estimators. Asymptotic

properties of the proposed fully-modi�ed quantile regression estimator and testing

procedure based on this estimator are studied.

Although cointegration has gained great popularity in the last 20 years, absence of

cointegration has been frequently discovered in applications using traditional analy-

sis on time series that are seemly cointegrated. One explanation of these empirical

�ndings is the existence of varying cointegrating coe¢ cients - the coe¢ cients that

characterizes their long-run relationship may vary over time, although these eco-

nomic variables still move together in the long run. We try to address this issue

in the current paper. The second contribution of this paper is to propose a new

model of cointegration in which the cointegrating coe¢ cients may be varying over

time. The proposed model may be viewed as a stochastic cointegration model which

includes the conventional cointegration as a special case. In particular, the value

of cointegrating coe¢ cients may be a¤ected by the shocks received in each period,

and thus may vary over the innovation quantile. For this reason, we call it quantile

cointegration. The model can capture systematic in�uences of conditioning variables

on the location, scale and shape of the conditional distribution of the response, and

therefore constitute a signi�cant extension of classical cointegration models. The

quantile cointegration model may be interpreted as a random coe¢ cient regression

model with strongly dependent coe¢ cients. The quantile cointegration model allows

for additional volatility of the dependent variables in addition to the regressors, and

provides an interesting class of cointegration model with conditional heteroskedastic-

ity. We hope that the proposed model provides a useful complement to traditional

models with (G)ARCH e¤ects. We apply the proposed quantile cointegration model

to U.S. stock index data. The empirical evidence indicates that the cointegrating co-

e¢ cients are not constant over time, and asymmetric asset pricing dynamics brings

additional volatility into prices in addition to market fundamentals.

In matters of notation, we use �)�to signify weak convergence of the associated
probability measures, [nr] to signify the integer part of nr, := to signify de�nitional

equality, and I(k) to denote integration of order k. Continuous stochastic process such

as the Brownian motion B(r) on [0; 1] are usually written simply as B and integralsR
are understood to be taken over the interval [0; 1], unless otherwise speci�ed.

2 Quantile Regression on Cointegration Model

In this section, we consider quantile regression of the following cointegration model:

yt = �+ �0xt + ut = �0zt + ut; (1)
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where xt is a k-dimensional vector of integrated regressors, zt = (1; x0t)
0, and ut is

mean zero stationary. The quantile regression estimator of the cointegrating vector

can be obtained by solving the problem

b�(�) = arg min
�2Rp

nX
t=1

�� (yt � z>t �); (2)

where �� (u) = u(� � I(u < 0)) as in Koenker and Bassett (1978). In the special case
� = 0:5, the above quantile regression delivers the least absolute deviation (LAD)

estimation of the cointegration model (1).

2.1 Limiting Distribution of the Quantile Regression Estimator

To derive the limiting distribution of the quantile regression estimator of the cointe-

grating vector we follow the approach of Knight (1991) (also see Herce (1996), Hasan

and Koenker (1997), Koenker and Xiao (2006) for related results). Let f(�) and F (�)
be the p.d.f. and c.d.f. of ut, denoting  � (u) = � � I(u < 0); �(�) = � + F�1(�),

�(�) = (�(�); �0)0, and

ut� = yt � �(�)0zt = ut � F�1(�);

we have Qut� (�) = 0, where Qut� (�) is the � -th quantile of ut� , and

E � (ut� ) = 0:

To facilitate the asymptotic analysis, we make the following assumptions.

Assumption A: Let vt = �xt, fut; vtg is a zero-mean, stationary sequence of (k+1)-
dimensional random vectors. The partial sums of the vector process ( � (ut� ); vt)

follow a multivariate invariance principle

n�1=2
[nr]X
t=1

�
 � (ut� )
vt

�
)
�
B (r)
Bv(r)

�
= BM(0;
)

where 
 is the covariance matrix of the Brownian motion (B (r); Bv(r)0)0.

Assumption B: The distribution function of ut, F (u), has a continuous density f(u)
with f(u) > 0 on fu : 0 < F (u) < 1g:
Assumption C: The conditional distribution function Ft�1(u) = Pr[ut < ujut�j ; j �
1; vt�k; k � 0] has derivative ft�1(�); a:s:, and ft�1(sn) is uniformly integrable for
any sequence sn ! F�1(�), and E[f �t�1(F

�1(�))] <1 for some � > 1:

Conformable to ( � (ut� ); vt), we partition 
 into


 =

�
!2 
 v

v 
vv

�
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The asymptotic distribution of the quantile regression estimator is closely related to

the asymptotic behavior of n�1
Pn

t=1 xt � (ut� ). Under Assumption A, it is easy to

verify that

n�1
nX
t=1

xt � (ut� ))
Z 1

0
BvdB + �v ;

where �v is the one-sided long-run covariance between vt and  � (ut� ).

Due to the nonstationarity of xt; the two components in b�(�) = (b�(�); b�(�)0)0
have di¤erent rates of convergence. In particular, the estimate of cointegrating vec-

tor b�(�) converges at rate n, while the intercept b�(�) converges at rate pn. Thus,
we introduce the standardization matrix Dn = diag(

p
n; nIk), where Ik is a k � k

identity matrix. The limiting distribution of the quantile regression estimator for the

cointegration model is summarized in the following Theorem:

Theorem 1. Under Assumptions A, B, and C,

Dn(b�(�)� �(�))) 1

f(F�1(�))

�Z 1

0
BvB

>
v

��1 �Z 1

0
BvdB +�v 

�
;

where Bv(r) = (1; Bv(r)
0)0, and �v = (0; �

0
v )

0. In particular,

n(b�(�)� �)) 1

f(F�1(�))

�Z 1

0
BvB

>
v

��1 �Z 1

0
BvdB + �v 

�
(3)

where Bv(r) = Bv(r)� rBv(1) is a k-dimensional demeaned Brownian motion.

The above limiting result is very similar to that of the conventional cointegrating

regression estimators: (i) The quantile regression estimator of the cointegrating vector

is consistent at the usual O(n) rate. (ii) Like OLS, the quantile regression estimator

su¤ers from second order bias (�v ) coming from the correlation between the regressor

x and the residual u. (iii) In addition, the Brownian motions Bv(r) and B (r) are in

general correlated (as long as 
 v 6= 0 in 
). (iv) Similar to the usual limit theory
for the LAD estimator in both stationary and nonstationary time series regression,

the limiting distribution (3) depends on the sparsity function 1=f(F�1(�)). In the

special case when �v = 0 and 
 v = 0 (xt and us are independent), the limiting

distribution (3) is a mixed normal.

2.2 A Fully-Modi�ed Quantile Regression Estimator

We are interested in developing estimation and inference procedures based on the

quantile regression in cointegration models. As will become clear in later analysis,

the asymptotic behavior of quantile regression-based inference procedures depends

on the limiting distribution of b�(�). However, as shown by Theorem 1, the limiting
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processes Bv(r) and B (r) are correlated Brownian motions whenever contempora-

neous correlation between vt and  � (ut� ) exists. Despite super-consistency, b�(�) is
second-order biased and the miscentering e¤ect in the limit distribution is re�ected

in �v . Consequently, the distribution of the test based on the quantile regression

residual will be dependent on nuisance parameters.

To restore the asymptotic nuisance parameter free property of inference proce-

dure, we need to modify the original quantile regression estimator so that we obtain

a mixed normal limiting distribution. In this paper, we consider two approaches to

achieve this goal: (1) Nonparametric fully-modi�cation on the original quantile re-

gression estimator and (2) Parametrically augmented quantile regression using leads

and lags. We propose a nonparametric fully-modi�ed quantile regression estimator

to deal with the endogeneity problem in this section. In Section 3, we introduce a

parametrically augmented quantile regression using leads and lags and extend the

conventional cointegration model to the case with varying-coe¢ cients.

We develop a fully-modi�ed quantile cointegrating regression estimator in the

spirit of Phillips and Hansen (1990). We �rst decompose the limiting distribution (3)

into the following two components:

1

f(F�1(�))

�Z 1

0
BvB

>
v

��1 Z 1

0
BvdB :v, and

1

f(F�1(�))

�Z 1

0
BvB

>
v

��1 �Z 1

0
BvdB

>
v 


�1
vv 
v + �v 

�
where B :v(r) = B (r) � 
 v
�1vv Bv(r) is Brownian motion with variance !2 :v =
!2 � 
 v
�1vv 
v . Notice that B :v(r) is independent of Bv(r) and the �rst term in

the above decomposition,
hR 1
0 BvB

>
v

i�1 R 1
0 BvdB :v, is a mixed Gaussian variate.

The basic idea of fully-modi�cation on b�(�) (or b�(�)) is to construct a nonpara-
metric correction to remove the second term in the above decomposition. To facilitate

the nonparametric correction, we consider the following kernel estimates of 
vv, 
v ,

�v ; �vv:

b�v =
MX
h=0

k(
h

M
)Cv (h); b�vv = MX

h=0

k(
h

M
)Cvv(h);

b
v =

MX
h=�M

k(
h

M
)Cv (h); b
vv = MX

h=�M
k(
h

M
)Cvv(h);

where k(�) is the lag window de�ned on [�1; 1] with k(0) = 1, andM is the bandwidth

parameter satisfying the property that M !1 and M=n! 0 (say M = O(n1=3) for

many commonly used kernels, as in Andrews, 1991) as the sample size n ! 1:
The quantities Cv (h) and Cvv(h) are sample covariances de�ned by Cv (h) =
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n�1
P0 vt � (but+h;� ), Cvv(h) = n�1

P0 vtv0t+h, where
P0 signi�es summation over

1 � t; t + h � n. Candidate kernel functions can be found in standard texts (e.g.,

Hannan, 1970; Brillinger, 1980; and Priestley, 1981). Let \f(F�1(�)) be a nonpara-

metric sparsity estimator of f(F�1(�)) (see, e.g., Siddiqui (1960), Bo�nger (1975)),

we de�ne the following nonparametric fully modi�ed quantile regression estimators:

b�(�)+ = � b�(�)b�(�)+
�

where

b�(�)+ = b�(�)� 1

\f(F�1(�))

"X
t

xtx
0
t

#�1 "X
t

xtv
0
t
b
�1vv b
v + nb�+v 

#
(4)

and b�+v = b�v � b�vvb
�1vv b
v :
Like the fully modi�ed OLS estimators, the fully modi�ed quantile regression

estimator of the cointegrating vector has a mixed normal distribution in limit.

Theorem 2. Under Assumptions A, B, and C,

Dn

�b�(�)+ � �(�)� ) 1

f(F�1(�))

�Z 1

0
BvB

>
v

��1 Z 1

0
BvdB :v

� MN

 
0;

!2 :v
f(F�1(�))2

�Z 1

0
BvB

>
v

��1!
:

In particular

n(b�(�)+ � �) ) 1

f(F�1(�))

�Z 1

0
BvB

>
v

��1 Z 1

0
BvdB :v

� MN

 
0;

!2 :v
f(F�1(�))2

�Z 1

0
BvB

>
v

��1!
:

2.3 Regression Wald Test

The fully modi�ed quantile regression estimator and resulting asymptotic mixture

normal distribution facilitates statistical inference based on quantile cointegrating

regression. In this section, we consider the classical inference problem of linear re-

strictions on the cointegrating vector �:

H0 : R� = r;

where R denotes an q � k-dimensional matrix and r is an q-dimensional vector.
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Under the null hypothesis H0 : R� = r and the assumptions of our previous

theorem, we have

f(F�1(�))

! :v

"
R

�Z 1

0
BvB

>
v

��1
R>

#�1=2
n(Rb�+(�)� r)) N(0; Iq); (5)

where N(0; Iq) represents a q-dimensional standard Normal. Therefore, let

MX =

nX
t=1

(xt � x)(xt � x)0;

a regression Wald statistic can be constructed as

Wn(�) =
\f(F�1(�))b! :v (Rb�+(�)� r)> hRM�1

X R>
i�1

(Rb�+(�)� r);
where \f(F�1(�)) and b! :v are consistent estimators of f(F�1(�)) and ! :v. The

limiting distribution of the Wald statistic is summarized in the following Theorem.

Theorem 3. Under the assumptions of Theorem 2 and the linear restriction H0,

Wn(�)) �2q ;

where �2q is a centered Chi-square random variable with q-degrees of freedom.

3 Cointegration with Varying Coe¢ cients

3.1 Time-Varying Cointegration Models

Cointegration measures long run equilibrium relationship. For example, many em-

pirical studies on asset pricing consider the rational expectations model for stock

prices

Pt = (1 + 
)
�1Et(Pt+1 +Dt+1); (6)

which is a �rst-order expectational di¤erence equation, where Pt is the real stock

price at t; 
 is the real rate of return, and Dt is the dividend. In empirical analyses,

dividends is usually characterized as an integrated process (random walk) with drift.

A forward-looking solution to the above equation suggests that stock prices and mar-

ket fundamentals should be cointegrated. Based on such a cointegration relationship,

there is a large collection of empirical study on asset pricing. [See, inter alia, Camp-

bell and Shiller (1988), Diba and Grossman (1988), Evans (1991), Campbell, Lo, and

MacKinley (1997), Cerchi and Havenner (1988), Chowdhury (1991), Hendry (1996).]

In the traditional cointegration model of Engle and Granger (1987), the cointe-

grating vector � is constant. However, many �nancial and economic applications
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suggest that the cointegrating vector might be varying. Application of cointegration

in investment analysis shows that frequent rebalancing is necessary to keep the port-

folio in line with the index, indicating the value of cointegrating vector is changing

over time. Although the present value model suggests that asset prices are cointe-

grated with market fundamentals, it is also well known that stock prices are much

more volatile than market fundamentals such as dividends, a plausible source of this

additional volatility comes from varying cointegrating vector.

In this section, we attempt to extend the traditional cointegration model to a

more general class of models in which the cointegrating coe¢ cients are allowed to be

varying over time.2 In particular, we wish to consider the cointegrating regression

(1) where the value of cointegrating coe¢ cients � = (�1; � � �; �k) may be a¤ected by
the shocks. In recent years, a lot of research e¤ort has been devoted to modi�cations

of the traditional models to incorporate the e¤ect of di¤erent types of shocks into

one time series model. It is widely acknowledged that many important economic

variables may display asymmetric adjustment paths (e.g. Neftci (1984), Enders and

Granger (1998), Beaudry and Koop (1993)). In this paper, we introduce the e¤ect of

shocks into cointegration models. However, subtle issues arise due to endogeneity of

the cointegration model. If we simply consider � = �t as functions of ut, it is di¢ cult

to identify �t from �0txt because of correlation between ut and �xt. For this reason,

we decompose the residual term ut into a pure innovation component (denoted as

"t) and a component related to (and thus can be represented as leads and lags of)

�xt, and model the varying cointegrating coe¢ cients �t as a function of the pure

innovation component. In particular, we consider the following model which is an

extension of (1),

yt = �+ �0txt + ut; (7)

and make the following assumptions:

Assumption A0: Let vt = �xt, fut; vtg is a zero-mean, stationary sequence of (k+
1)-dimensional random vectors and for some K; ut has the following representation

ut =
KX

j=�K
v0t�j�j + "t; (8)

where "t is a stationary process such that

E(vt�j"t) = 0, for any j:

The partial sums of the vector process ( � ("t� ); vt) follow a multivariate invariance

2Park and Hahn (1999) studied another type of cointegration model with time-varying coe¢ cients
where the coe¢ cients is a function of deterministic time trend t: �t = �(t=T ).

9



principle

n�1=2
[nr]X
t=1

�
 � ("t� )
vt

�
) B(r) =

�
B� (r)

Bv(r)

�
= BM(0;
�)

Assumption B0: The distribution function of "t, F"("), has a continuous density
f"(") with f"(") > 0 on f" : 0 < F"(") < 1g:
Assumption C0: The conditional distribution function Ft�1(u) = Pr[ut < ujut�j ; j �
1; vt�k; k � 0] has derivative ft�1(�); a:s:, and ft�1(sn) is uniformly integrable for
any sequence sn ! F�1(�), and E[f �t�1(F

�1(�))] <1 for some � > 1:

Assumption D: Let �t = (�1t; ���; �kt), the cointegrating coe¢ cients �it are monotone
functions of the innovation process "t.

The idea of using leads and lags to deal with endogeneity in traditional coin-

tegration model was proposed by Saikkonen (1991). It can be veri�ed that, under

Assumption A�,

f""(�) = fuu(�)� fuv(�)fvv(�)�1fvu(�)

where f""(�), fuu(�), fvv(�) are spectral densities of ", u, v, and fuv(�) is the cross

spectral of u and v, implying that the long run variance of " is !2"" = !2uu�
uv
�1vv 
vu.
Notice that the Brownian motion B� (r) is now independent with Bv(r). We partition

the covariance matrix (of the Brownian motion B(r)) 
� into


� =

�
!�2 0

0 
vv

�
:

Under Assumption A0, the original cointegrating regression (7) can be re-written

as:

yt = �+ �0txt +
KX

j=�K
�x0t�j�j + "t:

If we denote the � -th quantile of "t as Q"(�), let Ft = �fxt;�xt�j ;8jg, then,
conditional on Ft, the � -th quantile of yt is given by

Qyt(� jFt) = �+ �(�)0xt +
KX

j=�K
�x0t�j�j + F

�1
" (�); (9)

where F"(�) is the c.d.f. of "t. Let Zt be the vector of regressors consisting zt = (1,
xt) and (�x0t�j , j = �K; � � �;K), � = (�; �0t;�0�K ; � � �;�0K)0, and

�(�) = (�(�); �(�)0;�0�K ; � � �;�0K)0

where �(�) = �+ F�1" (�), then, we can re-write the above regression as

yt = �
0Zt + "t
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and

Qyt(� jFt) = �(�)0Zt: (10)

Let "t� = "t � F�1" (�); then

Q"t� (�) = 0:

In the above model, the value of the cointegration coe¢ cients are a¤ected by

the innovation received at each period. Consequently the cointegrating vector can

vary over the quantiles and thus may be quantile (�) dependent. The conditioning

variables not only shift the location of the distribution of yt, but also may alter the

scale and shape of the conditional distribution. We will refer to this model as the

Quantile Cointegration model. Of course, the quantile cointegration model includes

the conventional cointegration model of Engle and Granger (1987) as a special case

where �(�) is a vector of constants. In this special case,

yt = �+ �0xt +
KX

j=�K
�x0t�j�j + "t; (11)

and

Qyt(� jxt) = �+ �0xt +
KX

j=�K
�x0t�j�j + F

�1
" (�):

We now consider the following modi�ed quantile cointegrating regression:

b�(�) = argmin
�

nX
t=1

�� (yt ��0Zt); (12)

Denote Gn = diag(Dn;
p
n; � � �;

p
n) = diag(

p
n; n; � � �; n;

p
n; � � �;

p
n). Conformable

with �(�); we partition b�(�) as follows:
b�(�)0 = h b�(�); b�(�)0; b��K(�)0; � � �; b�K(�)0 i :

Given b�(�), the � -th conditional quantile function of yt; conditional on xt, can be
estimated by,

Q̂yt(� jFt) = z>t b�(�);
and the conditional density of yt can be estimated by the di¤erence quotients,

f̂yt(� jFt) = (� i � � i�1)=(Q̂yt(� ijFt)� Q̂yt(� i�1jFt));

for some appropriately chosen sequence of ��s.

The limiting distribution of this estimator is given in the following Theorem:
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Theorem 4. Under Assumptions A0, B 0, C 0, and D,

Gn(b�(�)��(�))) 1

f"(F
�1
" (�))

" R 1
0 BvB

>
v 0

0 �

#�1 " R 1
0 BvdB

�
 

	

#
:

In particular

n(b�(�)� �(�))) 1

f"(F
�1
" (�))

�Z 1

0
BvB

>
v

��1 Z 1

0
BvdB

�
 ;

and where Bv(r) and Bv(r) are the same as those de�ned in Theorem 1, � = E(VtV
0
t )

and Vt = (�x0t�K ; � � �;�x0t+K)0, and 	 is a multivariate normal with dimension

conformable with (��K(�)0; � � �;�K(�)0)0.

It is straightforward to extend the model to allow the coe¢ cients �j to be quantile

dependent:

yt = �+ �0txt +
KX

j=�K
�x0t�j�jt + "t:

Remark: Notice that the time varying coe¢ cient model may be re-written as

constant coe¢ cient model with conditional heteroskedasticity. If we denote E(�t) =

�, E(�jt) = �j , we may write the above random coe¢ cient model as:

yt = �+ �0xt +
KX

j=�K
�x0t�j�j + wt:

where the error term:

wt = "t + (�t � �)0xt +
KX

j=�K
�x0t�j(�jt ��j):

Since that �t and �jt are functions of the innovation term "t, this is a cointegration

model with conditional heteroskedasticity. The conditional heteroskedasticity comes

from the varying-parameters and may display asymmetric dynamics. In this sense,

the proposed model may be viewed as an useful alternative of the widely used ARCH

or GARCH models, and has the advantage of computational simplicity and allow for

certain type of asymmetric behavior in the multivariate system.

3.2 Inference on Quantile Cointegration Models

Notice that the limiting distribution of b�(�) is mixture normal, statistical inference
procedures can be constructed based on the above augmented quantile regression.

If we consider again the inference problem in Section 3; H0 : R�(�) = r, let b�(�)
be estimated from the augmented quantile regression, and \f"(F

�1
" (�)) and b!� are
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consistent estimators of f"(F�1" (�)) and !� , we may construct the following regression

Wald statistic:

Wn(�) =
\f"(F
�1
" (�))

2

b!� (Rb�(�)� r)> hRM�1
X R>

i�1
(Rb�(�)� r)

where MX is de�ned as in Section 3, then, we obtain a similar result as Theorem 3.

Theorem 5. Under the assumptions of Theorem 4 and the linear restriction H0,

Wn(�)) �2q ;

where �2q is a centered Chi-square random variable with q-degrees of freedom.

Another interesting inference problem in the quantile cointegration model is the

hypothesis test on constancy of the cointegrating vector �. In particular, we are

interested in the hypothesis H02 : �(�) = �, over � 2 T , where � is a vector of
unknown constants.

A natural preliminary candidate for testing constancy of the cointegrating vector

is a standardized version of b�(�)� �. Under the null,
n
�b�(�)� ��) 1

f"(F
�1
" (�))

�Z 1

0
BvB

>
v

��1 Z 1

0
BvdB

�
 ;

by the result of Theorem 4. In practice, the vector of constants � is unknown and ap-

propriate estimator of � is needed. In many econometrics applications, a n-consistent

preliminary estimator of � is available. Denote b� as a preliminary estimator of �; we
look at the process bVn(�) = n(b�(�)� b�).
Under H02;

bVn(�)) 1

f"(F
�1
" (�))

�Z 1

0
BvB

>
v

��1 Z 1

0
BvdB

�
 � p limn

�b� � ��
which depends on the preliminary estimation of �. If b� is the OLS estimator of in
(11), under H02;

sup
�

���bVn(�)���) sup
�

����� 1

f"(F
�1
" (�))

�Z 1

0
BvB

>
v

��1 Z 1

0
Bvd

�
B� � f"(F�1" (�))B�"

������
where B�" (�) is the limit of partial sum of "t. Thus, we mat test varying-coe¢ cient

behavior based on the Kolmogoro¤-Smirno¤ statistic sup�
���bVn(�)���.

The necessity of estimating � introduces a drift component (p limn
�b� � ��) in

addition to the limit of n
�b�(�)� ��. We may generate critical values for the statistic

13



sup�

���bVn(�)��� using simulation or resampling methods. Using the usual notation � to
signify the bootstrap samples and P� for the probability conditional on the original

sample, we may consider the following resampling procedure:

(1) First, obtain estimates b�(�) and b� by quantile regression and OLS regression
respectively from

yt = �+ �0xt +
KX

j=�K
�x0t�j�j + "t:

Construct bVn(�) = n(b�(�)� b�), and obtain residuals
but = yt � b�� b�0xt, t = 1; ::::; n;

(2) De�ne bwt = (vt; but); vt = �xt, apply a sieve (autoregression) estimation onbwt bwt = qX
j=1

bBj bwt�j + bet, t = q + 1; ::::; n;

and get �tted residuals bet = bwt �Pq
j=1

bBj bwt�j , t = q + 1; ::::; n.

(3) Draw i.i.d. variables fe�t gnt=q+1 from the centered residuals bet� 1
n�q

Pn
j=q+1 bej

and generate w�t from e�t using the �tted autoregression:

w�t =

qX
j=1

bBjw�t�j + e�t , t = q + 1; ::::; n;

with w�j = bwj for j = 1; :::; q:
(4) De�ne w�t =(v

�
t ; u

�
t ) in conformable with bwt = (vt; but); and generate x�t from:

x�t = x�t�1 + v
�
t , with x

�
1 = x1. Generate

y�t = b�+ b�0x�t + u�t
Thus, we obtain the bootstrapped samples (y�t ; x

�
t ).

(5) We now construct bootstrap version of b�(�), b�, and bVn(�) using the boot-
strapped samples (y�t ; x

�
t ). We �rst calculate b��(�) and b�� from quantile and OLS

regression on

y�t = �+ �0x�t +
KX

j=�K
�x�0t�j�j + "

�
t ;

then, we construct bV �n (�) = n(b��(�)� b��):
In the above procedure, to make the subsequent bootstrap test valid, we generate

y�t under the null hypothesis of constant �. The limiting null distribution of the test

14



statistics can then be approximated by repeating steps 2-5 many times. Let C�t (� ; �)

be the (100�)-th quantiles, i.e.,

P�
�
sup
�

���bV �n (�)��� � C�t (� ; �)

�
= �;

then the hypothesis of constant cointegrating coe¢ cients will be rejected at the (1��)
level if sup�

���bVn(�)��� � C�t (� ; �).

Alternatively, instead of using resampling methods, we may directly simulate the

Brownian motions

1

f"(F
�1
" (�))

�Z 1

0
BvB

>
v

��1 Z 1

0
Bvd

�
B� � f"(F�1" (�))B�"

�
:

In particular, we may replace the regressions in step 5 by, say, directly approximatingR 1
0 BvB

>
v and

R 1
0 BvdB

�
 using

1

n2

X
t

(y�t � y�)
2 and

1

n

X
t

(y�t � y�) � ("�t� )

where y� = n�1
P
y�t ; and "

�
t� = "�t � eF�1" (�); where eF�1" (�) is the quantile function

of "�t . Thus, the limiting null distribution of tn(�) can be approximated based on the

following quantities

1p
�(1� �)

"X
t

(y�t � y�)
2

#�1=2 "X
t

(y�t � y�) � (u�t� )
#
:

Since we simply calculate sample moment and avoid solving the linear programming

in each repetition in this alternative procedure, computationally this is faster.

3.3 A Robust Test For Cointegration

Quantile cointegrating regression not only provides a robust method for many �-

nancial applications such as portfolio management, but also expands the modeling

options for economic time series. The proposed method can be used to develop new

tools for improved inference on cointegrated time series.

Denoting  � (u) = � � I(u < 0); and consider the quantile regression residual

"t� = yt �Qyt(� jFt) = yt ��(�)0Zt = "t � F�1" (�);

then we have Q"t� (�) = 0, where Q"t� (�) signi�es the � -th quantile of "t� , and

E � ("t� ) = 0:

The cointegration relationship may be tested by directly looking at the �uctuation

in the residual process "t� from the quantile cointegrating regression. In the case of
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cointegration, the residual process should be stable and �uctuations in the residuals

re�ect only equilibrium errors. Otherwise, the �uctuations in the residuals can be

expected to be of a larger order of magnitude. Thus, cointegration can be tested

based on "t� . If we consider the following partial sum process

Yn(r) =
1

!� 
p
n

[nr]X
j=1

 � ("j� );

where !�2 is the long run variance of  � ("j� ), under appropriate assumptions, the

partial sum process follow an invariance principle and converges weakly to a stan-

dard Brownian motion W (r). Choosing a continuous functional h(�) that measures
the �uctuation of Yn(r); notice that  � ("j� ) is indicator-based, a robust test for coin-

tegration can be constructed based on h(Yn(r)). By the continuous mapping theorem,

under regularity conditions and the null of cointegration,

h(Yn(r))) h(W (r)):

In principle, any metric that measures the �uctuation in Yn(r) is a natural candidate

for the functional h. The classical Kolmogoro¤-Smirno¤ type or Cramer-von Mises

type measures are of particular interest. Under the alternative of no cointegration,

the statistic diverges to 1.
In practice, we estimate �(�) by b�(�) using (12), and obtain the residuals

b"t� = yt � b�(�)0Zt;K
A robust test for cointegration can then be constructed based on

bYn(r) = 1b!� pn
[nr]X
j=1

 � (b"j� ):
where b!�2 is a consistent estimator of !�2 . Under regularity assumptions and the

hypothesis of cointegration,

bYn(r)) fW (r) =W1(r)�
�Z 1

0
dW1W

0
2

� �Z 1

0
W 2W

0
2

��1 Z r

0
W 2(s),

where W 2(r) = (1;W2(r)
0)0; W1 and W2 are independent 1 and k-dimensional stan-

dard Brownian motions. (see Tyurin and Xiao (2006) for more discussion on robust

tests for cointegration.)

4 Monte Carlo Results

A Monte Carlo experiment was conducted to examine the �nite sample performance

of quantile regression with cointegrated time series. We focus on two important issues
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in our Monte Carlo study: (1) The e¢ ciency gain of robust method such as quantile

regression over OLS in cointegration models with non-Gaussian innovations; and (2)

Application of quantile cointegrating regression on the study of time varying behavior

in cointegration.

For case (1), the data were generated from the following bivariate regression model

yt = �+ �xt + ut, with � = 0, � = 1;

where

�xt = vt; t = 1; :::; n:

We compare the OLS estimator of � with the Median regression estimator for di¤erent

data generating processes. In particular, we report results for various cases when ut
and vt are iid Normal or student-t with degrees of freedom 2, 3, 4. The initial values

are all set to be zero.

Tables 1A and 1B report the standard errors (STD) and mean-squared-errors

(MSE) of the median regression (� = 0:5) vs. OLS estimation of � for sample sizes

T = 100, and T = 200. Number of repetitions is 500.

Table 1A: OLS v.s. Median Regression Estimation of �, T = 100
OLS Median Reg.

STD MSE STD MSE
vt � N(0; 1) ut � t(3) 0.0656 0.0043 0.041 0.0017

ut � t(4) 0.0535 0.0028 0.0402 0.0016
vt � t(4) ut � t(3) 0.0408 0.0017 0.0316 0.00099

ut � t(4) 0.0331 0.0011 0.0299 0.00089
vt � t(3) ut � t(3) 0.0346 0.0012 0.0283 0.00079
Table 1B: OLS v.s. Median Regression Estimation of �, T = 200

OLS Median Reg.
STD MSE STD MSE

vt � N(0; 1) ut � t(3) 0:0267 0:00071 0:020 0:00040

vt � N(0; 1) ut � t(4) 0:0206 0:00042 0:0188 0:00035

vt � t(4) ut � t(3) 0:02 0:000398 0:0154 0:000235

vt � t(4) ut � t(4) 0:0162 0:000262 0:0151 0:000228

vt � t(3) ut � t(3) 0:0179 0:000321 0:0142 0:000200

We then study cointegration with time-varying cointegrating coe¢ cient using

quantile regression. We consider the following model

yt = �+ �txt + ut:

where �t may vary over di¤erent quantile of the innovation distribution. Conditional

on Ft�1, the � -th quantile of yt is given by

Qyt(� jFt�1) = �+ �(�)0xt + F
�1
u (�);
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We are interested in testing the hypothesis that �(�) = constant over � . We consider

the following two choices of �t:

(i). �t = 1,

(ii). �t = �(ut) =

�
1, ut � 0;
�1, ut < 0;

:

When �t = 1, it is constant over all quantiles and thus the empirical rejection rates

corresponds to the empirical size. In the second choice, �t = �(ut); the cointegrating

vector takes di¤erent values over di¤erent quantiles of the error distribution and thus

the rejection rates corresponds to the empirical power.

The data in our second experiment were generated from di¤erent distributions of

futg and fvtg. Again, we consider ut and vt being i.i.d. random variables of Normal

and student-t with di¤erent degrees of freedoms. The bootstrap based procedure

introduced in Section 3.2. is conducted to test the varying-coe¢ cient behavior in the

cointegration system for di¤erent sample sizes (T = 100 and 200). The number of

repetitions is 500. Representative results of the empirical size and power of the test

are reported in Table 2.

Table 2: Testing for Time Varying Cointegrating Parameter
T = 100 T = 200

Size Power Size Power

vt � N(0; 1) ut � N(0; 1) 7% 54% 6:6% 87:5%

vt � N(0; 1) ut � t(3) 5:6% 75% 5:2% 90%

vt � N(0; 1) ut � t(4) 4:5% 60% 5% 89:5%

vt � t(3) ut � t(3) 8% 62% 5:2% 90%

vt � t(4) ut � t(4) 6:7% 56% 6:5% 95%

Information in Tables 1A and 1B indicates that e¢ ciency gain can be achieved

from a robust cointegrating regression in the presence of non-normal distributed data.

From the Monte Carlo results in Table 2, we can see that the quantile regression

based tests for varying-coe¢ cients have reasonable size and good power in �nite

sample. We can also see improved sampling performance as the sample size increases,

corroborating the asymptotic theory.

5 An Empirical Application to Asset Pricing Model

In this section, we apply the quantile cointegration model to stock index data from

the U.S. In particular, we collected price and dividend yield data for the Standard

and Poor (S&P) 500 Index from January 1974 to September 1998. The source of the

data is the on-line service of Datastream. We analyze the relationship between prices

and market fundamentals using the quantile cointegrating regression.
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If we consider the standard rational expectations model (6) for stock prices, a

forward-looking solution to this model indicates that stock prices (Pt) and market

fundamentals (Dt) should be cointegrated. However, there has been concern about

a direct regression based on this speci�cation: violation of limited liability. For in-

stance, if the conditional distribution of the prices is normal, then there will always

be a positive probability of obtaining a negative price (see, e.g., Campbell, Lo and

MacKinlay (1997, p32)). For this reason, many researchers consider the above ra-

tional expectations model in terms of logarithms of price and dividend. Following

Campbell and Shiller (1988), we write the log linear approximation of (6) as

pt + q = �+ �Etpt+1 + (1� �)Etdt+1 (13)

where pt and dt are logarithms of Pt and Dt; q is the log gross return rate, � is

the average ratio of the stock price to the sum of the stock price and the dividend

(0 < � < 1), and � is a function of �. Under the transversality condition that

lim
k!1

�kEtpt+k = 0; (14)

the unique forward-looking market fundamental solution to (13) is given by

pt = � + (1� �)
1X
j=0

�jEtdt+1+j : (15)

Since dt appears to be nonstationary in empirical analyses, it is usually charac-

terized as an integrated process with drift:

dt+1 = �+ dt + "t; (16)

where "t is an I(0) process of innovations with E("t) = 0. Combining (15) and (16),

we have

pt = �+ �dt: (17)

Thus pt is also an integrated process with drift. Although both pt and dt are nonsta-

tionary, there exists a long run equilibrium relationship between pt and dt; and the

linear combination of pt and dt (pt � � � �dt) is I(0). Fluctuations in the residual

process pt����dt are simply equilibrium errors and thus are covariance stationary.

In other words, pt and dt are cointegrated.

Regression model (17) has been examined by many empirical researchers based

on OLS technique. A very important feature from the previous analysis is that stock

prices are much more volatile than market fundamentals such as dividends. Estimate

of the cointegrating parameter � based on OLS regression over (17) displays a lot of

variability. Consequently, in portfolio management, frequent rebalancing is needed

to keep the portfolio in line with the index. These empirical observations suggest
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that the value of cointegrating parameter is changing over time. In this section, we

examine the relationship between prices and market fundamentals using a quantile

cointegrating regression.

To examine various speci�cations in modeling asset prices, we consider the fol-

lowing two models.

Model 1. The �rst model is built on (17). Using leads and lags to absorb the

endogeneity, we have

pt = �+ �dt +

KX
j=�K

�j�dt�j + "t:

Our �rst empirical model is an extension of the above model (to cointegration with

varying cointegrating coe¢ cients). Notice that in the above model the market price

is characterized by (6) with a constant rate of return. Indeed, many empirical appli-

cations in asset pricing are based on OLS regression on this cointegration relationship

[see, e.g. Campbell and Shiller (1987), Gordon (1962), Evans (1991), among others].

Relaxing the assumption of a constant rate of return will substantially complicate the

forward-looking solution to the rational expectation model. In general, there is no

simple analytical solution unless we impose additional assumptions on the associated

conditional expectation.

If we consider the general model which allows 
 to change over time:

Pt = Et

�
Pt+1 +Dt+1

1 + 
t

�
: (18)

Solving equation (18) recursively and denoting the growth rate of real dividend as gt;

we obtain the following expression for the fundamental value of asset prices:

Pt = Et

8<:
1X
j=0

 
jY
i=0

�
1 + gt+i
1 + 
t+i

�!9=;Dt:

Gordon (1962) assumes that 
 and g are constant and thus we obtain the conven-

tional cointegration model (16). In order to generalize the conventional cointegration

model (16) and allow for time varying coe¢ cient, appropriate simpli�cation has to

be introduced. In particular, using the log linear approximation, we have

pt = �+ �tdt + ut; (19)

where �t is a function of

Et

8<:
1X
j=0

 
jY
i=0

�
(1 + gt+i)=(1 + 
t+i)

�!9=; :
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Appropriate approximation of �t has to be used. For example, Barsky and DeLong

(1993) considered an extension by imposing additional assumptions on the construc-

tion of g. Donaldson and Kamstra (1996) use similar idea in estimating market

fundamental. The �rst model in our empirical application is built on above idea and

considers the following quantile cointegrating regression:

pt = �+ �tdt +

KX
j=�K

�jt�dt�j + "t: (20)

where the cointegrating coe¢ cient �t (and other coe¢ cients) are time varying, de-

pending on the new information (or shocks) received in the period. Thus, the coin-

tegrating coe¢ cient � is in the form of a function of the innovation process "t. Such

a model is quantile dependent and captures additional volatility in stock prices Pt.

Conditional on past information, the above model has the following quantile domain

representation:

Qpt(� jFt) = �(�) + �(�)dt +
KX

j=�K
�j(�)�dt�j : (21)

We now apply quantile regression to the above model. Quantile regression estimates

of the cointegrating coe¢ cients are reported in Table 1 below.

Table 1: Quantile Cointegration Estimates Based on Model 1
� = 0:05 � = 0:10 � = 0:15 � = 0:20 � = 0:25 � = 0:30 � = 0:35b�(�) 40.7929 43.0539 43.3579 43.9045 44.3159 44.9067 46.2997

� = 0:40 � = 0:45 � = 0:50 � = 0:55 � = 0:60 � = 0:65 � = 0:70b�(�) 47.2917 47.4789 47.3677 47.2634 47.2675 48.0674 49.1072

� = 0:75 � = 0:80 � = 0:85 � = 0:90 � = 0:95b�(�) 50.9336 53.3779 59.6298 68.7037 77.4728

OLS estimate: b� = 57:8924
Model 2. Model 1 considers dividends as the major source of market fundamental.

Besides dividends, other fundamental sources of stock price may also be accounted

for. Consequently, other covariates that help explaining market fundamentals may

also be included in the cointegrating regression. For example, another variable that

provides useful information might be the short term interest rate rt. For this reason,

we may include rt as another explanatory variable in the cointegrating regression,

then we obtain an extension of (19):

pt = �+ �tdt + �trt + vt; (22)
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Again, using leads and lags to absorb the endogeneity, we consider the following

cointegrating regression:

pt = �+ �tdt + �trt +

KX
j=�K

�jt�dt�j +
KX

j=�K

jt�rt�j + "t: (23)

where the cointegrating coe¢ cients are allowed to be time varying and thus quantile

dependent:

Qpt(� jFt) = �(�) + �(�)dt + �(�)rt +

KX
j=�K

�j(�)�dt�j +
KX

j=�K

j(�)�rt�j :

Quantile regression estimates of the cointegrating coe¢ cients based on Model 2

are reported in Table 2 below.

Table 2: Quantile Cointegration Estimates Based on Model 2
� = 0:05 � = 0:10 � = 0:15 � = 0:20 � = 0:25 � = 0:30 � = 0:35b�(�) 34.8271 36.7676 37.2902 37.4863 37.8032 38.0976 38.5612

� = 0:40 � = 0:45 � = 0:50 � = 0:55 � = 0:60 � = 0:65 � = 0:70

39.1491 39.2799 40.0530 40.7666 41.4132 43.0672 47.4614

� = 0:75 � = 0:80 � = 0:85 � = 0:90 � = 0:95b�(�) 50.1081 52.4722 59.4586 69.6467 73.5931

OLS estimate: b� = 54:4848
The evidence based on these point estimates of the cointegrating coe¢ cients at

each quantile suggests that the cointegrating coe¢ cients are not constant over time -

thus bringing additional volatility into asset prices in addition to market fundamen-

tals. The cointegrating coe¢ cient estimate b�(�) has di¤erent values over di¤erent
quantiles (ranging from 40.7929 (or 34.827) in low quantiles to 77.4728 (or 73.5931)

in upper quantiles in model 1 (model 2), displaying asymmetric dynamics over time.

In particular, b�(�) increases when we move from lower quantiles to higher quantiles.

Formal tests for varying-coe¢ cient cointegration relationship is also conducted

using the bootstrap-based test proposed in Section 3.2.. For Model 1, the calculated

test statistic sup�
���bVn(�)��� = 2383.3, and the 1%, 5%, and 10% bootstrapped critical

values are 173:18, 92:43, 67:86, respectively. For Model 2, the calculated test statistic

sup�

���bVn(�)��� = 2387.5, and the 1%, 5%, and 10% bootstrapped critical values are

124:25, 98:37, 71:03, respectively. In both models, the null hypothesis of constant

cointegrating coe¢ cients are rejected even at 1% level, displaying a strong evidence

of varying-coe¢ cient behavior.
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6 Conclusions and Generalizations

Quantile cointegrating regression not only provides a robust method for many �-

nancial applications such as portfolio management, but also expands the modeling

options for economic time series. The proposed models indicate that there might be

important information about cointegration models which are not detectable from the

traditional OLS based analysis.

Some important future extensions of the quantile cointegration model can be con-

ducted. First, quantile regression analysis can be extended to cointegration models

with in�nite variance errors. In this case, the limiting theory will be di¤erent. Faster

rate of convergence can be found and mixture normal asymptotics can be achieved

without fully-modi�cation. Second, the quantile cointegrating regression model may

be extended to the case with general functional coe¢ cients �(zt). A quantile cointe-

grating regression model with general functional coe¢ cients take the following form:

Qyt(� jzt; Xt) = �� (zt)
0Xt:

We may apply the local polynomial method to the above quantile regression model.

7 Appendix: Proofs

7.1 Proof of Theorem 1

The following results is useful in developing asymptotics for the regression quantile estimates:

For u 6= 0;

�� (u� v)� �� (u) = �v � (u) + (u� v)fI(0 > u > v)� I(0 < u < v)g; (24)

where  � (u) = � � I(u < 0):
Let ut� = ut � F�1(�), then Qut� (�) = 0! If we denote

(�+ F�1(�); �)0 = �(�)

then ut� = yt � �(�)0zt.
Further we denote bv = Dn(b�(�) � �(�)); where Dn = diag(

p
n; n; � � �; n); �� (yt �b�(�)0zt) = �� (ut� � (D�1

n bv)0zt). Minimization (2) is equivalent to the following problem:
min
v

nX
t=1

�
�� (ut� � (D�1

n v)0zt)� �� (ut� )
�
:

If bv is a minimizer of Zn(v); we have bv = Dn(b�(�)� �(�)):
The objective function Zn(v) =

Pn
t=1

�
�� (ut� � (D�1

n v)0zt)� �� (ut� )
�
is a convex

random function and is similar to the one of Knight (1989). Knight (1989) (also see similar
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argument in Pollard 1991) shows that if the �nite-dimentional distributions of Zn(�) converge
weakly to those of Z(�) and Z(�) has a unique minimum, the convexity of Zn(�) implies thatbv converges in distribution to the minimizer of Z(�). Notice that Qut� (�) = 0, we have

E � (ut� ) = 0:

In general ut and �xt are correlated and thus B and Bx are correlated Brownian

motions. Under Assumption A, the vector partial sum process f � (ut� );�x0tg follow an

invariance principle that

n�1=2
[nr]X
t=1

�
 � (ut� )
�xt

�
) B(r) = BM(
)

a Brownian motion with covariance matrix


 =

�
!2 !x 
!x !2x

�
;

and

n�1
nX
t=1

xt � (ut� ))
Z 1

0
BxdB + �x 

where �x is the one sided long-run variance between �xt and  � (ut� ):

Using the result of (24), the objective function of minimization problem can be written

as

nX
t=1

�
�� (ut� � (D�1

n v)0zt)� �� (ut� )
�

= �
nX
t=1

(D�1
n v)0zt � (ut� )

+
nX
t=1

(ut� � (D�1
n v)0zt)fI(0 > ut� > (D

�1
n v)0zt)� I(0 < ut� < (D

�1
n v)0zt)g

For the �rst term, under Assumptions A and B,

D�1
n

nX
t=1

zt � (ut� ) =

�
n�1=2

Pn
t=1  � (ut� )

n�1
Pn

t=1 xt � (ut� )

�
)
" R 1

0 dB R 1
0 BxdB + �x 

#
:

Next we examine the limit of

nX
t=1

(ut� � (D�1
n v)0zt)I(0 < ut� < (D

�1
n v)0zt), and

nX
t=1

(ut� � (D�1
n v)0zt)fI(0 > ut� > (D

�1
n v)0zt):
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We �rst consider the limit of

nX
t=1

(ut� � v0D�1
n zt)I(0 < ut� < v0D�1

n zt):

If we denote v = Dn(� � �(�)); and partition v and �(�) conformable with zt = (1; x0t)
0;

we denote

v =

�
v1
v2

�
; �(�) =

�
�(�)
�

�
:

For convenience of asymptotic analysis, we denote

Wn(v) =
nX
t=1

(v0D�1
n zt � ut� )I(0 < ut� < v0D�1

n zt) =
nX
t=1

�t(v);

�t(v) = (v0D�1
n zt � ut� )I(0 < ut� < v0D�1

n zt):

To avoid technical problems in taking conditional expectations, we consider truncation of

v0D�1
n zt at some �nite number m > 0 and denote

Wnm(v) =
nX
t=1

�tm(v);

�tm(v) = (v0D�1
n zt � ut� )I(0 < ut� < v0D�1

n zt)I(v
0D�1

n zt � m):

Denote the information set upto time t as Ft�1 = �fut�j ; vt�j+1; j � 1g; then zt 2 Ft�1:
We further de�ne

�tm(v) = Ef(v0D�1
n zt � ut� )I(0 < ut� < v0D�1

n zt)I(v
0D�1

n zt � m)jFt�1g;

and

Wnm(v) =
nX
t=1

�tm(v);

then f�tm(v)� �tm(v)g is a martingale di¤erence sequence. Denote the conditional distrib-
ution function

Ft�1(�) = Pr[ut < �jFt�1];

and its derivative as ft�1(�); a:s:, and assume that ft�1(sn) is uniformly integrable for any
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sequence sn ! F�1(�).

Wnm(v)

=
nX
t=1

Ef(v0D�1
n zt � ut� )I(0 < ut� < v0D�1

n zt)I(v
0D�1

n zt � m)jFt�1g

=
nX
t=1

E
�
(v0D�1

n zt + F
�1(�)� ut)

I(F�1(�) < ut < v0D�1
n zt + F

�1(�))I(v0D�1
n zt � m)jFt�1

	
=

nX
t=1

Z [v0D�1
n zt+F�1(�)]I(v0D

�1
n zt�m)

F�1(�)
[

Z [v0D�1
n zt+F�1(�)]I(v0D

�1
n zt�m)

r
ds]ft�1(r)dr

=
nX
t=1

Z
F�1(�)�s�[v0D�1

n zt+F�1(�)]I(v0D
�1
n zt�m)

Z
F�1(�)�r�s

ft�1(r)drds

=

nX
t=1

Z [v0D�1
n zt+F�1(�)]I(v0D

�1
n zt�m)

F�1(�)
[s� F�1(�)]

�
Ft�1(s)� Ft�1(F�1(�))

s� F�1(�)

�
ds:

Notice that ft�1(sn) is uniformly integrable for any sequence sn ! F�1(�),

Wnm(v) =
nX
t=1

Z [v0D�1
n zt+F�1(�)]I(v0D

�1
n zt�m)

F�1(�)
[s� F�1(�)]ft�1[F�1(�)]ds+ op(1)

=
nX
t=1

ft�1[F
�1(�)]

�
[s� F�1(�)]2

2
j[v

0D�1
n zt+F�1(�)]I(v0D

�1
n zt�m)

F�1(�)

�
+ op(1)

=
1

2

nX
t=1

ft�1[F
�1(�)][v0D�1

n zt]
2I(v0D�1

n zt � m) + op(1)

=
1

2n

nX
t=1

ft�1[F
�1(�)]v0[

p
nD�1

n ztz
0
tD

�1
n

p
n]vI(v0D�1

n zt � m) + op(1)

By Assumption C and stationarity of f ft�1[F�1(�)]g, we have

sup
0�r�1

������ 1

n1�"

[nr]X
t=1

[ft�1[F
�1(�)]� f [F�1(�)]]

������ P! 0

for some " > 0: Thus

Wnm(v))
1

2
f [F�1(�)]v0

(Z 1

0

"
1

R 1
0 BxR 1

0 Bx
R 1
0 BxB

0
x

#
I(0 < v1 + v

0
2Bx(s) � m)

)
v := �m

We now follow the arguments of Pollard (1991), notice that (v0D�1
n zt)I(0 � v0D�1

n zt �
m)

P! 0 uniformly in t;

nX
t=1

E[�tm(v)
2jFt�1] � maxf(v0D�1

n zt)I(0 � v0D�1
n zt � m)g

X
�tm(v)! 0:
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thus the following summation of martingale di¤erence sequenceX
t

f�tm(v)� �tm(v)g

converges to zero in probability. By the Asymptotic Equivalence Lemma, the limiting distri-

bution of
P

t �tm(v) is the same as that of
P

t �tm(v), i.e.,

Wnm(v)) �m

Let m!1; we have

�m )
1

2
f(F�1(�))v0

�Z 1

0
BzB

0
z

�
vI(v0Bz(s) > 0) = �;

where Bz(s) = (1; Bx(s)0):

Now we show that

lim
m!1

lim sup
n!1

Pr[jWn(v)�Wnm(v)j � "] = 0:

This holds because

= Pr[jWn(v)�Wnm(v)j � 0]

= Pr

"X
t

(v0D�1
n zt � ut� )I(0 < ut� < v0D�1

n zt)I(v
0D�1

n zt > m) > 0

#
� Pr

�
[tfv0D�1

n zt > mg
�

= Pr
h
max
t
fv0D�1

n ztg > m
i
;

and

lim
m!1

Pr[ sup
1�r�1

v0Bz(r) > m] = 0:

By Billingsley (1968),

Wnm(v)) �;

i.e.
nX
t=1

((D�1
n v)0zt � ut� )I(0 < ut� < (D

�1
n v)0zt))

1

2
f(F�1(�))v0

Z 1

0
BzB

0
zv

Similarly, we can show that

nX
t=1

(ut��(D�1
n v)0zt)fI(0 > ut� > (D

�1
n v)0zt))

1

2
f(F�1(�))v0

�Z 1

0
BzB

0
z

�
vI(v0Bz(s) < 0):

Thus,

nX
t=1

(ut� � (D�1
n v)0zt)fI(0 > ut� > (D

�1
n v)0zt)� I(0 < ut� < (D

�1
n v)0zt)g

) f(F�1(�))v0

"
1

R 1
0 BxR 1

0 Bx
R 1
0 BxB

0
x

#
v:
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As a result,

Zn(v)

=

nX
t=1

�
�� (ut� � (D�1

n v)0zt)� �� (ut� )
�

= �
nX
t=1

(D�1
n v)0zt � (ut� )

+
nX
t=1

(ut� � (D�1
n v)0zt)fI(0 > ut� > (D

�1
n v)0zt)� I(0 < ut� < (D

�1
n v)0zt)g

) �v0
" R 1

0 dB R 1
0 BxdB +�x 

#
+ f(F�1(�))v0

"
1

R 1
0 BxR 1

0 Bx
R 1
0 BxB

0
x

#
v := Z(v)

By the convexity Lemma of Pollard (1991) and arguments of Knight (1989), notice that

Zn(v) and Z(v) are minimized at bv = Dn(b�(�)� �(�)) and
1

2f(F�1(�))

"
1

R 1
0 BxR 1

0 Bx
R 1
0 BxB

0
x

#�1 " R 1
0 dB R 1

0 BxdB + �x 

#
respectively, by Lemma A of Knight (1989) we have,

Dn(b�(�)� �(�)) ) 1

2f(F�1(�))

"
1

R 1
0 BxR 1

0 Bx
R 1
0 BxB

0
x

#�1 " R 1
0 dB R 1

0 BxdB + �x 

#
:

7.2 Proof of Theorem 2

By result of Theorem 1, the limiting distribution of n(b�(�)� �(�)) can be written as
1

f(F�1(�))

�Z 1

0
BvB

>
v

��1 Z 1

0
BvdB :v+

1

f(F�1(�))

�Z 1

0
BvB

>
v

��1 �Z 1

0
BvdB

>
v 


�1
vv 
v + �v 

�
In addition, b
vv; b
v , b�v , and b�vv are consistent estimates of 
vv, 
v , �v ; �vv, thus

Dn

�b�(�)+ � �(�)�
=

 p
n [b�(�)� �(�)]

n
hb�(�)+ � �(�)i

!

=

 p
n [b�(�)� �(�)]
n
hb�(�)� �(�)i

!
�
 

0

� 1
\f(F�1(�))

�
1
n2
P

t xtx
0
t

��1 h 1
n

P
t xtv

0
t
b
�1vv b
v + b�+v i

!

) 1

f(F�1(�))

�Z 1

0
BvB

>
v

��1 Z 1

0
BvdB :v:
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7.3 Proof of Theorem 3

This is an immediate consequence of Theorem 2. Under the null hypothesis H0 : R� = r

and by the result of Theorem 2, we have

n(Rb�+(�)� r)) N(0;
!2 :v

f(F�1(�))2

"
R

�Z 1

0
BvB

>
v

��1
R>

#
);

and thus the results of Theorem 3 follows immediately.

7.4 Proof of Theorem 4

This is similar to the proof of Theorem 1.

7.5 Proof of Theorem 5

This is similar to the proof of Theorem 3.
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