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Abstract. Several widely used tests for a changing mean exhibit nonmonotonic power in
finite samples due to “incorrect” estimation of nuisance parameters under the alternative.
In this paper, we study the issue of nonmonotonic power in testing for changing mean.
We investigate the asymptotic power properties of the tests using a new framework where
alternatives are characterized as having “large” changes. The asymptotic analysis provides
a theoretical explanation to the power problem. Modified tests that have monotonic power
against a wide range of alternatives of structural change are proposed. Instead of estimat-
ing the nuisance parameters based on ordinary least squares residuals, the proposed tests
use modified estimators based on nonparametric regression residuals. It is shown that tests
based on the modified long-run variance estimator provide an improved rate of divergence
of the tests under the alternative of a change in mean. Tests for structural breaks based on
such an estimator are able to remain consistent while still retaining the same asymptotic
distribution under the null hypothesis of constant mean.

1. Introduction

Testing for structural changes in dynamic models is a common practice in empirical

time series analysis. Two widely used procedures for structural changes are the CUSUM

(Kolmogorov-Smirnoff) test and the QS (or Cramer von-Mises) test. The CUSUM test

based on recursive residuals was proposed by Brown, Durbin and Evans (1975). Ploberger

and Kramer (1992) studied CUSUM test based on OLS residuals. The QS tests based

on the Cramer von-Mises measure were studied by Gardner (1969), MacNeil (1978) and

Perron (1991). For other tests used in econometrics, see, e.g., Andrews (1993), Andrews

and Ploberger (1994), Perron (1991), Hansen (1992), and Elliott and Müller (2006).

An important issue in tests for structural change is that some tests can exhibit non-

monotonic power (see, e.g., Perron (1991), Vogelsang (1999), Deng and Perron (2007)).

That is, as the structural change grows, the power of the test actually decreases. The

problem of nonmonotonic power is found in models with a structural break in the mean.
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Monte Carlo studies indicate that the main reason for nonmonotonic power is that nuisance

parameters are poorly estimated under the (global) alternative. For the above mentioned

tests, a common feature is that they are based on empirical processes that satisfy functional

central limit theorems under the null hypotheses of no structural change. The test statistics

converge to functionals of (demeaned) standard Brownian motions after standardization by

an estimate of the long-run variance of the time series. Monte Carlo results of Crainiceanu

and Vogelsang (2007) show that, in the presence of a changing mean, the value of the data

dependent bandwidth will be very large, and nonmonotonic power can be found when such

variance estimators are used.

In this paper, we investigate the problem of nonmonotonic power in tests for chang-

ing mean. To provide a theoretical explanation for the nonmonotonic power problem, we

develop an asymptotic analysis for the tests under the alternative hypothesis with large

(diverging) changes. We then propose a modification to the tests that is designed to avoid

nonmonotonic power. Since the source of nonmonotonic power is the long-run variance

estimator, we want to find a variance estimator that is robust under very general deter-

ministic structures. We propose a nonparametric regression on the original data first, and

then construct an estimator of the long-run variance parameter based on the nonparamet-

rically demeaned data. Asymptotic analysis on the proposed estimators and test statistics

is provided. We show that the tests using long-run variance estimators based on the non-

parametric regression residuals diverge at a slower rate than standard long-run variance

estimators, yet they retain correct size under the null hypothesis. We show that tests con-

structed using such a long-run variance estimator retain their consistency under various

diverging alternative hypotheses.

The structure of the paper is as follows. In section 2, we describe the model and existing

tests. In section 3, we investigate the problem of nonmonotonic power via asymptotics of

large structural changes. The modified tests are proposed and examined in section 4. We

illustrate the performance of the tests using a small Monte Carlo experiment in section 5 and

illustrate the usefulness of our procedure using a series containing expected U.S. inflation

in section 6. Section 7 concludes.
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2. Model and Tests

Consider a time series model characterized by

(2.1) yt = θt + ut,

where θt = θ
(

t
T

)
is the deterministic component of yt, and ut is the stochastic component

that is potentially serially correlated. Notice that θt is allowed to vary over time in the

current setup. Our purpose is to test whether or not there is a change (or changes) in the

deterministic component θt. More precisely, we want to test the null hypothesis

H0 : θ

(
t

T

)
= θ̄ = constant,

so that there is no change in mean in time series yt.

One way for testing structural change in θt is to look at the fluctuation in the OLS

residuals of (2.1), ût, through the following empirical process

(2.2) VT (r) =
1√
T

[Tr]∑

t=1

ût.

Under H0, the fluctuation in ût is stable and VT (r) converges weakly to a demeaned Brown-

ian motion with variance ω2 =
∑∞

j=−∞ γ(j), where γ(j) is the autocovariance function of

ut. In the presence of structural breaks in θ, the fluctuation in ût will be larger. Since

the limiting process of VT (r) has variance ω2, appropriate standardization is needed to re-

move this nuisance parameter. Let ω̂ be a consistent estimator for ω, we may consider the

following standardized empirical process:

UT (r) =
1

ω̂
√

T

[Tr]∑

t=1

ût,

where UT (r) converges weakly to a standard demeaned Brownian motion, say W (r), under

the null hypothesis. Let g(·) be a continuous functional that measures the fluctuation of

UT (r), we can use g(UT (r)) as a test statistic for H0. By the continuous mapping theorem,

g(UT (r)) ⇒ g(W (r)).

When we take g(·) as the classical Kolmogorov-Smirnoff measure, we obtain the CUSUM

test

CUSUMT = sup
0≤r≤1

|UT (r)| = max
j=1,...,T

1
ω̂

∣∣∣∣∣
1√
T

j∑

t=1

ût

∣∣∣∣∣ ,
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which was studied by Ploberger and Kramer (1992). Using the Cramer-von Mises type

metric, we can construct the following test

QST =
∫ 1

0
UT (r)2dr =

1
T

T∑

t=1


 1

ω̂
√

T

t∑

j=1

ûj




2

.

The above test is also labeled as QS in the literature (see, for example, Gardner (1969),

MacNeill (1978), and Perron (1991)). Under the null hypothesis,

CUSUMT ⇒ sup
0≤r≤1

|W (r)|, and QST ⇒
∫ 1

0
W (r)2dr.

The CUSUM test and the QS test are two of the most widely used testing procedures

for structural breaks. In this paper, we focus our discussion on the CUSUM and QS tests,

but our analysis in this paper extends naturally to other tests that employ nonparametric

estimation of the serial correlation structure through a long-run variance.

The above tests make use of an estimated long-run variance, which is proportional to the

spectral density of ut at zero frequency. This quantity is usually estimated by a nonpara-

metric kernel method in the following form:

ω̂2 =
T−1∑

j=−T+1

k

(
j

bT

)
γ̂(j),

where γ̂(j) is the sample autocovariance function

γ̂(j) =
1
T

T∑

t=j+1

ûtû
>
t−j , forj ≥ 0; and γ̂(j) = γ̂(−j) forj < 0.

k(x) is a lag window kernel function, and bT is a bandwidth parameter which controls the

length of lag truncation, satisfying the property bT → ∞ and bT /T → 0. For example,

Andrews (1991) suggests the following optimal kernel (quadratic spectral kernel)

(2.3) k(x) =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)
.

Another popular kernel is the Bartlett kernel with the following form:

(2.4a) k(x) = 1− |x| , for |x| ≤ 1.

See, e.g., Andrews (1991) for more discussions on other kernels.

In practice, the long-run variance estimate is sensitive to the choice of bandwidth pa-

rameter bT . In many econometric applications, the AR(1)-based plug-in data dependent

bandwidth (Andrews (1991)) based on a mean-squared-error criterion is widely used. Let ρ̂
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be the estimated AR(1) parameter from a univariate autoregression of ût on ût−1, the data

dependent bandwidth parameter bopt is given as

bopt = ξ(k)× (α̂(q)T )1/(2q+1)

where ξ(k) is a constant depending on the kernel function and q is the order of the kernel.

α(q) is a function of the unknown spectral density and is estimated by a quantity based on

ρ̂. If the quadratic spectral kernel (2.3) is used, q = 2, ξ(k) = 1.3221, and

(2.5) α̂(2) =
4ρ̂2

(1− ρ̂)4
.

If the Bartlett kernel (2.4a) is used, q = 1, ξ(k) = 1.1447, and

α̂(1) =
4ρ̂2

(1− ρ̂2)2
.

These data-dependent choices of bandwidth are widely used and are available as a standard

option in many software packages.

The use of a data-dependent bandwidth is very important in applied work since long-run

variances are sensitive to the bandwidth. Andrews (1991) illustrates the improvement in

estimation of an optimal bandwidth via a Monte Carlo experiment. The data-dependent

bandwidth turns out to be an important part of the cause for nonmonotonic power in the

structural break tests we discuss.

In the next section, we see how the CUSUM and QS tests are affected by changes that

are not characterized as “local”.

3. Asymptotic Theory of Large Changes

It is well known that the CUSUM and QS tests are consistent, so that power goes to one

as the sample size increases when the size of the break is fixed. Moreover, local power for the

CUSUM test is derived in Ploberger and Kramer (1992). However, monte carlo evidence

of Creaniceanu and Vogelsang (2007) shows that if one lets the size of a one time discrete

change in mean go to infinity with the sample size, power may not go to one. This effect is

referred to as nonmonotonic power since power may increase initially and then decrease as

changes in mean are larger in magnitude. Given the possibility of nonmonotonic power, we

consider alternatives that are allowed to diverge with T .
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In this paper, we consider alternatives of the form

θ

(
t

T

)
= µ + g

(
t

T

)
η.

By allowing η to approach infinity, we can determine the effects of large changes in mean

on the tests. In particular, we will allow η = O(T b) where b > 0. We first show (Theorem

3.1) that the long-run variance estimator is the main source of the nonmonotonic power

problem, and then analyze the power property of the tests using long-run variance estimator

(Theorem 3.2).

Our first result deals with the tests that do not use a long-run variance estimator. In

the case that ut is a martingale difference sequence, only a variance estimator (instead of

the long-run variance estimator) is needed for standardization because there is no serial

correlation. Let σ̂2 be the sample variance, and

CUSUMT = max
j=1,...,T

1
σ̂

∣∣∣∣∣
1√
T

j∑

t=1

ût

∣∣∣∣∣ ,

QS
T

=
1
T

T∑

t=1


 1

σ̂
√

T

t∑

j=1

ûj




2

.

The following theorem states that the CUSUM and QS tests still have power against al-

ternatives that increase with sample size so long as we do not use a long-run variance

estimator.

Theorem 3.1. Suppose that ut is a martingale difference sequence and that θ(t/T ) =

µ + g(t/T )η, with |g(t/T ) − g(s/T )| ≤ |(t − s)/T |c1, where c1 is a constant. Moreover,

suppose that η = O(T b) with 0 ≤ b ≤ 1. Then we have

T−1/2CUSUMT =
η supr

∫ r
0 (g(s)− ḡ)ds√

σ2 + η2
∫ 1
0 (g(s)− ḡ)2ds

+ op(1)

T−1QS
T

=
η2

∫ 1
0

(∫ r
0 [g(s)− ḡ] ds

)2
dr

σ2 + η2
∫ 1
0 (g(s)− ḡ)2ds

+ op(1).

Although the above result is based on the case where no long-run variance is used or

needed, the result can be used to find the order of the statistics that are modified by a long

run variance estimator. If ut is modeled as having a general serial correlation structure that
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is unknown, we would modify each test by dividing by a function of the long run variance

estimator. For the purpose of asymptotic analysis, we introduce the following assumptions:

Assumption 1. yt is generated according to (2.1) where E(ut) = 0 and θ
(

t
T

)
= µ+g

(
t
T

)
η

with |g(t/T )− g(s/T )| ≤ |(t− s)/T |c1, where c1 is a constant and η = O(T b), 0 ≤ b ≤ 1.

Assumption 2. ut is fourth order stationary and absolutely regular with mixing coefficients

β(j) satisfying
∑∞

j=1 jβ(j)
δ

1+δ ≤ ∞ for some δ > 0.

Assumption 3. k(·) satisfies Assumption A3 in Jansson (2002).

Assumption 4. Let M = max{M1, M2}, where

M1 ≥
∫
|urusus′ur′ |1+δdF (ur, ur′ , us, us′)

M2 ≥
∫
|urusus′ur′ |1+δdF (ur)dF (ur′ , us, us′),

where M < ∞.

Assumption 1 is the same as in Theorem 3.1. Assumption 2 limits the amount of de-

pendence in the data. The mixing concept of absolute regularity is common and includes

ARMA processes under certain restrictions of the density of innovations. This type of

mixing condition is employed in several nonparametric estimation papers including recent

articles by Hsiao and Li (2001), Fan and Li (1999) and Li (1999). Assumption 3 was used

in Jansson (2002), who shows that this is the class of kernels that should be considered

for consistent estimation. This class of kernel contains many conventional kernel functions

in the literature. Assumption 4 are moment conditions used along with the dependence

conditions to find limiting distributions.

We present the initial result in the following theorem.

Theorem 3.2. Suppose Assumptions 1 - 4 hold and we use the data dependent bandwidth

for the long-run variance, if η = T b with 0 < b < 1/2, we have

CUSUMT = Op

(
T

q(1−2b)
2q+1

)
,

QST = Op

(
T

2q(1−2b)
2q+1

)
,
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where q is the order of the kernel function. If η = T b with b ≥ 1/2, we have

CUSUMT = Op(1),

QST = Op(1).

In particular, if q = 1,

CUSUMT = Op

(
T

(1−2b)
3

)
, QST = Op

(
T

(2−4b)
3

)
, when 0 < b < 1/2,

and if q = 2,

CUSUMT = Op

(
T

(2−4b)
5

)
, QST = Op

(
T

(4−8b)
5

)
, when 0 < b < 1/2.

Given the results of the above theorem, we see that the divergence rate of the test statistic

becomes smaller and smaller as the magnitude of the change (i.e. b) increases, corresponding

to less and less power in the presence of a large change. When b ≥ 1/2, the tests are bounded

in probability. In other words, for divergent alternatives, the tests are no longer consistent.

In finite samples, this means we may observe very obvious large changes in the mean of a

series that will not be detectable by this type of test. As discussed above, several Monte

Carlo studies have shown evidence of nonmonotonic power, where large changes are less

detectable than small changes. The theorem provides an asymptotic theory to explain the

existence of nonmonotinc power for a wide class of changes in mean that are indexed by

η. We find this to be a very undesirable feature for the tests, and suggest a remedy in the

next section.

4. Modified Tests

In this section, we consider a modification on the existing tests. We use an estimator of the

long-run variance that still converges to the true long-run variance even under parameter

change (non-constant θt). To this end, we estimate two sets of residuals. First let ût

be the OLS residuals from regressing yt on a constant. These residuals do not allow for

any structural change, with θt assumed to be constant. These residuals will be used to

construct the partial sums T−1/2
∑[Tr]

t=1 ût. Next, we construct nonparametric regression
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residuals ũt based on a nonparametric regression on (2.1). That is, we estimate θ(t/T )

using nonparametric kernel methods,

θ̃(t/T ) =
1

Th

T∑

s=1

Ktsys,

with

Kts = K

(
t− s

Th

)
,

and K(·) is a kernel function (different from the lag window k(·) used for the long-run

variance), and h is a bandwidth parameter such that h → 0. This estimator of θt was

originally proposed in Priestley and Chao (1972) and is also related to the estimator of

Robinson (1989). It differs from the usual nonparametric estimator in that there is no

need to have a kernel density estimator in the denominator since θ is a function of time.

Alternatively, one could include an estimate of the density in the denominator which would

converge (uniformly) to one.

The second set of residuals is defined as

ũt = yt − θ̃(t/T ).

Based on ũt, the sample autocovariance function γ̃(j) is then calculated as

γ̃(j) =
1
T

T∑

t=j+1

ũtũ
>
t−j , for j ≥ 0; and γ̃(j) = γ̃(−j) for j < 0,

and long run variance estimated by

ω̃2 =
T−1∑

j=−T+1

k

(
j

bT

)
γ̃(j).

The modified tests are then constructed based on ω̃2 (based on nonparametrically de-

meaned data) and ût (based on OLS demeaned data). For example, the modified CUSUM

and QS tests are based on the following modified empirical process:

ŨT (r) =
1

ω̃
√

T

[Tr]∑

t=1

ût.

In particular, we denote the modified tests by

CUSUM∗
T = sup

0≤r≤1
|ŨT (r)|, QS∗T =

∫ 1

0
ŨT (r)2dr.
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In these modified tests, the partial sum process T−1/2
∑[Tr]

t=1 ût are constructed based on

OLS residuals and will capture the fluctuation in the presence of structural changes. The

long run variance estimator ω̃2 is constructed based on nonparametric demeaned data and,

under the null hypothesis of constant mean, should converge to the true long-run variance.

Moreover, we posit that under the alternative hypothesis, the modified estimator of the

long-run variance diverges at a slower rate than the original unmodified version. Thus tests

based on the modified long-run variance estimator are more likely to exhibit monotonic

power.1 Our proposed method uses a nonparametric kernel estimator for θ(t/T ). Moreover,

the widely used data-dependent bandwidth bopt can also be calculated based on ũt. We

propose a modified data dependent bandwidth using the nonparametric residuals ũt and

the plug-in formula as Andrews (1991):

b̃opt = ξ(k)× (α̃(q)T )1/(2q+1)

where α̃(q) is now estimated based on ũt. Let ρ̃ be the AR(1) coefficient estimate from

regressing ũt on ũt−1, α̃(q) is estimated based on ρ̃. Corresponding to the quadratic spectral

kernel,

α̃(2) =
4ρ̃2

(1− ρ̃)4
.

We explore the performance of the modified long-run variance estimator in the following

theorems.

Assumption 5. K(·) is a bounded continuous density such that
∫∞
−∞ |uK(u)|du < ∞.

Assumption 6. Let h → 0 and T 3/10h1/2 →∞.

Theorem 4.1. Suppose that Assumptions 1-6 hold and let ω̃2 be estimated using the non-

parametric residuals, under the null hypothesis of no structural change, we have

ω̃2 p→ ω2.

This theorem states that tests using the modified long-run variance will have the correct

size. Moreover, as a minor corollary to this theorem, it is easy to show that the quantity

1Related to the idea of local smoothing, Crainiceanu and Vogelsang (2007) suggest using moving averages

of the data as a simple estimate of the mean. However, no further analysis is provided and no proofs or

regularity conditions are given.
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α̃(2) will converge to the relevant population quantity α(2), so that we can expect to have

good size in finite samples.

The purpose in using modified residuals, ũt, in the construction of the long-run variance is

to maintain consistency of the tests. The next theorem shows that this intuition is correct.

Theorem 4.2. Suppose that the long-run variance is estimated using ω̃2, assumptions 1-5

hold, η = T b, and h = O(T−a) where 0 < a < 1/3. Let q be the order of the kernel function,

Then we have the following results:

Case 1: 0 < b ≤ a− 1/(2(2q + 1)).

CUSUM∗
T = Op(T

1
2
+b), QS∗T = Op(T 1+2b).

Case 2: a− 1/(2(2q + 1)) < b ≤ a.

CUSUM∗
T = Op(T

2aq+q+a
2q+1 ), QS∗T = Op(T

2(2aq+q+a)
2q+1 ).

Case 3: a < b ≤ a/2 + 1/2.

CUSUM∗
T = Op(T

4qa−2qb+q+a
2q+1 ), QS∗T = Op(T

2(4qa−2qb+q+a)
2q+1 ).

Case 4: 1/2 + a/2 < b.

CUSUM∗
T = Op(T

3qa+a
2q+1 ), QS∗T = Op(T

2(a+3qa)
2q+1 ).

The main point of the theorem is that the modified tests are consistent against all alter-

natives. This consistency holds for large order of η = O(T b). The conventional CUSUMT

and QST tests that use the standard long-run variance estimators are not consistent for

b ≥ 1/2. Moreover, even for values of b where the standard tests remain consistent, the

modified tests diverge at a faster rate due to the presence of h = O(T−a) where a > 0.

Therefore, we expect the performance of CUSUM∗
T and QS∗T to dominate CUSUMT and

QST for all classes of (non-local) alternatives. We verify this claim in the Monte Carlo

section.
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5. Monte Carlo

In this section, we conduct a Monte Carlo experiment to examine the effectiveness of the

proposed modification. In particular, we compare the original tests (denoted by CUSUMT

and QST ) with the proposed tests (denoted by CUSUM∗
T and QS∗T , using long-run variance

estimator based nonparametric regression residuals). The kernel and lag truncation used

in the long-run variance estimation are the quadratic spectral kernel and the corresponding

data-dependent bandwidth b̃opt.

The proposed new tests require a bandwidth parameter h and a kernel K(·). For the

kernel used in the nonparametric regression estimation of θ(t/T ), we use the Epanechnikov

kernel given by

K(x) =

{
3
4(1− x2) if |x| ≤ 1
0 if |x| > 1.

For comparison purposes, we use three choices of bandwidth, h = cT−1/5, with c = 1, 2, 3.

First, size is examined by generating the following process

yt = θ + ut

where θ = 1 and ut = ρut−1 + εt with εt iid N(0, 1). We consider sample sizes of T =

100, 200, 300 and rho takes the values 0.0, 0.5, and 0.7. The nominal size is 5%, the number

of replications is 2000, and the percentage of rejections appears in Table 1. There are

several interesting points to note. First, each of the original statistics have reasonable size

properties as none of the original tests are grossly oversized in any case. As expected, size

performance improves as T increases. The behavior of the modified tests depends on the

choice of bandwidth h used in the nonparametric estimation of the mean, θ(t/T ). For the

bandwidth h = 1× T−1/5, the modified tests are oversized, especially with larger values of

ρ. However, for h = 2× T−1/5, size is much better, especially for T = 200 and T = 300. Of

course, the goal of the modified tests is not to improve the already reasonable size of the

tests. We are trying to maintain good size and avoid power problems, the issue we address

next.
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Power comparisons are made using the following process.

yt = θ(t/T ) + ut

ut = ρut−1 + εt

where εt is again N(0, 1) iid. However, now we let θ(t/T ) be governed by

θ(t/T ) =

{
1 for t = 1, . . . , 0.5T

1 + η for t = 0.5T + 1, . . . T.

We calculate size adjusted power using h = 2× T−1/5 with T = 200 for different values of

ρ, and we report the resulting power graphs for the case ρ = 0.7 in Figures 1-2.

The results shown in the graphs are striking. The original tests both exhibit non-

monotonic power for this experiment, with power going to near zero for large changes in

mean. Although we show only the results for ρ = 0.7, other simulations show that the effect

is more pronounced as the level of serial correlation in ut increases. However, as predicted

from the asymptotic results in the last section, the modified tests alleviate the problem of

nonmonotonic power. Moreover, the size-adjusted power of the new tests in the small η

range is never less than the size-adjusted power of the original tests. The figures verify our

intuition and asymptotic results which suggest the modified tests have some immunity to

monotonic power and inconsistency.

The proposed new tests uses a nonparametric estimation of the regression function which

involve a choice of bandwidth parameter h. In our Monte Carlo, we considered a simple

choice of h = cT−1/5 with c = 1, 2, 3. The Monte Carlo results indicate that when c = 2 and

3, the proposed tests have reasonably good sampling performance. However, when c = 1,

the tests overreject as ρ increases. This is because that as the temporal dependence in ut

increases, a larger bandwidth is needed. Like many other inference procedures based on

nonparametric estimation, the choice of bandwidth h affects the sampling performance and

thus it would be helpful to use some data-dependent information in selecting h. Existing

data-dependent bandwidth selection procedures are not directly applicable to our inference

problem. For practical purpose, notice that the design of regressors are fixed in our model

and what affects the bandwidth selection is the serial correlation in the error term. Based

on Monte Carlo experiments for different design of the error correlation, it suggests that
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the bandwidth choice h = 2× T−1/5 provides reasonable sampling performance for a wide

range of serial correlation. For this reason, we recommend the use of this bandwidth in

the nonparametric regression. More complicated ways on bandwidth selection in our model

is possible. In principle, a bandwidth selection that optimize the size and power trade-off

would require higher order expansion. Alternatively, bootstrap based inference methods

may also help. We wish to investigate these alternatives in future research.

6. Empirical Illustration

In this section, we provide an empirical example using our new modified statistics. The

series we analyze is the expected median inflation rate. The data was collected by the

University of Michigan Survey Research Center and is available on the Federal Reserve

Bank of St. Louis web site. Figure 4 shows the data from January of 1978 to September of

2004. From the graph, it appears that there is an obvious change in mean. As is well known,

from the early 1980’s forward, inflation has a much lower mean and appears to be more

stable. We calculate the standard CUSUM and QS tests and find values of 0.913 and 0.362

respectively. The corresponding critical values of these tests are 1.36 and 0.463 respectively.

Thus, we fail to reject the null hypothesis of a constant mean over the entire range of the

data. Next, we calculate the CUSUM∗ and QS∗ tests using the modified long-run variance.

The values are 1.55 and 1.06 respectively. We reject the null hypothesis in both cases. This

example shows how some standard tests will fail to reject the null hypothesis of a constant

mean in situations with obvious instability. However, the new modified tests are able to

easily detect such a change.

7. Conclusion

Using an asymptotic analysis of large changes in mean, we have shown that the problem

of nonmonotonic power in tests of changing mean can be alleviated through the use of

nonparametric residuals. The theoretical results show that we can expect the modified

tests to reduce the problem due to the local smoothing of the series which provides a

better estimate of the residuals under the alternative hypothesis. The properties of our
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modification are apparent from the Monte Carlo experiment as well as from our empirical

example using expected inflation.

The problem of nonmonotonic power affects tests of changing mean. However, this re-

mains a very serious and pervasive issue. In a regression setting, if there are changes in

the mean of the regressors, Hansen (2000) shows that there can be very severe empirical

problems. Researchers who ignore changes in mean of the regressors will incorrectly find

structural change in the regression parameters rather than correctly attributing the change

to the mean of the regressors. Hence, it becomes important to test for changes in mean of

each regressor, and our tests may serve an important role in such a task.
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Appendix A. Proofs

Let ǔt = (Th)−1
∑

s=1 usKts and θ̌t = (Th)−1
∑

s=1(θ(t/T )− θ(s/T ))Kts.

Lemma A.1. Under Assumptions 1 - 4,

D = T−1
T∑

t=j+1

ǔtǔt−j = Op(T−1h−1).

Proof:

E|D| ≤ 1
T

T∑

t=j+1

E|ǔtǔt−j |

≤ 1
T

T∑

t=j+1

√
E(ǔ2

t )E(ǔ2
t−j)

E(ǔ2
t ) =

1
T 2h2

T∑

s=1

E(u2
s)K

2
ts +

1
T 2h2

∑ ∑

s 6=s′
E(usus′)KtsKts′

≤ O(T−1h−1) +
2

T 2h2

∑ ∑

s<s′
β(s′ − s)

δ
1+δ M

1
1+δ K(0)Kts

= O(T−1h−1)

where E|usus′ | < M
1

1+δ β(s′ − s)
δ

1+δ comes from an application of Lemma A.5. Then we

have

E|D| ≤ 1
T

T∑

t=j+1

√
O(T−2h−2)

= O(T−1h−1)

Lemma A.2. Under Assumptions 1 - 4,

F =
1
T

T∑

t=j+1

ǔtθ̌t = Op(T−1/2h1/2η).

Proof:

E(F 2) =
1
T 2

T∑

t=1

E(ǔ2
t )

[
1

Th

T∑

s=1

(θ(t/T )− θ(s/T ))Kts

]2

+
1
T 2

T∑ T∑

t 6=t′
E(ǔtũt′)

[
1

Th

T∑

s=1

(θ(t/T )− θ(s/T ))ts

] [
1

Th

T∑

s′=1

(θ(t′/T )− θ(s′/T ))Kt′s′

]



17

We have

E(ǔtǔt′) =
1

T 2h2

T∑

s=1

T∑

s′=1

KtsKt′s′E(usus′) ≤ 1
T 2h2

T∑

s=1

T∑

s′=1

KtsKt′s′ |E(usus′)|

∼ 1
T 2h2

T∑

s′=s+1

Kt′s′

T−1∑

s=1

K(0)β(s′ − s)
δ

1+δ M
1

1+δ = O(T−1h−1),

where the β(s′ − s) terms come from the application of Lemma A.5. Next,

θ̌t =
1

Th

T∑

s=1

(θ(t/T )− θ(s/T ))Kts

∼ η

h

∫ 1

0
(g(u)− g(v))K

(
u− v

h

)
dv ≤ η

h

∫ 1

0
|u− v|c1K

(
u− v

h

)
dv

=
η

h

∫ (1−u)/h

−u/h
|wh|c1K (w) dw h = O(ηh).

These results imply that E(F 2) = O(T−1hη2) so that F = Op(T−1/2h1/2η).

Lemma A.3. Under Assumptions 1 - 4,

G =
1
T

T∑

t=1

utθ̌t = Op(T−1/2ηh).

Proof:

E(G2) =
1
T 2

T∑

t=1

E(u2
t )θ̌

2
t

+
1
T 2

T∑ T∑

t 6=t′
E(utut′)θ̌tθ̌t′

= G1 + G2

Since θ̌t = O(ηh), G1 = O(T−1η2h2). Then

G2 ≤ 1
T 2

T∑ T∑

t6=t′
|E(utut′)|O(η2h2) ≤ 1

T 2

T∑ T∑

t 6=t′
β(t− t′)

δ
1+δ M

1
1+δ O(η2h2) = O(T−1η2h2),

making E(G2) = O(T−1η2h2) and G = Op(T−1/2ηh).

Lemma A.4. Under Assumptions 1 - 4,

H =
1
T

T∑

t=j+1

utǔt−j = Op(T−1h−1)
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Proof:

E(H2) ≤ 1
T 2

T∑

t=1

E(u2
t ǔ

2
t−j)

+
1
T 2

T∑

t 6=t′

T∑
E(utut′ ǔt−j ǔt′−j)

=
1

T 4h2

T∑

t=1

T∑

s=1

T∑

s′=1

E(u2
t usus′)Kt−j,sKt−j,s′

+
1

T 4h2

T∑

t6=t′

T∑ T∑

s=1

T∑

s′=1

E(utut′usus′)Kt−j,sKt′−j,s′

= H1 + H2.

Consider H2. Without loss of generality, suppose that t < t′ < s < s′. There are several

subcases:

a) t′ − t ≥ max{s− t′, s′ − s}
b) s− t′ ≥ max{t′ − t, s′ − s}
c) s′ − s ≥ max{t′ − t, s− t′}

For case a), we have

H2 ≤ 1
T 4h2

T−3∑

t=1

T−2∑

t′=t+1

T−1∑

s=t′+1

T∑

s′=s+1

E|utut′usus′ |Kt−j,sKt′−j,s′

≤ 1
T 4h2

T−3∑

t=1

T−2∑

t′=t+1

T−1∑

s=t′+1

T∑

s′=s+1

β(t′ − t)
δ

1+δ M
1

1+δ Kt−j,sKt′−j,s′

≤ 1
T 4h2

T−3∑

t=1

T−2∑

t′=t+1

(t′ − t)β(t′ − t)
δ

1+δ

T∑

s=1

K(0)2

= O(T−2h−2)

where the second inequality comes from Lemma A.5 and the last line from Assumption 2.

The other cases are similar and the proof of H1 is similar so that H = Op(T−1h−1).

Lemma A.5. (Lemma 1, Yoshihara (1976)) Let xt1 , xt2 , . . . , xtk (with t1 < t2 < · · · < tk)

be absolutely regular random vectors with mixing coefficients β. Let h(xt1 , xt2 , . . . , xtk) be a

Borel measurable function and let there be a δ > 0 such that

P = max{P1, P2} < ∞
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where

P1 =
∫
|h(xt1 , xt2 , . . . , xtk)|1+δ dF (xt1 , xt2 , . . . , xtk)

P2 =
∫
|h(xt1 , xt2 , . . . , xtk)|1+δ dF (xt1 , . . . , xtj )dF (xtj+1 , . . . , xtk).

Then

|
∫

h(xt1 , xt2 , . . . , xtk)dF (xt1 , xt2 , . . . , xtk)

− h(xt1 , xt2 , . . . , xtk)dF (xt1 , . . . , xtj )dF (xtj+1 , . . . , xtk)| ≤ 4P
1

1+δ β
δ

1+δ
τ

for all τ = tj+1 − tj.

Proof of Theorem 3.1:

ût = yt − ȳ = ut − ū + θ(t/T )− θ̄T

where θ̄T = 1
T

∑T
t=1 θ(t/T ). The partial sums are such that

1√
T

[Tr]∑

t=1

ût ⇒ W (r)− W̄ +
√

Tη

∫ r

0
(g(s)− ḡ)ds + o(

√
Tη)

In addition, we have

1
T

T∑

t=1

û2
t =

1
T

T∑

t=1

(ut − ū)2 +
2
T

T∑

t=1

(θ(t/T )− θ̄T )(ut − ū) +
1
T

T∑

t=1

(θ(t/T )− θ̄T )2

= σ2 + op(1) + H1 + H2

We have

H1 =
η√
T

2√
T

T∑

t=1

(g(t/T )− ḡT )(ut − ū)

d→ η√
T

X

where the variable X has a normal distribution with variance 4
∫ 1
0 (g(s) − ḡ)2ds, and we

have H2 → η2
∫ 1
0 (g(s)− ḡ)2ds so that

1
T

T∑

t=1

û2
t

d→ σ2 +
η√
T

X + η2

∫ 1

0
(g(s)− ḡ)2ds.

The result follows from the Continuous Mapping Theorem.
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Proof of Theorem 3.2: Let γ̂(j) = T−1
∑T

t=j+1 utut−j . We find the order of

ω̂2 =
T−1∑

j=−T+1

k

(
j

bT

)
γ̂j

in terms of bT and then we will find the order of bT to complete the proof.

We can write

γ̂(j) =
1
T

T∑

t=j+1

(ut − ūT )(ut−j − ūT ) +
1
T

T∑

t=j+1

(θ(t/T )− θ̄T )(ut−j − ūT )

+
1
T

T∑

t=j+1

(ut − ūT )(θ((t− j)/T − θ̄T ) +
1
T

T∑

t=j+1

(θ(t/T )− θ̄T )(θ((t− j)/T )− θ̄T )

The middle two terms are of order η√
T

from the proof of Theorem 3.1. The last term is the

dominant term and is of order η2.

Now b−1
T

∑T−1
j=−T+1 |k (j/bT )| → ∫∞

−∞ |k(x)|dx, which implies that

T−1∑

j=−T+1

k

(
j

bT

)
γ̂(j) = Op(bT η2).

Now we find the order of the optimal bandwidth, which is a function of ρ̂− 1

γ̂1 − γ̂0 = γ1 − γ0 +
1
T

T∑

t=2

(ut−1 − ūT )(θ(t/T )− θ̄T ) +
1
T

T∑

t=2

(ut − ūT )(θ((t− 1)/T )− θ̄T )

+
1
T

T∑

t=2

(θ(t/T )− θ̄T )(θ((t− 1)/T )− θ̄T )− 1
T

T∑

t=1

(ut − ūT )(θ(t/T )− θ̄T )

− 1
T

T∑

t=1

(ut − ūT )(θ(t/T )− θ̄T )− 1
T

T∑

t=1

(θ(t/T )− θ̄T )(θ(t/T )− θ̄T ) + op(1)

Define

J1 =
1
T

T∑

t=2

(ut−1 − ūT )(θ(t/T )− θ̄T )− 1
T

T∑

t=1

(ut − ūT )(θ(t/T )− θ̄T )

J2 =
1
T

T∑

t=2

(ut − ūT )(θ((t− 1)/T )− θ̄T )− 1
T

T∑

t=1

(ut − ūT )(θ(t/T )− θ̄T )

J3 =
1
T

T∑

t=2

(θ(t/T )− θ̄T )(θ((t− 1)/T )− θ̄T )− 1
T

T∑

t=1

(θ(t/T )− θ̄T )(θ(t/T )− θ̄T )

so that

γ̂1 − γ̂0 = γ1 − γ0 + J1 + J2 + J3 + op(1).
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For J2 we have

E|J2| ≤ η

T
E |(u1 − ū)| |(g(1/T )− ḡT )|+ η

T

T∑

t=2

E |(ut − ūT )| |(g((t− 1)/T )− g(t/T ))|

∼ η

T

T∑

t=2

E |(ut − ūT )| 1
T

= O
( η

T

)

The analysis of J1 is similar. Then

|J3| ≤ η2

T
(g(1)− ḡT )2 +

η2

T

T∑

t=2

|g((t− 1)/T )− ḡT | |g((t− 1)/T )− g(t/T )|

≤ η2

T

T∑

t=2

|g((t− 1)/T )− ḡT | 1
T

= O

(
η2

T

)
.

The order of γ̂0 is Op(η2) from the proof of Theorem 3.1.

We consider three cases for the behavior of η.

In particular, in the case when q = 2,

Case 1: η2

T → ∞. Hence, the dominant term in γ̂1 − γ̂0 is η2/T so that ρ̂ − 1 = Op( 1
T )

and then

α̂(2) =
4ρ̂2

(1− ρ̂)4
= Op(T 4)

so that

bopt = Op((α̂(2)T )1/5)

= Op(T )

Setting bT = bopt gives ω̂2 = Op(Tη2) so that

CUSUMT = Op

(
T 1/2η

T 1/2η

)

QST = Op

(
Tη2

Tη2

)
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Case 2: η2

T → 0. The dominating term in γ̂1− γ̂0 is γ1− γ0 so that ρ̂− 1 = Op(η−2). and

then

α̂(2) =
4ρ̂2

(1− ρ̂)4
= Op(η8)

so that

bopt = Op((α̂(2)T )1/5)

= Op(η8/5T 1/5)

where η = T b. Setting bT = bopt gives ω̂2 = Op(η8/5T 1/5η2) so that

CUSUMT = Op

(
T 1/2η

T (1+8b)/10η

)

QST = Op

(
Tη2

T (1+8b)/5η2

)

Case 3: η = T 1/2. This case is similar to Case 1.

In general, notice that the component that is determined by the plug-in procedure can be

written as α̂(q) = g(ρ̂)/(1− ρ̂)2q, where g(ρ̂) = Op(1). when η2

T →∞, Hence, the dominant

term in γ̂1 − γ̂0 is η2/T so that ρ̂− 1 = Op( 1
T ) and then

α̂(q) = g(ρ̂)
1

(1− ρ̂)2q
= Op(T 2q)

so that

bopt = Op((α̂(q)T )1/(2q+1)) = Op(T ).

Setting bT = bopt gives ω̂2 = Op(Tη2) so that

CUSUMT = Op (1) , QST = Op (1) .

Case 2: η2

T → 0. The dominating term in γ̂1− γ̂0 is γ1− γ0 so that ρ̂− 1 = Op(η−2). and

then

α̂(q) = g(ρ̂)
1

(1− ρ̂)2q
= Op(η4q)

so that

bopt = Op((α̂(q)T )1/5) = Op(η4q/(2q+1)T 1/(2q+1))
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where η = T b. Setting bT = bopt gives ω̂2 = Op(η4q/(2q+1)T 1/(2q+1)η2) so that

CUSUMT = Op

(
T 1/2η

η2q/(2q+1)T 1/(4q+2)η

)
= Op

(
T q(1−2b)/(2q+1)

)

QST = Op

(
Tη2

η4q/(2q+1)T 1/(2q+1)η2

)
= Op

(
T 2q(1−2b)/(2q+1)

)

Case 3: η = T 1/2. This case is similar to Case 1.

Proof of Theorem 4.1:

γ̃(j) =
1
T

T∑

t=j+1

(ut − ǔt)(ut−j − ǔt−j)

=
1
T

T∑

t=j+1

utut−j − 1
T

T∑

t=j+1

utǔt−j

− 1
T

T∑

t=j+1

ǔtut−j +
1
T

T∑

t=j+1

ǔtǔt−j

=
1
T

T∑

t=j+1

utut−j + Op(T−1/2h−1/2) + Op(T−1h−1)

from Lemmas A.1 and A.4. Then

T−1∑

j=−T+1

k

(
j

bT

) 
γ̃(j)− 1

T

T∑

t=j+1

utut−j


 = Op(bT T−1/2h−1/2 + bT T−1h−1)

We find the order of b̃opt using the residuals from the nonparametric regression. Note that

under the null, yt − ỹt = ut − ǔt as defined in the beginning of the Appendix. We have

γ̃1 − γ̃0 =
1
T

2∑

t=2

utut−1 − 1
T

T∑

t=2

utǔt−1 − 1
T

T∑

t=2

ǔtut−1 +
1
T

T∑

t=2

ǔtǔt−1

− 1
T

T∑

t=1

u2
t +

2
T

T∑

t=2

utǔt − 1
T

T∑

t=2

ǔtǔt

= γ1 − γ0 + Op(T−1/2h−1/2 + T−1h−1)

and similarly,

γ̃0 = γ0 + Op(T−1/2h−1/2 + T−1h−1)
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so that b̃opt = O(T 1/5) under the null hypothesis. Replacing bT with b̃opt, we have

T−1∑

j=−T+1

k

(
j

bT

)
γ̃(j)− 1

T

T∑

t=j+1

utut−j


 = Op(T 1/5T−1/2h−1/2 + T 1/5T−1h−1)

= op(1)

by the assumptions on the bandwidth so that ω̃2 is consistent.

Proof of Theorem 4.2:

γ̃(j) =
1
T

T∑

t=j+1

(ut − ǔt + θ̌t)(ut−j − ǔt−j + θ̌t−j)

=
1
T

T∑

t=j+1

utut−j − 1
T

T∑

t=j+1

utǔt−j +
1
T

T∑

t=j+1

utθ̌t−j

− 1
T

T∑

t=j+1

ǔtut−j +
1
T

T∑

t=j+1

ǔtǔt−j − 1
T

T∑

t=j+1

ǔtθ̌t−j

+
1
T

T∑

t=j+1

θ̌tut−j − 1
T

T∑

t=j+1

θ̌tǔt−j +
1
T

T∑

t=j+1

θ̌tθ̌t−j

= γj + Op(T−1/2h1/2η + T−1h1η + T−1h−1 + T−1/2h−1/2) + O(h2η2)

from Lemmas A.1-A.4 and the fact that θ̌t = O(hη). Since h = T−a and 0 < a < 1/3, the

dominant term is either a constant or η2h2 depending on whether η2h2 diverges. Therefore,

the maximum order is
T−1∑

j=−T+1

k

(
j

bT

)
γ̃(j) = Op(bT η2h2).

We find the order of b̃opt using γ̃j under the alternative hypothesis. We have

γ̃1 − γ̃0 =
1
T

T∑

t=2

(ut − ǔt + θ̌t)(ut−1 − ǔt−1 + θ̌t−1)− 1
T

T∑

t=1

(ut − ǔt + θ̌t)2

=
1
T

T∑

t=2

utut−1 − 1
T

T∑

t=1

u2
t −

1
T

T∑

t=2

utǔt−1 +
1
T

T∑

t=1

utǔt +
1
T

T∑

t=2

utθ̌t−1 − 1
T

T∑

t=1

utθ̌t

− 1
T

T∑

t=2

ǔtut−1 +
1
T

T∑

t=1

ǔtut +
1
T

T∑

t=2

ǔtǔt−1 − 1
T

T∑

t=1

ǔ2
t −

1
T

T∑

t=2

ǔtθ̌t−1 +
1
T

T∑

t=1

ǔtθ̌t

+
1
T

T∑

t=2

θ̌tut−1 − 1
T

T∑

t=1

θ̌tut − 1
T

T∑

t=2

θ̌tǔt−1 +
1
T

T∑

t=1

θ̌tǔt +
1
T

T∑

t=2

θ̌tθ̌t−1 − 1
T

T∑

t=1

θ̌tθ̌t

= L1 − L2 + L3 − L4 + L5 − L6 + L7 − L8 + L9
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where the L terms are defined as

L1 =
1
T

T∑

t=2

utut−1 − 1
T

T∑

t=1

u2
t

L2 =
1
T

T∑

t=2

utǔt−1 − 1
T

T∑

t=1

utǔt

L3 =
1
T

T∑

t=2

utθ̌t−1 − 1
T

T∑

t=1

utθ̌t

L4 =
1
T

T∑

t=2

ǔtut−1 − 1
T

T∑

t=1

ǔtut

L5 =
1
T

T∑

t=2

ǔtǔt−1 − 1
T

T∑

t=1

ǔ2
t

L6 =
1
T

T∑

t=2

ǔtθ̌t−1 − 1
T

T∑

t=1

ǔtθ̌t

L7 =
1
T

T∑

t=2

θ̌tut−1 − 1
T

T∑

t=1

θ̌tut

L8 =
1
T

T∑

t=2

θ̌tǔt−1 − 1
T

T∑

t=1

θ̌tǔt

L9 =
1
T

T∑

t=2

θ̌tθ̌t−1 − 1
T

T∑

t=1

θ̌tθ̌t

We find the convergence of each term in turn. First, L1 = γ1 − γ0 + op(1). The terms L2

and L4 are Op(T−1h−1) by Lemma A.4. L5 is Op(T−1h−1) by Lemma A.1. We can write

L3 =
1
T

T∑

t=2

utθ̌t−1 − 1
T

T∑

t=1

utθ̌t

=
1
T

T∑

t=2

ut

(
θ̌t−1 − θ̌t

)− 1
T

u1θ̌1

≤ 1
T

T∑

t=2

|ut||
(
θ̌t−1 − θ̌t

) |+ 1
T
|u1||θ̌1|

≤ 1
T

T∑

t=2

|ut|| η
T
|+ 1

T
|u1||θ̌1|

= Op

( η

T

)
+ Op

(
ηh

T

)
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The order of L7 is the same as L3. Similarly, we have

L6 =
1
T

T∑

t=2

ǔtθ̌t−1 − 1
T

T∑

t=1

ǔtθ̌t

=
1
T

T∑

t=2

ǔt

(
θ̌t−1 − θ̌t

)− 1
T

ǔ1θ̌1

≤ 1
T

T∑

t=2

|ǔt||
(
θ̌t−1 − θ̌t

) |+ 1
T
|ǔ1||θ̌1|

≤ 1
T

T∑

t=2

|ut|| η
T
|+ 1

T
|u1||θ̌1|

= Op

(
T−1/2h−1/2

) η

T
+ Op

(
T−1/2h−1/2

) ηh

T
.

The order of L8 is identical to L6. Finally,

L9 =
1
T

T∑

t=2

θ̌tθ̌t−1 − 1
T

T∑

t=1

θ̌tθ̌t

=
1
T

T∑

t=2

θ̌t(θ̌t−1 − θ̌t)− 1
T

θ̌2
1

≤ 1
T

T∑

t=2

|θ̌t||(θ̌t−1 − θ̌t)|+ 1
T

θ̌2
1

≤ 1
T

T∑

t=2

|θ̌t| η
T

+
1
T

θ̌2
1

= O

(
η2h

T

)
+ O

(
η2h2

T

)

Since h = T−a with a < 1/3, the dominant term of γ̃0 is η2h2 or a constant. The dominant

terms of γ̃1 − γ̃0 are η/T or η2h/T or a constant. Recall that ρ̃ − 1 = (γ̃1 − γ̃0)/γ̃0. Since

η = T b and h = T−a, we have the following cases:
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Case 1: 0 < b ≤ a − 1/(2(2q + 1)), then η/T dominates η2h/T but η/T → 0. Hence

ρ̃− 1 = Op(1) and b̃opt = Op(T 1/(2q+1)). Then

ω̃2 =
T−1∑

j=−T+1

k

(
j

b̃opt

)
(
γj + Op(η2h2

)

= ω2 + Op(T 1/(2q+1)η2h2)

= ω2 + Op(1)

thus

CUSUM∗
T = Op(T

1
2
+b), QS∗T = Op(T 1+2b).

Case 2: a− 1/(2(2q + 1)) < b ≤ a. Then η/T dominates η2h/T , and b̃opt = Op(T 1/(2q+1)).

But now

ω̃2 =
T−1∑

j=−T+1

k

(
j

b̃opt

)
(
γj + Op(η2h2)

)

= Op(T 1/(2q+1)η2h2)

where T 1/(2q+1)η2h2 →∞.

CUSUM∗
T = Op(T

2aq+q+a
2q+1 ), QS∗T = Op(T

2(2aq+q+a)
2q+1 ).

Case 3: a < b ≤ a/2 + 1/2. Then η2h/T dominates η/T and γ̃0 = Op(T 2(b−a)), γ̃1 − γ̃0 =

Op(1). Then ρ̃ − 1 = Op(η−2h−2) so that b̃opt = Op(T (1+4q(b−a))/(2q+1)). This implies that

the order of ω̃2 is Op(T (1+4q(b−a))/(2q+1)η2h2). Thus

CUSUM∗
T = Op(T

1+2a
2 T−(1+4q(b−a))/(4q+2)) = Op(T

4qa−2qb+q+a
2q+1 ),

and

QS∗T = Op(T
2(4qa−2qb+q+a)

2q+1 ).

Case 4: 1/2 + a/2 < b. Again γ̃0 = Op(T 2(b−a)), but

γ̃1 − γ̃0 = Op(T 2b−a−1)

Thus b̃opt = Op(T (1+2q(1−a))/(2q+1)), and the order of ω̃2 is Op(T (1+2q(1−a))/(2q+1)η2h2).

Thus

CUSUM∗
T = Op(T

1+2a
2 T−(1+2q(1−a))/(4q+2)) = Op(T

3qa+a
2q+1 ),

and

QS∗T = Op(T
2(a+3qa)

2q+1 ).
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In the Special case with a quadratic kernel, we have

Case 1: 0 < b ≤ a− 1/10. b̃opt = Op(T 1/5). Then

ω̃2 = ω2 + Op(T 1/5η2h2) = ω2 + Op(1)

where the second to last line comes from the fact that
∑T−1

j=−T+1 k
(

j

b̃opt

)
= Op(b̃opt) =

Op(T 1/5) and the last line is because

T 1/5η2h2 = T 1/5T 2bT−2a

≤ T 1/5T 2a−1/5T−2a

= 1.

Case 2: 0 < a− 1/10 < b ≤ a. Then

ω̃2 =
T−1∑

j=−T+1

k

(
j

b̃opt

)
(
γj + Op(η2h2)

)
= Op(T 1/5η2h2)

where T 1/5η2h2 →∞.

Case 3: a < b ≤ a/2 + 1/2. Then η2h/T dominates η/T but

η2h/T = T 2bT−a/T

=
T 2b

T 1+a

→ 0

since 2b < 1 + a. Then ρ̃ − 1 = Op(η−2h−2) so that α̃(2) = Op(η8h8) and b̃opt =

Op(η8/5h8/5T 1/5). This implies that the order of ω̃2 is Op(T 1/5η8/5h8/5η2h2).

Case 4: 1/2 + a/2 < b. Now the dominant term in the numerator of ρ̃ − 1 is η2h/T =
T 2b

T 1+a →∞. So ρ̃− 1 = Op(T−1h−1) and b̃opt = Op(Th4/5) so that ω̃2 = Op(Th4/5η2h2).

The proof is completed by ω̂2 from Theorem 3.2 with ω̃2.
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Table 1: Size
c T ρ CUSUMT QST CUSUM∗

T QS∗T
100 0.0 0.029 0.050 0.050 0.063
100 0.5 0.014 0.052 0.092 0.121
100 0.7 0.005 0.045 0.153 0.187
200 0.0 0.039 0.055 0.048 0.062

1 200 0.5 0.040 0.066 0.094 0.110
200 0.7 0.022 0.069 0.123 0.156
300 0.0 0.036 0.051 0.046 0.059
300 0.5 0.042 0.065 0.080 0.097
300 0.7 0.030 0.055 0.097 0.115
100 0.0 0.029 0.050 0.037 0.057
100 0.5 0.014 0.052 0.051 0.087
100 0.7 0.005 0.045 0.055 0.105
200 0.0 0.039 0.055 0.044 0.060

2 200 0.5 0.040 0.066 0.066 0.087
200 0.7 0.022 0.069 0.074 0.109
300 0.0 0.036 0.051 0.040 0.055
300 0.5 0.042 0.065 0.061 0.081
300 0.7 0.030 0.055 0.058 0.080
100 0.0 0.029 0.050 0.031 0.053
100 0.5 0.014 0.052 0.029 0.067
100 0.7 0.005 0.045 0.023 0.077
200 0.0 0.039 0.055 0.041 0.058

3 200 0.5 0.040 0.066 0.049 0.077
200 0.7 0.022 0.069 0.050 0.086
300 0.0 0.036 0.051 0.039 0.052
300 0.5 0.042 0.065 0.052 0.073
300 0.7 0.030 0.055 0.043 0.071
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Figure 1
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Figure 2
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Figure 3
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