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1 Introduction

In his well-known paper, Buchanan (1965) suggested that a club organiza-
tion can supply a good or service efficiently whenever a consumer’s utility
derived by sharing the good or service with others in a group depends on
the size of the group.! In a model in which a consumer’s utility is affected
by her and others’ intensity of use of facilities, Berglas (1976) showed that
when consumers are homogeneous, an equal-treatment efficient allocation
can be supported by a single price per unit usage if congestion is anonymous.
Although his proposition does not extends directly to the case of heteroge-
neous consumers, Berglas and Pines (1981) illustrated that if there is a com-
plete price system based on the intensity of usage, an efficient segregation
of consumers occurs in a competitive equilibrium. In a more general model,
Scotchmer and Wooders (1987) proved that mixed clubs are not efficient,
and that a competitive equilibrium with a complete price system is perfectly
segregating and efficient (the first welfare theorem). Moreover, Scotchmer
and Wooders (1987) noted that this complete price system is anonymous (a
type-independent price system).

Although these results are nice, they rely on the perfect divisibility of
consumers in clubs: that is, they assume there is a continuum of consumers
in each club. As will be shown in the next section, if the population of each
club is finite, then (i) single-price per use cannot support efficient allocations,
and (ii) efficient clubs may contain multiple types. The welfare analysis in
Scotchmer and Wooders (1987) essentially relies on the homogeneity of each
club, so their analysis cannot be extended directly to a mixed club case.
One may claim that the assumption of a continuum of consumers in each
club is a good approximation. However, there is another reason to consider
mixed clubs. Imagine a sports club with multiple types of facilities. There
may be consumers who only want to swim, and others who only want to
use treadmills. Still, in the presence of economies of scope, it may not be
a good idea to create a club with only swimming pools or only treadmills.
It can be more cost saving to admit both types of consumers by providing
both swimming pools and treadmills only with differentiated membership
policies for the two types.? Thus, it is important to allow mixed clubs even

ISee Cornes and Sandler (1996) for an overview of the theory of clubs.

2Efficiency of mixed clubs in such situations is mentioned in Berglas and Pines (1981),
but not analyzed. Sandler and Tschirhart (1980) mention efficiency of multiproduct clubs
with cross subsidizations.



if congestion effects are anonymous.?

In the literature on local public goods, Tiebout (1956) suggested that
consumers’ voting with feet (self-selection) over jurisdictions achieves effi-
cient sorting allocations.* Ellickson, Grodahl, Scotchmer, and Zame (1999)
and Allouch, Conley, and Wooders (2009) considered idealized versions of
club (local public goods) economies: each club has a finite membership,
while there is a continuum of clubs. They proved the existence and effi-
ciency of equilibrium in club (or local public goods) economies under general
sets of assumptions.” These papers allow mixed clubs. However, they as-
sume nonanonymous congestion effects (differential crowding): consumers
care about which (observable) types of consumers she shares the facility
with (see Wooders 1999 and Scotchmer 2002 for nice surveys of the subse-
quent literature). On the other hand, intensity of use by members is dropped
from these models: consumers care about facilities and the membership pro-
files of observable types, but not about the intensity of use of the facilities.
In such settings, it is natural to have efficient mixed clubs, and imposing
discriminating membership fees (based on observable types) is sufficient to
achieve efficient outcomes. This result is intuitive: for example, in a social
dance club, the gender composition of the members matters. In contrast
with this line of the literature, this paper follows the approach of Berglas’s
and Scotchmer-Wooders’s anonymous crowding model with intensity of use,
taking the adverse-selection problem seriously.

The results of this paper are as follows. We first show that if members
are indivisible, then efficient clubs are in general mixed even with anonymous
crowding and without the economies of scope of Berglas’s (1976) intensity

3In the subsequent literature, the authors dropped intensity of use from each con-
sumer’s choice variable, and assumed that consumers care about the number of mem-
bers t(anonymous congestion case) or the membership composition of (observable) types
(nonanonymous congestion case).

4Rosen (1974) proposed a hedonic price model in which there exists a market for any
commodities with any characteristics. Rosen’s theory has been used in empirical and
theoretical lierature. This huge literature is also based on Tiebout’s original idea.

°Ellickson et al. (1999) allow consumers belong to multiple clubs and there can be a
continuum of types of consumers, while the number of types of clubs is finite. Allouch et al.
(2009) assume that consumers belong to a jurisdiction only and the number of consumer
types is finite, while there is a continuum of types of jurisdictions. In this paper, we
assume most restrictive case of the above two lines of research, while we allow intensity of
use and multiple policies are provided in the same club to allow differential treatment to
them.



of use model. We then show that although two-part tariff policies work to
support the optimal allocations when consumers are homogeneous, they do
not do a good job when there are heterogeneous consumer types: the adverse
selection problem makes it impossible to support an efficient allocation by
two-part tariff policies. With this in mind, and allowing for economies of
scope in club facility provisions, we develop a general model of a market
for clubs with anonymous crowding effects. We prove the existence and
effciency of an appropriately defined equilibrium assuming entrepreneurial
club managers, when these club managers have a rich membership policy
space that includes highly nonlinear membership policies.® This approach is
particularly interesting, since we can support efficient mixed-club allocations
without discriminatory membership policies. It is natural to assume that
club managers cannot discriminate consumers by their preference types, and
this creates an interesting adverse selection problem.

When each club offers multiple policies (each policy is a function of inten-
sity of use), consumers self-select their favorite club-policy pairs. Note that,
in general, consumers play a game in choosing their intensity of use of the
facilities in their clubs. Thus, it is important that they have beliefs about
what equilibria would be realized in each potential club (nonexisting clubs in
equilibrium). Following Zame (2007), we define equilibrium assuming that
consumers have common beliefs about what allocation would be realized if
a nonexisting (potential) club is created (common belief equilibrium). How-
ever, when highly nonlinear policies are available, we can effectively pin down
each member’s intensity of use. With this device, we can make the equi-
librium allocation belief-free in the sense that managers can pin down the
intraclub allocations that would be realized under their choices of policies.

An additional point that differentiates this paper from the existing liter-
ature is that we do not assume a complete price system for every potential
club type: we assign membership prices only to existing club types. Most
papers in the literature assume that the market system is complete: for every
potential club type, there are certain membership prices. Managers and con-
sumers are price-takers, and a nonexisting club in equilibrium is just a result

OHelsley and Strange (1991) examined a competitive provision of club goods with costly
policy provision (provision costs differ depending on the complexity of policy types). As-
suming that consumers are homogeneous, they show that the competitive equilibrium pro-
vision of club goods with endogenously chosen policy type is constrained Pareto efficient.
Their "competitive" equilibrium concept appears to involve entrepreneurial managers (see
below).



of nobody wanting to join that club type and no manager wanting to sup-
ply that club type. Instead, assuming that club managers are profit-seeking
entrepreneurs and that they have rich policies available, we manage to prove
the first welfare theorem. This equilibrium concept was proposed by Kon-
ishi (2008) in a similar economy with land and other spatial elements in the
spirit of Rothschild and Stiglitz (1976),” but the proof of the existence and
efficiency of equilibrium in Konishi (2008) is completely dependent on ho-
mogeneous clubs via perfect segregation, and is not applicable to the current
problem.

In order to prove the existence of entrepreneurial equilibrium with mixed
clubs, we will take an indirect path. We first define a social equilibrium,
which is an envy-free market equilibrium, and show its existence. Then,
we prove that every social equilibrium is an entrepreneurial equilibrium. In
order to prove the existence of a social equilibrium, we will assign an efficient
allocation to every potential type of mixed clubs. Unlike in other papers,
we need convex preferences in intraclub intensity of use in order to assign a
Pareto-efficient allocation in each potential club by applying the fixed point
mapping developed by Shafer and Sonnenschein (1975).

Kaneko and Wooders (1986) considered a nontransferable utility game
with a finite type and atomless players by assuming that coalitions can
have only finite populations. They proved the nonemptiness of the equal-
treatment core. Allouch et al. (2008) applied this theorem to prove the
existence of equilibrium in their economy. However, we cannot apply this
method directly to our problem. It is because we need to show that there is
a core allocation with envy-freeness. We need to stick to an economic envi-
ronment for this reason. Otherwise, some type of consumers will not want
to fill the membership seats that they are supposed to fill: instead, they
may want to take some other membership seats prepared for other types.
Our theorem can be regarded as the existence theorem for an envy-free core
allocation in our club economy.

Recently, Zame (2007) considered a general equilibrium model of firms
with adverse selections and moral hazard by extending the approach of El-
lickson et al. (1999). He showed the existence of equilibrium and provided
examples of economies that have Pareto-ordered equilibria (thus, the first

"Wooders (1978) and Bewley (1981) also proposed equilibrium concepts in which only
existing clubs are priced. Their equilibria achieve efficiency through potential coalitional
deviations by consumers (instead of managers’ entreneurialship).



welfare theorem does not hold). Our model is the closest to this one. How-
ever, our club model has a special property: due to anonymous crowding
effects, neither club managers nor club members care about the (preference)
type profiles of the members. As long as the chosen actions (a vector of
intensity of use) are the same, they do not care about the rest. This is
precisely why we can prove the first welfare theorem in our club economy,
unlike Zame (2007).

This paper is organized as follows. Section 2 reviews Berglas’s analysis
(1976), and shows that even in a simple and well-behaved economy, efficient
clubs may require a mixed population, and that two-part tariff policies may
not be able to support an efficient allocation, even if the efficient alloca-
tion consists of only homogeneous clubs. In Section 3, we provide a general
model and define entrepreneurial equilibrium. Section 4 proves the existence
and efficiency of entrepreneurial equilibrium when managers can choose their
policies from a rich policy set. Section 5 concludes.

2 The Berglas Model

2.1 Perfectly divisible members

Although Buchanan (1965) is widely recognized as the first paper in the liter-
ature of the theory of clubs, the original idea of this general field is provided
by Tiebout (1956). In the theory of clubs, Berglas (1976) made an interest-
ing point: under certain conditions, a simple market mechanism achieves the
first best allocation. In the following, we will describe a simplified version of
the model by Berglas (1976). There are two types of goods: a numeraire and
a club good (a facility in a club). A consumer can join at most one club, and
can use a unique facility with intensity v € R, (hours of utilization). There
are identical consumers whose utility is (if she belongs to a club and utilizes
the facility with intensity v)

x + u(v, Hv),

where x € R, is the numeraire consumption and H is the number (mea-
sure) of members in the club. Subutility function u is increasing in the first
argument (personal intensity of use) and is decreasing in the second (the ag-
gregated intensity of use: congestion). Here, we are assuming that all mem-
bers utilize the facility with the same frequency v. We focus on symmertic
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allocations. Each consumer is endowed with w > 0 units of the numeraire.
Providing a club with the facility is costly, and it costs ¢ > 0.%

There are two possible assumptions on H. One is H € R, and the
other is H € Z,,. The latter is a closer approximation to a small club,
but the former may not be bad for a large club. Berglas and others in the
literature assume the former, and that utility function is differentiable with
all arguments.

Now, we consider a benevolent club planner’s utility-maximization prob-
lem of its members given the club’s resource constraints. The planner can
choose the best number of members in order to maximize the representative
member’s utility. This treatment may sound odd, but if a club achieves this
utility level, all consumers will want to join in replicas of such a club, and all
other types of club will die out. So, if such an optimal club can be supported
by a price system, we can say that there is a Pareto-efficient equilibrium in a
club economy (though this does not say anything about whether all equilib-
ria are efficient). To illustrate Berglas’s result, fixing a facility provided by a
club,” we set up the following problem (quasi-linearity is not needed for his
result: it is assumed for simplicity):

c

H bject t = —
gll)z?;[(x+u(v, v) subject to w T+

where w, x, v and V' are private good endowment and consumption, individ-
ual and aggregate intensity of use of the club’s facility, respectively, u(v, V)
is a subutility function, and H is the number (measure) of members. The
first-order conditions are:

Uy + H *UV = 0,

. c

vV uy = ( H*) 3

By rewriting the second equation, we have

c
H+v*

E 3
HUVZ—

8Berglas’s theory works in a more general setting: it is not necessary that the utility
function be quasi-linear. Club service provision cost can be a function C'(Hv). We adopted
simplifying assumptions for expositional purpose.

9Tf the size of club facility can be selected from the real line, Boadway (1980) showed
that Berglas’s result holds only if clubs earn zero profits in equilibrium. In the present
paper, this issue is avoided by assuming that there are only (finite) discrete public facilities
by employing the public project approach introduced in Mas-Colell (1980).
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Putting these two equations together, we obtain

c
- H*o*'

Uy

This is an interesting condition. If the consumer is myopic (i.e., ignores the
effect that her consumption of facility v does not affect the third term Hv),
by setting user price ¢* = u,, we can support this optimal allocation. This
can be seen as follows.

The total revenue the club obtains is

g x Hv* = c.
This immediately implies that the club’s budget is balanced. Note that
uy = —H uy

shows that user price ¢ includes a Pigouvian tax to correct the negative
externalities.

Proposition 0. (Berglas 1976; Berglas and Pines 1981) If the population is
perfectly divisible (and differentiable), and if consumers are myopic, then an

optimal club can be supported by price ¢* = .

This is a very nice result, since it basically says that the market solves
all problems even though there are intraclub externalities. However, we can
make a few observations. First, does a consumer ignore a change in aggre-
gated usage frequency caused by his/her own utilization of a facility? If
there is only a finite number of consumers, in a Nash equilibrium setup with
a finite population, each consumer tries to equate u, + uy with ¢* (since she
takes other consumers’ consumption (H — 1)v as given in choosing her own
v). This reduces her intensity of use. As a result, a budget shortage occurs
if there is no membership fee (two-part tariff). However, obviously, if the
number of members is very large, we can ignore the above point. In such a
case, H*v* is a very large number in comparison with v*, so the effect of the
third term disappears. So, with a large number of members, this issue may
not be a serious problem.

Second, and more importantly, the specification of the utility function
u(v, Hv, H) does not work. A term Ou/0H remains, and a budget shortage
occurs. Including argument H is assumed in the original club goods paper
by Buchanan (1965).



Third, Berglas assumes that there is only one type of consumer. If
there are multiple types, then depending on how consumers perceive negative
externalities from a high intensity of use of the facility, charged prices are
different. Thus, if club managers cannot identify consumers’ types (or if
differentiated treatment of consumers is illegal), then the first-best allocation
cannot be decentralized by such a simple market price system. In contrast,
Tiebout’s theory is all about voting with feet: self-selection under asymmetric
information (Tiebout 1956).

Fourth, Berglas’s analysis does not allow multiple types of facilities with
economy of scope; if there are two types of facilities, and the cost function
exhibits economies of scope (c12 < ¢1 + ¢, where ¢, ¢z, and ¢12 are costs
to provide facility 1, facility 2, and facilities 1 and 2 together, respectively),
then mixed clubs are required in order to achieve efficiency even if each type
of consumer cares only about one of the two facilities.!’

In this paper, we take these problems seriously, and determine the con-
ditions under which market equilibrium exists and is Pareto efficient. In the
next section, we will consider the case of two-part tariff policies instead of
the single-price policy considered in Berglas (1976).

2.2 Clubs with indivisible members: the integer prob-
lem

The following example is useful in investigating the importance of integer
constraints. Below, we first analyze the case without the integer problem.

Example (Gullivers and Lilliputs). Let ¢ = 1. Consider the following
utility function:

ug(v, V) = tlog% —tV,

where ¢ > 0 is a taste parameter that represents a type of consumer. Now,
supposing that we can choose the number for membership H optimally with-
out worrying about the integer problem, the optimization problem becomes:

c v 1
max (ut(v,Hv) — E) = max (tlog; —tHv — E) :

10Brueckner and Lee (1991) analyze multiple club goods and economies of scope, but
their point is different from ours. Their interest is whether bundling services is more
efficient than separate clubs providing different services.



The first-order conditions are:
1 ¢
v: tX—=Xx—-——tH =0,
t v
and

1
H: —tv+ﬁ:0.

These two conditions imply

Hv ' =1land t =0* =

H*

That is, V* = H*v* = 1 irrespective of the value of ¢, while the population
H* = % is a decreasing function in £. This means that consumers with a
small value t need a high population, but intensity of use is low. As a result,
the aggregate intensity of use is still the same at the optimum. Ignoring the
integer problem, the optimal allocation for type ¢ is (v, V) = (¢,1) for all ¢.
That is, ¢ represents the size of a consumer relative to the optimal allocation.
If a Gulliver type’s t¢ is twice as much as a Lilliput type’s t¥, then a Gulliver
is twice as big as a Lilliput, and the optimal population of the Gulliver type’s
club is a half of one of the Lilliput type’s.ll

With this example, we can show the following result.

Proposition 1. With the integer problem, the optimal homogeneous club
allocation can be dominated by a mixed-club allocation even if there is only
one facility (no economies of scope).

Proof. Consider the above example with t¢ = 0.07 and t* = 0.03. In this
case, neither the Gulliver type only nor the Lilliput type only can achieve
V = 1 with optimal intensity of use v“ = 0.07 and v* = 0.03. However, for
example, 10 Gulliver types and 10 Lilliput types together can achieve V' = 1.
Hence, the optimal homogeneous club allocation is not Pareto efficient.l

2.3 Two-part tariff and intraclub game

The goal of our analysis is to determine whether the first welfare theorem
holds with two-part tariff policies. To do so, we need to know what Nash
equilibria can emerge when each type of club (membership profile) is realized.
We show that there is a unique Nash equilibrium under reasonable conditions
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(with quasi-linear preferences). As a corollary, we can show that in a totally
segregated club, a symmetric allocation is the unique equilibrium outcome.
Consider a club with H consumers with a policy of ¢(v) = qg + q,v. In the
following analysis of this section, we do not specify each consumer’s type,
and conduct a general analysis to explore properties of Nash equilibria. Since
player i is free to choose a bundle (x;, v;) in her budget set given other players’
intensity of use V_; = > ;i Vj- Player ¢’s optimization problem is
max z; + u;(v;, V_; + v;, H) subject to qv; + 7; <w — qg
where u; : R X Zy; — R is C? continuously differentiable in (v;, V'), and
w(0,V,H) =0 for all V and H. The latter condition says that using facility
(v; > 0) is essential. By substituting budget constraints for x;, the problem
is written as
max u(vy, V_; + vy, H) + w — qg — .

Vi

The first-order condition with respect to v; is
Wip (Vi, Vo + 03, H) 4wy (v, Vo + 05, H) = qo.

A Nash equilibrium is a strategy profile (vy,...,vy) such that v; is the
optimal choice given the budget constraint and other players’ intensity of
use for all 7. We can now prove the following.

Proposition 2. Suppose that the utility function is quasi-linear in the
numeraire. For all H, and two-part tariff ¢ + g,v with qg,q, > 0, a club
with planned population H, there exists a unique interior Nash equilibrium in
which the same consumer types choose the same v, if the following conditions
are satisfied for all 7, v, V', and H:

2
L wi >0, uiy <0, Uiy <0, Uiy <0, uyy <0, and ’UivvuiVV — Uwv| >
0,

2. hmv_,() uw(v, ‘/, H) = 00,

3. lim, o (v, V, H) = 0.

Proof. Totally differentiating the first-order condition, we have

(Wivw + Uyvo + Uiy + Wiy )dv; + (Wipy + wiyyv)dV_; = 0.
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It is natural to assume u;, > 0, u;y < 0, Uiy < 0, Uiy < 0 and w;yy < 0. If
this is the case, (i) the second-order condition is met (wy, +2u;py +uiy < 0),
and (ii) we have

dvi Uy + 2Upy + Uiyy 1
dv_; UiV + Wivy .
Suppose that there are two distinct Nash equilibria v = (vy,...,vy) and

0 = (¥1,...,0g). Then, without loss of generality, we can assume that v; > ;.
This implies v; = b;(V_;) > bi(f/_i) = 0;, where b;(+) is consumer i’s best-
response function, and V_; = > i Vj- Since the best-response function is
decreasing, we have V_; < V_,. This implies that there is j # 1 such that
v; < ; with V_; > V_;. Since the slope of best response is steeper than
unity, it follows that f/,i -V, <v;—0 and V_; — f/,j < v; — v;. However,
the former inequality implies Vo> V', while the latter implies V' > V. This
is a contradiction. Hence, if there is a Nash equilibrium, it must be unique.
In the unique equilibrium, the same consumer types choose the same user
frequency, since otherwise, by swapping the roles of the two consumers, we
have multiple equilibria.

The existence of equilibrium is easy to show by assuming the Inada con-
ditions for all 4, v, V and H: that is, (i) lim, u;(v,V,H) = oo, (ii)
limy, o0 iy (v, V, H) = 0, and (iii) lim,_ow;y(v,v, H) = 0. Condition (ii)
together with u;;; < 0 guarantees that there is v;5 < oo such that for all
v > Ui, Uip(v,v, H) + uivy(v,0, H) < 0. This compactifies consumer i’s
strategy space, and we can apply Brouwer’s fixed point theorem. The inte-
rior solution is guaranteed by conditions (i) and (iii).H

Note that the above result holds for both homogeneous and mixed clubs.
Using this, we can analyze the economy-wide efficient allocations and equi-
libria.

2.4 Supporting optimal homogeneous clubs

Proposition 1 showed that efficient clubs are in general mixed. In this sub-
section, we assume that efficiency is achieved in homogeneous clubs. We
will show that even under this strong assumption, decentralizing an effcient
allocation is not easy with simple policy tools.

Fix 0, and consider a totally segregated club (only type 6 consumers are
its members). We focus on symmetric allocations, since Nash equilibrium is

12



symmetric in this setup. Consider the following problem:

(v’ H?) € m?fxu(v, Hv,H) —c.
v,
By using Proposition 2, we can support the allocation by price ¢ > 0, by
setting
wl(v?, Ho%, H?) + uf(v?, H%?, H?) = ¢,

Since at the optimum, v? > 0 by the assumptions in Proposition 1, this is an
interior symmetric Nash equilibrium. We know that ¢ > 0 holds for H? > 2,
since the optimality of v? requires

uf (v, H? H?) + HOuS(v?, H% H?) = 0.
Set
, - Ho% ¢
U=~
This may be positive or negative due to the integer problem and the (non-
myopic) Nash condition.

Proposition 3. Suppose that the membership of a club is fixed by H’
type 6 consumers. Then, under the same conditions in Proposition 1, the
symmetric optimal club allocation for type 0, (v?, H?), is achieved as a unique
Nash equilibrium with a two-part tariff policy (¢%, ¢%), where

uy (", H', HY) -y (of, H'', HY) = qp,

and
1

q% =77 (c — Hgvgqe) .

Let us go back to the Gulliver-Lilliput example in Section 2.2. If t¢ = 0.1
and t = 0.05, then the optimal homogeneous club allocations are (v, V¢, HY) =
(0.1,1,10) and (vl, VL, HL) = (0.05,1,20), respectively. These allocations
are supportable by (¢%,¢%) = (0.9,0.01) and (¢*,¢%) = (0.95,0.0025). At
the optimal allocations, consumers receive lump sum transfers and pay usage
fee. An obvious corollary is the case of homogeneous type.

Corollary 1. Suppose that there is only one type of consumer. Then, the
symmetric optimal club allocation is achieved as unique Nash equilibrium
with a two-part tariff policy.

13



What if there are multiple types? Unfortunately, we no longer have such
a result even if there is an efficient allocation with homogeneous clubs.

Proposition 4. With the integer problem, even if efficient clubs are homo-
geneous, the optimal homogeneous club allocation may not be supportable
by two-part tariff policies when there are two types.

Proof. By a variation of the Gulliver-Lilliput example. Let
u' (v, V) —x:tlog% -V —u.

Note that coefficient ¢ of V' is dropped. This makes the optimal V' for ho-
mogeneous club be dependent on t. Let V = Hv and v = & = % The first
order conditions are

1
H: —v+ m =0.

As aresult, the optimal allocation is described by (v*, H*) = (¢2, 1). Consider
two types: t; = 0.2 and t5 = 0.1.

For type 1 consumers, the optimal homogeneous club allocation is (v}, Hy) =
(0.04,5), and the optimal pricing is ¢, = & — 1 = 4 and ¢}, = —&2"l =

1 1
iﬁ)om = (0.162. For type 2 consumers, the optimal homogeneous club allo-
cation is (v, Hy) = (0.01,10), and the optimal pricing is ¢}, = i—z -1=9
and g3 = 17}%”5 = 12200 — (.091. These homogeneous clubs are indeed
2

optimal, since the optimal H*s are integers.

Now, suppose that a type 1 consumer replaces one of 10 type 2 consumers
at a type 2 optimal club. Then, the club membership is formed by one type
1, and nine type 2 consumers. The type 1 member’s intensity of use in this

club will be 0.02, and her utility will be

0.02
0.2log 02 " (0.02+9 x 0.01) — 9 x 0.02 — 0.091 = —0.84152.

On the other hand, if she stays at a type 1 optimal club, her utility level is

0.04
0.210gﬁ —10%x0.04 —4 x0.04 —0.162 = —0.84389.
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Thus, the type 2 optimal clubs cannot form in equilibrium.l

Thus, the two-part tariff policy does not support an efficient allocation
when there are heterogeneous consumers. Note that if the type 2 optimal
clubs can place an upper bound for intensity of use by each member at
v = 0.01, the type 1 consumers do not want to join type 2 optimal clubs.
This is a nonlinear price system.

In a more general model, Scotchmer and Wooders (1987) show that if
clubs are homogeneous, and if there is a complete price system (a complete
nonlinear pricing ¢(v, H) for all v and H), then the equilibrium is efficient.
However, a complete nonlinear price system is a very complicated system.
If club managers can choose facility profile e as commonly assumed in the
literature, then the price system must be ¢(v, H,e). This is a hedonic price
system in Rosen (1974). If mixed clubs are allowed, the situation is even
worse. "Anonymous" pricing especially brings multiple complications into
the model: the definition of membership policies, equilibrium concept, ex-
istence and efficiency of equilibria are all affected. In the next section, we
significantly extend the model to allow mixed clubs.

3 General Model with Nonlinear Pricing Poli-
cies

Ultimately, in order to show the existence of an efficient equilibrium, we
will consider highly nonlinear policies which pin down intraclub equilibrium
allocation effectively. However, we will first provide a model and equilibrium
concept that allow other types of policies including two-part tariffs.

3.1 Overview of the model

The model assumes that there are L private goods and discrete possible facil-
ity profiles. A facility profile is a list of facilities provided in a club. Facilities
are categorized in K groups: swimming pool, gymnasium, treadmills, ex-
ercise bikes, and rowing machines can be considered as category groups of
facilities in a sports club. We assume L and K are finite. By abusing the
notation slightly, we also denote the set of category groups by K. Within
each category group k € K, there is a set of discrete facilities Ej ("public
projects" in Mas-Colell 1980): in the swimming pool category, the size of
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the pool characterizes a facility, while in the treadmill category, the number
and quality of machines characterize it. For each Ej, we have () € E;. The
set of all possible facility profiles is denoted by E = IcxEp.tt A typical
facility profile e = (eq,es,...,ex) € IljexFy is the list of equipment that
a club can install. Each facility profile e € E can be produced by using
private goods. In order to produce the facility profile e, Y(e) C ]RfL is the
input requirement set.'> We assume that provision of no facility is always
available for club managers: 0 = (0,...,0) € E with Y () = R (no cost for
no provision: 0 € Y())). This setup allows economies of scope in providing
different categories of facility profiles.

There is a finite number of types of consumers. The set of all types is
denoted by O, and its representative element is # € ©. A type 6 consumer
is endowed with private good vector w’ € Ri, and has a utility function
u’ : RY x RE x RE x E x Z; — R. The arguments of u’(x,v,V,e, H)
are v € R, v € RE)V € RE, e € E, and H € Zy, are private good
consumption, a vector of intensity of use (hours), a vector of aggregated
intensity of use by all members of the club, facility profile, and the number
of club members. Each type 6 € © has a population measure N? > 0 with
Y oco N % = 1. We assume that clubs can effectively exclude nonmembers.
Note that we assume that the physical crowding effect in facility usage by
the members is anonymous; it does not depend on who utilizes the facility.

3.2 Club policies and club types

A club manager can decide how many memberships to sell to consumers.
A policy is a function ¢ : RE — Ry where ¢(v) is the price for usage
of a facility profile (v € R is a list of the number of hours a member
spends in the categorized equipment in a club). The space of possible policies
is described by Q. A club can offer multiple policies targeting different
types of consumers: namely, for each membership seat h = 1,..., H, a club
assigns a policy g, € Q. If a club has a single policy scheme, then all
policies g, are the same. A policy scheme is 7 : {1,..., H} — Q such that
n(h) = g, is a policy for membership h. In the example of a sports club,
if there is only a fixed membership policy, then ¢, = ¢ for all h and ¢ is a

HTf By, is just the number of units, it becomes the multiple public goods model found
in Berglas and Pines (1981).

12For simplicity, we assume that the input requirement set is not affected by consumers’
intensity of use. We can generalize following Berglas (1976) as discussed in the conclusion.
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constant function: ¢(v) = f. We can allow category-based fixed membership
fees: for h = 1,...,Hy, q4(v) = f1 if vy > 0 only for £ = 1,..., Kj, and
qn(v) = o0, otherwise; and for h = Hy + 1,..., H, qn(v) = fy if vy > 0 only
for k = K1+ 1,..., K, and g,(v) = oo, otherwise. If it is a two-part tariff
system, then ¢, = ¢ for all h = 1,..., H and ¢(v) = ¢+ Zszl qrv, where g
and gis are a membership fee and the price per use of facility k. Obviously,
we can combine them to describe richer policies. One special type of policy is
fully nonlinear: g,(v) = g, if v < 9y, and g, (v) = oo otherwise. This type of
policy pins down each consumer’s behavior, and will be used later to achieve
the first-best allocation. Thus, if we allow fully nonlinear policies, a club
manager can offer a variety of policies catering to each type of consumer.
However, a club manager cannot discriminate against applicants by offering
different pricing schemes based on their type. A club policy scheme is
a list (e, H,n). To describe an allocation, we define an assignment of seats
to consumer types: a consumer type assignment of a club is a mapping
a:{l,..,H} — ©. A population composition of a club is (n’)sce, where
n? = |a1(0)| for all § € ©. A club type is a pair of a club policy scheme
and a consumer type assignment (e,y, H,n, «), where y € Y (e) is an input
vector to provide facility profile e. With an index, a type 7 club is denoted
by (e[v], y[v], H[v], 7], @[y]). The population composition of type v club
(n?[7])oce is found easily from aly]. The set of all club types is denoted by
I.

3.3 Games played in clubs

Consider a club type (e, z, H,n,«). Order the members of the club in an
arbitrary way. The type of the hth member and the policy chosen by her
is denoted by «a(h) = 65, and g, = n(h), respectively, and this type 6}, con-
sumer’s budget constraint is

P+ qn(v) < puf™,

where p € Ri is a private good price vector. Thus, her best response to other
members’ aggregate utilization of facility profile V_j, = Zh,?ﬁh vp € RE is

(n(V_p), vn(V_p)) € arg max u® (z,v,v + V_y, e, H)

v

subject to  px + g, (v) < pu’h.
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An intraclub equilibrium of this generalized game (strategy set involves a
budget constraint: see Debreu 1952) in the club is (z}, v} ) such that for
allh=1,....H,

* * 0 *
(a},vr) € arg maxu M, v,v 4 E vy e, H)
’ h'#£h

subject to  px + g, (v) < pu’h.

3.4 Allocations

To define an allocation, we impose a few assumptions on the populations of
individuals and club memberships. Some of these are adopted from papers
that prove the existence and efficiency of equilibrium: Ellickson et al. (1999)
and Allouch et al. (2008).

Integer Populations within Clubs (IP). The number of members of a
club must be integer-valued.

Large Population (LP). There is a continuum of consumers with finite
types. The measure (population) of type @ consumer is denoted by N > 0
and Y, o N? = 1.

Uniformly Bounded Population of Clubs (UB). Each club can have
only a finite number of memberships, and this number is bounded from above.
That is, H < H < oo for all clubs and policies.

Measurement Consistency (MC). Suppose that there are Lebesgue mea-
sure £/'(7) of clubs of the same type 7 that have the same population com-
position (n?(7))sco € Z‘f'. Then, the total population of type 6 consumers
who belong to clubs of type v is p/(7) x n?(y) for all § € ©.

Assumption IP, which was already introduced above in our definition of
utility functions, is standard in the literature on local public goods economies
with an endogenous number of jurisdictions. Assumption LP is also standard
in order to avoid integer problems that result in the nonexistence of equi-
librium. Assumption UB is key for our result. By assuming finiteness of
residents in each jurisdiction together with a continuum of consumers (and
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finite types) we guarantee the dissolution of integer problems. Note that UB
together with LP necessarily implies that there is a continuum of jurisdic-
tions in the economy (Ellickson et al. 1999 and Allouch et al. 2009). Bewley
(1981) made many critical comments about Tiebout’s tale, but his negative
results are partly the result of his not adopting IP and UB: Bewley assumed
that there is a finite number of jurisdictions, and as a result, LP implies that
there is a continuum of consumers in jurisdictions. UB has been formulated
in various ways with various labels. However, the simplest way to state it (for
our purposes) is as above. The last assumption MC is a technical assumption
in a continuum economy. It requires that the composition of a finite popula-
tion aggregates nicely to a composition of a continuum population, which is
first introduced by Kaneko and Wooders (1986). We use this assumption in
the proof of propositions in order to aggregate consumers’ jurisdiction and
consumption choices. We assume IP, LP, UB, and MC throughout the paper
as in Konishi (2008).

Let I' be the set of all possible club types. A club allocation is a
mapping p : I' — R, such that u(y) is the Lebesgue measure of type ~y
club such that [, n’dy = N? for all # € ©. A consumption allocation
in club type 7 is a list (¢(1),0()) = (24(7), (M), € (RE x RE)T,
where (z1,(7),vn(y)) = (0,0) for all h = H[y] +1,..., H (H is the uniform
upper bound for population of clubs). This mapping assigns a consumption
vector to each type of member who is assigned to policy £ in club type 7. A
consumption allocation is a mapping (z,v) : I' — (RF x RE)”. An input
allocation is y : I' — R such that y(v) € Y[e[y]]. A feasible allocation
is a list of club, consumption, and input allocations (u, (z,v),y), such that

"
/ (th —{—y) du < ZN%JO.
' \h=1

0c®

An allocation is equal treatment, for all § € O, if
Il g{v e T u’(zn(), vn(7), V(7),ely], H) = @’ for all b with aly](h) = 6})

N holds for some #’ € R.
3.5 Common belief system

Let I'* C I be the set of existing club types. In the entrepreneurial equilib-
rium defined below, we price only existing club memberships, and intraclub
equilibrium allocations are observable only in existing club types. However,

19



club managers and consumers need to have a system of beliefs about the sit-
uations that are not realized in the actual equilibrium allocation. There are
two distinct situations. First, in order to describe consumers’ free mobility,
we need to imagine a situation where a type of consumer takes a member-
ship seat that is supposed to go to another type of consumer according to the
club assignment function .. The consumer contemplating to switch her club
membership needs to be able to expect what would happen if she were to
switch her policy. However, if such a switch occurs, then the population as-
signment function of the club that she moves into changes, and the intraclub
equilibrium is likely to change. Second, an entrepreneurial club manager also
needs to be able to expect what will happen if she creates a new club type
that is currently non-existing in an equilibrium. Whether the club can attract
consumers and how profitable the new club type will be are both based on
her expectation. Following Zame (2007), we assume that consumers and club
managers have a common belief about what equilibrium would realize for all
types of clubs. A (common) belief is a mapping (z,v) : I' — (R] x Rf)#
such that (z,v)(v) = (xn(7), va(Y))reqr,...npy- We require this common be-
lief in the spirit of subgame perfection. Clearly, the belief must be consistent
with the actual intraclub equilibrium allocations in existing club types.

3.6 Consumer’s choice among available clubs

We now discuss consumers’ club choices. Given the set of available club
types I'* C I', suppose that a type € consumer deviates. It is a bit tricky
to define such a unilateral deviation formally, since each club provides a
certain number of memberships. We assume that a consumer in a club can
simply move to another club by taking over someone’s seat, if she wants
to. We do not consider a pairwise deviation (stability in two-sided matching
literature), since it may require a chain of pairwise coordinations. Although
it may appear to be a strong stability concept based on consumers’ optimism,
in a market economy with many clubs, it may make sense. If the consumer
who is trying to take over a seat pays a small extra compensation to the
incumbent member, then the incumbent may give up the seat and try to
find the same deal in another club of the same type (by paying a small
extra compensation). Thus, given that there are many same-type clubs in
the market, this assumption may not be so far off. For example, if type 6
consumer moves to a type v club and chooses policy b’ € {1,..., H[v]} by
kicking out a member who is assigned to the club and the policy, then the
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consumer-type assignment of the club would be ag~p[7] : {1, ..., H[y]} — ©
such that ag~n[y](h) = a[y](h) for all A’ # h, and ag~n[y](h') = 6. Let us

call that club type Yo~n = (6[")/], Hh/]? 77[7]7 Oé@mh[fﬂ)'
A type 0 consumer’s utility from choosing club ~ and its policy h when

al(h) = 0'is

U(y,h) =’ {an(),on(y), D wi(y)seb] HO |

he{l,... . H[y]}

A type 6 consumer’s utility from choosing club ~ and its policy A’ is

Ue (79r\vh’7 h'/) = u9 T h (’)/Gmh’)v Up (70mh’)7 Z vﬁ (70&h’)7 eh/]a Hh/] )
he{l,...HH}

since after this deviation, club v becomes club 7, ,,. For all § € O, let
() = {(vpp W) €T x{1,.. ., HY y€T*and W € {1,..., H}y]|}}.

This is the set of all club types that are generated by unilateral deviations
from the set of existing clubs I'*.

3.7 Entrepreneurial equilibrium

Our equilibrium concept is based on an idea in Rothschild and Stiglitz
(1976).!* The equilibrium concept involves three things: (i) consumers are
free to choose a club type and a policy among the ones existing in the market;
(ii) club managers cannot distinguish applicants’ types; and (iii) club man-
agers are entrepreneurs, and in equilibrium, there is no profit opportunity
by offering a non-existing club type. Recall that a type v € ' club corre-
sponds to the list of characteristics (e[|, H[y], n[v], a[y]). Our equilibrium is
described as follows.

13Konishi (2008) uses a similar equilibrium concept to achieve efficiency of equilibrium
in a local public goods economy. However, in Konishi (2008), each jurisdiction has a
homogeneous polulation by the nature of the model as in Hamilton (1975). In this paper,
we deal with mixed clubs to achieve efficiency.
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Definition. An entrepreneurial equilibrium is a list of
(", T, 1, (2*(7),v*(7), ¥* (7))yer) such that'

1. (Equilibrium Play in Each Existing/Potential Clubs)

(zh(7), v (1) € argmax w1z, 0, Y ()~ ()0, el], HR)
’ We{L,... HI}

subject to  pr + n[y](h)(v) < pwI)
for all v € T, and all h € {1,..., H[7]},

2. (Optimal Club Choice)
Foralld € ©,ally e I™*, all h € {1,..., H[y]}, and all h € a[y]7*(6),

U'(y,h) = max U’(Y,I),

(y,h")er?, (I'*)

3. (Population Consistency)
For all § € ©, f'yel“* n?dp* = NY holds,

4. (Commodity Market Clearing)
Freee [ o010 —0) ] g o,
5. (Cost Minimization)
p({y el py <pYieh)}) =1,
6. (Club’s Zero Profit Condition)
ue ({7 e S bl Wi = py () = 0}) = 1,

7. (Exhausted Profit Opportunities by Clubs)
For all 4" € T\I'™*, if ZhH:['{] n[y](h)(vi(v)) —p*Y (e[y']) > 0 then such a
club type is infeasible, in the sense that it cannot attract some members

141n this definition, each club assigns the same intraclub equilibrium outcome to each
club type 7 (conditon 1). Obviously, we can assign different equilibrium outcomes to
the same club types in general. In this sense, the proposed equilibrium concept is not
the most general one. More general definitions using the "distribution approach" can be
found in Hart et al. (1974), Mas-Colell (1984), or Zame (2007). However, notice that
we need Pareto indifference among realized equilibrium outcomes since consumers are free
to choose available policies in the market. We will assume convex preferences for our
theorem; we essentially lose nothing by choosing our simpler definition.
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in the intraclub equilibrium that is believed to result: i.e., for all v € I'*,
there exists h € {1, ..., H[y]} such that

eI s el i) (47 by,

where U%* is type 0’s equilibrium utility (U%* = U%(y, /') for all v € T'*
and all ' € a[y]71(0)).

The key to the above definition is that we distinguish between I'* (ob-
served club types) and I'\I'* (unobserved club types). First, note that it is
not enough to say p*(I'\I'*) = 0, since as long as a type of club is available
(even with zero measure), consumers may be attracted to the club type.

Second, the equilibrium concept involves beliefs held by consumers and
club managers, as we have discussed above. This is so we can describe
consumers’ optimal policy choice and club managers’ profit-maximization
behaviors.

Third, we assume that club managers are entrepreneurial (Condition 7).'?
Although club managers can easily observe how profitable a policy is as long
as there is a club that chooses that policy, if a policy is not chosen by any
club, the managers need to estimate how profitable it would be by utilizing
their information on consumers’ utilities (in the manner of Rothschild and
Stiglitz 1976). This entrepreneurship is captured in equilibrium condition 7.
In contrast, if managers are passive, there can be many inefficient equilibria
if no jurisdiction chooses potentially profitable policies that go unobserved.
We assume that there is no market for unobserved policies (v € I'\I'*). Our
condition 7 is similar to a condition in the equilibrium concept of Rothschild
and Stiglitz (1976).

Note that we can impose restrictions on the set of feasible policies that
clubs can choose. The set Q can be restricted to the set of single uniform
pricing rules, two-part tariffs, or fully nonlinear pricing rules.

Before stating our result, let us define a Pareto-efficient (equal treat-
ment) allocation. Suppose that a feasible allocation (u, (x,v),y) is an equal

5There are papers that do not use a complete price system. Wooders (1978), Bewley
(1981), and Ichiishi (1981) adopted coalitional deviations by consumers in order to achieve
the efficiency of equilibrium allocation without imposing a complete price system. Instead,
we use entreprenuerial managers to do the same job, who cannot distinguish consumers’
types (adverse selection problem: see Konishi 2008).

23



treatment with its utility levels 4 = (4?)gco. Then, an equal treatment allo-
cation (u, (z,v),y) is Pareto efficient, unless there is a feasible allocation
(¢, (2',0"),y) such that

¢ ({er: #OWEO. A0 EIR ) bl D 2 w0 1)

Vh=1,.., H[y
and
BN (2, (4), 4 (), w2 ot (7), e[y, HY)) > @i
/ FZU h’77h/77 h’:lh’rY?Vu Y )
a ({76 Sh=1,...HJy =0

That is, if a positive measure of clubs can improve members’ utilities (recall
that there is a finite number of members in each club) without hurting others,
then an equal treatment allocation is not Pareto efficient.

4 The Main Result

In Section 2, we obtained negative results for two-part tariff policies. What
if the class of policies available to clubs is fully nonlinear? In the extreme
case, if policy ¢(v) satisfies q(v) = ¢ if v < ¥ and ¢g(v) = oo, then the club
manager can effectively pin down the members’ utilization of a facility profile
at one point v (if preferences are monotonic). We refer to such a policy as a
fully nonlinear policy. Even if the nonlinear pricing policy is not as strict
as this one, it is still possible to pin down members’ utilization of a facility
profile as long as the nonlinear policy schedule stays in the lower contour
set. In this section, we allow club managers to offer a set of such policies
with quotas (policy 1 is available for 30 members, policy 2 is available for 20
members, etc.). The benefit of this freedom is that now a club manager can
control V' perfectly as long as the slots are filled by its members. The main
result of our paper is stated below.

Theorem 1. Suppose that all fully nonlinear policies are available for man-
agers. There exists an entrepreneurial equilibrium and is Pareto efficient
under the following assumptions:

1. For all # € O, all e € E\{0}, and all H < H, u’(z,v,V,e, H) is
continuous and strictly increasing in (z,v) and weakly decreasing in V'
and H. Forall @ € ©, all v, all V and all H < H, u’(z,v,V,0,H) =
u®(z,0,0,0,1),
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2. Forall € ©,alle € E, all H < H,all z € RY, all v € R and
all vV € RE w’(z,v,V,e, H) > u’(0,v,V,e, H) (essentiality of private
good consumption),

3. Forall § € ©,alle € E, and all H < H, u’(z,v,V,e, H) is quasi-
concave in (z,v, V),

4. For all € ©, alle € E, and all H < H, there exists 7? € RE such
that for all V! > o' > % wf(z,0" + ¢, V' +t,e, H) < u?(x,v',V' e, H)
for all ¢ € RE\{0} (bounded utilization of facility profile).

5. For all e € E, Y[e] C R% is nonempty and closed.

Assumption 1 is standard. Assumption 2 is also standard when con-
sumption set is not connected (indivisible commodities: see Mas-Colell 1977,
Wooders 1978, and Ellickson 1979 for the spirit of this assumption). As-
sumption 3 assures that consumers’ utilization of facility profile is bounded
from above. Since we assume O is a finite set, there is a uniform upper bound
for all types. Assumption 4, requiring quasi-concavity including V', may ap-
pear unfamiliar in this particular literature, but it is commonly assumed in
finite economy. It basically requires that the marginal rate of substitution
of Vj for other goods (which is positive since V' are negative externalities,
or bads) is decreasing in other goods consumptions. That is, as other goods
consumption increases we need only a small amount of V}, increase to keep
the utility level constant. Thus, it is just a standard convex preference as-
sumption. Given that the economy is atomless, the reader may wonder why
convexity of preferences is important (indeed, neither Ellickson et al., 1999,
nor Allouch et al., 2008, assumes convexity of preferences). This is assumed
in order to achieve Pareto optimality in each club (finite population in each
club).’® Assumption 5 needs no explanation.

The strategy to prove this theorem is as follows. First, we show that all
entrepreneurial equilibria are Pareto-efficient. Second, defining a social equi-
librium that is an envy-free and Pareto-efficient allocation under a market-
clearing private-good price vector, we show that a social equilibrium exists

16Specifically, we use the Shafer-Sonnenschein (1975) mapping for the existence of a
Pareto-efficient equilibrium. Thus, we need the union of upper contour sets to have an
open graph (continuity) and be (semi) convex-valued (convex preferences).
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and every social equilibrium can be supported as an entrepreneurial equilib-
rium. In proving these results, we repeatedly use nonlinear policies that pin
down each member’s choice at a certain intensity of use of facility profile.

Proposition 5. An entrepreneurial equilibrium is Pareto efficient when all
fully nonlinear policies are available for managers.

Proof. It follows directly from Condition 7 of the definition of entrepreneur-
ial equilibrium. Suppose that there is a Pareto-superior feasible allocation.
This means that there exists a club type (with a positive measure) such that
(i) every member’s utility is at least as much as the equilibrium level, (ii) there
is a member whose uiltity is strictly higher than the equilibrium level, and
(iii) it satisfies a budget balance (due to feasibility). Let the club type have
facility e, input vector y € Y'e], population H, type assignment (6),, and
consumption vector (zp,, v, )| such that (i) u® (zp,, vy, V, e, H) > U%* for all
h=1,.,H,and (ii) p*>,_ zn + p'y < p*>.,_, W', where V = 25:1 Upy
and U%* is the equilibrium utility level for type 0,. Let I, = p*ax;, for
all h = 1,..,H, and let U(I,v,V;p) = max, u’(x,v,V,e, H) subject to
pr < I. By the continuity of utility functions, there exists ¢ > 0 such that
U (I, — €,v5,V;p*) > U for all h = 1,..., H. Thus, if a club manager
proposes policy fee g,(vy) = p*w’ — I, + € and intensity of use vy, for all
h=1,..., H, then at least type 6, consumers are attracted by the offer, and
the club manager can make

H
da-py =
h=1 1

H H
= p' > W —p Y an+ He—ply
h=1 h=1

> He> 0.

(p*weh — I+ e)

NE

>
Il

Since fully nonlinear policies are available, the club manager can safely im-
plement such an intraclub allocation. Note that Condition 1 in Theorem 1
requires negative externalities in V' and H (see Konishi, Le Breton and We-
ber 1997). This implies that if a consumer is happy to join a club type when
all the membership seats are occupied, then she is also happy to join the
club type with empty seats. This assures the absence of coordination prob-
lems, and club managers do not need to take any risk in forming a profitable
potential club. This is a contradiction to the supposition.ll
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Note that a deviating club manager does not care about which type of
consumers fill the membership seats. She only cares about someone filling
all the seats available in the club. This is because of anonymity in conges-
tion. Thus, the above deviation is sufficient to show the Pareto optimality
of entrepreneurial equilibrium when fully nonlinear policies are available to
managers. Note also that if fully nonlinear policies are not available, the
above logic does not work, and an inefficient allocation may be supported
(if profitable deviation cannot be inplemented by policy restriction or by
equilibrium belief).

We construct an envy-free and Pareto-efficient allocation in the following,
and then show that it is indeed an entrepreneurial equilibrium. A poten-
tial club is a pair of a facility profile and members’ population composition
ceC={(e,n) e ExZ]:Y ,.on’ < H}. Since ) € E, (0,n) € C. This is
a finite set. We assign a consumption vector to each type of each potential
club. A symmetric consumption allocation for ¢ = (e[c],n[c]) € C is a
vector (z%(c),v%(c))gcorg € (RE x RE)O where O[c] = {6 € © : n’[c] > 0}.
Since consumers’ utility functions are quasi-concave, it makes sense to focus
on symmetric consumption allocations. We need to expand the notion of the
private consumption vector due to the free mobility of consumers: a type
0 consumer may want to choose a policy for type ' in a type ¢ club. We
denote her consumption choice of private goods by 2%(c, #') (intensity of use
is predetermined: since she chooses the policy for &', her intensity of use is
v (¢)). Now, we define social equilibrium in the following. This equilibrium
concept assumes that all possible potential clubs exist, and (somewhat so-
cialistically) allows no flexibility of choosing intensity of use of facility profile
in each club. Let m € Rﬁ be the measures of potential clubs, and let g € Rix
be the type-dependent membership price vector for clubs such that ¢?(c) = 0
for all 6 ¢ O[] (only for a notational reason).

Definition. A social equilibrium is a list of
(p*7 q*7 (lﬂ* (67 9/))CEC;9€®,0'€®[C]> (U*(C)7 y*(C), m*<c))C€C) such that

1. (Cost Minimization)
For all c € C, y*(c) € argmin,cgr p*Y ([e]),

2. (Club Budget Balance)
For all ¢ € C with m*(c) > 0, Zee@[c} ¢ (c) = p*y*(c),
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3. (Profit Maximization)
For all ¢ € C, 3 ycope () < pry*(d),

4. (Optimal Private Good Consumption for Every Policy in Every Club)
Forall c€ C, all § € ©, and all ' € O],

2% (¢, 0') € argmaxu’ (z,v"*(c), V|, e|c], H|c])

subject to
p*x Sp*wg o q9 *(C),

5. (Intraclub Pareto Efficiency)!”
For all ¢ € C, there is no symmetric consumption allocation for c,
(2%(c),v%(c))peoq such that

u’(2%(c),v"(c), V], ele], Hlc]) > U™ (c),
for all # € ©[c], and
p* Z ne'[c]xe’(c) < p* Z ne'[c]we' _p*y*’

6. (Optimal Club Choice)
For all ¢ € C and all € O[c] with m*(c) > 0, U%*(c) > U%*(c,§') holds
for all ¢ € C, and all ' € O],

7. (Population Consistency)
Forall 0 € ©, 3" . m*(c)n’[c] = N?,

8. (Commodity Market Clearing)

Y m(e) | Y n’ld(w’ —a"(c)) —y*(c)| =0,

ceC 0cO

where V] = >y on? [c]vlo’*(c), Hd =3 yeon’[c], and
U%(c,0') = u?(x%(c,0"),v7*(c), Vc], e|c], H|[c]) with U%*(c) = U%*(c,0).

1"This condition is similar to the one in the public competitive equilibrium in Foley
(1967) for a pure public goods economy. However, unlike in Foley (1967), we have multiple
types of clubs including nonexisting ones in equilibrium.
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We have the following propositions.
Proposition 6. There exists a social equilibrium.

Using Shafer and Sonnenschein (1975) for intraclub Pareto efficiency,'®
and a population mapping based on consumers’ optimal location choice (Kon-
ishi 1996), we can find a social equilibrium by using Kakutani’s theorem. In
order to apply Shafer and Sonnenschein, we use the quasi-concavity of utility
functions.

Proof. Let A = {(p,q) € RE x RS : S0 py + Y ecc (c) = 1}, which is
a price simplex. For all ¢ € C, all @ € © and all ¢ € O[], let 5%[c, ] :
A x REOF xR, RE is such that

(¢)) = arg max(z,v’(c), V], e[c], H|c])

L
z€RY

B1e,01(p, (V" ()i @

subject to
pr < pu’ —q" ().

Let 5 : A x ]Rimcece[c] X Ricece[d — Ri@ZCECG[C] be a product of 5%[c,#']s
over (6,¢,0").

Consider Hicks’s composite good for private goods. Let I € R, be
the income that type € consumer at club ¢ can spend for private goods
consumption. For all § € O, let @/(I,v,V,e, H;p) = maxu’(x,v,V,e, H)
subject to pr < I. It is easy to see @’ is continuous in I > 0 and p > 0. Let

18Greenberg (1978) used the Shafer-Sonnenschein method to show the existence of a g-
majority voting equilibrium (see Konishi 1996 for an application to the existence of voting
equilibrium in local public goods economy). When ¢ = oo, the g-majority voting rule
coincides with the Pareto-rule. Ray and Vohra (1997) were the first to directly apply the
Shafer-Sonnenschein method to show the existence of a Pareto-optimal allocation.
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Pld : RUTIM s A — RUFOE be 4 Pareto mapping such that

Pl 0" )y col, p)

= {(fel, 179/)0’69[4 € Ry (frrel

af (1,4, Z n? [co”, elc], H[d])

0'eB[]
0 IQ,UG,ZnQI[C] 7 Zn ) forall 6 € ©
0'co 0'cO
andz I9<pz []w? — py(c)
O[] 00|

There are only a finite number of types, and a finite intersection of open
sets is open (relative to the feasibility correspondence: the inequality in
the last line). Thus, mapping P[c|] has an open graph (utility function

is continuous). Let the set of feasible allocations in club ¢ be Flec,p] =

/

{(ja ) yeoq € REFOE > ocorq 1A < P geo 7w’ = py(c )} Let

U5%¢; (1%,v%)geoyq, p] be a Shafer-Sonnenschein utility function on Flc, p]

such that U%[e; (17, 0)geer, ) (I, 0)oeorq) = 0if (1%, 7%)peorq & Ple ](( *(c),v*(c))ocera, ),
and U%%[c; (17, Ue)geg[] ]((I 0 )969[ }) is the distance between (I v )oe@[c]

and the topological boundary of P|c]((I(c),v’(c))seoyq), otherwise (see Shafer

and Sonnenschein 1975). This is a continuous function in its arguments. Let

8[c] : RUFHFCE s A o RUFFOK 16 such that

8[)((1°, v")oee(g, ) = arg max U*[e; (1%, 0") o, PI(I7, 0%)ocore)
(1°, )gcor €Fep]

This mapping d|c| is designed to find intraclub Pareto-efficient allocations as
a fixed point of the mapping.

Let § : R{FTFPeceOld s oA, RUIFFIZeecOld 16 9 product of 6[cJs. Let
Proj,0 RSFHK)ZCEC@[C] X A —» Ri@‘“@[c] be a project of ¢ on intensity of use
of the facility profile (dropping income). Let ¢ : ]RJLFE"ECG x A — R, be
such that 1/[¢] = pa?(c) for all § € O[] and all ¢ € C. Let 0 : R?CEC@H X
R$+K)ECEC®[C] X A —» ]RS:JFK)ZCGC@H be a product of proj,d and v: projd is
replaced by .
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For each type club ¢ € C, let the input choice correspondence be x[c] :
A, — RE such that x[c|(p) = arg minyey(eq py. Let x : A, = RIC be the
product of x|c]s.

Let M = {meR| Y. .om(c)H[c]=1}. This is the space of club
distributions that are con51stent with population distribution over types. Let
M = {meRS | 3 .ccm(c)H[c] = 1.1}. This set can be regarded as a "free
entry condition." It is because a fraction of potential club managers must
choose to provide a trivial empty club (i.e., e = ()) which guarantees zero
profit (0 € Y[0]). This device guarantees zero profit in the fixed point of the
mapping. Let

Ul = u? 0), > n°lcv’(c), eld], Hlc))
60|

and S
U'le, 6] = o’ (2% (c,8),0" (c), > n’[clo’(c), eld], H]d]).

6eoeld
Clearly, U[c, 0] = U[c] holds. Let R? = {r? € RY-<c® | > eccco (e, 0) =
N}, Let p? : RETFIEeec®ld) _ po 16 such that
("¢, 0)), 0" ()eec.orcol)
= {eR 1%, 0)>0=Uc 0] >U’,0" for all ¢ € C and ¢" € O[]} .
Let R = IpeoR? and p : RYHFOGecOD® B ye such that
p((2%(c, 6"), 0" (C))CEC,Q’E@[C},HEG) = yeep’((2%(c, 0'), 0" (€))eecorcor)-

This is a population mapping (correspondence) that assigns each type of con-
sumers to the clubs that offer the highest utilities. Let Z, = {z, € [~1,1]%c®ld : 3~ 2 (c,6') =0

Let ¢, : RUEHFOGeecO® o pr 7 be such that

= (Z P ((2(c,8), UQI(C))cec,o'emc]) —m(c) X n’ [C]) :

0cO
This is an excess demand mapping for each policy at each club. Let (,
RO s R % T,ccRE — Z, C RE be such that

Cp ((lﬁ(C? 0/)7 Te(ca 0l))0€@,c€6,0’€@[c]7 (Z(C))CGC)

Z Z Z 2%(c,0") + y(c) —ZN%)Q.

ceC | ¢'eB|c] €O 0cO
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The club manager’s profit from providing type ¢ € C club is

7r Zn — py(c).

00|

Given club managers’ profit-maximization behavior, if one type of club is the
most profitable, all club managers are drawn to that type. Let p: A — M
be such that

n(p,q) = {m € M | m(c) > 0 = c € argmaxlc](p, g(c))}

Let o : Z, x Z, — A be such that

( - arg max ZpZZpZ + Z q\c Z’r

€A
(Pa) ceC

This is a price mapping. 3
Our fixed-point mapping is a product of all the above mappings 3, 9, ¥,
ps i, G, and o:

o o RUFFOZeccOld  geccOld \ RIC o« R M X Z, X Zy X A —
R{EHZeecOld  g¥eecOld o RIC « R x M x Z, x Z, x A.

A fixed point of ¢,
(x*7v*7l*7y*7m*7r*7Z;?'Z:?p*?q*) 6 (p(z*7v*71*7y*7m*7r*7Z;;?Z:?p*?q*)?

is shown to be a social equilibrium.

In order to apply Kakutani’s fixed-point theorem, we need compactness
of choice sets. Let us truncate each consumer’s consumption set RY by a
hypercube with size s = 1,2,...: i.e., each consumer’s consumption set is

={z e R} :2 < (s;s..,9} Lt V={velR; | v < maxgee 17}
(see Assumption 3). Let A° = {(p,q) € RE x R} BeecO(e | pe > € for all
¢ = 1,...,L}. The reason that A is truncated is that if all private good
prices are allowed to become zero, then the budget correspondence does not
satisfy lower hemi-continuity (a sudden expansion to the entire consumption
set). Let Z,s = Xy — {Ygce N} Let Yy = Ileee (Y(c) N[0, s]%) for all
s = 1,2,...: this is a truncated input requirement set. Take s large enough
to guarantee Y (c) N [0, s]X # 0 for all ¢ € C. For fixed s, € € (0,1/L), the

32



domain (and the range) of the fixed point mapping is nonempty, compact
and convex. The standard argument shows that mappings, 3, 0, x, p, K,
¢ and o are nonempty- and convex-valued, and have closed graphs. Thus,
there is a fixed point (x®*, v* [** y N S ).

Now, we show that this fixed point is a social equilibrium for an (e, s)-
truncated economy. By the construction of (3, in each policy of each club,
every type’s consumption choice is optimal (if they choose the policy). Thus,
Condition 4 is met. Now, we show that in each club ¢ € C, (I°%*(c), v**%*(¢))peoyq
is an intraclub Pareto-efficient allocation (Condition 5). We can show that at
the fixed point, (1°%(c), v***(c))geoiq € dlc] (17 (c), v***(¢))pco P°)-
We have the following key lemma.

ES* 68* ES*

Lemma 1. At the fixed point of the mapping ¢ with truncated domain/range,
for all ¢ € C, (I°7*(c),v**"*(c))pcorq is an intraclub Pareto-efficient con-
sumption vector.

Proof of Lemma 1. Suppose that (1¢*(c ) 0% (¢))grco|q is not intraclub
Pareto efficient. Then, P[c] ((1°"*(c), v**?*(c))pcopq) 7"é 0 holds. By the

construction of the Shafer-Sonnenschein mapplng 8, (1=%(c), 7% (¢))yreopq €

51 ({1547 (), 17" (€) o) satisies (77 (6). 5 () cong # (17 (6). v ().
However, since (v *(¢))gcopq € Projuod ((IESQ *(c), v ~( ¢))oco =), 07 (¢) =
v*?*(c) holds for all ¢’ € Oc]. Thus, (I=*(c))ycoiq # (I°? (¢))yecolq holds,

and we have
(]659 680* E ’fl 650* E né)' es*

0'e® 0'e©
! /
> (IGSG* 650* § n 639 2 : n@ es*
0'e® 0'e®

for all § € O[c]. However, by mapping P|c],

Z n? [C]fESO < pes* Z n? [C]wé? _ pes*yes*(c)'

0€0[d] 0c0|d]

But as we will see below, mapping ( assures that in the fixed point, clubs
get zero profits. That is,

> Il (€)= "y )

0e0O|c]
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Since 3 mapping shows that %*(¢) maximizes utility subject to p**az? <

pw? — % (c), we have p=*2? = p=*w’ — ¢°%*(c) (strict monotonicity of

preferences). Since by mapping ¢, we know that 1°%*(c) = p*x¢%*(c), we

now conclude
Z Ies@ < Z Ies@*

00| 0cOlc

However, by mapping  again, each type needs a higher income than the
fixed-point income, I¢ > I1°*, This is a contradiction. Hence, (I¢*(c), v***(c c))ocol
is intraclub Pareto efficient.ll

It is important to notice that allocation (19*(c), v*""*(c))ycopq is intra-
club Pareto efficient only when the policy for €' is actually chosen by type ¢’
consumers for all ' € ©[c|. If we look at the fixed-point mapping, it is not
obvious that the population composition at type ¢ club is indeed (n’[c])peo(q
(it is possible that other type consumers happily chose club ¢’s policies, and
the market for club membership cleared). However, we have the following
result.

Lemma 2. In the fixed point of o, suppose that n’[c]Jm<*(c) # pe“* for some

(¢,0") and 6. Then, the allocation achieved in type ¢ club Wlth populatlon
composition n’ # n[c| in the fixed point is intraclub Pareto efficient in club

type ¢ = (e[c],n’) € C.

Proof of Lemma 2. Consider a club of type ¢ with population composition
n'. Leta:{1,...,H[c]} — O[c] xOc|]. That is, a;(h) = 0 represents h’s type,
and ay(h) = ' represents h’s choice of policy (catering to type 6" consumers’
preferences) in club type c¢. Thus, consumption vector (mh,vh)hH:[i] is such
that (zp,v;) = (7% (c, 0),v7*(c)) for ai1(h) = 0 and ay(h) = 0'. Let

(22(),1°(¢))peor) = n")l[c] Z Th, n/el[c] Z on

he{h|ay (h')=0} he(lar()=0} ) pegrn
Note that in the fixed point, each type of consumer’s policy choice is op-
timal: i.e., for all h € {I|a1(R) = 6}, ue(xh,vh,zgfl vpr,elc], Hlc]) =
max U%*[c, §']. Thus, we have

u’ (x Z v, €elc ) > max U%[c, 0],

h'=1
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by the quasi-concavity of utility function.
Now, in the fixed point, in club ¢/, an intraclub efficient allocation is
chosen. Suppose that m®*(¢’) > 0. Then, for § € O[], we have

u (27 (e, 0'),0%* (c), Y 0" (c), eld], Hc]) = max U™[c, '],
0'cO[¢]

Since the intraclub allocation is Pareto efficient,

H]
u? (2%(),v%(), Z v, ele], Hle]) = max U%[c, ¢

h'=1

must hold for all § € ©[c]. Now, suppose that m®*(¢) = 0. Then,
(2% (), v7* (') peo| achieves intraclub Pareto efficiency. Since (2(¢), v%(¢'))geole
is feasible, (i) at least one type 6 strictly prefers (z%*(’), v%**(¢'))pecoje]

to (29(c),v?())geore), or (ii) all types in O[] weakly prefer the former

to the latter. In the former case, § would choose ¢ in mapping p, which

is a contradiction. In the latter case, if all types are indifferent between

(2P (), v7* () )peore) and (29(), v?(¢))peo|e), then there is no contradic-

tion, but this implies that (z%(¢’), v%(¢’))pee|| achieves intraclub Pareto effi-

ciency. We have derived the desired conclusion.ll

The rest of the proof is straightforward. Mapping Yy assures that each
(potential) club manager for each ¢ € C chooses the cost-minimizing input
vector (Condition 1). Mapping p assures that all types of consumers are
choosing their most favorite policies (including policies catering to other types
of consumers) at the favorite clubs (Condition 6). Mapping p shows that only
profit-maximizing club-types are provided in the fixed point (and zero profit
is assured by the free entry condition: Conditions 2 and 3). Finally, with
the Walras law, mappings ( and o guarantee that there is no excess demand
in commodities and club policies, 2¢* < 0, in the fixed point by the Gale-
Nikaido Lemma (see Debreu 1959, 5.6). Thus, Conditions 7 and 8 are met
(Condition 8 with possible inequalities by truncations). Hence, we conclude
that the fixed point of ¢ achieves a social equilibrium for an (e, s)-truncated
economy.

Now, let us take € to zero. Since in the fixed point, each club earns zero
profit, if lim, o p® = 0 then lim._, ¢** = 0. Since A is a simplex, this is a con-
tradiction. Thus, lim. o p®* = p** = 0 does not occur. Let the limit of con-
vergent sequence when € goes to zero be (z°*, v¥*, [°*, y¥* r%* m®* zyt 2 p, q°).
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By continuity, this fixed point is still a social equilibrium for an s-truncated
economy. Now, we take s to infinity following Aumann (1966). In this case,
in some ¢ € C and 0 € O, the consumption vector may grow unboundedly as

s goes to infinity (it can happen if the population measure of ¢ goes to zero,
and price goes to zero). Thus, we will work on the limit of the aggregated con-
sumption vector. Let (z°*(c), 7°*(c)) = ((m™*(c)n’[c]z?**(c))peco(q, m** (c)y**(c)).
Consider a sequence {(z°*,v™, I**, 7™, v, m™, z5%, 22, p™, ¢**)}2,. Since
z(c), y™(¢) < Y peo N’ follows in the fixed points, the sequence lies
in a compact set, and there is a convergent sequence. Let the limit of
the equilibrium sequence be (:E*,v*,[*,gj*,r*,m*,z;, 25 p*,q*). Since pref-
erences are strictly monotonic, p; > 0 holds for all £ = 1,..., L. For clubs
with m*(c) > 0, let 2%%(c) = 2% (c)/m*(c)n’|c] for all , and for clubs with
m*(c) = 0, let 2%*(c) = arg max,ecpL u® (2,07, 3 gcopq 17 [c]v™ (¢), elc], Hlc])
subject to p*z < p*w? — ¢?(c). Let y*(c) € argminp*Y(e[c]]. Since p; > 0
for all ¢ = 1,..., L, everything is well defined. By the continuity of util-
ity function, (z*,v*, I, y*, r*,m*, 2z, 27, p*, q*) satisfies all equilibrium condi-
tions. Thus, there exists a social equilibrium in this economy. This completes
the proof of Proposition 6.1

Now, let us return to the entrepreneurial equilibrium. The main difference
between the two equilibrium concepts is that in the entrepreneurial equilib-
rium, if a club type does not exist, then there is no price and no intraclub
allocation for the club type.

Proposition 7. Every social equilibrium is supportable by an entrepreneur-
ial equilibrium, when all fully nonlinear policies are available.

Proof. It is easy to describe type ¢ € C club by 7[c] € T' by using policy
¢’[c](v) that satisfies ¢*[c](v) = ¢?*(c) if v < v?* and ¢%*[¢](v) = oo, other-
wise (since preferences are strictly monotonic), with an obvious assignment
function afc]. By selecting an arbitrary a/c|, we can determine v[c| uniquely
for each ¢ € C. Let C* = {y[c] € ' : m*(c) > 0}. Clearly, I'* is a finite
set. Then, since the equilibrium consumption level for v for each seat h is
pinned down by a nonlinear policy, no consumer has an incentive to switch
from the assigned allocation in social equilibrium (the choice set is smaller,
yet includes the equilibrium assignments). Thus, the only condition we need
to check is Condition 7 of the entrepreneurial equilibrium.

Suppose that Condition 7 of the entrepreneurial equilibrium is violated.
Then, there is a nonexisting club ¢ € C\C* that achieves a positive profit
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and is feasible in the sense that all types of consumers it invites are willing
to join. Since the above nonlinear policy system can support any intraclub
equilibrium with any policies, we can represent any policy 7' by club type ¢
with e[], (n’[¢])geore] and (2%(c'), (<), ¢°[])scorg € (RE x RE x R, O

such that
> LW - pY(eld]) >0
9colc]

and for all § € ©[¢] and all ¢ € C* with n%[c] > 0,

u’ | 2%[c], 0[], Z n? [d1°[¢), e[c], H|¢]
o'colc]

>l | 2], v"*]d], Z n?*[cJv”[d], e[c], H|c]
0ol

Thus, by reducing ¢°[c]s, there is an intraclub allocation with budget balance
that is superior to the social equilibrium allocation. However, since intraclub
Pareto-efficiency is achieved in club ¢ in the social equilibrium, there is at
least one type who strictly prefers the allocation in club ¢’ to the assigned
allocation in social equilibrium. Since all types are free to choose their policies
in social equilibrium, this cannot happen. This is a contradiction. This
completes the proof.l

Propositions 5, 6, and 7 prove our Theorem.

5 Conclusion

In this paper, we showed that when club members are indivisible and they
can choose the intensity of use of facilities, homogeneous clubs may not be
efficient even under anonymous crowding effects. We need to allow mixed
clubs in order to achieve the first-best allocation. We propose entrepreneurial
equilibrium as a solution concept, which is a version of Tiebout equilibrium
in Konishi (2008), for mixed clubs with intensity of use of facilities. We show
that it exists and is efficient if the available policies for club managers are
rich enough. We prove the theorem indirectly: by proving the existence of
social equilibrium, which is a core allocation with envy-free property.
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We can generalize our model and theorem. In this paper, we assumed that
the input requirement set Y [e] is independent of aggregate intensity of use of
facilities V. We can relax this assumption by introducing a production set
for facility e € E: Ye] € REHL with (V, —y) € Y][e] being the representative
element. If for all e € E, Ye] is closed and convex, Y[e] + RETL C Ye] (free
disposal), Y[0] = RET (inaction), and 0 ¢ Y'[e] for all e # @) (no free lunch),
then we can modify mapping d to accommodate this change (see Konishi
2009).
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