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Abstract

Preferences may arise from regret, i.e., from comparisons with al-
ternatives forgone by the decision maker. We ask whether regret-based
behavior is consistent with non-expected utility theories of transitive
choice. We show that the answer is no. If choices are governed by ex
ante regret and elation then non-expected utility preferences must be
intransitive.
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1 Introduction

Standard models of choice assume that decision makers act as if they max-
imize a preference relation over sets of options and these preferences are
assumed to be independent of the environment. There are however good rea-
sons to challenge this assumption. Preferences may depend on the decision
maker’s holding (reference point), on other people’s holdings (envy), or on
the choice set itself.

One such model is “regret theory” (Bell [4] and Loomes and Sugden [10]).
According to this theory the decision maker anticipates his future feelings
about the choice he is about to make and acts according to these feelings.
This approach is natural when the decision maker has to choose between two
(or more) random variables. Once the uncertainty is resolved he will know
what outcome he received, but also what outcome he could have received
had he chosen an alternative option. This comparison may cause him elation
— if his actual outcome is better than the alternative — or regret.

Formally, let X and Y be two random variables with money outcomes.
Let ψ(x, y) measure the regret or elation a person feels when observing that
he won x while the alternative choice would have landed him y. Choosing
X over Y thus leads, ex ante, to a lottery Ψ(X, Y ) where the outcomes are
ψ(x, y). Choice is based on regret and elation if there is a functional V over
regret/elation lotteries such that X is chosen over Y iff V (Ψ(X, Y )) > 0.

The question we ask is simple: What functionals V and regret/elation
functions ψ are consistent with transitive choice? That is, when is it true
that if V (Ψ(X, Y )) > 0 and V (Ψ(Y, Z)) > 0, then V (Ψ(X,Z)) > 0 as
well ? The main result of the paper is that transitive choice implies expected
utility. This conclusion does not depend on V being linear in probabilities
or separable across states.

One can read this result in two different ways. It offers an axiomati-
zation of expected utility theory without making any references to mixture
spaces (see Kreps [9] for summary of terms and basic results). But the real
contribution is the impossibility result that shows that regret is inherently
intransitive. If so, then one must either conclude that (i) Regret, despite its
clear psychological appeal, cannot be used in standard economic models; or
that (ii) Regret must be analyzed in a more involved way than in Bell [4]
and Loomes and Sugden [10] — for example, as it is done in Hayashi [7]
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and Sarver [14], or by defining regret with respect to foregone distributions
rather than foregone outcomes (see Machina [13] and Starmer [15] for some
steps in this direction); or that (iii) Models of intransitive preferences must
be incorporated into economics as in Fishburn and LaValle [6] or Loomes
and Sugden [11].1

The paper is organized as follows. The model and the main result are
presented in the next section. Section 3 offers an outline of the proof while
the details of the proof appear in the appendix. Section 4 concludes with a
discussion of some possible extensions.

2 The model and main result

Let L be the set of real finite-valued random variables over (S,Σ,P) with
S = [0, 1], Σ being the standard Borel σ algebra on S, P = µ, the Lebesgue
measure, and the set of outcomes being the bounded interval [x, x̄]. The deci-
sion maker has a complete, transitive, continuous, and monotonic preference
relation � over L.

Definition 1 The continuous function ψ : [x, x̄] × [x, x̄] → ℜ is a regret
function if for all x, ψ(x, x) = 0, ψ(x, y) is strictly increasing in x, and
strictly decreasing in y.

If in some event X yields x and Y yields y then ψ(x, y) is a measure of
the decision maker’s ex post feelings (of regret if x < y or elation if x > y)
about the choice of X over Y . This leads to the next definition:

Definition 2 Let X, Y ∈ L where X = (x1, s1; . . . ; xn, sn) and Y = (y1, s1;
. . . ; yn, sn). The regret lottery evaluating the choice of X over Y is

Ψ(X, Y ) = (ψ(x1, y1), p1; . . . ;ψ(xn, yn), pn)

where pi = P(si), i = 1, . . . , n. Denote the set of regret lotteries by R =
{Ψ(X, Y ) : X, Y ∈ L}.

For brevity we refer to ψ and Ψ as regret function and regret lottery
respectively, even though they encompass both regret and elation.

1See also Starmer [15] for further references.
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Definition 3 The preference relation � is regret based if there is a regret
function ψ and a continuous functional V which is defined over regret lotteries
such that for any X, Y ∈ L

X � Y if and only if V (Ψ(X, Y )) > 0

The main result of this paper is the following.

Theorem 1 Let � be a complete, transitive, continuous, and monotonic
preference relation over the set L of random variables. The relation � is
regret based if and only if it is expected utility.

This theorem implies, in particular, that unless they reduce to expected
utility, the regret models of Bell [4], Loomes and Sugden [10], and Sug-
den [16] are intransitive.2 Recently, Hayashi [7] and Sarver [14] presented
non-expected utility models of regret that are transitive but these papers
depart from the standard regret model of [4] and [10]. In Hayashi [7], the
decision maker has multiple priors and selects the option that minimizes the
maximum possible ex ante expected regret under this set of priors. If the
prior is unique then Hayashi’s model reduces to expected utility.

According to Sarver [14], the decision maker chooses between menus of
lotteries and a lottery from the selected menu. At the time these two choices
are made, the decision maker does not know his preferences over lotteries.
Later, when he learns his preferences, the selected lottery may turn out to
be inferior to another lottery that is in the menu he selected, causing ex post
regret. Each of the decision maker’s possible preference relations is transitive
but this is not inconsistent with Theorem 1 because in our model the decision
maker knows his preferences at the time of choice while in [14] the decision
maker is using a set of preferences. Indeed, if the set of preferences is a
singleton then Sarver’s model too is reduced to expected utility.

Theorem 1 is proved as follows. It is straightforward to show that ex-
pected utility is regret based (with ψ(x, y) = u(x)− u(y) and V (Ψ(X, Y )) =

2 An important exception is the case where the choice set consists of statisti-
cally independent random variables and for the two lotteries (x1, p1; . . . ;xn, pn) and
(y1, q1; . . . ; ym, qm) the probability of the regret ψ(xi, yj) is piqj (see Starmer [15, pp.
355–6] and Machina [13, pp. 138–140]). For example, Chew’s [5] weighted utility theory
is consistent with this form of regret.
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∑

i piψ(xi, yi)). That any transitive regret-based preferences must be ex-
pected utility is proved in a sequence of steps summarized below:

1. Preferences are probabilistically sophisticated. That is, if X and Y

have the same distribution, then X ∼ Y (Section 3.1, Proposition 1).

2. The indifference curve of V through zero, {R : V (R) = 0}, is linear in
probabilities (Section 3.3, Lemmas 3–5).

3. There exists V as in Def. 3 which is linear in probabilities for all regret
lotteries R (Section 3.4, Lemma 6).

4. The preference relation � is expected utility (Section 3.4, Lemma 7).

3 Proof of the Theorem

3.1 Probabilistic Sophistication

When preferences are regret based, the decision maker cares about what
events will happen as this will tell him what are the alternative outcomes
he could have received had he chosen differently. When the decision maker
learns that #4 on a die yields $100 under X and $150 under Y , the fact that
these two outcomes are linked to the same state of the world is important, but
the state itself is not. Consequently, only the probabilities of the underlying
states are relevant for regret between X and Y . As long as the probability
of #1 is the same as that of #4, it makes no difference whether the regret
ψ(100, 150) is obtained when the number is 1 or 4. This is why regret lotteries
are evaluated with respect to their probabilities and not with respect to the
generating events. Proposition 1 shows that this observation has a significant
implication to the evaluation of random variables. For X ∈ L let FX be the
distribution of X, that is, FX(x) = P(X 6 x). Also, for a permutation
π : {1, . . . , n} → {1, . . . , n}, let π(X) = (xπ(1), s1; . . . ; xπ(n), sn).

Proposition 1 (Probabilistic sophistication): Let � be a continuous and
transitive regret based preference relation over L. For any two random vari-
ables X, Y ∈ L, if FX = FY then X ∼ Y .
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3.2 Preliminary results

We assumed that outcomes are in a finite interval [x, x̄]. Let r = ψ(x, x̄)
and r̄ = ψ(x̄, x). Clearly −∞ < r < 0 < r̄ < ∞. As ψ(x, y) is continuous,
increasing in x and decreasing in y, it follows that the set of regret lotteries
R defined in Def. 2 is the set of finite-valued lotteries with outcomes in the
interval [r, r̄]. The following monotonicity properties of V are inherited from
the monotonicity of �.

Lemma 1 Let R,R′ be two distinct regret lotteries such that R dominates
R′ by first-order stochastic dominance (FOSD).

1. If V (R) = 0 then V (R′) < 0.

2. If V (R′) = 0 then V (R) > 0.

The next lemma permits a selection of regret lotteries that are skew sym-
metric in regret and elation.

Lemma 2

1. If ψ(x, y) = ψ(x′, y′) then ψ(y, x) = ψ(y′, x′).

2. ψ(x, y) = −ψ(y, x) is without loss of generality.

We will assume throughout that ψ(x, y) = −ψ(y, x) and that Ψ(X, Y ) =
−Ψ(Y,X) ≡ (−ψ(y1, x1), p1; . . . ;−ψ(yn, xn), pn). Moreover, r = −r̄.

3.3 The indifference curve through zero is linear

A regret lottery R is generated by a permutation if there exists a random
variable X = (x1, s1; . . . ; xn, sn), P(si) = 1

n
, and a permutation π of X such

that Ψ(X, π(X)) = R. By Proposition 1, if R is generated by a permutation
then V (R) = 0. The next lemma shows that the subset of {R : V (R) = 0}
that is generated by permutations is convex.

Lemma 3 If R and R′ are generated by permutations then so is 1
2
R + 1

2
R′.
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As R,R′ are generated by permutations we have V (R) = V (R′) = 0, and
by Lemma 3, V (1

2
R+ 1

2
R′) = 0. As is shown by the next example, one cannot

guarantee that every regret lottery R = (r1,
1
n
; . . . ; rn,

1
n
) such that V (R) = 0

is generated by a permutation.

Example 1 Consider an expected value maximizer whose choice set consists
of random variables with prizes in the interval [−3, 3]. This individual’s regret
function is ψ(x, y) = x − y and he is indifferent between X and Y defined
below, where P(si) = 0.2:

X = (3, s1; 3, s2; −1, s3; −1, s4; −1, s5)

Y = (−3, s1; −3, s2; 3, s3; 3, s4; 3, s5)

As X ∼ Y , V (Ψ(X, Y )) = V (6, 0.2; 6, 0.2; −4, 0.2; −4, 0.2; −4, 0.2) = 0.
But there does not exist a random variable Ẑ with outcomes in the interval
[−3, 3] and a permutation π such that Ψ(X, Y ) = Ψ(Ẑ, π(Ẑ)). To see why,
observe that the elation 6 must be generated by the outcomes −3 and 3.
From outcome 3 only regret is possible, and as the only regret level is −4, the
outcome 3 must be paired with −1. From outcome −1 one cannot generate
elation 6, nor can one have regret −4.3 �

The problem is that the outcomes in X and Y are far. However, as is
shown by the next example, one can find in Example 1 a random variable Z
whose outcomes are sufficiently close to both X and Y such that X ∼ Z ∼ Y

and the regret lotteries Ψ(X,Z) and Ψ(Z, Y ) are generated by permutations.

Example 2 Using the notation of Example 1, let Z = (0, s1; 0, s2; 1, s3; 1, s4;
1, s5). Thus

Ψ(X,Z) = Ψ(Z, Y ) = (3, 0.2; 3, 0.2; −2, 0.2; −2, 0.2; −2, 0.2)

Define

Ẑ = (3, s1; 0, s2; −3, s3; −1, s4; 1, s5)

π(Ẑ) = (0, s1; −3, s2; −1, s3; 1, s4; 3, s5)

Then Ψ(Ẑ, π(Ẑ)) = Ψ(X,Z) = Ψ(Z, Y ). �
3If, instead, we had assumed that the set of outcomes was (−∞,∞), then any R =

(r1,
1

n
; . . . ; rn,

1

n
) such that V (R) = 0 would be generated by a permutation leading to a

simpler proof of Theorem 1.
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This idea is formalized below.

Lemma 4 Let X ∼ Y where X = (x1, s1; . . . ; xn, sn), Y = (y1, s1; . . . ; yn,

sn), and P(si) = 1
n
. Then there is a sequence X = Z1 ∼ Z2 ∼ . . . ∼ Zk =

Y such that for every ℓ = 1, . . . , k − 1 there is a regret lottery Ẑℓ and a
permutation πℓ so that Ψ(Zℓ, Zℓ+1) = Ψ(Ẑℓ, πℓ(Ẑℓ)).

Thus, even if a regret lottery R = (r1,
1
n
; . . . ; rn,

1
n
) with V (R) = 0 is not

generated by a permutation, one can find a sequence of random variables
Z1 ∼ . . . ∼ Zk such that each Ψ(Zℓ, Zℓ+1) is generated by a permutation and
R = Ψ(Z1, Zk). This is used to prove that the set {R : V (R) = 0} is convex.

Lemma 5 If V (R) = V (R′) = 0, then V
(

1
2
R + 1

2
R′

)

= 0.

3.4 V is linear in probabilities and � is expected utility

The following lemma establishes that all indifference curves of V are linear.

Lemma 6

1. There is a function v : [−r̄, r̄] → ℜ such that V (R) R 0 iff E[v(R)] R 0.

2. Moreover, v is strictly increasing with v(0) = 0 and v(ψ(x, y)) =
−v(ψ(y, x)) for all x, y.

We now use the function v to create a function u on outcomes which will
turn out to be the vNM utility claimed by Theorem 1.

Lemma 7 There exists an increasing function u : [x, x̄] → ℜ such that

v(ψ(x, y)) = u(x) − u(y)

From the last two lemmas we have for X = (x1, s1; . . . ; xn, sn) and Y =
(y1, s1; . . . ; yn, sn) where P(si) = pi,
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X � Y ⇐⇒

V (Ψ(X, Y )) > 0 ⇐⇒
∑

i

piv(ψ(xi, yi)) > 0 ⇐⇒

∑

i

pi[u(xi) − u(yi)] > 0 ⇐⇒

E[u(X)] > E[u(Y )]

which is the claim of the theorem. �

4 A concluding remark

The intuition of regret with respect to an alternative that was not taken is the
basis of the above analysis. A somewhat similar situation is often discussed
in the literature, where preferences depend on a certain reference point. This
reference point may be the decision maker’s current holding (eg. Kahneman,
Knetsch, and Thaler [8] or Tversky and Kahneman [17]), or the holdings of
other people (eg. Bagwell and Bernheim [2], Ball et. al. [3], or Maccheroni,
Marinacci, and Rustichini [12]). Formally, such preferences are indexed by
the reference point. That is, X �Z Y means that given the reference point
Z, X is preferred to Y . As long as Z is fixed, these preferences behave
like standard preferences. The interesting question is what is the connection
between preferences that are conditioned on different reference points. Our
analysis may contribute to this issue in the following way.

Suppose that a decision maker has to choose between two random vari-
ables X and Y . He knows that another person he envies has (or will have)
either X or Y , both equally likely. One approach is to say that the other
person holds the lottery 1

2
X + 1

2
Y and that this mixture should serve as the

reference point for the decision maker. This approach misses the main fea-
ture of envy, namely the feelings the decision maker will experience once he
knows his position relative to the other person. We suggest that this decision
maker’s behavior should be modeled as a choice between the envy lotteries
(X|X, 1

2
;X|Y, 1

2
) and (Y |X, 1

2
;Y |Y, 1

2
), where A|B means “A when the other

person holds B.” Obviously X|X and Y |Y lead to no envy, so the choice
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between the above two envy lotteries depends on the comparison of X|Y
with Y |X. Our formal analysis extends naturally to such situations.

5 Appendix

Proof of Proposition 1: Let X = (x1, s1; . . . ; xn, sn) and Y = (y1, s
′

1; . . . ;
yn, s

′

n) be such that FX = FY .

Case 1: si = s′i and P(si) = 1
n
, i = 1, . . . , n. Then there is a permutation π̂

such that Y = π̂(X). Obviously, Ψ(X, π̂(X)) = Ψ(π̂i(X), π̂i+1(X)), hence,
as π̂n(X) = X, it follows by transitivity that for all i, X ∼ π̂i(X). In
particular, X ∼ Y .

Case 2: For all i, j, P(si ∩ s′j) is a rational number. Let N be a common
denominator of all these fractions. X and Y can now be written as in Case 1
with equiprobable events t1, . . . , tN .

Case 3: There exist i, j, s.t. P(si ∩ s′j) is irrational. Any random variable
Z = (z1, t1; . . . ; zn, tn) is the limit of Zk = (zk

1 , t
k
1; . . . ; z

k
2k , t

k
2k) where for all k

and ℓ, P(zk
ℓ ) = 2−k. This case follows by continuity from case 2. �

Proof of Lemma 1: Let R, R′ be two regret lotteries. As usual, R domi-
nates R′ by FOSD iff R and R′ can be written as R = (r1, p1; . . . ; rn, pn) and
R′ = (r′1, p1; . . . ; r

′

n, pn) where for all i, ri > r′i.

From the continuity of ψ we know that for every r ∈ [r, r̄] there exist
x, y ∈ [x, x̄] such that r = ψ(x, y). Hence there are X, Y ∈ L such that
Ψ(X, Y ) = R. By the continuity and monotonicity of ψ we can find X ′ and
Y ′ such that x′i 6 xi, y

′

i > yi, ψ(x′i, y
′

i) = r′i for each i and Ψ(X ′, Y ′) = R′.
Either X strictly dominates X ′ by FOSD or Y ′ strictly dominates Y by
FOSD (or both). Monotonicity of � implies that X � X ′ and Y ′ � Y with
at least one of these preferences being strict.

1. If V (R) = 0, then X ∼ Y . By transitivity X ′ ≺ Y ′ and hence V (R′) =
V (Ψ(X ′, Y ′)) < 0.

2. If V (R′) = 0, then X ′ ∼ Y ′. By transitivity X ≻ Y and therefore
V (R) = V (Ψ(X, Y )) > 0. �
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Proof of Lemma 2:

1. Let S = {s1, s2} with P(s1) = P(s2) = 0.5. Define the lotteries X =
(x, s1; y, s2), Y = (y, s1; x, s2), X

′ = (x′, s1; y
′, s2) and Y ′ = (y′, s1; x

′, s2).
Let r = ψ(x, y) = ψ(x′, y′). Then

Ψ(X, Y ) = (r, 0.5;ψ(y, x), 0.5)

Ψ(X ′, Y ′) = (r, 0.5;ψ(y′, x′), 0.5)

By Proposition 1, X ∼ Y and X ′ ∼ Y ′, thus, we have V (Ψ(X, Y )) =
V (Ψ(X ′, Y ′)) = 0. But if ψ(y, x) 6= ψ(y′, x′) then Ψ(X, Y ) either dominates
or is dominated by Ψ(X ′, Y ′), contradicting Lemma 1.

2. Recall that ψ(x, x) = 0. Let f : [r, r̄] → [−r̄, r̄] be defined as follows:

f(r) =

{

−ψ(y, x) if r < 0 and x < y is such that ψ(x, y) = r

r if r > 0

By the first part of this lemma, the value of f(r) for r < 0 does not depend on
the choice of x, y in the above definition, hence f is well defined. Monotonicity
of ψ implies that f is strictly increasing. We can therefore define

V ∗(r1, p1; . . . ; rn, pn) = V (f−1(r1), p1; . . . ; f
−1(rn), pn)

Let

ψ∗(x, y) =

{

ψ(x, y) if x > y

f(ψ(x, y)) if x < y

Now
X � Y ⇐⇒

V (Ψ(X, Y )) > V (Ψ(Y,X)) ⇐⇒

V ∗(Ψ∗(X, Y )) > V ∗(Ψ∗(Y,X))

where Ψ∗(X, Y ) is obtained from Ψ(X, Y ) by replacing ψ(x, y) with ψ∗(x, y). �

Proof of Lemma 3: In the sequel, random variablesQ withm (not necessar-
ily distinct) outcomes are of the form (q1, s

m
1 ; . . . ; qm, s

m
m) for some canonical

partition where P(sm
i ) = 1

m
, i = 1, . . . , m. For Q and Q′ with m outcomes

each, let

〈Q,Q′〉 =
(

q1, s
2m
1 ; . . . ; qm, s

2m
m ; q′1, s

2m
m+1; . . . ; q

′

m, s
2m
2m

)
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where P(s2m
i ) = 1

2m
.

Let R and R′ be generated by permutations π of X = (x1, s1; . . . ; xn, sn)
and π′ of Y = (y1, s

′

1; . . . ; yn, s
′

n) respectively, where P(si) = P(s′i) = 1
n
,

i = 1, . . . , n. That is, R = Ψ(X, π(X)), R′ = Ψ(Y, π′(Y )). (The assumption
that X and Y are of the same length is without loss of generality). Define
Z = 〈X, Y 〉 and π∗ : {1, . . . , 2n} → {1, . . . , 2n} by

π∗(i) =

{

π(i) i 6 n

π′(i− n) + n i > n

to obtain Ψ(Z, π∗(Z)) = Ψ(〈X, Y 〉, π∗〈X, Y 〉) = 1
2
R + 1

2
R′. �

Proof of Lemma 4: All random variables in this proof have n outcomes
on the equiprobable events s1, . . . , sn. For Z = (z1, s1; . . . ; zn, sn) and Z ′ =
(z′1, s1; . . . ; z

′

n, sn), define ‖Z − Z ′‖= maxi |zi − z′i|.

The proof follows from Claims 1–2.

Claim 1 Let X ∼ Y . For any δ > 0 there exist Z1, . . . , Zk such that X =
Z1 ∼ . . . ∼ Zk = Y and ‖Zℓ−1 − Zℓ ‖6 δ, ℓ = 2, . . . , k.

Proof: We construct the sequence Z1, . . . inductively. Suppose that X 6= Y

and that we have already defined X = Z1 ∼ . . . ∼ Zℓ such that ‖Zi−1−Zi ‖6
δ, i = 2, . . . , ℓ. If Zℓ ∼ Y we are through. Otherwise, define Lℓ

+ = {i : zℓ
i >

yi} and Lℓ
−

= {i : zℓ
i < yi}. As Zℓ ∼ Y and Zℓ 6= Y , both Lℓ

+ and Lℓ
−

are
non-empty. Let

δℓ
+ = min

i∈Lℓ
+

{zℓ
i − yi}

δℓ
−

= min
i∈Lℓ

−

{yi − zℓ
i}

Define fℓ(θ) such that Zℓ ∼ Zℓ+1(θ) ≡ (zℓ+1
1 (θ), s1; . . . ; z

ℓ+1
n (θ), sn) where

zℓ+1
i (θ) =







zℓ
i − θ if i ∈ Lℓ

+

zℓ
i + fℓ(θ) if i ∈ L1

−

zℓ
i otherwise

By continuity and monotonicity of �, fℓ(θ) is well defined (for small θ),
continuous and increasing. Its inverse exists and is continuous. Define θℓ =
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min
{

δ, δℓ
+, f

−1
ℓ (δℓ

−
)
}

and let Zℓ+1 = Zℓ+1(θ
ℓ). Note that Z1, . . . , Zℓ+1 satisfy

the hypothesis of the claim.

If θℓ = δ, then ‖Zℓ+1 − Y ‖6 ‖Zℓ − Y ‖ − δ. If θℓ = δℓ
+, then |Lℓ+1

+ | 6
|Lℓ

+| − 1. If θℓ = f−1
ℓ (δℓ

−
), then |Lℓ+1

−
| 6 |Lℓ

−
| − 1. Thus, this process

terminates in a finite number of steps with Zk = Y . �

Claim 2 There exists εn > 0 such that if for all i, |ri| < εn, then there exist
a random variable Ẑ and a permutation π such that R = (r1,

1
n
; . . . ; rn,

1
n
)

satisfies R = Ψ(Ẑ, π(Ẑ)).

Proof: The domain of outcomes is [x, x̄]. Let

z1 =
x̄+ x

2
, δn =

x̄− x

2n
=
z1 − x

n
=
x̄− z1

n
> 0

Thus, z1 + nδn = x̄ and z1 − nδn = x.

The function ψ is continuous on the compact segment [x, x̄], therefore for
any δn > 0 there exists εn > 0 such that |ψ(x, y)| < εn implies |x− y| < δn.
Thus, with |ri| < εn we can construct Ẑ such that:

Event s1 s2 s3 s4 . . . sn−1 sn

Ẑ z1 z2 z3 z4 . . . zn−1 zn

π(Ẑ) z2 z3 z4 z5 . . . zn z1

Ψ(Ẑ, π(Ẑ)) r1 r2 r3 r4 . . . rn−1 ψ(zn, z1)

z1 is chosen to be the midpoint between x and x̄, and each zℓ+1 is chosen
so that ψ(zℓ, zℓ+1) = rℓ, ℓ = 1, 2, . . . , n − 1. As |rℓ| < εn, we have |zℓ −
zℓ+1| < δn and each zℓ ∈ [x, x̄]. As V (R) = V (Ψ(Ẑ, π(Ẑ))) = 0, it must
be that ψ(zn, z1) = rn. Otherwise, R either dominates or is dominated by
Ψ(Ẑ, π(Ẑ)), contradicting Lemma 1. Thus, R = Ψ(Ẑ, π(Ẑ)). �

Proof of Lemma 5: For R = (r1,
1
n
; . . . ; rn,

1
n
) and R′ = (r′1,

1
n
; . . . ; r′n,

1
n
)

such that ψ(R) = ψ(R′) = 0, let X, Y,X ′, Y ′ be such that Ψ(X, Y ) = R and
Ψ(X ′, Y ′) = R′. By Lemma 4, there exist sequences X = Z1 ∼ . . . ∼ Zk = Y

and X ′ = Z ′

1 ∼ . . . ∼ Z ′

k = Y ′ such that for all ℓ = 1, . . . , k − 1 there
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exist Ẑℓ, πℓ, Ẑ
′

ℓ, π
′

ℓ satisfying Ψ(Ẑℓ, πℓ(Ẑℓ)) = Ψ(Zℓ, Zℓ+1) and Ψ(Ẑ ′

ℓ, π
′

ℓ(Ẑ
′

ℓ)) =
Ψ(Z ′

ℓ, Z
′

ℓ+1).
4 Thus, for each ℓ = 1, 2, . . . , k − 1, the pair of regret lotteries

Ψ(Zℓ, Zℓ+1) and Ψ(Z ′

ℓ, Z
′

ℓ+1) satisfies the hypothesis of Lemma 3. Therefore,

V
(

1
2
Ψ(Zℓ, Zℓ+1) + 1

2
Ψ(Z ′

ℓ, Z
′

ℓ+1)
)

= 0

Note that 1
2
Ψ(Zℓ, Zℓ+1)+

1
2
Ψ(Z ′

ℓ, Z
′

ℓ+1) = Ψ(〈Zℓ, Z
′

ℓ〉, 〈Zℓ+1, Z
′

ℓ+1〉) where 〈 · , · 〉
is defined in the proof of Lemma 3. Consequently,

〈X,X ′〉 = 〈Z1, Z
′

1〉 ∼ . . . ∼ 〈Zk, Z
′

k〉 = 〈Y, Y ′〉

Hence

V (Ψ(〈X,X ′〉, 〈Y, Y ′〉) = 0

But

Ψ(〈X,X ′〉, 〈Y, Y ′〉) = 1
2
R + 1

2
R′

and we obtain V (1
2
R + 1

2
R′) = 0.

As each X ∈ L is the limit of a sequence {Xk} where for each k, Xk =
(xk

1,
1

nk

; . . . ; xk
nk
, 1

nk

), the lemma now follows by continuity for all R and R′

such that V (R) = V (R′) = 0. �

Proof of Lemma 6: Recall that V (δr̄) > 0 > V (δ−r̄) where δt is the
constant lottery yielding t.

1. For a regret lottery R such that V (R) > 0, let α(R) be defined by
V (α(R)R + (1 − α(R))δ−r̄) = 0 and for R such that V (R) < 0, let α(R) be
defined by V (α(R)R+(1−α(R))δr̄) = 0. By Lemma 1 and the continuity of
V , α(R) is well defined and α(R) < 1. Let α∗ satisfy V (α∗δr̄ +(1−α∗)δ−r̄) =
0.

We show first that α is a continuous function. Let Rk → R0 and suppose
that α(Rk) → α′.5 Suppose without loss of generality that for all k, V (Rk) >
0. By the continuity of V ,

V (α′R0 + (1 − α′)δ−r̄) = lim
k
V (α(Rk)Rk + (1 − α(Rk))δ−r̄) = 0

4We use the same k in both sequences without loss of generality as the sequences may
become stationary from a certain point on.

5If α(Rk) does not have a limit, then we take a subsequence that has a limit.
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hence α′ = α(R0).

Define now U(R) by

U(R) =







α∗

α(R)
− α∗ V (R) > 0

0 V (R) = 0
1 − α∗ − 1−α∗

α(R)
V (R) < 0

For R such that V (R) 6= 0, α(R) < 1, hence U(R) R 0 iff V (R) R 0. The
continuity of α(·) implies that U(R) is continuous. We show next that U is
linear. That is, for all R and R′, U

(

1
2
R + 1

2
R′

)

= 1
2
U(R) + 1

2
U(R′).

By Lemma 5 and the continuity of V we have:

Conclusion 1 If V (R) = V (R′) = 0, then for all α ∈ [0, 1], V (αR+ (1−
α)R′) = 0.

For arbitraryR andR′, the four regret lotteries R,R′, δr̄, δ−r̄ determine (at
most) a three-dimensional simplex. By taking an appropriate linear trans-
formation we can assume without loss of generality that δ−r̄ = (0, 0,−1),
δr̄ = (0, 0, 1−α∗

α∗
), R = (x∗, y∗, z∗), R′ = (x′, y′, z′), and, by Conclusion 1,

V (x, y, z) = 0 iff z = 0. It follows that for z > 0, α(x, y, z) solves

αz − (1 − α) = 0 =⇒ α(x, y, z) =
1

z + 1

and for z < 0, α(x, y, z) solves

αz + (1 − α)
1 − α∗

α∗
= 0 =⇒ α(x, y, z) =

1 − α∗

1 − α∗ − α∗z

In both cases, U(x, y, z) = α∗z.

Define now a preference relation �∗ on regret lotteries by R �∗ R′ iff
U(R) > U(R′). Since U is continuous, so is �∗ and since U is linear, �∗

satisfies the independence axiom. Therefore, there is a function v such that
U(R) R 0 iff E[v(R)] R 0. The lemma follows since U(R) R 0 iff V (R) R 0.

2. Suppose that v(·) is not strictly increasing. Then, there exist r1 < r2 such
that v(r1) > v(r2). Take R = (r1, p1; r2, p2; . . . ; rn, pn) such that V (R) =
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0. The continuity of V implies that such an R exists. Construct R′ =
(r1, p1 − ε; r2, p2 + ε; . . . ; rn, pn). If v(r1) = v(r2) then 0 = V (R) = V (R′)
but R′ dominates R by FOSD, contradicting Lemma 1. If, instead, v(r1) >
v(r2) then 0 = V (R) > V (R′) but R′ dominates R by FOSD, once again
contradicting Lemma 1. The fact that v(0) = 0 follows from V (0, 1) = 0.

Finally, let S = {s1, s2} with P(s1) = P(s2) = 0.5. Define X = (x, s1;
y, s2) and Y ≡ (y, s1; x, s2). By Proposition 1, X ∼ Y . Thus v(ψ(x, y)) =
−v(ψ(y, x)). �

Proof of Lemma 7: The following claim follows from a theorem in Aczél [1].

Claim 3 If G(x, y) + G(y, z) = G(x, z) for all x < y < z, then there exists
a function g : ℜ → ℜ such that G(x, y) = g(x) − g(y).

Proof: Define

H(x, y) =







G(x, y) x < y

0 x = y

−G(y, x) x > y

It may be verified that for all x, y, z,

H(x, y) +H(y, z) = H(x, z)

Therefore, Aczél [1] (Theorem 1, p. 223) implies that there exists g : ℜ → ℜ
such that H(x, y) = g(x) − g(y). �

Select x1 < x2 < x3 and p, q > 0, p 6= q, p + q < 1
3
. Define lotteries X, Y

as below.

Event s1 s4 s7 s2 s5 s8 s3 s6 s9

P(si) p p p q q q 1
3
− p− q 1

3
− p− q 1

3
− p− q

X x1 x2 x3 x1 x2 x3 x1 x2 x3

Y x3 x1 x2 x2 x3 x1 x1 x2 x3

Proposition 1 implies X ∼ Y as each of these lotteries gives x1, x2, and
x3 with probability 1

3
each. Thus, V (Ψ(X, Y )) = 0 and by Lemma 6,

15



E[v(Ψ(X, Y ))] = 0. As v(ψ(x, y)) = −v(ψ(y, x)) and v(ψ(x, x)) = 0 (see
Lemma 6), it follows that

[q − p]v(ψ(x1, x2)) + [q − p]v(ψ(x2, x3)) + [p− q]v(ψ(x1, x3)) = 0

Since p 6= q we obtain for all x1 < x2 < x3, v(ψ(x1, x2)) + v(ψ(x2, x3)) =
v(ψ(x1, x3)). By Claim 3, there exists a function u : ℜ → ℜ such that
v(ψ(x1, x2)) = u(x1)−u(x2). Monotonicity of u follows from the monotonic-
ity of �. �
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