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Abstract

Allocation and exchange of discrete resources such as kidneys, school seats, and

many other resources for which agents have single-unit demand is conducted via di-

rect mechanisms without monetary transfers. Incentive compatibility and efficiency are

primary concerns in designing such mechanisms. We show that a mechanism is indi-

vidually strategy-proof and always selects the efficient outcome with respect to some

Arrovian social welfare function if and only if the mechanism is group strategy-proof

and Pareto efficient. We construct the full class of these mechanisms and show that

each of them can be implemented by endowing agents with control rights over resources.

This new class, which we call trading cycles, contains new mechanisms as well as known

mechanisms such as top trading cycles, serial dictatorships, and hierarchical exchange.

We illustrate how one can use our construction to show what can and what cannot be

achieved in a variety of allocation and exchange problems, and we provide an example

in which the new trading-cycles mechanisms strictly Lorenz dominate all previously

known mechanisms.
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1 Introduction

Microeconomic theory has informed the design of many markets and other institutions. Re-
cently, many new mechanisms have been proposed to allocate resources in environments
in which agents have single-unit demands and transfers are not used, or are prohibited.
These environments include: allocation and exchange of transplant organs, such as kid-
neys (cf. Roth, Sönmez, and Ünver, 2004); allocation of school seats in Boston, New York
City, Chicago, and San Francisco (cf. Abdulkadiroğlu and Sönmez, 2003); and allocation of
dormitory rooms at US colleges (cf. Abdulkadiroğlu and Sönmez, 1999).

The central concerns in the development of allocation mechanisms are incentives and ef-
ficiency.1 We study two incentive compatibility requirements, individual strategy-proofness
and group strategy-proofness, and two efficiency requirements, Pareto efficiency and effi-
ciency with respect to an Arrovian social welfare function (Arrovian efficiency). We show
that three among four possible combinations of these requirements are equivalent: a direct
mechanism is individually strategy-proof and Arrovian efficient if and only if it it is group
strategy-proof and Pareto efficient, and also, if and only if it is group strategy-proof and
Arrovian efficient. We construct the full class of these mechanisms and analyze the implica-
tions of our characterization, as well as the usefulness of the newly constructed mechanisms.
The restriction to direct mechanisms is justified by the revelation principle.2

Before describing our results and their implications, let us highlight the common features
of the standard model we are studying and of the above-mentioned market design problems.
There is a finite group of agents, each of whom would like to consume a single indivisible
object to which we sometimes refer to as a “house,” using the terminology coined by Shapley
and Scarf (1974). We allow objects that are the agents’ common endowment as well as
objects that are privately owned. Agents have strict preferences over the objects, and are
indifferent about what objects are allocated to other agents. The outcome of the problem is
a matching of agents and objects.

We study two incentive-compatibility concepts, and two efficiency criteria. A mechanism
is individually strategy-proof if no agent can benefit by reporting a non-truthful preference
ranking. A mechanism is group strategy-proof if no group of agents can jointly manipulate

1Incentives and efficiency are also central to the theory of allocation mechanisms. For instance, Bogolo-
mania and Moulin (2004) discuss “a recent flurry of papers on the deterministic assignment of indivisible
goods” and state that “the central question of that literature is to characterize the set of efficient and
incentive compatible (strategy-proof) assignment mechanisms.” The prior theoretical literature on single-
unit-demand allocation without transfers has focused on characterizing mechanisms that are strategy-proof
and efficient alongside other properties (see below for examples of such characterizations). In contrast, our
characterization of strategy-proofness and efficiency does not rely on additional assumptions.

2See Appendix A for a discussion of the revelation principle in our context.
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their reports so that all of them weakly benefit from this manipulation, while at least one
in the group strictly benefits. Importantly, strategy-proof mechanisms are immune to ma-
nipulation regardless of the information the agents’ possess. As importantly, in our setting
group strategy-proofness is equivalent to the lack of manipulation opportunities for groups of
two agents. This makes group strategy-proofness a desirable property of mechanisms in our
setting, particularly because in applications we see attempts at strategic coordination. Co-
ordinated reporting to a mechanism has been, for instance, documented in kidney allocation
and exchange (cf. Sönmez and Ünver, 2010; Ashlagi and Roth, 2011) and in school choice
(Pathak and Sönmez, 2008).3 Furthermore, coordinated reporting is effectively the only way
a group of agents can manipulate allocations in many of these environments; for instance,
without an approval from the school district, two parents cannot trade school admission
decisions ex post.4

The first efficiency criterion we study is Pareto efficiency. A mechanism is Pareto efficient
if, for all preference profiles, the resulting matching is not Pareto dominated by any other
matching; a matching Pareto dominates another if all agents weakly prefer the former to the
latter, and some agent’s preference is strict. The second efficiency criterion we study requires
the efficient matching to be the maximum of a social ranking of matchings, in line with
Bergson (1938), Samuelson (1947), and Arrow’s (1963) reformulation of welfare economics.5

To formulate this more demanding efficiency criterion, we define a social welfare function
(SWF) to be a mapping from profiles of agents’ preferences over matchings to partial strict
orderings of matchings. We allow partial orderings—such as Pareto dominance—and derive
results for complete orderings as corollaries.6 We require that each SWF satisfies the Pareto

3In kidney exchange, transplant centers occasionally try to first conduct kidney exchanges using their
internal patient-donor pool, and list their patients and donors in outside exchange programs only if they fail
to find a suitable match, thus hindering the efficiency of regional exchange systems (cf. Sönmez and Ünver,
2010; Ashlagi and Roth, 2011). Also, a doctor acting on behalf of several patients can coordinate their reports
if it benefits his or her patients. There are known cases of doctors gaming medical systems for the benefit
of their patients. For instance, in 2003 two Chicago hospitals settled a Federal lawsuit alleging that some
patients had been fraudulently certified as sicker than they were to move them up on the liver transplant
queue (Warmbir, 2003). In school choice, Pathak and Sönmez (2008) describe strategic cooperation among
parents, e.g. among the members of the West Side Parent Group in Boston.

4Non-manipulability is not the only benefit of using strategy-proof mechanisms. Such mechanisms also
impose minimal costs of searching for and processing strategic information, and they do not discriminate
among agents based on their access to information and ability to strategize (cf. Vickrey, 1961; Dasgupta,
Hammond, and Maskin, 1979; Pathak and Sönmez, 2008).

5Pareto efficiency is, on one hand, the baseline efficiency requirement, and on the other hand, it does not
indicate which of the possibly many Pareto-efficient matchings to choose. For instance, Arrow (1963), pp.
36-37, discusses the partial ordering of outcomes given by Pareto dominance, and observes: “But though
the study of maximal alternatives is possibly a useful preliminary to the analysis of particular social welfare
functions, it is hard to see how any policy recommendations can be based merely on a knowledge of maximal
alternatives. There is no way of deciding which maximal alternative to decide on.”

6See e.g. Sen (1970,1999) for analysis of welfare with partial orderings.
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and independence-of-irrelevant-alternatives postulates (Arrow, 1963): (i) a SWF is Pareto
if it ranks any matching strictly below any other matching that Pareto dominates it, and
(ii) a SWF satisfies the independence of irrelevant alternatives if, given any two profiles of
preferences and any two matchings that are socially comparable under both profiles, if all
agents rank the two matchings in the same way under both profiles, then the social ranking
of the two matchings is the same under both profiles. We call a mechanism Arrovian efficient
with respect to a SWF if, for all preference profiles, the resulting matching is the unique
maximum of the SWF.7 For shortness we say that a mechanism is Arrovian efficient if it is
Arrovian efficient with respect to some SWF.

Our first main result (Theorem 1) establishes that a mechanism is individually strategy-
proof and Arrovian efficient if and only if the mechanism is group strategy-proof and Pareto
efficient. Both directions of the equivalence are noteworthy. First, the equivalence tells
us that requiring individual strategy-proofness and Arrovian efficiency guarantees group
strategy-proofness. As discussed above, group strategy-proofness is a very desirable property
of an allocation mechanism. Second, mechanisms such as Serial Dictatorships or Top Trading
Cycles (defined below) were known to be group strategy-proof and Pareto efficient; our
equivalence allows us to conclude that they are also Arrovian efficient—there are Arrovian
SWF that rationalize them.

As far as we know, the present paper is the first to connect the literature on allocation
and exchange and the literature on Arrovian preference aggregation. In particular, we seem
to be the first to recognize the equivalence of Theorem 1. However, stronger equivalence
results—which do not hold true in our setting—are familiar from studies of voting. In
voting—unlike in our problem—all agents have strict preferences among all outcomes. In the
class of Pareto efficient mechanisms, individual strategy-proofness is then equivalent to group
strategy-proofness (Gibbard, 1973, and Satterthwaite, 1975).8 This stronger equivalence fails
in our setting as it admits individually strategy-proof and Pareto-efficient mechanisms that
fail group strategy-proofness.

7There is a rich social choice literature on the correspondence between choice and the maximum of the
SWF ranking in the context of social choice (see below). This literature is interested in rationalizing social
choice rather than efficiency of allocation mechanisms, and hence it says that a mechanism, or social choice,
is “rationalized by a SWF” rather than “efficient with respect to a SWF.”

8The equivalence of Theorem 1 also has counterparts in the social choice literature on restricted preference
domains—such as single-peaked preferences—in which there are non-dictatorial strategy-proof and Arrow
efficient rules. For instance, Moulin (1988) extends a result by Blair and Muller (1983) and shows that in
environments such as single-peaked voting, if an Arrovian SWF is monotonic, then the mechanism picking
its unique maximal element is group strategy-proof. In particular, this implies that in single-peaked voting
individual strategy-proofness and group strategy-proofness are equivalent with no need to restrict attention
to efficient mechanisms. In contrast, in allocation environments the equivalence results from the conjunction
of incentive and efficiency assumptions, and the equivalence of incentive assumptions alone is not true.
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The equivalence of Theorem 1 leads to a question: what mechanisms are individually
strategy-proof and Arrovian efficient?

Our second main result, Theorem 2, answers this question and constructs the full class
of individually strategy-proof and Arrovian efficient mechanisms, or, equivalently, the full
class of group strategy-proof and Pareto efficient mechanisms.

This new class of mechanisms—which we call trading-cycles mechanisms, or trading cy-
cles for shortness—is closely related to David Gale’s top-trading-cycle mechanism (reported
by Shapley and Scarf, 1974), and especially its generalization by Pápai (2000) (known as
hierarchical exchange, or simply top trading cycles). Let us describe trading cycles in the
special case of our environment in which there are as many objects as agents and each agent
initially controls an object. First consider Gale’s top trading cycles. The top-trading-cycle
algorithm resembles decentralized trading and matches agents and objects in a sequence of
rounds. In each round, each object points to the agent who controls it and each agent points
to his most preferred unmatched object. Since there are a finite number of agents, there
exists at least one pointing cycle in which an agent, say agent 1, points to an object, say
object A; the agent who controls object A points to object B, etc.; and finally the last agent
in the cycle points to the object controlled by agent 1. The pointing cycles might be short
(agent 1 points to object A, which points back to agent 1) or might involve many agents.
The procedure then matches each agent in each pointing cycle with the object to which he
points. The pointing cycles thus become cycles of trading. Rounds are repeated until no
agents and objects are left unmatched.

Gale’s top-trading-cycle mechanism is a special case of trading cycles; Roth (1982) showed
that it is group strategy-proof and Pareto efficient. Other examples of trading cycles obtain
when we take one of the agents—let us call him a broker—and change the way he can trade
the object he controls—which we call the brokered object, or the brokered house. We do
so by running the same algorithm as above except that we make the broker point to his
most preferred unmatched object that is different from the brokered object. Surprisingly, we
prove that this modification of top trading cycles remains group strategy-proof and Pareto
efficient (and hence, by Theorem 1, also Arrovian efficient).9 Even more surprisingly, this
slight modification of top trading cycles gives us the full class of group strategy-proof and
efficient mechanisms.

While we described top trading cycles and trading cycles for a particular environment,
the same algorithms can be used in more general environments, for instance when all objects

9It is natural to ask whether we can run an analogue of trading cycles with more than one broker in a
given round. The answer is negative; such a mechanism would not be strategy-proof and efficient. As we
explain in the paper, at-most-one-broker-per-round is an inherent feature of group strategy-proofness and
efficiency, and not merely a convenient simplification.
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are socially endowed. In such environments, to run top trading cycles we need to specify
for each round and each object which agent controls it (see Abdulkadiroğlu and Sönmez,
1999; Pápai, 2000); to run trading cycles we additionally need to specify for every round
who, if anyone, is the broker. Provided we are careful how the control rights change from
round to round, the resulting mechanisms are group strategy-proof and efficient, and no
other mechanisms are.10

The main insight brought by our characterization is that every individually strategy-
proof and Arrovian efficient mechanism can be obtained by specifying agents’ control rights,
and allowing them to swap objects. In this sense, our result can be seen as a variant of the
Second Fundamental Welfare theorem for the setting without transfers and with single-unit
demands.

Knowing the full class of individually strategy-proof and Arrovian efficient mechanisms,
allows us to derive some further properties shared by all such mechanisms. In particular, we
show that in any such mechanism, for any preference profile, there is a group of agents—the
decisive group—all of whom can get one of their two top choices, and all but at most one
of whom can get their top choice, irrespective of preferences submitted by agents not in the
group. In the trading-cycle algorithm, the decisive group consists of agents who trade in
the first round.11 We further show that all strategy-proof and efficient mechanisms have
a recursive structure: the members of the decisive group determine their allocation; given
their preferences there is another group of agents who obtain one of top two choices among
remaining objects, and who can determine their allocation irrespective of the preferences
of others, etc. For instance, in a sequential dictatorship (Satterthwaite and Sonnenschein,
1981; Svensson, 1994, 1999; Ergin, 2000), which is a special case of trading cycles, the first
dictator chooses his most preferred object, then a second dictator chooses his most preferred
object among the objects which were not chosen by prior dictators, and so forth (we refer
to the mechanism as serial dictatorship if the sequence of dictators is exogenously given).

Furthermore, knowing that all individually strategy-proof and Arrovian efficient mech-
anisms may be represented as trading cycles allows one to determine what can and cannot

10We study environments both with and without outside options. The results are the same in both
environments, but the above algorithm needs to be slightly generalized in the case of outside options by
allowing agents to point to objects or their outside options. We also need to postpone matching a broker
with his outside option until a round in which an agent who owns an object lists the brokered object as his
most preferred one.

11A similar point was made by Sen (1970) and Gibbard (1969) in the context of voting: every SWF
whose ranking of outcomes is a quasi-ordering is determined by the preferences of a group of agents they
call oligarchs. Notice that in the context of allocation, the result is more subtle in that who belongs to the
decisive group can depend on the profile of preferences, and we might have one member of the decisive group
whose preference ranking co-determines the allocation and who obtains one of his top two choices but not
necessarily his top choice.
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be achieved in a strategy-proof way. The characterization radically simplifies analysis of
such questions because it allows us to restrict our attention to trading cycles without loss
of generality (we provide examples of such a radical simplification below). In this sense, the
role trading-cycles mechanisms play in the single-unit demand no-transfers environments we
study, can be compared to, for instance, the role that the mechanisms of Vickrey (1961),
Clarke (1971), and Groves (1973) play in environments with transfers and quasi-linear utili-
ties (cf. Green and Laffont, 1977, and Holmstrom, 1979). Other characterizations of efficient
and strategy-proof mechanisms that are non-dictatorial have been obtained by Barberà,
Jackson, and Neme (1997) for sharing a perfectly divisible good among agents with single-
peaked preferences over their shares; and by Barberà, Gül, and Stacchetti (1993) for voting
problems with single-peaked preferences.

To illustrate how Theorems 1 and 2 simplify the analysis of many otherwise difficult
questions, we use them to obtain new insights into allocation and exchange, as well as to
show that some of the deepest prior results on allocation in environments with single-unit
demands and no transfers are their immediate corollaries.

First, we apply our results to the problem of exchange of goods without transfers and with
single-unit demands. For example, in kidney exchange, patients (agents) come with a paired-
donor kidneys (objects) and have to be matched with at least their paired-donor kidney.
Another example is the allocation of dormitory rooms at universities that give some students,
such as sophomores, the right to stay in the room they lived in the preceding year. Such
exogenous control rights are straightforwardly accommodated by our mechanism class. When
some objects are private endowments of agents it is natural to require that the participation
in the mechanism is individually rational so that each agent likes the mechanism’s outcome at
least as much as the best object from his endowment. We show that the class of individually
strategy-proof, Arrovian efficient, and individually rational mechanisms equals the class of
individually rational trading-cycles mechanisms. A trading-cycles mechanism is individually
rational if and only if (i) it may be represented by a consistent control rights structure in
which each agent is given control rights over all objects from his endowment, and (ii) none
of these agents is a broker. In particular, we show that when each agent has a private
endowment, top-trading-cycles mechanisms are the unique mechanisms that are individually
strategy-proof, Arrovian efficient, and individually rational. In the special case of our setting
in which there are as many objects as agents and each agent is endowed with exactly one
object, this corollary of Theorems 1 and 2 is implied by an earlier result of Ma (1994).12

12Ma shows that Top Trading Cycles is the unique strategy-proof, Pareto-efficient, and individually-rational
mechanism in the discrete exchange economy with single-unit demand and single-unit endowment introduced
by Shapley and Scarf (1974). There exists a unique core allocation in such an economy that can be reached
by Gale’s TTC algorithm (cf. Shapley and Scarf, 1974 and Roth and Postlewaite, 1977). Konishi, Quint,
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Second, we show that sequential dictatorships, defined above, are the only mechanisms
that are individually strategy-proof and Arrovian efficient with respect to a SWF that always
generates complete orderings.13 Dictatorships are the benchmark strategy-proof and efficient
mechanisms in many areas of economics. For instance, Gibbard (1973) and Satterthwaite
(1975) have shown that all strategy-proof and unanimous voting rules are dictatorial.14 Still,
we find it surprising that this corollary of Theorems 1 and 2 holds true in our environment
because—in contrast to the environments where this question was previously studied—ours
allows many individually strategy-proof (and even group strategy-proof) and Pareto efficient
mechanisms that are not dictatorial.

Third, we show that the some of the deep prior insights of the rich literature on allocation
with no-transfers are immediately implied by Theorem 2. Pápai (2000)—the prior work
closest to our paper—constructed a class of mechanisms referred to as top trading cycles or
hierarchical exchange, which use the same algorithm as Gale’s top-trading-cycles mechanism
with the exception that the mechanism takes as an input a structure of control rights (without
brokers) over objects that—for each round of the mechanism and each unmatched object—
determines the agent to whom the object points. She then showed that all group strategy-
proof and Pareto efficient mechanisms that satisfy an additional technical property (that she
refers to as reallocation-proofness) are in her class.15 This result is implied by Theorem 2
because trading cycles with brokers do not satisfy Papai’s reallocation-proofness property.16

and Wako (2001) considered an extension when agents have multi-unit demands and endowments. They
showed that a core allocation may not exist when agents have additive preferences over multiple objects.
Pápai (2007) showed that when we can rule out some of the types of trades that agents are allowed to make
in this multi-unit model, then an extension of Ma’s characterization can be restored.

13We allow outside options in this result; without outside options we show that this subclass of trading
cycles is slightly larger than the class of sequential dictatorships.

14Dasgupta, Hammond, and Maskin (1979) extended this result to more general social choice models,
Satterthwaite and Sonnenschein (1981) extended it to public goods economies with production, Zhou (1991)
extended it to pure public goods economies, and Hatfield (2009) to group strategy-proof quota allocations.
In exchange economies, Barberà and Jackson (1995) showed that strategy-proof mechanisms are Pareto
inefficient.

15A mechanism is reallocation-proof in the sense of Pápai if there is no profile of preferences with a pair
of agents and a pair of preference manipulations such that (i) if both of them misrepresent their preferences,
both of them weakly gain and one of them strictly gains by swapping their assignments, and (ii) if only
one of them misrepresents his preferences, he cannot change his assignment. Pápai also notes that the
more natural reallocation-proofness-type property obtained by dropping condition (ii) conflicts with group
strategy-proofness and Pareto efficiency as does allowing the swap of assignments among more than two
agents. We do not use reallocation-proofness in our results.

16All allocation papers cited above, and the literature in general, shares with our paper the assumption that
agents have strict preferences. This is the standard modeling assumption because—as Ehlers (2002) shows—
“one cannot go much beyond strict preferences if one insists on efficiency and group strategy-proofness.” The
full preference domain gives rise to an impossibility result, i.e., when agents can be indifferent among objects,
there exists no mechanism that is group strategy-proof and Pareto efficient. For this reason, participants
are frequently allowed to submit only strict preference orderings to real-life direct mechanisms in various
markets, such as dormitory room allocation, school choice, and matching of interns and hospitals.
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Svensson (1999) showed that a mechanism is neutral and group strategy-proof if and only if
it is a serial dictatorship; neutrality means that a mechanism is invariant to any renaming
of objects. This result follows from Theorem 2 because neutral and group strategy-proof
mechanisms are Pareto efficient, and because, to be neutral, a trading-cycle mechanism
must be a serial dictatorship.

Finally, one of the auxiliary contributions of our paper is to recognize the role of brokers in
allocation and exchange problems with no transfers. In the context of our paper, the main
role played by the brokers is to allow us to construct the full class of strategy-proof and
efficient mechanisms. The brokers can also be useful in some mechanism design settings,
and we close the paper by providing an example of such a setting. In the example, the
trading cycle with one broker described above is the most equitable allocation mechanism.
In particular, we prove that it is strictly more equitable—in the sense of Lorenz dominance—
than any top-trading-cycles mechanism.

2 Model

2.1 Environment

Let I be a set of agents and H be a set of objects that we often refer to as houses following
the standard terminology of the literature. We use letters i, j,k to refer to agents and h, g,e
to refer to houses. Each agent i has a strict preference relation over H, denoted by �i.17

Let Pi be the set of strict preference relations for agent i, and let PJ denote the Cartesian
product ⇥i2JPi for any J ✓ I. Any profile from �= (�i)i2I from P ⌘ PI is called a
preference profile. For all �2 P and all J ✓ I, let �J= (�i)i2J 2 PJ be the restriction of
� to J .

To simplify the exposition, we make two initial assumptions. Both of these assumptions
are fully relaxed in subsequent sections. First, we initially restrict attention to house al-
location problems. A house allocation problem is the triple hI,H,�i (cf. Hylland and
Zeckhauser, 1979). Throughout the paper, we fix I and H, and thus, a problem is identified
with its preference profile. In Section 6.1, we generalize the setting and the results to house
allocation and exchange by allowing agents to have initial rights over houses. The results on
allocation and exchange turn out to be straightforward corollaries of the results on (pure)
allocation. Second, we initially follow the tradition adopted by many papers in the literature
(cf. Svensson, 1999) and assume that |H| � |I| so that each agent is allocated a house. This

17By ⌫i we denote the induced weak preference relation; that is, for any g, h 2 H, g ⌫i h () g = h or
g �i h.
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assumption is satisfied in settings in which each agent is always allocated a house (there
are no outside options), as well as in settings in which agents’ outside options are tradable,
effectively being indistinguishable from houses. In Section 5.2, we allow for non-tradable
outside options and show that analogues of our results remain true irrespective of whether
|H| � |I| or |H| < |I|.

An outcome of a house allocation problem is a matching. To define a matching, let
us start with a more general concept that we will use frequently. A submatching is an
allocation of a subset of houses to a subset of agents, such that no two different agents get
the same house. Formally, a submatching is a one-to-one function � : J ! H; where for
J ✓ I, using the standard function notation, we denote by �(i) the assignment of agent
i 2 J under �, and by ��1(h) the agent that got house h 2 �(J) under �. Let S be the
set of submatchings. For each � 2 S, let I� denote the set of agents matched by � and
H� ✓ H denote the set of houses matched by �. For all h 2 H, let S�h ⇢ S be the set of
submatchings � 2 S such that h 2 H �H�, i.e., the set of submatchings at which house h is
unmatched. In virtue of the set-theoretic interpretation of functions, submatchings are sets
of agent-house pairs, and are ordered by inclusion. A matching is a maximal submatching;
that is, µ 2 S is a matching if Iµ = I. Let M ⇢ S be the set of matchings. We will write
I� for I � I�, and H� for H �H� for short. We will also write M for S �M.

A mechanism is a mapping ' : P �! M that assigns a matching for each preference
profile (or, equivalently, for each allocation problem).18

2.2 Strategy-Proofness and Efficiency

A mechanism is individually strategy-proof if truthful revelation of preferences is a weakly
dominant strategy for any agent: a mechanism ' is individually strategy-proof if for all
�2 P, there is no i 2 I and �0

i2 Pi such that

'[�0
i,��i](i) �i '[�](i).

A mechanism is group strategy-proof if there is no group of agents that can misstate their
preferences in a way such that each one in the group gets a weakly better house, and at least
one agent in the group gets a strictly better house, irrespective of the preference ranking of
the agents not in the group. Formally, a mechanism ' is group strategy-proof if for all

18We study direct mechanisms. By the revelation principle, this is without loss of generality. See Appendix
A for a discussion.
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�2 P, there exists no J ✓ I and �0
J2 PJ such that

'[�0
J ,��J ](i) ⌫i '[�](i) for all i 2 J,

and
'[�0

J ,��J ](j) �j '[�](j) for at least one j 2 J.

A matching is Pareto efficient if no other matching would make everybody weakly better
off, and at least one agent strictly better off. That is, a matching µ 2 M is Pareto efficient
if there exists no matching ⌫ 2 M such that for all i 2 I, ⌫(i) ⌫i µ(i), and for some i 2 I,
⌫(i) �i µ(i). A mechanism is Pareto efficient if it finds a Pareto-efficient matching for
every problem.

Pareto efficiency is a weak efficiency requirement.19 In order to define the stronger concept
of Arrovian efficiency with respect to a social welfare function, denote by PM the set of
strict partial orderings over matchings; we refer to elements of PM as social rankings. A
social welfare function (SWF) � : P ! PM maps agents’ preference profiles to social
rankings. A SWF � is Pareto (or unanimous) if: for every preference profile � and any two
matchings µ, ⌫ 2 M, if µ(i) ⌫i ⌫(i) for all i 2 I, with at least one preference strict, then µ

is ranked above ⌫ in the social ranking, µ� (�) ⌫. A SWF � satisfies the independence of
irrelevant alternatives if: for all �,�02 P and all µ, ⌫ 2 M, if all agents rank µ and ⌫ in
the same way and both � (�) and � (�0) rank µ and ⌫ then µ�(�0)⌫ () µ�(�)⌫. We
restrict attention to SWFs that satisfy the Pareto and independence-of-irrelevant-alternatives
postulates. Notice that Pareto dominance is a standard example of a SWF.

A matching µ is Arrovian efficient with respect to a social ranking � (�) if it maximizes
the social welfare, that is µ�(�)⌫ for all ⌫ 2 M\{µ}. A mechanism � is Arrovian efficient
with respect to a SWF � if for any profile of agents’ preferences �, the matching � (�) is
Arrovian efficient with respect to � (�). If � is Arrovian efficient with respect to some SWF,
we simply say that it is Arrovian efficient. The next section offers two examples illustrating
the concept of Arrovian efficiency.

3 Main Results: Equivalence

In Theorem 1, we establish the equivalence between three of the pairs of our incentive-
compatibility and efficiency concepts. In addition, Example 2 below demonstrates that the

19In particular, when imposed on group strategy-proof mechanisms, Pareto efficiency is equivalent to
assuming that the mechanism maps P onto the entire set of matchings M. This surjectivity property is
known as citizen sovereignty, or full range.
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class of individually strategy-proof and Pareto efficient mechanisms is a strict superset of
the mechanisms satisfying any of the equivalent conditions of the theorem.

Theorem 1. A mechanism is individually strategy-proof and Arrovian efficient if and only
if it is group strategy-proof and Pareto efficient, and if and only if it is group strategy-proof
and Arrovian efficient.

To illustrate this equivalence and our concepts let us look a the setting with three agents
1, 2, and 3, three objects (houses) h1, h2, and h3, and no outside options. Consider the
following two examples of mechanisms.

Example 1. The serial dictatorship in which 1 chooses first, and 2 chooses second is well-
known to be group strategy-proof and Pareto efficient. It is straightforward to see that this
serial dictatorship is Arrovian efficient with respect to the following SWF: µ is ranked strictly
above ⌫ if and only if (a) 1 strictly prefers µ to ⌫, or (b) 1 is indifferent and 2 strictly prefers
µ to ⌫.

Example 2. Let us now modify the serial dictatorship of the previous example and consider
mechanisms  in which 1 chooses first; then 2 chooses second if 1 prefers h2 over h3, else
3 chooses second. This mechanism is an example of a sequential dictatorship, and is also
individually strategy-proof and Pareto efficient. However, mechanism  is neither Arrovian
efficient nor group strategy-proof. To see the latter point let us look at the following two
preference profiles:

1 : h1 � h2 � h3, 2 : h1 � h2 � h3, 3 : h1 � h2 � h3,

1 : h1 �0 h3 �0 h2, 2 : h1 �0 h2 �0 h3, 3 : h1 �0 h2 �0 h3.

Notice that

 (�) = {(1, h1) , (2, h2) , (3, h3)} ,
 (�0) = {(1, h1) , (2, h3) , (3, h2)} .

The mechanism  fails group strategy-proofness. For instance, when the true preference
profile is �, then agents 1 and 3 have a profitable manipulation {�0}{1,3}. The mechanism
 also fails Arrovian efficiency. Indeed, by way of contradiction assume that  is Arrovian
efficient with respect to some SWF  . Then,  (�) ranks allocation  (�) strictly above
 (�0), and  (�0) ranks  (�0) strictly above  (�). But, this violates the independence of
the irrelevant alternatives, a contradiction that shows that  is not Arrovian efficient.
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The proof of Theorem 1 builds on Example 2. As a preparation for the proof, let us
notice three properties of group strategy-proofness. First, in the environment we study
group strategy-proofness is equivalent to the conjunction of two non-cooperative properties:
individual strategy-proofness and non-bossiness.20 Non-bossiness (Satterthwaite and Son-
nenschein, 1981) means that no agent can misreport his preferences in such a way that his
allocation is not changed but the allocation of some other agent is changed: a mechanism '

is non-bossy if for all �2 P, there is no i 2 I and �0
i2 Pi such that

'[�0
i,��i](i) = '[�](i) and '[�0

i,��i] 6= '[�].

The following lemma is due to Pápai (2000):

Lemma 1. Pápai (2000) A mechanism is group strategy-proof if and only if it is individually
strategy-proof and non-bossy.

Second, in the environment we study group strategy-proofness is equivalent to Maskin
monotonicity (Maskin, 1999). A mechanism ' is Maskin monotonic if '[�0] = '[�]

whenever �02 P is a '-monotonic transformation of �2 P. A preference profile �02 P is a
'-monotonic transformation of �2 P if

{h 2 H : h ⌫i '[�](i)} ◆ {h 2 H : h ⌫0
i '[�](i)} for all i 2 I.

Thus, for each agent, the set of houses better than the base-profile allocation weakly shrinks
when we go from the base profile to its monotonic transformation. The following lemma was
proven by Takamiya (2001) for a subset of the problems we study; his proof can be extended
to our more general setting.

Lemma 2. A mechanism is group strategy-proof if and only if it is Maskin monotonic.

Finally, let us notice the following

Lemma 3. If a mechanism � is group strategy-proof then no agent can change the outcome
of � by changing the ranking of objects worse than the object he obtains, that is if �0 differs
from � only in how some agent i ranks objects below � (�) (i) then � (�0) = � (�0).

We skip the straightforward proof of this last lemma since we later prove, without reliance
on this lemma or Theorem 1, a substantially stronger result, Theorem 2.

20Both of these properties are non-cooperative in the sense that they relate a mechanism’s outcomes under
two scenarios when a single agent makes unilateral preference revelation deviations.
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Proof of Theorem 1. Notice that it is sufficient to show that individual strategy-
proofness and Arrovian efficiency are equivalent to group strategy-proofness and Pareto
efficiency as the third equivalence then follows.

First, consider an individually strategy-proof mechanism � that is Arrovian efficient with
respect to some SWF �. In light of Lemma 1, to establish the first implication it is enough
to show that � is Pareto efficient and non-bossy.

To show that � is Pareto efficient, suppose that for some �2 P, �[�] is not Pareto
efficient. Then, there exists some µ 2 M\ {�[�]} such that µ(i) ⌫i �[�](i) for all i, with a
strict preference for at least one agent. Since � satisfies the Pareto postulate, µ �(�) �[�],
which contradicts the assumption that � is Arrovian efficient with respect to �.

To show that � is non-bossy, let �2 P and �0
i2 Pi be such that

�[�](i) = �[�0
i,��i](i).

Denote �0= (�0
i,��i). Since � is Arrovian efficient with respect to �, the matching �[�] is

ranked as the unique first by � (�) and the matching �[�0] is ranked as the unique first by
� (�0). Thus, �[�] and �[�0] are comparable under both � (�) and � (�0), and independence
of irrelevant alternatives implies that �[�] and � [�0] are ranked in the same way by � (�)

and � (�0). We can thus conclude that � [�] = � [�0]. This establishes that � is non-bossy.
Second, consider a group strategy-proof and Pareto efficient mechanism �. We define

the SWF � as follows: for any profile of preferences � and any matchings µ and µ0 6= µ,
matching µ is ranked by � (�) above µ0 iff either (i) we have µ = � (�) or (ii) for all agents
i, we have µ (i) %i µ

0 (i). Note that Pareto efficiency of � implies that conditions (i) and (ii)
are consistent with each other, and hence, that the SWF � is well-defined.

By definition, � satisfies the Pareto postulate. Furthermore, � is transitive: if � (�)

ranks µ1 above µ2 and it ranks µ2 above µ3 then it ranks µ1 above µ3. Indeed, if one of the
µi (for i = 1, 2, 3) equals � (�), then it must be that µ1 = � (�) and the claim is proved.
If none of the µi equals � (�), then agents unanimously rank µ1 above µ2 and unanimously
rank µ2 above µ3; we can conclude that the agents unanimously rank µ1 above µ3 and thus
� (�) ranks µ1 above µ3.

It remains to check that � satisfies the independence of irrelevant alternatives. Take two
preference profiles �1 and �2 such that each agent ranks two matchings, say µ and µ0, in
the same way under the two preference profiles. If the two matchings are comparable under
both � (�1) and � (�2), then one of the following cases obtains:

Case 1: one of the matchings is unanimously preferred to the other under �1; then the
same unanimous preference obtains under �2 and the claim is true.
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Case 2: there is no unanimous ranking of the two matchings under �1; then unanimity
cannot obtain under �2 either. Since, the matchings are ranked, it must be that � (�1) and
� (�2) take value in {µ, µ0}. Say, � (�1) = µ; then we need to check that � (�2) = µ as well.
By Lemma 2, we can assume that each agent i ranks µ (i) and µ0 (i) at the top of his ranking
under both �1 and �2. Furthermore, by Lemma 3 only rankings of objects above agents’
allocations (and including their allocations) affect the outcome of a group strategy-proof
mechanism; we can thus conclude that � (�1) = � (�2). QED

4 The Construction of Trading-Cycles Mechanisms

We have established that individual strategy-proofness and Arrovian efficiency are equivalent
to group strategy-proofness and Pareto efficiency. We now determine which mechanisms
satisfy these properties. Starting with some examples, we construct the full class of such
mechanisms; we call them trading cycles (TC).

4.1 Example: Top Trading Cycles

To set the stage for our trading-cycles (TC) mechanism, let us look at the well-known top-
trading-cycles (TTC) algorithm adapted by Pápai (2000) to house allocation problems.21

The class of mechanisms presented in this subsection is identical to Pápai’s “hierarchical
exchange” class. Our presentation, however, is novel and aims to simultaneously simplify
the earlier constructions of Pápai’s class, and to introduce some of the terminology we will
later use to introduce our class of all group strategy-proof and efficient mechanisms (TC).

TTC is a recursive algorithm that matches houses to agents in a sequence of rounds.
In each round, some agents and houses are matched. The matches will not be changed in
subsequent rounds of the algorithm.

At the beginning of each round, each unmatched house is “owned” by an unmatched
agent. The algorithm creates a directed graph in which each unmatched house points to the
agent who owns it, and each unmatched agent points to his most preferred house among the
unmatched houses. In the resultant directed graph there exists at least one exchange cycle
in which agent 1’s most preferred house is owned by agent 2, agent 2’s most preferred house
is owned by agent 3, ..., and finally, for some k = 1, 2, ..., agent k’s most preferred house is
owned by agent 1. Moreover, no two exchange cycles intersect. The algorithm matches all
agents in exchange cycles with their most preferred houses.

21The algorithm was originally proposed by David Gale for the special case of house exchange (cf. Shapley
and Scarf, 1974).
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The algorithm terminates when all agents are matched. As at least one agent-house pair
is matched in every round, the algorithm terminates after finitely many rounds.

As we see, the outcome of the TTC algorithm is determined by two types of inputs:
agents’ preferences and agents’ rights of ownership over houses. The preferences are, of
course, submitted by the agents. The ownership rights are defined exogenously as part of
the mechanism.22 We formalize this aspect of the mechanism via the following concept.

Definition 1. A structure of ownership rights is a collection of mappings
�
c� : H� ! I�

 
�2M.

The structure of ownership rights {c�}�2M is consistent if

c�1
� (i) ✓ c�1

�0 (i) if � ✓ �0 2 M and i 2 I�0 .

The structure of ownership rights tells us at each submatching which unmatched agent
owns any particular unmatched house. Agent i owns house h at submatching � when c�(h) =

i. Consistency means that whenever an agent owns a house at a submatching (�) then he
also owns it at any larger submatching (�0) as long as he is unmatched.

Each consistent structure of ownership rights {c�}�2M determines a hierarchical exchange
mechanism of Pápai (2000). This class consists of mechanisms whose outcomes are found by
running the TTC algorithm with consistent structures of ownership rights. Because of this,
we will also refer to hierarchical exchange as TTC mechanisms. Pápai showed that all
TTC mechanisms are group strategy-proof and Pareto efficient, extending an earlier insight
of Roth (1982).23

4.2 Example: Beyond Top Trading Cycles

What might a group strategy-proof and efficient non-TTC mechanism look like? Consider
the following example that builds on the TTC idea.

Example 3. Consider three agents i1, ..., i3 and three houses h1, ..., h3 and an ownership
22Recall that we are studying an allocation problem in which objects are a collective endowment. In Section

6.1 we will enlarge the analysis to include exchange problems among agents with private endowments. In
exchange problems, some of the mechanism’s ownership rights are determined by individual rationality
constraints. Notice that ownership rights are related to priorities in school choice in that agents with higher
priority at an object correspond to agents who own the object at smaller submatchings, while agents with
lower priority at this object correspond to agents who own the object at larger submatchings at which
previous owners are already matched (see, for instance, Ergin (2002), Abdulkadiroğlu and Sönmez (2003),
and Abdulkadiroğlu and Che (2010) for a discussion of TTC and priorities).

23To appreciate the generality of Pápai’s class, notice that the serial dictatorship of Satterthwaite and Son-
nenschein (1981) and Svensson (1994) is a special case of the TTC mechanisms in which at each submatching
there is an agent who owns all unmatched houses.
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structure that allocates ownership of houses according to the following table:

h1 h2 h3

i1 i2 i3

i3 i1 i2

i2 i3 i1

Given this structure, let us run TTC with one modification: agent i1 is not allowed to point
to house h1 as long as there are other unmatched agents. In rounds with other unmatched
agents (and hence other unmatched houses), agent i1 will point to his most preferred house
among unmatched houses other than h1.24

For instance, if each agent i has the preference h1 �i h2 �i h3 then in the first round
agents i2 and i3 will point to h1, but agent i1 will point to his second-choice house, h2. We
will then have an exchange cycle in which i1 is matched with h2 and i2 is matched with h1.
In the second round, the algorithm matches agent i3 and house h3, and terminates.

This mechanism is group strategy-proof and Pareto efficient. An easy recursion may
convince us that at each round the submatching formed is Pareto efficient for matched
agents. Indeed, if an agent matched in the first round does not get his top choice then he
gets his second choice, and getting his first choice would harm another agent matched in that
round. In general, agents matched in the n’th round get their first or second choice among
houses available in the n’th round, and giving one of these agents a better house would harm
some other agent matched at the same or earlier round.

To establish group strategy-proofness we may use an argument similar to the standard
proof why TTC are group strategy-proof, see Roth (1982). Instead of replicating this ar-
gument, let us consider the following concept. For every agent and every round of the
algorithm, let us say that the set of objects obtainable by the agent consists of all the objects
the agent could obtain in this round by either submitting his true preference ranking or by
changing the ranking of not-yet matched objects. One can check that, as long as an agent is
unmatched, the agent’s set of obtainable objects stays the same or becomes larger with each
round. This monotonicity is what drives the strategy-proofness properties of the mechanism.

The above mechanism is indeed different from all TTC mechanisms. To see this, first
observe that the mechanism matches house h1 with agent i2 under the illustrative preference
profile analyzed above, whereas it would match h1 with another agent, i3, if agent i1 sub-
mitted preferences h1 �i1 h3 �i1 h2 (and other agents i 6= i1 continued to have preferences

24Pápai (2000) gives an example of a non-TTC mechanism. Her construction is different from ours though
the resultant mechanisms are identical. As we will show in the next section, the advantage of our construction
lies in its generalizability to cover the whole class of group strategy-proof and efficient mechanisms.
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h1 �i h2 �i h3). However, any TTC mechanism would match h1 with the same agent in
these two preference profiles. Indeed, any TTC ownership structure uniquely determines
which agent owns h1 at the empty submatching, and this agent would be matched with h1

in the first round of the algorithm under any preference profile in which all agents rank h1

as their first choice.
For future use, notice that in the above example, agent i1 does not have full ownership

right over h1. Unless he is the only agent left, he cannot form the trivial exchange cycle that
would match him with h1. He does have some control right over h1, however: he can trade
h1 for houses owned by other agents. In our general trading-cycles algorithm, we will refer
to such weak control rights as “brokerage.”

4.3 Trading Cycles

We turn now to our new algorithm, trading cycles (TC), an example of which we saw in
the previous section. Like TTC, the TC is a recursive algorithm that matches agents and
houses in exchange cycles over a sequence of rounds. TC is more flexible, however, as it
allows two types of intra-round control rights over houses that agents bring to the exchange
cycles: ownership and brokerage.

In our description of the TTC class, each TTC mechanism was determined by a consistent
ownership structure. Similarly, each TC mechanism is determined by a consistent structure
of control rights.

Definition 2. A structure of control rights is a collection of mappings

�
(c�, b�) : H� ! I� ⇥ {ownership,brokerage} 

�2M .

The functions c� of the control rights structure tell us which unmatched agent controls
any particular unmatched house at submatching �. Agent i controls house h 2 H� at
submatching � when c�(h) = i. The type of control is determined by functions b�. We say
that the agent c�(h) owns h at � if b�(h) =ownership, and that the agent c�(h) brokers h

at � if b�(h) =brokerage. In the former case we call the agent an owner and the controlled
house an owned house. In the latter case we use the terms broker and brokered house.
Notice that each controlled (owned or brokered) house is unmatched at �, and any unmatched
house is controlled by some uniquely determined unmatched agent.

The consistency requirement on TC control rights structures consists of three constraints
on brokerage at any given submatching (the within-round requirements) and three con-
straints on how the control rights are related across different submatchings (the across-rounds
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requirements, which we will introduce after our new algorithm).25

Within-round Requirements. Consider any � 2 M.

(R1) There is at most one brokered house at �.

(R2) If i is the only unmatched agent at � then i owns all unmatched houses at
�.

(R3) If agent i brokers a house at �, then i does not own any houses at �.

The conditions allow for different houses to be brokered at different submatchings, even
though there is at most one brokered house at any given submatching.

Requirements R1-R2 are what we need for the TC algorithm to be well defined; R3 is
necessary for Pareto efficiency and individual strategy-proofness (see Appendix B). With
these requirements in place, we are ready to describe the TC algorithm.

The TC algorithm. The algorithm consists of a finite sequence of rounds
r = 1, 2, .... In each round some agents are matched with houses. By �r�1 we
denote the submatching of agents and houses matched before round r. Before
the first round the submatching is empty, that is, �0 = ?. If �r�1 2 M, that is,
when every agent is matched with a house, the algorithm terminates and gives
matching �r�1 as its outcome. If �r�1 2 M, then the algorithm proceeds with
the following three steps of round r:

Step 1. Pointing. Each house h 2 H�r�1 points to the agent who controls it at
�r�1. If there exists a broker at �r�1, then he points to his most preferred house
among the ones owned at �r�1. Every other agent i 2 I�r�1 points to his most
preferred house in H�r�1 .

Step 2. Trading cycles. There exists n 2 {1, 2, ...} and an exchange cycle

h1 ! i1 ! h2 ! ...hn ! in ! h1

in which agents i` 2 I�r�1 point to houses h`+1 2 H�r�1 and houses h` points to
agents i` (here ` = 1, ..., n and superscripts are added modulo n);

25Properties R1-R6 are defined over submatchings instead of rounds of the TC algorithm. This simplifies
the definition of the consistency conditions as it saves us the trouble of keeping track of which submatchings
are relevant in the TC algorithm, i.e., which of them can be encountered at the end of a round of a TC
algorithm.
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Step 3. Matching. Each agent in each trading cycle is matched with the house
he is pointing to; �r is defined as the union of �r�1 and the set of newly matched
agent-house pairs.

The algorithm terminates when all agents or all houses are matched.

There exists a trading cycle in each round because the number of agents is finite, each
agent points to a unique house, and each house points to a unique agent. This also implies
that trading cycles cannot intersect, and hence, the matching in Step 3 is well defined.
Finally, since we match at least one agent-house pair in every round, and since there are
finitely many agents and houses, the algorithm terminates after finitely many rounds.

Our algorithm builds on Gale’s top-trading-cycles idea, described in Section 4.1, but
allows more general trading cycles than top cycles. In TC, brokers do not necessarily point
to their top-choice houses.26 The terminology of owners and brokers is motivated by an
imperfect analogy: At any submatching (but not globally through the algorithm), we can
think of the broker of house h as representing a latent agent who owns h but prefers any
other house over it.

The TC algorithm with a control rights structure satisfying R1-R3 determines a mecha-
nism that maps profiles from P to Pareto efficient matchings in M.27 To guarantee that the
resulting mechanism is group strategy-proof (and hence also Arrovian efficient) we need to
impose the following across-round consistency requirements on the control rights structure.

Across-round Requirements. Consider submatchings �, �0 such that |�0| =
|�|+1 and � ⇢ �0 2 M, and an agent i 2 I�0 that controls a house h 2 H�0 at �:

(R4) If i owns h at � then i owns h at �0.

(R5) Assume that at least two agents from I�0 own houses at �. If i brokers
house h at � then i brokers h at �0.

26Looking back at the example of the previous section, we see that the mechanism constructed there was a
TC in which agent i1 brokered house h1 while other agents owned houses. The difference between TTC and
TC is encapsulated in Step 1; the other steps are standard. In contrast to TC, all previous developments
of Gale’s idea (Shapley and Scarf, 1974)—e.g. the top trading cycles with newcomers (Abdulkadiroğlu and
Sönmez, 1999), hierarchical exchange (Pápai, 2000), top trading cycles for school choice (Abdulkadiroğlu
and Sönmez, 2003), and top trading cycles and chains (Roth, Sönmez, and Ünver, 2004)—allowed only top
trading cycles and had all agents point to their top choice among unmatched houses. All these previous
developments may be viewed as using a subclass of TC in which all control rights are ownership rights and
there are no brokers (in Section 6.1 we show that TC can easily handle private endowments).

27The recursive argument for the efficiency of the non-TTC mechanism from Section 4.2 applies; see
Appendix C for details.
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(R6) Assume that agent i0 2 I� controls h0 2 H� at �. Then:
i0 owns h at � [ {(i, h0)}, and
if i0 brokers h0 at � but not at �0, then i owns h0 at �0.

A good way to understand conditions R4–R6 is to look at the concept of obtainable objects
introduced in Section 4.2. The set of obtainable objects is empty for agents who control no
objects in a particular round. The set is always non-empty for owners. For brokers, the set
of obtainable objects can be either empty or non-empty. Conditions R4–R6 are formulated
to ensure that for each agent the set of obtainable objects stays the same or becomes larger
with each round.

Requirements R4 and R5 postulate that control rights persist: agents retain control rights
as they move from smaller to larger submatchings, or through the rounds of the algorithm.
Persistence of ownership is permanent by R4: if an agent becomes an owner, he remains
an owner through the execution of the algorithm until he is matched (i.e., once an owner,
always an owner). On the other hand, persistence of brokerage is limited in R5: an agent can
potentially leave brokerage through the rounds of the algorithm under certain conditions. R4
(persistence of ownership) is identical to the consistency assumption we imposed on TTC.
The first example of Section 4.1 illustrated why we need such a persistence assumption for the
resultant mechanism to be individually strategy-proof. A similar example might convince us
that individual strategy-proofness relies also on requirement R5 (persistence of brokerage);
see Appendix B.

Requirement R6 has two parts.28 The first part (consolation for lost control rights)
postulates that when an agent i is matched with a house controlled by i0, then i0 owns the
houses previously controlled by i.29 R6’s second part (brokered-to-owned house transition)
postulates who obtains the control right over a house when a broker loses his brokerage right.

28Sections 6, 6.1 and 6.3 show that brokers and condition R6 are quite easy to work with. However, to
sidestep the complication of condition R6, the reader is invited to keep in mind a smaller class of control
rights structures in which both of these requirements are replaced by the following strong form of brokerage
persistence: “If |�0| < |I| � 1 and agent i brokers house h at � then i brokers h at �0.” We think that by
restricting attention to this smaller class of control rights structures, one is not missing much of the flexibility
of the TC class of mechanism. We hasten to stress, however, that the complication is there for a reason:
there are group strategy-proof and Pareto efficient mechanisms that cannot be replicated by TC control
rights structures satisfying the above strengthening of R5-R6. Let us also stress that, a priori, we could
expect the class of group strategy-proof and efficient mechanisms to be much more complex than it turned
out to be.

29It is sufficient to restrict R6 to the case when i0 is a broker of h0 at �. Nevertheless, we impose the first
part of R6 on both brokers and owners because this gives a smaller class of control rights structures. A key
step in seeing why the restriction of R6 to brokers is sufficient is to recognize that, if i0 controls h0 at �, a
round of the TC algorithm generates �, and a later round generates a submatching that keeps i0 unmatched
but contains �[{(i, h0)}, then the control right of i0 over h0 at � must be brokerage. We would like to thank
the referees for drawing our attention to this point.
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By R5, the broker can only lose the brokerage right between � and �0 when no more than
one agent is a �-owner and �0-owner; this is the agent who obtains the control right at �0

over the house brokered at �. Requirement R6 is used to guarantee both non-bossiness and
individual strategy-proofness of the mechanism; see Appendix B.

A key implication of R6 and R4 is the transfer of ownership rights to ex-brokers: if i0

brokers h0 at � but not at �0, and i 2 I�0 owns h 2 H�0 at �, then R6’s first part implies that
i0 owns h at � [ {(i, h0)}, and R4 further implies that i0 owns h at �0 [ {(i, h0)}. We refer to
this consequence of R6 and R4 as broker-to-heir transition.

We are now ready to define our mechanism class.

Definition 3. A control rights structure is consistent if it satisfies requirements R1-R6.
The class of TC mechanisms (trading cycles) consists of mechanisms whose outcomes are
determined by running the TC algorithm with consistent control rights structures.

The TTC mechanisms of Section 4.1 and the non-TTC mechanism of Section 4.2 are
examples of TC. We will denote by  c,b the TC mechanism obtained from a consistent
control rights structure {(c�, b�)}�2M. In Section 5.2 we enlarge it to allow for agents’
outside options (in particular, we then allow agents to ranks some objects as unacceptable),
and in Section 7 we adapt this class of mechanisms to exchange problems.

5 Main Results: Characterization

Our main characterization result tells us that the class of Trading Cycles mechanisms co-
incides with the class of group strategy-proof and Pareto-efficient mechanisms, and hence
with the class of individually strategy-proof and Arrovian efficient mechanisms (by Theorem
1). We first state and prove this result for the model of allocation in which all objects are
acceptable, and then relax this simplifying assumption.

Theorem 2. A mechanism is group strategy-proof and Pareto efficient if and only if it is a
Trading Cycles mechanism.

The argument that Trading Cycles mechanisms are Pareto efficient follows the same
recursive steps as the argument for the efficiency of the non-TTC mechanism in Section 4.2;
see Appendix C for details.

The proof that Trading Cycles are group strategy-proof builds on the following simple
observation.
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Lemma 4. If an agent i is unmatched at a round r of the algorithm under preference profiles
[�i,��i] and [�0

i,��i], then the same submatching forms before round r under [�i,��i] and
[�0

i,��i], and hence the control rights structure at round r is the same under [�i,��i] and
[�0

i,��i].

The lemma’s assumption implies that the same submatching was formed before round
r whenever agent i submitted preference ranking �i or �0

i. Hence, the rest of the lemma
obtains too: the control rights structures must also be the same at round r. The lemma
has an important implication: as long as an agent is unmatched, he cannot influence when
he becomes an owner, a broker, or enters the broker-to-heir transition (see the discussion of
condition R6) by choosing which preferences to submit.

To see intuitively why trading cycles are individually strategy-proof, notice that the above
lemma implies that no agent i can improve his match by being matched later. Owners cannot
benefit by waiting since they get the best available house at the time they match under �.
Checking that brokers cannot benefit by waiting is only slightly more subtle. We provide
the details in Appendix D.

To further show that Trading-Cycles mechanisms are group strategy-proof, recall the
lemma of Pápai (2000) (see Lemma 1 above) that implies that to prove group strategy-
proofness of an individually strategy-proof mechanism it is enough to show that the mecha-
nism is non-bossy. Proving non-bossiness turns out to be subtle; we provide this part of the
proof in Appendix E. To get a sense for this part of the proof, consider a TC mechanism
without brokers, and an agent i who gets the same object whether he submits preferences
�i or �0

i. An inductive argument then shows that the algorithm will go though the same
cycles under �= (�i,��i) and �0= (�0

i,��i) even if the rounds at which these cycles are
formed may differ. If brokers were strongly persistent, the same argument would apply.

The subtlety in proving non-bossiness is when a broker loses his brokerage right. Con-
dition R5 ensures that cycles of three agents or more are the same under both � and
�0, but that cycles of one or two agents can be different. For instance, in the setting of
Example 8, consider a preference profile in which agents i1 and i3 rank houses h1 �i1,i3

h4 �i1,i3 h2 �i1,i3 h3 and agents i2 and i4 rank houses h4 �i2,i4 h2 �i2,i4 h3 �i2,i4 h1. Under
this preference profile, �{i1,i2,i3,i4}, in the first round, broker i4 obtains object h2 in a cycle
i4 ! h2 ! i2 ! h4 ! i4. However if i2 submitted instead preference ranking �0

i2
identical

to �i1,i3 , then i4 and i2 would not swap houses in first round. They would both still be
unmatched in round 2, and i4 would have lost his brokerage right; house h4 would now be
owned by i2 (notice that not only it is so in the example but in fact condition R6 requires
that i2 owns h4 when i1 becomes matched and i4 looses the brokerage right). Agent i2 would
then match with h4 in round 2. In round 3, agent i4 would become owner of h2 (again this is
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so in the example, and, importantly it is guaranteed by the broker-to-heir transition property
of R6). Thus, in round 3 agent i4 would match with h2. While the cycles are different, the
allocations are the same. Looking at requirement R6 (and its broker-to-heir corollary) can
give us a sense why—even if one or two agent cycles are different at � and

��0
i2
,��i2

�
—such

or a similar scenario is bound to happen.

The most interesting part of the proof of Theorem 2 is to show that if a mechanism ' is
group strategy-proof and Pareto-efficient then we can construct a TC mechanism  c,b that
is equivalent to '. The construction proceeds in three natural steps: we first construct the
candidate control rights structure (c, b), then show that it satisfies conditions R1-R6, and
finally show that the resultant TC mechanism  c,b equals '.

We define a candidate control rights structure in terms of how ' allocates objects for
preferences from some special preference classes. To see how this is done, consider the
empty submatching and a house h. If ' were a TC and h was owned by an agent then
at all preference profiles in which all agents rank h as their most preferred house, ' would
allocate h to the same agent – the owner of h at the empty submatching. We thus check
whether ' allocates h to the same agent at all above profiles, and if it does, we call this
agent the candidate owner of h (in the proof, for brevity, we refer to the candidate owner as
the owner*). If ' does not allocate h to the same agent at all above profiles, h is a candidate
brokered house. Notice that if ' were a TC and h was brokered by an agent, then at every
profile at which every agent ranks h as his most preferred house and some other house h0

as his second-most preferred house, ' would allocate h0 to the same agent – the broker of
h at the empty submatching. We thus check whether there is an agent who always gets
his second-most preferred house at the above profiles, and if there is such an agent we call
this agent the candidate broker of h (broker* for short). Finally, we prove the key result
that every house h either has a candidate owner or a candidate broker. This key result is
technically the hardest one to obtain in the paper: we establish it by first showing that if
all agents rank some house A as their first choice, and some house B as their second choice,
then who gets A does not depend on the rest of the preference profile (Lemma 9); we then
slowly refine this insight.

The construction of candidate control rights at non-empty submatchings is similar. The
only modification is that instead of looking at preferences at which all agents agree on their
most preferred house (or two most preferred houses), we impose this commonality only on
unmatched agents, and at the same time we assume the matched agents rank the houses
they are matched with at the top, while all other agents rank matched houses at the bottom.
Thanks to the simplifying assumption that |H| � |I|, the Pareto efficiency of TC mechanisms
implies that the above procedure would work well if ' was a TC, and we prove that indeed
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it works well whenever ' is group strategy-proof and efficient.30

The second step of the proof is to show that the above candidate control rights structure
indeed satisfies properties R1-R6. We flesh out the argument in several lemmas. With these
lemmas proven, we have constructed a TC mechanism  c,b. The last step of the proof is to
show that  c,b = '. We rely on the recursive structure of TC, and proceed by induction with
respect to the rounds of  c,b. We provide all details of this part of the proof in Appendix F.

5.1 Properties of Strategy-Proof and Efficient Mechanisms

Knowing that all individually strategy-proof and Arrovian-efficient mechanisms—equivalently
all group strategy-proof and Pareto-efficient mechanisms—are trading-cycles mechanisms al-
lows us to derive properties common to all such mechanisms.

Let us start by noticing that in any trading cycle mechanism, and for any preference
profile, there is a group of agents—the decisive group—each of whom can get one of their
two top choices, and all but at most one of them can get their top choice, irrespective of
preferences submitted by agents not in the group.

Corollary 1. (Decisive Group) Fix an individually strategy-proof and Arrovian-efficient
mechanism �. For any preference profile �, there is a group of agents I1 ✓ I such that:
(i) all agents from I1 get one of their two top choices, and all but at most one of them get
their top choices, and (ii) the allocation of agents from I1 does not depend on preferences of
agents not in I1, that is for all �0 we have

� (�) |I1 = �
��I1 ,�0

I�I1

� |I1 .

Notice that this corollary implies that if all agents rank house A first and house B second
then who gets A does not depend on how the agents rank houses below B.

We further observe that all strategy-proof and efficient mechanisms have a recursive
structure: the agents in the decisive group determine their allocation; given their preferences
there is another group of agents who obtain one of their top two choices and who can
determine their allocation irrespective of the preferences of others, etc. For instance, in
a serial dictatorship (Satterthwaite and Sonnenschein, 1981; Svensson, 1994, 1999; Ergin,
2000), which is a special case of trading cycles, the first dictator chooses his most preferred
object, then a second dictator chooses his most preferred object among the objects which
were not chosen by the prior dictators, and so on until all agents have objects.

30This point in the construction requires more care in the case of |H| < |I|; see Section 5.2.
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Corollary 2. (Recursive Structure) Fix an individually strategy-proof and Arrovian-efficient
mechanism �. For every preference profile �, there is a partition I1, ..., Ik of the set of agents
such that: (i) all agents from I` get one of their two top choices among objects unmatched
at � (�) (I1 [ ... [ I`�1), and all but at most one of them gets their top choice among objects
unmatched at � (�) (I1 [ ... [ I`�1), and (ii) the allocation of agents from I` does not depend
on preferences of agents not in I1 [ ... [ I`�1 [ I`.

5.2 Outside Options

Let us now drop the assumption that |H| � |I| and allow agents to prefer their (non-
tradable) outside options to some of the houses. Thus, some agents may be matched with
their outside options, and we need to slightly modify some of the definitions. As before, I
is the set of agents and H is the set of houses. Each agent i has a strict preference relation
�i over H and his outside option, denoted yi. We denote the set of outside options by Y .
The houses preferred to outside option yi are called acceptable for agent i; the remaining
houses are called unacceptable for this agent. As before, we denote by Pi the set of agent
i’s preference profiles, and PJ = ⇥i2JPi for any J ✓ I.

We generalize the concept of submatching as follows: For J ✓ I, a submatching is a one-
to-one function � : J ! H [ Y such that each agent is matched with a house or his outside
option.31 A terminological warning is in order. A natural interpretation of the outside option
is remaining unmatched. We will not refer to the outside option in this way, however, in order
to avoid confusion with our submatching terminology. As in the main body of the paper,
whenever we say that an agent is unmatched at �, we refer to agents from I� = I � I�. An
agent is considered matched even if he is matched to his outside option.

The control rights structures (c, b) and their consistency R1-R6 are defined as before
though the meaning of some terms such as submatching has changed, as explained above.
In particular, (i) only houses are owned or brokered, the outside options are not; and (ii)
control rights are defined for all submatchings, including submatchings in which some agents
are matched with their outside options.32

We adjust the definition of round r of the TC algorithm to accommodate the outside
31As before, S denotes the set of submatchings, I� denotes the set of agents matched by �, H� ✓ H denotes

the set of houses matched by �, and we use the standard function notation so that �(i) is the assignment of
agent i 2 I�, ��1(h) is the agent that got house h 2 �(I�), and ��1 (Y ) is the set of agents matched to their
outside options. A matching is a maximal submatching, that is, µ 2 S is a matching if Iµ = I. As before,
M ⇢ S is the set of matchings. A mechanism is a mapping ' : P �! M that assigns a matching for each
preference profile. Mechanisms, efficiency, and group strategy-proofness are defined as before.

32Notice that if a control rights structure is consistent on the domain with outside options, and |H| � |I|,
then the restriction of the control rights structure to submatchings in which all agents are matched with
houses is a consistent control rights structure in the sense of Section 4.
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options as follows:

- In Step 1 we add the provisions that: (i) if an agent prefers his outside option to all
unmatched houses, the agent points to the outside option; (ii) if there is a broker for whom
the brokered house is the only acceptable house, such a broker also points to his outside
option; and (iii) the outside option of each agent points to the agent.

- In Step 2 we allow exchange cycles in which agents points to their outside options.
- In Step 3 we match agents in each exchange cycle that does not contain the broker; we

match agents in the exchange cycle of the broker if and only if there is at least one owner
who points to the brokered house. We also re-define �r as the union of �r�1 and the set of
agent-house pairs and agent-outside option pairs matched in Step 3.

We refer to this modified algorithm as outside-options TC, and when there is no risk
of confusion, simply as TC. We refer to the mechanism  c,b resulting from running the
outside-options TC on consistent control rights structures as outside-options TC, or TC.

The outside-options TC mechanism described above can be used to allocate houses in
the setting without outside options, and in this setting it is identical to the simpler TC
mechanism described previously. In particular, the Step 3 provision that we match the
broker if and only if there is at least one owner who points to the brokered house is only
binding if the broker points to the outside option.33

In the presence of outside options, the TC class of mechanisms again coincides with the
class of Pareto-efficient and group strategy-proof direct mechanisms, and hence with the
class of individually strategy-proof and Arrovian efficient mechanisms.

Theorem 3. In the environment with outside options, the following statements are equiva-
lent:

- a mechanism is individually strategy-proof and Arrovian efficient,
- the mechanism is group strategy-proof and Pareto efficient,
- the mechanism is group strategy-proof and Arrovian efficient,
- the mechanism is an outside-options Trading-Cycles mechanism.

The proof resembles the proofs of Theorems 1 and 2; the required modifications are
discussed in Appendix G.

33In the presence of the outside options, this provision is important to assure the Pareto efficiency of the
outside-options TC mechanisms.
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6 Applications

6.1 Individually Rational House Allocation and Exchange

In this section, we generalize the model by allowing agents to have private endowments.
The characterizations in the resulting allocation and exchange domains are straightforward
corollaries of our main results. We also relate the results to allocation and exchange market
design environments.

6.1.1 Model of House Allocation and Exchange

Let H = {Hi}i2{0}[I be a collection of |I|+ 1 pairwise-disjoint subsets of H (some of which
might be empty) such that [i2{0}[IHi = H. We interpret houses from H0 as the social
endowment of the agents, and houses from Hi, i 2 I, as the private endowment of agent i.
A house allocation and exchange problem is a list hH, I,H,�i . Since we allow some
of the agents to have an empty endowment, the allocation model of Section 2 is contained
as a special case with H = {H, ;, ..., ;}. We may fix H, I and H, and identify the house
allocation and exchange problem just by its preference profile �. Matchings and mechanisms
are defined as in the allocation model of Section 2.

Pareto efficiency and group strategy-proofness are defined in the same way as in Section
2. In particular, the equivalence between group strategy-proofness and the conjunction
of individual strategy-proofness and non-bossiness continues to hold true. In addition to
efficiency and strategy-proofness, satisfactory mechanisms in this problem domain should
be individually rational. A mechanism is individually rational if it always selects an
individually rational matching. A matching is individually rational, if it assigns each agent
a house that is at least as good as the house he would choose from his endowment. Formally,
a matching µ is individually rational if

µ(i) ⌫i h 8i 2 I, 8h 2 Hi.

For agents with empty endowments, Hi = ;, this condition is tautologically true. While we
formulate this definition for the setting without outside options all the results of this section,
and their proofs, remain true if we allow outside options: we then define a matching µ to be
individually rational if µ (i) is at least as good as the outside option and µ(i) ⌫i h 8i 2
I, 8h 2 Hi.
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6.1.2 Results on Individually Rational Allocation and Exchange

Our main characterization result for house allocation and exchange is now an immediate
corollary of Theorems 1 and 2.

Theorem 4. In house allocation and exchange problems, the following three properties are
equivalent:

a mechanism is individually rational, group strategy-proof, and Pareto efficient;
a mechanism is individually rational, individually strategy-proof, and Arrovian efficient;

and
a mechanism is an individually rational TC mechanism.

Furthermore, it is straightforward to identify individually rational TC mechanisms. Re-
ferring to control rights at the empty submatching as the initial control rights, let us formu-
late the criterion for individual rationality as follows.

Proposition 1. In house allocation and exchange problems, a TC mechanism is individually
rational if and only if it may be represented by a consistent control rights structure in which
each agent is given the initial ownership rights of all houses from his endowment.34

Proof of Proposition 1. To prove individual rationality of the above subclass of TC
mechanisms, consider an agent i and assume that at the empty submatching i owns a house
h from his endowment. Then R4 ensures that i owns h throughout the execution of the TC
algorithm. Thus, the TC mechanism will allocate to i house h or a house that i prefers to h.
Now, let  be an individually rational TC mechanism. Recall that ownership* was defined
in the proof of Theorem 2. For any agent i and house h from i’s endowment, i is owner* of
h because individual rationality implies that  [�](i) = h for any �2 P[?, h], which is the
set of preference profiles that rank h first for all agents. The construction from the proof of
Theorem 2 thus represents  and yields a control rights structure that assigns to each agent
the initial ownership rights over the houses from his endowment. QED

As a corollary of the above two results, we obtain the following characterization for an
important subdomain of allocation and exchange problems:

Theorem 5. In house allocation and exchange problems where each agent has a nonempty
endowment, the following three properties are equivalent:

34Notice that when one agent is endowed with all houses, there are individually rational mechanisms that
might be represented both by a control rights structure that assigns this agent initial ownership rights over all
houses, and by an alternative control rights structure that assigns this agent ownership rights over all houses
but one, which is brokered by a broker. Except for such situations, however, any control rights structure of
an individually rational TC mechanism assigns to each agent the initial ownership rights of all houses from
his endowment.
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a mechanism is individually rational, group strategy-proof, and Pareto efficient;
a mechanism is individually rational, individually strategy-proof, and Arrovian efficient;

and
a mechanism is a TTC mechanism (aka hierarchical exchange) that assigns all agents the

initial ownership rights of houses from their endowment.

Proof of Theorem 5. By Theorem 4, a mechanism ' is individually rational, Pareto
efficient and group strategy-proof if and only if there exists an individually rational and
consistent control rights structure (c, b) such that ' =  c,b. By Proposition 1 we may
assume that each agent has initial ownership rights over the houses from their endowment.
By condition R4 of consistency all unmatched agents own a house throughout the mechanism,
and hence R3 implies that no agent is a broker.  c,b is thus a TTC mechanism. QED

This result is a generalization of the result stated by Ma (1994) for the housing market
of Shapley and Scarf (1974). A housing market is a house allocation and exchange problem
in which |I| = |H| and each agent is endowed with a house. In this environment, Ma
characterized TTC (in which agents own their endowments) as the unique mechanism that
is individually rational, strategy-proof, and Pareto efficient.

6.1.3 Market Design Environments

The assumptions of Theorem 4 are satisfied by the house allocation problem with existing
tenants of Abdulkadiroğlu and Sönmez (1999). Theirs is the subclass of house allocation and
exchange problems in which each agent is endowed with one or zero houses. In the former
case, the agent is referred to as an existing tenant. The house allocation problem with
existing tenants is modeled after dormitory assignment problems in US college campuses. In
each such college, at the beginning of the academic year, there are new senior, junior, and
sophomore students, each of whom already occupies a room from the last academic year.
There are vacated rooms by the graduating class and there are new freshmen who would like
to obtain a room, though they do not currently occupy any.

The assumptions of Theorem 5 are satisfied by the kidney exchange with strict preferences
(Roth, Sönmez, and Ünver, 2004), and the kidney exchange problem with good Samaritan
donors (Sönmez and Ünver, 2006). Kidney transplant patients are the agents and live kidney
donors are the houses. Each agent is endowed with a live donor who would like to donate a
kidney if his paired-donor receives a transplant in return. Thus, all agents have nonempty
endowments. The model also allows for unattached donors known as good Samaritan donors
who would like to donate a kidney to any patient. In the US, good Samaritan donors have
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been the driving force behind kidney exchange since 2006. Many regional programs such as
the Alliance for Paired Donation (centered in Toledo, Ohio) and the New England Program
for Kidney Exchange (centered in Newton, Massachusetts) have used good Samaritan donors
in many of kidney exchanges conducted since 2006 (cf. Rees, Kopke, Pelletier, Segev, Rutter,
Fabrega, Rogers, Pankewycz, Hiller, Roth, Sandholm, Ünver, and Montgomery, 2009).

The kidney exchange context underscores the importance of group strategy-proofness.
The doctors of patients are the ones who have the information about patients’ preferences
over kidneys and it is known that doctors (or transplant centers) themselves at times ma-
nipulate the system to benefit their patients.35 An individually strategy-proof mechanism
that is not group strategy-proof could thus by manipulated by doctors. Group strategy-
proofness guarantees that no doctor is able to manipulate the mechanism on behalf of his or
her patients without harming at least one of them.

6.2 Complete Social Welfare Rankings

Our main results show that the class of individually strategy-proof and Arrovian efficient
mechanisms is exactly the class of group strategy-proof and Pareto efficient mechanisms,
which is exactly the class of Trading-Cycles mechanisms. In these results we allowed welfare
functions to incompletely rank social outcomes. As an application of the main results, we
now show that sequential dictatorships are exactly the mechanisms that are strategy-proof
and Arrovian efficient with respect to complete SWF, that is SWF that always rank all
outcomes.36

Let us start with an example showing that not all Top Trading Cycles are efficient with
respect to a complete Arrovian SWF.

Example 4. Consider allocating two objects to two agents. Let � be a top-trading-cycles
mechanism in which agent 1 owns house h1 and agent 2 owns house h2 at the empty sub-
matching. We will show that there is no complete SWF such that � is efficient.

35Deceased-donor queue procedures are sometimes gamed by physicians acting as advocates for their
patients. In particular, in 2003 two Chicago hospitals settled a federal lawsuit alleging that some patients
had been fraudulently certified as sicker than they were to move them up on the liver transplant queue
(Warmbir, 2003).

36We study the setting with outside options. Without outside options there are non-dictatorial mechanisms
that are individually strategy-proof and Arrovian efficient with respect to a complete SWF. Each such
mechanisms allocates objects as a sequential dictatorship as long as there are three or more objects left.
With only two objects left the mechanism can proceed as a sequential dictatorship, or it can assign the two
objects to two different agents, and run a round of TTC. This is similar to a situation from voting theory,
wherein there are non-dictatorial mechanisms to vote on two outcomes. The proof of this characterization
is based on similar ideas as the proof of Theorem 6 below, and we omit it.
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Consider the preference profile � such that

h2 �1 h1 �1 ; and h1 �2 h2 �2 ;,

where ; denotes the outside option. Consider also the following four additional preference
profiles

�1=

1 2

h2 ;
;

, �2=

1 2

h2 h2

; ;
, �3=

1 2

; h1

h2

, �4=

1 2

h1 h1

; ;
,

where non-listed objects are worse than the outside option ;. Denote

µ1 = �
��1

�
= {(1, h2) , (2, ;)} ;

µ2 = �
��2

�
= {(1, ;) , (2, h2)} ;

µ3 = �
��3

�
= {(1, ;) , (2, h1)} ;

µ4 = �
��4

�
= {(1, h1) , (2, ;)} .

Now, if there is a complete SWF � such that � is efficient, then � (�1) ranks � (�1)

strictly above � (�4), and, by the independence of irrelevant alternatives, this implies that
� (�) ranks � (�1) strictly above � (�4). Similarly, � (�2) ranks � (�2) strictly above
� (�1), and, by the independence of irrelevant alternatives, this implies that � (�) ranks
� (�2) strictly above � (�1). Further, and again similarly, � (�3) ranks � (�3) strictly above
� (�2), and, by the independence of irrelevant alternatives, this implies that � (�) ranks
� (�3) strictly above � (�2). Finally, � (�4) ranks � (�4) strictly above � (�3), and, by the
independence of irrelevant alternatives, this implies that � (�) ranks � (�4) strictly above
� (�3). But, then � (�) fails transitivity, showing that there does not exist a complete SWF
with respect to which � is efficient.

We will use this example to prove the following

Theorem 6. A mechanism is individually strategy-proof and Arrovian efficient with respect
to a complete SWF if and only if it is a sequential dictatorship.

Proof. ( =) ) Consider a mechanism � that is individually strategy-proof and efficient
with respect to a complete Arrovian welfare function. By Theorems 1 and 2, � is a Trading
Cycles mechanism  c,b. Fix an arbitrary preference profile �I .
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We claim that at any round r of the algorithm  c,b, there is exactly one agent who controls
all objects. We prove it in two steps.

First, let us show that there cannot be two (or more) agents who each owns an object.
By way of contradiction, suppose that some agent 1 controls object h1 and some other agent
2 controls object h2 in round r. Let � be the submatching created by the algorithm  c,b

before round r. Consider four auxiliary preference profiles �` that all share the following
properties: (i) all agents matched under � rank objects under �`, ` = 1, ..., 4, in the same
way they rank them under �, (ii) all agents unmatched at � and different from agents 1 and
2 find all objects to be unacceptable, and (iii) agents 1 and 2 rank all objects matched at
� above h1 and h2 and they find all objects other than h1, h2 and objects matched at � to
be unacceptable. The four profiles differ only in how agents 1 and 2 rank objects h1 and h2,
and which of these objects are acceptable to them: the ranking of these two objects is the
same as in the four preference profiles of the above example. Notice that

 c,b
��`

�
= � [ µ`,

where µ` are defined as in the above example. Furthermore, the same argument we used in
the example shows that there can be no welfare functional that ranks all four µ`, is transitive,
and satisfies the independence of irrelevant alternatives. Hence, there is no complete Arrovian
welfare function that makes  c,b efficient, a contradiction that implies that there cannot be
two agents who own objects in a round of the algorithm.

As  c,b never allows two owners in a round of the algorithm, Proposition 3 in Appendix
F.1 allows us to assume that there are no brokers in any round, either. Hence, in each round
of the algorithm there is a single agent who controls (and owns) all houses. That means that
 c,b is a sequential dictatorship.

((=) Consider a sequential dictatorship  c,b. We construct a complete Arrovian wel-
fare functional � such that  c,b is efficient with respect to �. Under � any two matchings
are ranked according to preferences of the first-round dictator; if he is indifferent then the
matchings are ranked according to the preferences of the second-round dictator, etc. For-
mally, for any �2 P and any two distinct µ, ⌫ 2 M, let µ �(�) ⌫ if and only if there exists
k 2 {1, ..., |I|} such that µ (i1) = ⌫ (i1), ... and µ (ik�1) = ⌫ (ik�1), and agent ik strictly
prefers µ (ik) over ⌫ (ik), where agents i1, ..., ik are defined recursively: i1 = c (;), and in
general i` = c (((i1, µ (i1)) , ..., (i`�1, µ (i`�1)))) for ` = 1, ..., k. It is straightforward to verify
that � is a complete Arrovian welfare functional and that  c,b is efficient with respect to �.
QED
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6.3 Further Illustrative Applications

In Section 6, we have so far illustrated how our main results allow one to easily obtain new
insights into allocation and exchange problems.37 We now show that some of the deepest
prior insights easily follow from our Theorem 2.

6.3.1 Serial Dictatorships

Neutrality and group strategy-proofness were characterized through serial dictatorships by
Svensson (1999) when there are no outside options. In a serial dictatorship agents are
ordered, the first agent in the ordering gets his most preferred house, the second agent in the
ordering gets her most preferred among houses unassigned to agents higher in the ordering,
etc. Whether we allow outside options or not, Svensson’s result is a corollary of Theorem 2
as illustrated below.

A mechanism is neutral if, whenever the house names are relabeled in the problem, the
mechanism assigns each agent the same house that was assigned in the original problem.
Formally, a relabeling of houses is a bijection ⇡ : H ! H. For any preference profile �2 P,
and relabeling ⇡, let �⇡2 P be such that g �⇡

i h , ⇡�1(g) �i ⇡
�1(h) for all i 2 I and

g, h 2 H. A mechanism ' is neutral if for all relabelings ⇡, all �2 P, and all i 2 I, we have
'[�⇡](i) = ⇡('[�](i)).

Corollary 1. (Svensson, 1999) A mechanism is group strategy-proof and neutral if and only
if it is a serial dictatorship.

Proof of Corollary 1. Let ' be a group strategy-proof and neutral mechanism. Neutrality
implies that � has full range, that is �[P] = M. Indeed, for any µ 2 M, we can take an
arbitrary �2 P, define relabeling ⇡ so that ⇡('[�](i)) = µ(i) for all i 2 I, and conclude from
neutrality that '[�⇡] = µ. As observed in Section 2, full range and group strategy-proofness
imply Pareto efficiency. Thus, ' is a trading cycles mechanism  c,b by Theorem 2.

It remains to show that any neutral trading cycles mechanism  c,b is equivalent to a serial
dictatorship. Let � 2 M. By R1 and R3 there is an agent i 2 I� who owns some house
h 2 H� at �. In particular, for any �2 P[�;h],  c,b[�](i) = h. Let �0 2 M with I�0 = I�.
Let g 2 H�0 . Take a relabeling ⇡ such that ⇡(h) = g and ⇡(�(j)) = �0(j) for all j 2 I�.

37Our main results have many additional applications. As an example, consider a mechanism � that is
invariant, that is for any agent i 2 I and any object h 2 H if for all g %i h we have � (�i,��i) (i) = g ()
� (�0

i,��i) (i) = g, then for all g %i h and all j 2 I we have � (�i,��i) (j) = g () � (�0
i,��i) (j) = g.

We can then show that � is individually strategy-proof and Pareto efficient if and only if it is a hierarchical
exchange mechanism of Pápai (2000). For the proof, notice that invariance implies non-bossiness, and hence,
together with individual strategy-proofness it implies that � is group strategy-proof. The rest of the proof
resembles the proof of Corollary 2 below.
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Now, �⇡2 P[�0; g] and by neutrality  c,b[�⇡](i) = ⇡(h) = g. Maskin monotonicity implies
that i is allocated the best unmatched house at �0 as long as I�0 = I�. The mechanism  c,b

is thus equivalent to a serial dictatorship. QED

6.3.2 Reallocation-proofness

Pápai (2000) showed that group strategy-proof and Pareto efficient mechanisms that satisfy
an additional condition can be implemented as hierarchical exchange (i.e., TTC) mechanisms.
The condition she relies on is as follows: a mechanism ' is reallocation-proof if there
exists no pair of agents i, j 2 I such that for some �2 P, �0

i2 Pi, and �0
j2 Pj with

'[�0
i,��i] = '[�0

j,��j] = '[�], we have '[�0
{i,j},��{i,j}](j) �i '[�](i) and '[�0

{i,j},��{i,j}

](i) %j '[�](j). We can derive the key insight of Pápai (2000) as follows:

Corollary 2. (Pápai, 2000) If a mechanism is group strategy-proof, Pareto efficient, and
reallocation-proof then it is a hierarchical exchange mechanism.

Proof of Corollary 2. Let ' be a group strategy-proof, efficient, and reallocation-proof
mechanism. By Theorem 2, it is equivalent to a reallocation-proof TC mechanism  c,b. It
remains to show that the control rights structure (c, b) can be chosen in such a way that there
are no brokers. Take any submatching � 2 M. First notice that if there are two owners, j
and k at �, then no house is �-brokered. Indeed, by way of contradiction assume that some
house h is �-brokered by an agent i, and let hj be a house owned by j and hk be a house owned
by k. Consider a preference profile �2 P[�] and such that �i2 Pi[�;h, hk], �j2 Pj[�;hj],
and �k2 Pk[�;h]. Then, the deviation to �0

i2 Pi[�;h, hj, hk] and �0
j2 Pj[�;h, hj] violates

the reallocation-proofness condition. Hence, (c, b) can allow brokers only at submatchings
with a unique owner. But then  c,b is equivalent to  c0,b0 such that (c0, b0) is identical to (c, b)

except that at any submatching � at which (c, b) gives brokerage right over a house h to an
agent i, the primed control rights structure (c0, b0) gives ownership of h to the unique (c, b)

owner j at �, and it gives i the ownership of all unmatched houses at � [ {(j, h)}. QED

7 Conclusion

We study allocation and exchange in environments without transfers and with single-unit
demands. Addressing central concerns of both practical allocation problems and the relevant
theoretical literature, we (i) show that a mechanism is individually strategy-proof and always
selects the efficient outcome with respect to a social ranking satisfying Arrovian postulates
if and only if the mechanism is group strategy-proof and Pareto efficient, and (ii) construct
the full class of these mechanisms.
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Our construction relies on the introduction of brokers to allocation and exchange prob-
lems. While in the context of our paper, the main role played by the brokers is to allow us
to construct the full class of strategy-proof and efficient mechanisms, let us conclude with
an example showing how brokers can be useful in some mechanism design settings. Before
describing the example, let us stress that we have already seen that there are social welfare
criteria (functionals) that can only be satisfied by brokered TC mechanisms. The example
below shows that in asymmetric settings we may want to use brokered TC over TTC because
of equity considerations.

Consider a manager who assigns n tasks h1, ..., hn to n employees i1, ..., in with strict
preferences over the tasks. The manager wants the allocation to be Pareto efficient with
regard to the employees’ preferences. Within this constraint, she would like to avoid assigning
task hn to employee in (for instance, this employee may be known to be not as proficient as
the other employees in conducting this task). That is, if there is a Pareto-efficient matching
that avoids assigning hn to in, she would like to choose such a matching. Because she does
not know employees’ preferences, she wants to use a group strategy-proof mechanism.

The manager can use one of the Top Trading Cycles mechanisms of Pápai (2000); to do so
the manager would need to initially endow employees i1, ..., in�1 with all the tasks, and can
allow in to inherit some task only after either (i) all other employees are already matched,
or (ii) the task is hn is matched. The manager can also use a Trading Cycles mechanism
in which in is the permanent broker of hn and every other agent is an owner of one of the
remaining tasks.

Because the manager’s problem is asymmetric, all mechanisms treat agents in an asym-
metric way. We show, however, that the above brokered trading-cycles mechanism is strictly
more equitable than any top-trading-cycles mechanism. We compare the equitability of the
mechanisms using the equity ranking introduced by Lorenz (1905).38 The outcomes of em-
ployees depend of course on the profile of their preferences, and in particular the comparison
of the equitability of the mechanisms depends on the preference profile. To get a Lorenz
comparison we thus look at many problems that differ only in employees’ preference profiles.
We can interpret this as either taking an ex ante view, before the employees drew their rank-
ings from a distribution, or as looking at a population of managers and their employees. We
further restrict attention to the canonical case in which all employees rank the tasks in the
same way and each ranking is equally likely (or, in the population interpretation, represented
by an identical number of managers’ problems).39

38In line with the rest of the paper, we define Lorenz dominance in our ordinal setting. Let us say however
that the cardinal analogue of our result in this section is, and its proof is effectively the same. In particular,
the best TC mechanism dominates all TTC mechanisms in terms of the Gini coefficient.

39Our result would also be true if we looked at other natural distributions of preference profiles, for instance
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To formally define Lorenz dominance let us first introduce notation capturing the welfare
of agents: given a distribution �̂ over preference profiles, we denote by ⇢'[�̂] (i, r) the prob-
ability that i receives at least his r’th choice object under a mechanism '. We say that a
mechanism ' Lorenz dominates mechanism  for a random preference profile �̂ if for all
r = 1, ..., |H| there is an ordering of agents i1, ..., i|I| such that for any k = 1, ..., |I| we have

min
J✓I,|J |=k

X

j2J

⇢'[�̂] (j, r) �
kX

`=1

⇢ [�̂] (i`, r) .

The dominance is strict if there are r and k such that the inequality is strict.
With these definitions in place, we can state our concluding result

Proposition 2. In the task assignment problem, the TC mechanisms such that in brokers hn

and each agent i` for ` = 1, ..., n� 1 owns h` strictly Lorenz dominates any TTC mechanism
satisfying the managers constraints.

A Appendix: Revelation Principle for Group Strategy-

Proofness

The classical dominant-strategy revelation principle has a natural extension to group domi-
nant strategies. A group dominant-strategy equilibrium of an indirect mechanism is a pure
strategy profile such that for any realization of preferences, when any coalition of agents
together report any other messages than the ones prescribed by the original strategy profile,
then for any reports of agents outside of the coalition, either at least one of coalition members
receives a lower payoff than he would get or all of the coalition members receive the same
payoffs as they would get if the coalition played according to their prescribed strategies. The
group dominant-strategy revelation principle says that for any indirect mechanism with a
group dominant-strategy equilibrium, there exists a direct group strategy-proof mechanism
under which truth-telling achieves the same payoffs for all agents as in this equilibrium of
the original mechanism. Its proof is analogous to that of the classical dominant-strategy
revelation principle.

B Appendix: Comments on Consistency Requirements

This appendix explains the consistency requirements R1-R6.

if we restricted attention to profiles in which all employees of a manager agreed on a ranking of the tasks.
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Requirements R1 and R2 are needed to ensure that in Step 1 of the TC algorithm there
is always an owned house for the broker to point to.

R3 postulates that a broker does not own any houses. Dropping this assumption would
violate efficiency. For instance, consider the case of two agents 1 and 2 such that agent 1
brokers house h1 and owns house h2 while 2 has no control rights. If agent 1 prefers h1

over h2 while agent 2 prefers h2 over h1 then running the TC algorithm (with the above
inconsistent control rights structure) would allocate h2 to agent 1 and h1 to agent 2, which
is inefficient.

We discussed the role of requirement R4 in Section 4.1.
R5 might be called limited persistence of brokerage, and is the counterpart of R4 for

brokers. R5 states that a brokerage right persists when we move from smaller to larger
submatchings provided two or more owners from the smaller submatching remain unmatched
at the larger submatching. The following example illustrates why we need this requirement
to keep TC individually strategy-proof:

Example 5. Why do we need R5 to prevent individual manipulation? Consider
four agents i1, ..., i4. Assume that at the empty submatching agent i2 brokers a house and
other agents own one house each. Denote by hk the house controlled by agent ik. Let
us maintain R1-R3, R4, and R6, and violate R5 by assuming that h2 is owned by i4 at
submatching {(i1, h1)}. Now, there are two previous owners unmatched at {(i1, h1)}, i3 and
i4. Moreover, i2 is no longer a broker. Consider now a preference profile such that h1 is i1’s
and i2’s mutual first-choice house, h2 is the first choice of the other agents, and h3 is the
second choice of i2 and i3. Under this preference profile and control rights structure, in the
first round of the TC algorithm, i1 and i2 point to h1, while i3 and i4 point to h2. House h1

points to its owner i1, and h2 points to its broker i2. There is a unique cycle: h1 ! i1 ! h1,
and we obtain the submatching {(i1, h1)}. In the second round, all remaining agents point
to h2 which is owned by i4. Hence the unique cycle is h2 ! i4 ! h2, and i4 is matched
with h2. Thus, agent i2 is neither matched with his first or second choice. This agent would
benefit by misrepresenting his preferences and declaring h3 to be his first choice: then in the
first round of TC, he would point to h3 completing the cycle h3 ! i3 ! h2 ! i2 ! h3 and
ending up matched to h3, his true second choice house.

R6 refers to the case where a broker loses his right at a submatching at which only a
single previous owner is unmatched. In this case, the broker requires some protection against
losing his right. That is to say, when the previous owner gets matched with the ex-brokered
house, the ex-broker owns the houses of this owner. This is the broker-to-heir transition of
the ex-broker.
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The following two examples illustrate why we need R6 to keep TC both individually
strategy-proof and non-bossy. The first one is similar to the above one:

Example 6. Why do we need R6 to prevent individual manipulation? Consider
four agents i1, ..., i4. Assume that at the empty submatching agent i2 brokers h2, i1 owns
h1, h4, and i3 owns h3. At submatching {(i1, h1)}, assume that i3 owns h2 as well, and i2

loses his brokerage right. Now, i4 inherits h4 as an owner. We assume R1-R5, and violate
R6. R5 is not violated, as there is a single previous owner unmatched at {(i1, h1)}, and he is
i3. However, R6 is violated, as at the submatching {(i1, h1), (i3, h2}, i2 is not the heir to i3.
That is, i2 does not own the ex-owned house h3 of i3, but i4 does. Consider the preference
profile at which agents i1 and i2 have house h1, i3 has h2 and i4 has h3 as their first choices;
and agent i2’s second choice is h3. Then, i2 would benefit by ranking h3 first.

Example 7. Why do we need R6 to prevent bossiness? Consider the same control
rights structure as in Example 6. Consider the preference profile at which i1 and i3’s first
choices are h1, and i2 and i4’s first choices are h3, and i3’s second choice is h2. Now, whether
agent i3 reports the above ranking or ranks h2 first, he receives house h2. However, in the
first case, i2 receives h4, while in the latter, he receives h3. Thus, without R6, the mechanism
could be bossy.

Example 8. Can we replace R5-R6 by a simpler (and stronger) persistence of
brokerage property? Consider the following property “if |�0| < |I|� 1 and agent i brokers
house h at � and is unmatched at �0 � �, then i brokers h at �0 ” (an analogue of R4 for
brokers). The following example shows that we cannot replace R5-R6 with this. Consider
an environment with four agents, i1, i2, i3, i4, four houses, h1, h2, h3, h4, and a TC mechanism
 c,b whose control rights structure (c, b) is explained below and illustrated by the table in
Figure 1.

Houses h1, h3 are owned by agent i1 (denoted by “o” next to i1 in the figure); he continues
owning them as long as he is unmatched (R4 is satisfied). When i1 is matched the unmatched
of the two houses is owned by i3 (if he is still unmatched). When both i1 and i3 are matched
and h1 or h3 is unmatched, the house is owned by i2. When all agents are matched and one
of the houses h1 or h3 is unmatched, the house is owned by i4.

House h2 is owned by i2. When i2 is matched but h2 is not then h2 is inherited by one
of the unmatched agents; who inherits h2 depends on how the matched agents are matched
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h1 h2 h3 h4

i1,o i2,o i1,o i4,b

i3,o (i2, h4) . & otherwise i3,o (i1, h1). & i2 and i3 are matched, and

i1 is matched withh2 orh3

i2,o i4,o i1,o i2,o i2,o i4,o
i4,o i3,o i3,o i4,o i4,o

i4,o i3,o

Figure 1: A control rights structure with broker-to-heir transition

(the submatching). If i1 is matched with h1 and i2 is matched with h4, then the next owners
of h2 are i4 and i3, in this order. In all other cases, the order of the next owners of h2 is
i1, i3, and i4.

House h4 is initially brokered by agent i4 (denoted by “b” next to i4 in the figure). Agent
i4 continues to broker h4 as long as he is unmatched with two exceptions: (i) if i1 is matched
with h1 then i4 loses the brokerage right, and h4 becomes an owned house with the order of
owners i2, i4, and i3; and (ii) if i4 is the only remaining agent, then he owns h4. The second
exception is dictated by R2. We explain in detail how the first exception occurs and why it
is consistent with our conditions. We use the notation of the statement of R6 and denote
� = ;, �0 = {(i1, h1)}, i = i2, h = h2, i0 = i4, h0 = h4. Now, i4 brokers h4 at ; and i2 owns h2

at ;: at �0 = {(i1, h1)}, as it is allowed by R5 that only one ;-owner, i2, is left unmatched,
i4 loses his brokerage right of h4. By the second part of R6, at �0 = {(i1, h1)}, i2, the only
remaining ;-owner, owns h4. On the other hand, at submatching {(i2, h4)}, by the first part
of R6, i4 owns h2. However, this will only be relevant, when i4 loses his brokerage right.
This happens at �0. Hence, by R4, i4 owns h2 at �0 [ {(i2, h4)} = {(i1, h1), (i2, h4)}. This is
what we refer to as the broker-to-heir transition.

Let us now check that the TC mechanism defined by this control rights structure is
different from all TC mechanisms with consistent control rights structures in which the
simple analogue of R4 for brokers holds true: “if |�0| < |I| � 1 and agent i brokers house h

at � and is unmatched at �0 � �, then i brokers h at �0 .” By way of contradiction, let us
assume that there is a TC mechanism  with a control rights structure satisfying the above
strong form of brokerage persistence and produces the same allocation as  c,b for each profile
of agents’ preferences.

First, notice that at the empty submatching, i4 is the broker of h4 in  . This is so because
h4 is not owned by any agent at the empty submatching ? as ( [�])�1(h4) = ( c,b[�])�1(h4)

varies with �2 P (that is, across profiles at which all agents rank h4 first). Hence, there is
an agent who has the brokerage right over h4, and it must be i4, as  [�](i4) =  c,b[�](i4) = g

40



for all �2 P such that all agents rank h4 first and any g 2 {h1, h3, h2} second.
Second, consider the submatching � = {(i1, h1)} and a preference profile �2 P such that

i1 ranks h1 first and other agents rank h4, h3, h2, and h1 in this order. In mechanism  ,
agent i4 would continue to be the broker of h4 at �, and thus

 [�](i4) = h3.

However,
 c,b[�](i4) = h2.

This contradiction shows that indeed the TC mechanism of the example cannot be rep-
resented by a control rights structure in which brokerage satisfies the analogue of R4 for
brokers (in particular it cannot be represented without brokers).

C Appendix: Proof of the Pareto Efficiency of TC Mech-

anisms (Part 1 of the Proof of Theorem 2)

We prove the proposition by a simple recursion. Consider the TC algorithm. Each agent
matched in the first round of the algorithm gets his first or second choice house and is
matched with a house controlled by an agent matched in the same round. Moreover, there
is at most one agent who gets his second choice in the first round, as there is at most one
broker. Therefore, if an agent matched in the first round gets his second choice, then getting
his first choice would harm another agent matched in that round.

In general, each agent matched in the r-th round of the algorithm gets his first or second
choice among the remaining houses and is matched with a house controlled by an agent
matched in the same round. Moreover, there is at most one agent who gets his second choice
in this round, as there is at most one broker. Therefore, if an agent matched in the r-th
round were given a better house, this would harm some other agent matched at the same or
an earlier round. QED

D Appendix: Proof of the Individual Strategy-Proofness

of TC Mechanisms (Part 2 of the Proof of Theorem 2)

Let  c,b be a TC mechanism. Let � be a preference profile. We fix an agent i 2 I. We will
show that i cannot benefit by submitting �0

i 6=�i when the other agents submit ��i. Let s
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be the round i leaves (with house h) under �i and s0 be the time i leaves (with h0) under �0
i

in the algorithm. We will consider two cases.

Case 1. s  s0: At round s, the same houses and agents are in the market under both �i

and �0
i by Lemma 4. If i is not a broker at time s under �i, then, by submitting �i, agent i

gets the top-choice house among the remaining ones in round s, implying that he cannot be
better off by submitting �0

i.
Assume now that i is a broker at time s under �i. Let e be the brokered house at time

s. If e is not agent i’s top-choice house remaining under �i, then by submitting �i, agent i
gets the top-choice house among the remaining ones in round s, implying that he cannot be
better off by submitting �0

i.
It remains for us to consider the situation in which e is broker i’s top-choice remaining

house, and to show that i cannot get e by submitting the profile �0
i. For an argument by

contradiction, assume that under �0
i agent i leaves at round s0 with house e. Because agent

i is a broker when he leaves at �i, there is an agent j who is matched with house e at time
s. At this time, j is an owner of some owned house hj, and e is his top-choice house. By
Lemma 4, the control rights structure at round s is the same under both �i and �0

i. Hence,
i is also a broker at time s after submitting �0

i, and j is an owner of hj. Moreover, j’s top
choice is still house e. That means that under �0

i agent j will stay unmatched until s0 + 1.
Since agent i leaves with e at s0, he cannot be the broker of e at this round, because a broker
cannot leave with the brokered house, while another owner j is unmatched. Thus, there
is a round s00 2 {s+ 1, ..., s0} at which agent i stops being the broker of e. Since e is still
unmatched at this round, there is a broker-to-heir transition between s00 � 1 and s00 (by R6).
Because j is an owner of hj at both s00 � 1 and s00, he would have inherited e at s00 (by R6).
Thus, j would have left with e at s00, as e is j’s top choice among houses left at s (and hence
those left at s00). A contradiction.

Case 2. s > s0: At round s0, the same houses and agents are in the market under both
�i and �0

i by Lemma 4. Consider round s0 under both �i and �0
i. Under �0

i, agent i points
to house h0 = h1 that points to agent i1 that points to ... that points to object hn that
points to agent i = in (and this cycle leaves at round s0). If the cycle is trivial (n = 1) and
h0 points back to i, then i owns h0. Since ownership persists by R4, i will own h0 at s > s0,
and thus at round s, agent i would leave with a house at least as good as h0.

In the sequel, assume that there is at least one other agent in in the cycle (that is, n � 2).
If each house h` is owned by i`, for all ` 2 {1, ..., n}, then the chain h0 = h1 ! i1 !

h2 ! ... ! hn ! i will stay in the system as long as i is in the system (by persistence of
ownership, implied through R4). Thus, at round s agent i would leave with a house at least
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as good as h0 under �i.
If i` brokers h` for some ` 2 {1, ..., n}, then the chain h0 = h1 ! i1 ! h2 ! ... ! hn ! i

will stay in the system as long as i` continues brokering h` (since there are no other brokerages
and ownerships persist by R4). If i` brokers h` at round s under �i, then we are done, since
the same cycle would have formed. Thus suppose that at a round s00 2 {s0 + 1, ..., s} broker
i` loses his broker status. Because n � 2, agent i`+1 is an owner at both rounds s00�1 and s00.
Hence, the loss of brokerage status means that i` enters a broker-to-heir transition. We must
then have n = 2 (since by R5, only one previous owner can remain unmatched during the
broker-to-heir transition). There are two cases, as by R6’s second part, the unique previous
owner owns both houses, his previously owned house and the ex-brokered house: either i1

owns h1 = h0 and h2 (and i2 = i` is the heir) or i2 = i owns h1 = h0 and h2. In the former
case, i1 who wants h2, will leave with it in round s00 under �i, and i2 = i will inherit h1 = h0

at s00 +1 by R6, more precisely, by the broker-to-heir transition property. In the latter case,
i1 = i owns h1 = h0 already in round s00. In both cases, in round s � s00 agent i can only
leave with a house at least as good as h0 under �i. QED

E Appendix: Proof of the Non-Bossiness of TC Mecha-

nisms (Part 3 of the Proof of Theorem 2)

Let  c,b be a TC mechanism. Fix an agent i⇤ 2 I and two preference profiles �= [�i⇤ ,��i⇤ ]

and �0= [�0
i⇤ ,��i⇤ ] such that

h⇤ =  c,b[�0](i⇤) =  c,b[�](i⇤).

Let s be the round i⇤ leaves (with house h⇤) submitting �i⇤ and s0 be the time i⇤ leaves
(with h⇤) submitting �0

i⇤ . By symmetry, it is enough to consider the case s  s0. In order
to show that

 c,b[�](i) =  c,b[�0](i) 8 i 2 I,

we will prove the following stronger statement:

Hypothesis: If a cycle h1 ! i1 ! h2 ! ... ! hn ! in ! h1 of length n 2 {1, 2, ...} forms
and is removed at round r under preference profile �, then under preference profile �0 one
of the following three (non-exclusive) cases obtains:

1. the same cycle h1 ! i1 ! h2 ! ... ! hn ! in ! h1 forms; or
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2. n = 2 and two cycles form:

• cycle h1 ! i2 ! h1 or cycle g ! i2 ! h1 ! i ! g for some agent i and some
house g, and

• cycle h2 ! i1 ! h2 or cycle h ! i1 ! h2 ! j ! h for some agent j and some
house h;

or

3. n = 1 and there exists an agent j 6= i1 and a house h 6= h1 such that the cycle
h ! i1 ! h1 ! j ! h forms.

Whenever in the proof we encounter cycles of length n, the superscripts on houses and agents
will be understood to be modulo n, that is in+1 = i1 and hn+1 = h1. By �s�1[�] we denote
the submatching of agents and houses matched before round s of  c,b when agents submitted
preference profile �. We refer to cycles formed under � as �-cycles, and to cycles formed
under �0 as �0-cycles.

By Lemma 4, the above hypothesis is true for all r < s. The proof for r � s proceeds by
induction over the round r.

Initial step. Consider r = s. Under �, house h1
⇤ points to agent i⇤ = i1⇤ points to house

h⇤ = h2
⇤ that points to agent i2⇤ that points to ... that points to agent in⇤ that points to house

h1
⇤, and the cycle

h1
⇤ ! i1⇤ ! h2

⇤ ! ... ! hn
⇤ ! in⇤ ! h1

⇤

is removed in round s. Lemma 4 implies that the same houses and agents are in the market
at time s under both � and �0 and that all agents from I�s[�] � {i1⇤, ..., in⇤} are matched by
�s[�0] in the same way as in �s[�]. Lemma 4 also implies that the chain h2

⇤ ! ... ! hn
⇤ !

in⇤ ! h1
⇤ ! i1⇤ forms at round s under preferences �0.

If all pairs (i`⇤, h`⇤), for all ` 2 {2, ..., n}, consist of an owner and an owned house at �s[�],
then they consist of an owner and an owned house at �s[�0] and the chain h2

⇤ ! ... ! hn
⇤ !

in⇤ ! h1
⇤ ! i1⇤ will stay in the system as long as i1⇤ is in the system (by R4). Thus, at s0 all

agents i1⇤, ..., i
n
⇤ would leave in the same cycle as under �. Notice that this argument fully

covers the case n = 1.
If n > 1 and i`⇤ brokers h`⇤ for some ` 2 {2, ..., n}, then the chain h2

⇤ ! ... ! hn
⇤ !

in⇤ ! h1
⇤ ! i1⇤ will stay in the system as long as i`⇤ continues to broker h`⇤. If i`⇤ continues to

broker h`⇤ until round s0 under %0, then the initial step is proved. Otherwise, there is a round
s00 2 {s+ 1, ..., s0} such that agent i`⇤ has the brokerage right over h`⇤ at rounds s, ..., s00 � 1
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but not at round s00. By R6’s broker-to-heir transition property, n = 2 and i`+1
⇤ owns h`⇤ at

�s00 [�0] because he owns h`+1
⇤ at both �s00�1[�0] and �s00 [�0]. As i`+1

⇤ ’s top preference is then
h`⇤, he leaves with it at s00. Applying again the broker-to-heir transition property, we see that
agent i`⇤ inherits h`+1

⇤ at s00 + 1 and will be matched with it. This case ends the proof of the
inductive hypothesis for r = s.

Inductive step. Now, take any round r > s such that �r[�] � �r�1[�] is non-empty, and
assume that the inductive hypothesis is true for all rounds up to r� 1. Consider agents and
houses

h1 ! i1 ! h2 ! ... ! hn ! in ! h1

that form a cycle of length n � 1 at round r under �. Since all agents but i⇤ (who is matched
before round r) have same preferences in both profiles � and �0, so do agents i1, ..., in. We
start with two preparatory claims.

Claim 1. (i) If agent j and house h are unmatched at submatchings �, �0, and j controls h

at � but not at � [ �0, then j brokers h at �. (ii) If, additionally, agent j0 and house h0 are
unmatched at submatchings �, �0, and, at �0, agent j controls h and agent j0 owns h0, then
j 6= j0, j0 owns h and h0 at � [ �0, and j brokers h at �0 and owns h0 at � [ �0 [ {(j0, h)}.

Proof of Claim 1: The first statement follows from R4. To prove the second statement, first
notice that R4 implies that j brokers h at �0, and hence j 6= j0. R4 furthermore implies
that j0 owns h0 at all submatchings between �0 and � [ �0. Since j stops brokering h at a
submatching between �0 and � [ �0, assumption R6 implies that j0 owns h at � [ �0, and j

owns h0 at � [ �0 [ {(j0, h)}. QED

Claim 2. Under �0:

• all houses i` prefers over h`+1, except possibly h`, are matched with agents other than
i`;

• if i` is a �r�1 (�)-owner then all houses i` prefers over h`+1 are matched with agents
other than i`.

Proof of Claim 2: Consider the run of the algorithm under �0. If i` is �r�1 [�]-owner then all
houses i` prefers over h`+1 are matched before round r under �. The inductive assumption
thus implies that they are also matched with agents other than i` under �0. Similarly, if i`
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is �r�1 [�]-broker then all houses i` prefers over h`+1, except possibly h`, are matched before
round r under �, and the inductive assumption yields the claim. QED

In the remainder of the proof, we use the following notation:
t is the earliest round one of the houses h1, ..., hn is matched under �0;
h`+1 is a house matched in round t under �0,
j`+1 is the agent controlling house h`+1 at �t�1[�0], and
⌫ = �r�1[�] [ �t�1[�0].

If j`+1 = i`+1, then agent i`+1 controls h`+1 at �t�1[�0]. Three cases are possible:

• If n = 1, then i`+1 owns h`+1 at �r�1[�], and by R4 at ⌫, as well. First, let us now
show that i`+1 cannot broker h`+1 at �t�1[�0]. If he does then there exists some agent
j that owns a house h at �t�1[�0] so that h ! j ! h`+1 ! i`+1 is part of the cycle
occurring in round t under �0. Moreover, i`+1 loses brokerage of h`+1 between �t�1[�0]

and ⌫, and by R6, j owns h`+1 at ⌫ contradicting i`+1 owning h`+1 at ⌫. Thus, i`+1

owns h`+1 at �t�1[�0], and, by Claim 2, he points to h`+1 and is matched with it. The
inductive hypothesis is correct for the cycle.

• If n � 2 and i`+1 prefers h`+2 over h`+1, then by Claim 2, he points to it (he cannot
broker it since he controls h`+1), and house h`+1 is matched in a cycle that contains
h`+1 ! i`+1 ! h`+2 ! ....

• If n � 2 and i`+1 prefers h`+1 over h`+2, then i`+1 is the broker of h`+1 at �r�1 [�].
First, let us show that i`+1 cannot own own h`+1 at �t�1 [�0]. If he does then he owns it
at ⌫, as well. Then i`+1 loses brokerage of h`+1 between �r�1[�] and ⌫. R5 implies that
there is at most one other �r�1[�]-owner left unmatched at ⌫, and i` is that owner.
R6 implies that i` should own h`+1 at ⌫, a contradiction. Hence, i`+1 brokers h`+1 at
�t�1[�0]. By Claim 2, i`+1 points to h`+2 (as he cannot point to h`+1), and house h`+1

is matched in a cycle that contains h`+1 ! i`+1 ! h`+2 ! ....

We can conclude that j`+1 6= i`+1, or the inductive hypothesis is true for the cycle of i1, ..., in,
or that the cycle of h`+1 at �0 contains h`+1 ! i`+1 ! h`+2 ! ....

In the last of these three possibilities, let us define j`+2 to be the agent controlling h`+2

at �t�1[�0], and repeat the above procedure for h`+2. In this way, repeating this procedure,
we either show that the cycle

h`+1 ! i`+1 ! h`+2 ! ... ! i` ! h`+1
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leaves at round t under �0 (and the inductive hypothesis (part 1) is true for this cycle), or
there is k such that i`+k 6= j`+k.

To complete the proof it is enough to consider the latter case. Without loss of generality,
we may assume that `+ k = 1 (modulo n). Then, j1 6= i1, j1 controls h1 at �t�1 [�0], and h1

is matched in round t under �0. By Claim 2, all agents i1, ..., in are unmatched at �t�1 [�0]

because all houses h1, ..., hn are. Thus, all these agents and houses are unmatched at ⌫.
Consider three cases.

Case n = 1. Then, agent i1 owns h1 at �r�1[�], and by the inductive assumption, he gets at
most house h1 under �0. Thus, i1 is unmatched in round t. Consider two subcases depending
on whether j1 is matched at �r�1[�] or not.

• j1 2 I�r�1[�]. Then the inductive assumption and h1 /2 H�r�1[�] imply that

? there exists house h 6= h1 such that j1 is matched before round r in a cycle
h ! j1 ! h under �, and

? there exists agent i such that the cycle h ! i ! h1 ! j1 ! h is matched at
round t under �0 .

Notice that i 62 I�r�1[�], as otherwise the inductive assumption implies that i is matched
with h1 under �, contrary to h1 62 H�r�1[�]. Thus both i and i1 are unmatched at ⌫,
and Claim 1 implies that either i = i1, or i is a broker of h at �t�1[�0]. In the latter
case, R1 implies that j1 is an owner of h1 at �t�1[�0], and R4 implies that j1 owns h1 at
⌫ contrary to j1 6= i1 and i1 owning h1 at �r�1 [�], and hence at ⌫. This contradiction
shows that i1 = i, and hence that the inductive hypothesis (part 3) is true for i1.

• j1 /2 I�r�1[�]. Then, both agents j1 and i1 are unmatched at the submatching ⌫, and
Claim 1 implies that j1 is a broker of h1 at �t�1[�0]. Let j0 be an agent who obtains
h1 at time t under �0. As j1 is a broker of h1 at �t�1[�0], we have j0 6= j1. Thus j0 is
an owner of a house h0 at �t�1[�0], and h0 6= h1.

Agent j0 is unmatched at �r�1 [�] because if he were matched then the inductive
assumption would imply that h1 is matched at �r�1 [�], which is false. Now, if h0

was matched at �r�1 [�] then the inductive assumption would imply that either all
agents in the �0-cycle of h0 are unmatched at �r�1 [�] (which is false), or h0 is matched
under �0 in a cycle of one or two agents. Since the �0-cycle of h0 contains at least two
different agents j1 and j0, we would conclude that j1 obtains h0 under �0, and hence by
the inductive assumption j1 would be matched with h0 in �r�1 [�]. Since we consider
the situation j1 6/2 I�r�1[�], we may conclude that h0 is unmatched at �r�1 [�]. Thus j0

47



and h0 are unmatched at �r�1 [�], and hence at ⌫. Then, R4, R5, and R6 imply that
j0 owns h1 at ⌫, and thus j0 = i1. Since i1 points to h1, they are matched in the cycle
h0 ! i1 ! h1 ! j ! h0, and the inductive hypothesis (part 3) is true for i1.

Case n > 1 and i1 brokers h1 at �r�1[�]. Then, agent i2 is the �r�1 [�]-owner of h2. We
will show that in this case n = 2, and the inductive hypothesis (part 2) holds for the �-cycle
of h1, i2, h2, and i1.

Step 1. First, consider how h1 is matched under �0. Let h0 ! j0 ! h1 ! j1 be part of
the cycle of h1 in round t under �0 (this is without loss of generality as we allow h0 = h1

and j0 = j1). By the inductive assumption, j0 is unmatched at �r�1[�], and one of the two
subcases obtains:

(a) all other houses and agents in the cycle of h1 under �0 are unmatched at �r�1[�], or
(b) the cycle h0 ! j0 ! h1 ! j1 ! h0 occurs under �0 and j1 is matched with h0 in

�r�1[�], i.e., {(j1, h0)} ✓ �r�1[�].

We handle these two subcases separately:

• Subcase (a): Two further subcases are possible depending on whether j1 brokers h1 at
�t�1[�] or not:

? Assume j1 brokers h1 at �t�1[�0]. Then, j0 6= j1, h0 6= h1, and j0 owns house h0 at
�t�1[�0]. Either, j1 or i1 exits brokerage between �t�1[�0] or �r�1[�], respectively,
and ⌫, as both of them cannot broker it at ⌫. Depending on whether j1 or i1 loses
the brokerage right, R5 implies that there are only two agents in the cycle of h1

under �0 or �, respectively; moreover, by R6, j0 or in (respectively) owns h1 at
⌫. However, then neither j1 nor i1 can broker h1 at ⌫, implying that both lose
brokerage rights, and hence, h1 is owned by both j0 and in at ⌫. Thus, j0 = in,
and n = 2. We conclude that i2 is matched with h1 under �0 and the cycle he
gets matched in has two agents, i.e., h0 ! i2 ! h1 ! j1 ! h0.

? Assume j1 owns h1 at �t�1[�0]. Then, R4 implies that j1 owns h1 at ⌫. Thus,
i1 loses his brokerage right between �r�1[�] and ⌫. By R5, there could be at
most one �r�1[�]- owner still not matched at ⌫. Hence, n = 2 and, in = i2 is the
remaining owner. By R6, h1 is owned by i2 at ⌫. Since h1 is also owned by j1 at
⌫, we have j1 = i2. By Claim 2, h1 is the best house that i2 can get under �0.
Therefore, the cycle of h1 in round t under �0 is h1 ! i2 ! h1.

• Subcase (b): Since at �t�1 (�0) agent j0 controls h0, R6 implies that at �t�1[�0] [
{(j1, h0)}, agent j0 owns h1. By R4, this agent still owns h0 at ⌫. Thus, i1 leaves
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the brokerage of h1 between �r�1[�] and ⌫. As i2 owns h2 at �r�1[�], by R5, i2 is
the only previous owner unmatched at the submatching at which i1 leaves brokerage.
Thus, the cycle of h1 under � includes only two agents i1 and i2, i.e., n = 2. Moreover,
R6 and R4 imply that i2 owns h1 at ⌫. Thus, i2 = j0, and the cycle of h1 at �0 is
h0 ! i2 ! h1 ! j1 ! h0.

Either subcase proves that there are two agents in the cycle of h1 under �, i.e., n = 2, and
the inductive hypothesis (part 2) holds for i2 and h1.

Step 2. Next, consider how h2 is matched under �0. Since, at �r�1 (�), i1 controls h1 and i2

controls h2, R6 implies that i1 owns h2 at ⌫ [ {(i2, h1)}. Let t1 be the round in which i1 is
matched and t2 be the round in which h2 is matched under �0. Since h1 is matched with i2

and not i1 under �0, Claim 2 implies that t1 � t2. Moreover, t2 � t. Suppose j0 ! h2 ! j2

is part of the cycle of h2 in round t2 under �0. Let

⌫2 = �r�1[�] [ �t2�1[�0] [ {(i2, h1)}.

We have ⌫ ✓ ⌫2. Thus, by R4, i1 owns h2 at ⌫2. We consider two subcases: i1 = j2 and
i1 6= j2.

• Assume i1 = j2. First consider the case i1 brokers h2 at �t2�1[�0]. Then i1 = j2 6= j0,
and j0 is an owner at �t2�1[�0]. Agent j0 is not matched at �r�1[�], as otherwise
the inductive assumption would imply that h2 is matched at �r�1[�], a contradiction.
Hence, j0 is not matched at ⌫2. Moreover, i1 loses brokerage right of h2 between
�t2�1[�0] and ⌫2, as he owns it at ⌫2. By R6, j0 owns h2 at ⌫2, contradicting i1 owning
it at ⌫2. We can conclude that i1 owns h2 at �t2�1[�0]. Since h1 is matched with i2

and not i1 under �0, Claim 2 implies that h2 ! i1 ! h2 is the cycle under �0, showing
that the inductive hypothesis (part 2) holds true for i1 and h2.

• Assume i1 6= j2. By the inductive assumption, j0 is unmatched at ⌫2, and either

(a) all other houses and agents in the cycle of h2 under �0 are unmatched at �r�1[�],
or

(b) the cycle h0 ! j0 ! h2 ! j2 ! h0 occurs under �0 and j2 is matched with h0 in
�r�1[�] , i.e., {(j2, h0)} ✓ �r�1[�].

? Subcase (a): As i1 owns h2 at ⌫2, R4 implies that j2 is the broker of h2 at �t2�1[�],
and he loses this brokerage right between �t2�1[�0] and ⌫2. Hence, j0 6= j2 and
by R5, there are no other agents than j2 and j0 in the cycle of h2 under �0. By
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R6 and R4 j0 owns h2 at ⌫2. Thus, j0 = i1 . Hence, the cycle of h2 under �0 is
h0 ! i1 ! h2 ! j2 ! h0 .

? Subcase (b): Since at �t2�1 (�0) agent j0 controls h0, R6 implies that at �t2�1[�0

][ {(j2, h0)} ⇢ ⌫2, j0 owns h2. By R4, j0 owns h2 at ⌫2. Recall that i1 owns h2 at
⌫2. Then i1 = j0, and the cycle of h2 under �0 is h0 ! i1 ! h2 ! j2 ! h0.

Either subcase proves that the inductive hypothesis (part 2) holds for i1 and h2.

Case 3 . n > 1 and i1 owns h1 at �r�1[�] (in particular, R4 implies that i1 owns h1 at ⌫).
We will show that this case cannot happen. By the inductive assumption either

(a) all agents in the �0-cycle of h1 are unmatched at �r�1[�] or
(b) n = 2 and the cycle h0 ! j0 ! h1 ! j1 ! h0 occurs under �0 for some house h0,

and j1 is matched with h0 in �r�1[�], that is {(j1, h0)} ✓ �r�1[�].

• Subcase (a): By R4, agent j1 is the broker of h1 at �t�1[�0] and loses this right between
�t�1[�0] and ⌫. Hence, j0 6= j1 owns a house h0 such that h0 ! j0 ! h1 ! j1 is part
of the cycle of h1 under �0. As j1 loses the brokerage right of h1, by R5 there can be
at most one other agent in this cycle, and hence the cycle is h0 ! j0 ! h1 ! j1 ! h0.
R6 implies that j0 owns h1 at ⌫, hence j0 = i1. Then i1 gets h1 under �0 in round t.
However, as i1 is both a �r�1[�]-owner and a �t�1[�0]-owner, Claim 2 implies that he
would point to h2 not h1 under �0 in round t, a contradiction.

• Subcase (b): Since at �t�1 (�0) agent j0 controls h0, R6 implies that j0 owns h1 at
�t�1[�0] [ {(j1, h0)}. Furthermore j0 is unmatched at �r�1[�], as otherwise the in-
ductive assumption would imply that h1 is matched at this submatching contrary to
h1 being unmatched at �r�1[�]. Thus, j0 is unmatched at ⌫, and, by R4, he owns
h1 at ⌫ ◆ �t�1[�0] [ {(j1, h0)}. As i1 also owns h1 at ⌫, we have j0 = i1. Thus,
h0 ! i1 ! h1 ! j1 ! h0 is the cycle of h1 under �0. But we know that i1 (a �r�1[�]-
owner) prefers h2 over h1. Because h2 is unmatched at �t�1[�0], it must be that i1

brokers h2 at this submatching. Thus, h0 = h2. This contradicts the fact that h0 is
matched and h2 is unmatched at �r�1[�].

Either subcase leads to a contradiction showing that Case 3 cannot happen. This completes
the proof of the inductive hypothesis. QED
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F Appendix: Proof of the Implementation Part of The-

orem 2 (Part 4 of the Proof of Theorem 2)

Let ' be a group strategy-proof and Pareto-efficient mechanism (fixed throughout the proof).
We are to prove that ' may be represented as a TC mechanism. We will first construct the
candidate control rights structure (c, b) and then show that the induced TC mechanism  c,b

is equivalent to '.
Let us start by introducing some useful terms and notation. Let � 2 M, n � 0,

h1, h2, ..., hn 2 H�, and i 2 I. Denote by Pi[�, h1, ..., hn] the set of preferences �i of agent i

such that

• if i 2 I�, then
�(i) �i g for all g 2 H � {�(i)} ,

• if i 2 I�, then

h1 ⌫i h
2 ⌫ ... ⌫i h

n �i g �i g
0 for all g 2 H� �

�
h1, ..., hn

 
and all g0 2 H�.

That is, if i is not matched in submatching � then Pi[�, h1, ..., hn] is the set of preferences
that rank h1,...,hn in this order and above all other houses unmatched under �, and rank
those houses above all houses matched under �. If i is matched under � then Pi[�, h1, ..., hn]

is the set of preferences that rank agent i’s match under � over all other houses. Observe
that Pi[?] ⌘ Pi.

Let P[�, h1, ..., hn] ✓ P be the Cartesian product of Pi[�, h1, ..., hn] over all i 2 I. We
define

P⇤[�, h] = [h02H��{h}P[�, h, h0],

i.e., the set of preference profiles generated by P[�, h] that rank the same house as the second
choice across all agents unmatched under �.

When � is fixed, we will occasionally write hh1, ..., hn, ...i instead of Pi[�, h1, ..., hn].

We are ready to introduce some new terminology for the mechanism ' that is similar
to the control rights structure terminology of the TC mechanisms. To distinguish the two
classes defined for TC and ', we will suffix these new definitions with *.

A house h 2 H� is an owned* house at � 2 M if '[�]�1(h) = i for all �2 P[�, h] for
some i 2 I�; we refer to i as the owner* of h at �.
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A house e 2 H� is a brokered* house at � 2 M if there exist some � and �02 P⇤[�, e]

such that '[�]�1(e) 6= '[�0]�1(e). Agent k is the broker* of e at � if e is a brokered*
house at � and for all �2 P⇤[�, e] house '[�](k) is the second choice of k in �k. Observe
that a house cannot be both owned* and brokered* at the same submatching. 40

Notice that if ' is a TC mechanism and i is an owner at � then i is an owner* at �, and
similarly for the broker*. Thus, owners* and brokers* are the candidate owners and brokers
in the TC mechanism that we will construct. We will show that the starred terms can be
used to determine a consistent control rights structure (c, b) and a TC mechanism  c,b. The
proof of Theorem 2 will be finished after we show that ' =  c,b.

Two lemmas proved in Pápai (2000) will be useful. Following her definition, we say that
j envies i at � if

'[�](i) �j '[�](j).

Lemma 5. (Pápai 2000) For all i, j 2 I, all �2 P, and all �⇤
j2 Pj, if j envies i at � and

'[�⇤
j ,��j](i) 6= '[�](i), then

'[�](i) �i '[�⇤
j ,��j](i).

Lemma 6. (Pápai 2000) For all i, j 2 I, all �2 P, and all �⇤
j2 Pj, if j envies i at � and

'[�⇤
j ,��j](i) 6= '[�](i), then there exists �⇤

i2 Pi such that

'[�⇤
i ,�⇤

j ,��{i,j}](i) = '[�](j).

This last lemma allows us to prove

Lemma 7. For all i, j 2 I, all �2 P, and all �⇤
j2 Pj, if j envies i at �, then

'[�⇤
j ,��j](i) ⌫i '[�](j).

Proof of Lemma 7. If '[�⇤
j ,��j](i) 6= '[�](i) then the lemma follows from Lemma 6 and

strategy-proofness of '. If '[�⇤
j ,��j](i) = '[�](i) then Pareto efficiency of ' (�) implies

that i cannot envy j when j envies i and hence the claim of the lemma follows. QED

40It may appear from the definitions that there is a third option for an unmatched house besides being
owned* and brokered* at a submatching. However, Proposition 3 below shows that these are the only two
options.
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F.1 The Starred Control Rights Structure is Well Defined

The main result in this subsection (Proposition 3) shows that any house is either owned* or
brokered*. Thus, the starred (candidate) control rights structure is well defined. We build
up toward this result through several lemmas. All lemmas in this section are formulated and
proven at a fixed submatching � 2 M.

Lemma 8. Let � 2 M. For all i 2 I� and all h 2 H�,

'[�](i) = �(i) for all �2 P[�, h].

Proof of Lemma 8. Suppose that an agent in i 2 I� does not get �(i) at '[�]. Then we
can create a new matching by assigning all agents in I� that get a house in H� a house in
H� that was assigned to an agent in I�, all other agents j in I� the house '[�](j), and all
agents j in I� the house �(j). Since each agent in I� ranks houses in H� lower than houses
in H� and each agent in I� ranks his �-house as his first choice, this new matching Pareto
dominates '[�], contradicting the fact that ' is Pareto efficient. QED

Lemma 9. Let � 2 M and e, h 2 H�. Then there exists some agent i 2 I� such that
'[�](i) = e for all �2 P[�, e, h].

Proof of Lemma 9. By way of contradiction suppose that �,�02 P[�, e, h] are such that
'[�](i) = e 6= '[�0](i) for some agent i 2 I�. Without loss of generality, we assume that
� and �0 differ only in preferences of a single agent j 2 I�. Let g = '[�](j). By strategy-
proofness for j, we have j 66= i and g 6= e. Moreover, by Maskin monotonicity, if it were true
that g = h, then '[�0] = '[�] would be true, contradicting that '[�0] 6= '[�]. Thus, g 6= h.
We may further assume that

�i2 he, h, g, ...i ✓ Pi[�, e, h],

as Maskin monotonicity for i implies that ' (�) does not depend on how i ranks houses
below e, and strategy-proofness for i implies that we still have e 6= '[�i,�0

�i](i) = '[�0](i).
Let g0 = '[�0](j). By non-bossiness, g0 6= g and by strategy-proofness g0 6= e, h. Maskin

monotonicity for j allows us also to assume that

�j2 he, h, g, g0, ...i and �0
j2 he, h, g0, g, ....i .

Let i0 2 I� be the agent who gets e at �0, and k 2 I� be the agent who gets h at �.
Notice that such agents exist because of Pareto efficiency. Because neither i nor j gets e at
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�0, we have i0 6= i, j. Furthermore, we saw above that j does not get h at �, and Lemma 5
implies that neither i nor i0 gets h at �. Thus k 6= i, i0, j.

Claim 1. (1) Under �, agents i, j, k are matched with houses as follows

'[�](i) = e,'[�](j) = g, and '[�](k) = h

(2) Under �0, agents i0, j, k are matched with houses as follows

'[�0](i0) = e,'[�0](j) = g0,'[�0](i) = g, and '[�0](k) = h.

Proof of Claim 1. The first five equalities were proved or assumed above and are listed
for convenience only. The last two equalities require an argument. First, let us show that
'[�0](i) = g. Since agent j envies i at � and '[�](j) = g, Lemma 7 implies that i gets at
least g at �0=

���j,�0
j

�
. Hence, '[�0](i) 2 {h, g} . Furthermore, Lemma 5 tells us that j

cannot envy i at �0. Hence, '[�0](i) = g.

Second, let us show that '[�0](k) = h. Consider an auxiliary preference ranking �̃k 2
he, h, g, ...i that agrees with �k except possibly for the relative ranking of g. Maskin mono-
tonicity implies that

' (�̃k,��k) = ' (�) .

Thus, agent j envies k at (�̃k,��k) and '[�̃k,��k](j) = g, and thus Lemma 7 implies
that '[�̃k,��k,j,�0

j](k) ⌫k g. Strategy-proofness for k implies that k cannot get e at
��̃k,��k,j,�0

j

�
. To prove that k gets h it is thus enough to show that i gets g at

��̃k,��k,j,�0
j

�
.

The proof is analogous to the proof of the equality '[�0](i) = g above: i gets at least g at
��̃k,��k,j,�0

j

�
, and because j cannot envy i at

��̃k,��k,j,�0
j

�
(by Lemma 5), we must

have '[�̃k,��k,j,�0
j] (i) = g. We have thus shown that '[�̃k,��k,j,�0

j] (k) = h, and by
Maskin monotonicity it must be that '[�̃k,��k,j,�0

j] = '[�k,��k,j,�0
j] = '[�0]. Thus,

'[�0](k) = h, and the claim is proved. QED

The above claim and Maskin monotonicity, allows us to assume in the sequel that

�k2 he, h, g, ...i .
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Let us also fix three auxiliary preference rankings for use in the subsequent analysis:

�⇤
i2 hh, e, g, ...i ,

�⇤
i02 hh, e, ...i , and

�⇤
k2 he, g, h, ...i .

We will prove a number of claims.

Claim 2. (1) '[�⇤
i ,��i](i) = h and '[�⇤

i0 ,�0
�i0 ](i

0) = h.

(2) '[�⇤
i ,��i](j) = g.

Proof of Claim 2.
(1) By strategy-proofness for i, '[�⇤

i ,��i](i) ⌫⇤
i e. Everybody else in I� ranks e over

h. Thus, by Lemma 8 and Pareto efficiency, i should get h at [�⇤
i ,��i]. The symmetric

argument yields '[�⇤
i0 ,�0

�i0 ](i
0) = h.

(2) By Maskin monotonicity for i, '[�⇤
i ,�0

�i] = '[�0].41 Thus, j gets g0 at [�⇤
i ,�0

�i].
By strategy-proofness for j, agent j gets at least g0 and no house better than g at [�⇤

i ,��i]

(recall that between ��i and �0
�i only j changes preferences). Thus, in order to prove the

claim that j gets g at [�⇤
i ,��i] it is enough to show that he cannot get g0 at [�⇤

i ,��i].
Assume to the contrary that j gets g0 at [�⇤

i ,��i]. Then, non-bossiness would imply that i

gets h at [�⇤
i ,�0

�i]. By strategy-proofness for i, he gets at least h at �0. But then j envies
i both at � and �0=

��0
j,��j

�
and by Lemma 5, i must get the same house at these two

profiles. This contradiction proves Claim 2. QED

Claim 3. (1) '[�⇤
k,��k](k) = g.

(2) '[�⇤
k,�0

�k] = '[�⇤
k,��k].

Proof of Claim 3. (1) Because k gets h at �, strategy-proofness implies that k cannot get
e and gets at least h at [�⇤

k,��k]. Thus, k gets h or g at [�⇤
k,��k]. Everybody else in I�

ranks h over g. Thus, by Lemma 8 and Pareto efficiency, agent k should get g at [�⇤
k,��k].

(2) Profiles [�⇤
k,�0

�k] and [�⇤
k,��k] differ only in preferences of agent j who ranks g

above g0 at �j and the other way at �0
j. We established in part (1) that j does not get g at

[�⇤
k,��k]. Maskin monotonicity for j implies '[�⇤

k,�0
�k] = '[�⇤

k,��k]. QED

Claim 4. '[�⇤
k,��k](i) = e and '[�⇤

k,��k](i0) = h.

41We use this short-hand terminology often: When we say “by Maskin monotonicity for an agent i,
'[�⇤

i ,�0
�i] = '[�0]” we mean that as '[�0](i) �0

i a =) '[�0](i) �⇤
i a for all houses a, [�⇤

i ,�0
�i] is a

'-monotonic transformation of �0 , and by Maskin monotonicity of ', '[�⇤
i ,�0

�i] = '[�0].
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Proof of Claim 4. Because agent k envies agent i at �, Lemma 7 implies that i gets at
least h = '[�](k) at [�⇤

k,��k]. Hence '[�⇤
k,��k](i) 2 {e, h} . Analogously, because agent k

envies agent i0 at �0, Lemma 7 implies that i0 gets at least h = '[�0](k) at [�⇤
k,�0

�k]. Hence
'[�⇤

k,�0
�k](i

0) 2 {e, h} . By Claim 3(2), '[�⇤
k,��k](i0) 2 {e, h} . Thus,

{'[�⇤
k,��k](i),'[�⇤

k,��k](i
0)} = {e, h} .

This equality implies that to prove the claim it is enough to show that '[�⇤
k,��k](i) = h

and '[�⇤
k,��k](i0) = e cannot both be true. Suppose they are. By Maskin monotonicity for

i, '[�⇤
k,��k] = '[�⇤

k,�⇤
i ,��{k,i}]. This equivalence and Claim 3(1) give '[�⇤

k,�⇤
i ,��{k,i}

](k) = g. By strategy-proofness, agent k gets at least g and not e at [�⇤
i ,��i]. By Claim

2(1), we must thus have '[�⇤
i ,��i](k) = g. But this contradicts Claim 2(2). QED

Claim 5. (1) '[�⇤
k,��k] = '[�⇤

k,�⇤
i0 ,��{k,i0}] = '[�⇤

k,�⇤
i0 ,�0

j,��{k,i0,j}].

(2) '[�⇤
k,�⇤

i0�0
�{k,i0}](k) = g.

Proof of Claim 5. The first equality of part (1) follows from Maskin monotonicity for i0 and
Claim 4. To prove the second equality of part (1), notice that at preference profile (�⇤

k,��k)

agent j does not get e or h (by Claim 4), and he does not get g by Claim 3(1). Thus the
second equality follows from Maskin monotonicity for j. Now, part (2) of the claim follows
from part (1) and Claim 3(1). QED

Claim 6. '[�⇤
i0 ,�0

�i0 ](i) = e.
Proof of Claim 6. Strategy-proofness for k and Claim 5(2) imply that agent k gets at least
g at

��⇤
i0 ,�0

�i0

�
but does not get e. By Claim 2(1), k gets g at

��⇤
i0 ,�0

�i0

�
. By non-bossiness

for k and part (2) of Claim 5,

'[�⇤
i0 ,�0

�i0 ] = '[�⇤
k,�⇤

i0�0
�{k,i0}].

This equality and part (1) of Claim 5 imply that

'[�⇤
i0 ,�0

�i0 ] = '[�⇤
k,��k].

This equation and Claim 4 give us '[�⇤
i0 ,�0

�i0 ](i) = e. QED

Claim 7. '[�⇤
i0 ,�0

�i0 ](i) 6= e.

Proof of Claim 7. Let us first prove that '[�⇤
{i,i0},�0

�{i,i0}](i) 6= h. Suppose not. Then,
Maskin monotonicity for i0 gives '[�⇤

i ,�0
�i] = '[�⇤

{i,i0},�0
�{i,i0}], and in particular, '[�⇤

i ,�0
�i
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](i) = h. By strategy-proofness for i, '[�0](i) ⌫i h, contradicting that '[�0](i0) = e and
'[�0](k) = h, and proving the required inequality.

Since �i pushes down the ranking of h in �⇤
i , the just-proven inequality and Maskin

monotonicity for i give:
'[�⇤

{i,i0},�0
�{i,i0}] = '[�⇤

i0 ,�0
�i0 ].

A symmetric argument implies that '[�⇤
{i,i0},��{i,i0}](i0) 6= h and

'[�⇤
{i,i0},��{i,i0}] = '[�⇤

i ,��i].

Contrary to the claim we are proving, suppose that '[�⇤
i0 ,�0

�i0 ](i) = e. Then, the first of
the above-displayed equalities implies '[�⇤

{i,i0},�0
�{i,i0}](i) = e and, hence, j envies i under

[�⇤
{i,i0},�0

�{i,i0}] = [�⇤
{i,i0},��{i,i0,j},�0

j]. This, however, leads to a contradiction with Lemma
5, because Claim 2 and the second above-displayed equality implies that '[�⇤

{i,i0},��{i,i0,j}

,�j](i) = h. Thus, we have shown that '[�⇤
i0 ,�0

�i0 ](i) 6= e. QED

The contradiction between Claims 6 and 7 shows that the initial assumption '[�](i) =

e 6= '[�0](i) cannot be correct. QED

Lemma 10. (Existence and uniqueness of a broker* for each brokered* house) Let
� 2 M and e be a brokered* house at �. Then there exists an agent k 2 I� who is the unique
broker* of e at �.

Proof of Lemma 10. Let � 2 M and e be a brokered* house at �. We start with the
following preparatory claim:

Claim 1. If h, h0 are two different houses in H� � {e}, and �,�02 P[�, e, h, h0], then '[�0

]�1(h) = '[�]�1(h).

Proof of Claim 1. By Lemma 9, '[�0]�1(e) = '[�]�1(e). Let i = '[�]�1(e). Also let
�⇤ and �0⇤ be monotonic transformations of � and �0, respectively, such that i ranks e

first, all agents in I� rank e below all houses in H� � {e}, and the relative rankings of all
other houses under �⇤, � and �0⇤, �0 are respectively the same. By Maskin monotonicity,
'[�⇤0] = '[�0] and '[�⇤] = '[�]. Also �⇤,�0⇤2 P[� [ {(i, e)} , h, h0]. Thus, by Lemma
9, '[�⇤]�1(h) = '[�⇤0]�1(h). Hence, '[�0]�1(h) = '[�0⇤]�1(h) = '[�⇤]�1(h) = '[�]�1(h).

QED

Claim 2. If h, h0 are two different houses in H� � {e}, and profiles �2 P[�, e, h] and �02
P[�, e, h0, h] are such that '[�0]�1(e) 6= '[�]�1(e), then '[�0]�1(h0) = '[�]�1(h).
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Proof of Claim 2. Let k0 = '[�0]�1(h0) and �⇤2 P[�, e, h0, h] be such that the only difference
between �⇤ and � is the relative ranking of house h0. Since by Claim 1 '[�⇤]�1(h0) = '[�0

]�1(h0) = k0 and since we lower house h0 in everybody’s preferences except k0 at [�⇤
k0 ,��k0 ],

by Maskin monotonicity
'[�⇤

k0 ,��k0 ] = '[�⇤].

In particular, '[�⇤
k0 ,��k0 ](k0) = h0. By strategy-proofness for k0, we have '[�](k0) 2 {h, h0}.

On the other hand, by Lemma 9,

'[�⇤]�1(e) = '[�0]�1(e).

The two above displayed equalities imply that '[�⇤
k0 ,��k0 ]�1(e) = '[�0]�1(e). By assump-

tion of the claim, '[�]�1(e) 6= '[�0]�1(e) = '[�⇤
k0 ,��k0 ]�1(e). By non-bossiness, agent

k0 changes his own allocation while switching between the two profiles � and [�⇤
k0 ,��k0 ],

implying that '[�](k0) = h. QED

Claim 3. If h, h0 are two different houses in H��{e}, and �2 P[�, e, h], and �02 P[�, e, h0, h],
then '[�]�1(h) = '[�0]�1(h0).

Proof of Claim 3. If '[�]�1(e) 6= '[�0]�1(e), then Claim 3 reduces to Claim 2. Assume that
'[�]�1(e) = '[�0]�1(e). Because e is brokered* at �, there exists some h00 2 H� � {e} such
that for some �002 P[�, e, h00],

'[�00]�1(e) 6= '[�]�1(e) = '[�0]�1(e).

By Lemma 9, h00 6= h. By the same lemma, we assume that �002 P[�, e, h00, h].
By Claim 2, '[�00]�1(h00) = '[�]�1(h) and '[�00]�1(h00) = '[�0]�1(h0), implying that

'[�]�1(h) = '[�0]�1(h0). QED

Claim 4. If h 2 H� � {e} and �, �02 P[�, e, h], then '[�]�1(h) = '[�0]�1(h).

Proof of Claim 4. By Lemma 9, '[�]�1(e) = '[�0]�1(e). Because e is brokered* at �, there
exists some h00 2 H� � {e} such that for some �002 P[�, e, h00],

'[�00]�1(e) 6= '[�]�1(e) = '[�0]�1(e).

By Lemma 9, h00 6= h and, by the same lemma, we may assume �002 P[�, e, h00, h]. By Claim
3, '[�00]�1(h00) = '[�]�1(h) and '[�00]�1(h00) = '[�0]�1(h), implying that '[�]�1(h) = '[�0

]�1(h). QED
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To complete the proof of the lemma notice that e being brokered implies there is at least
one house in H� � {e}. Let h and h0 2 H� � {e}, �2 P[�, e, h], �02 P[�, e, h0]. If h = h0,
then '[�0]�1(h) = '[�]�1(h) by Claim 4. Consider the case h 6= h0, and fix �⇤2 P[�, e, h, h0].
By Claim 3, '[�0]�1(h) = '[�⇤]�1(h0) and by Claim 4 '[�⇤]�1(h) = '[�]�1(h), implying
that '[�]�1(h) = '[�0]�1(h0). Thus, the agent '[�]�1(h) is the unique broker* of e at �.
QED

Lemma 11. Let � 2 M, i 2 I�, and h 2 H�. If '[�](i) = h for all �2 P⇤[�, h], then i

owns* h at �.

Proof of Lemma 11. Let us start with two preparatory claims:

Claim 1. Suppose � 2 M, houses g and h 2 H� are different, and agent i 2 I�. If '[�0](i) = h

for all �02 P[�, h, g], then '[�⇤
i ,��i](i) = g for all �⇤

i2 hg, ...i and all ��i2 P�i[�, h].

Proof of Claim 1. Let ��i2 P�i[�, h]. Take any �i2 hh, g, ...i. If '[�](i) = h, then
Pareto efficiency and strategy-proofness imply that '[�⇤

i ,��i](i) = g for all �⇤
i2 hg, h, ...i,

and furthermore, by strategy-proofness, for all �⇤
i2 hg, ...i. It remains to consider the case

'[�](i) 6= h.
Take �02 P[�, h, g] such that �0 and � coincide other than at unmatched agents’ ranking

of house g. We have '[�0](i) = h by the hypothesis of the claim. Two cases are possible:
'[�](i) = g and '[�](i) 6= g. If '[�](i) = g, then by strategy-proofness, '[�⇤

i ,��i](i) = g

and we are done. Thus, in the remainder assume that there exists some agent k = '[�
]�1(g) 6= i. By Maskin monotonicity, '[�0

{i,k},��{i,k}](i) = h and '[�0
{i,k},��{i,k}](k) = g.

Let �⇤
i2 hg, h, ...i. By strategy-proofness, agent i gets at least h at [�⇤

i ,�0
k,��{i,k}]; and

by Pareto efficiency, agent i gets g. Also recall that '[�](i) �i g and '[�](k) = g. Thus,
'[�⇤

i ,�0
k,��{i,k}](k) 6= h because otherwise agents i and k could jointly improve upon their

'[�] allocation by submitting [�⇤
i ,�0

k] at �, contradicting group strategy-proofness. Thus,
g �0

k '[�⇤
i ,�0

k,��{i,k}](k), and furthermore, Maskin monotonicity implies '[�⇤
i ,�0

k,��{i,k}

] = '[�⇤
i ,��i]. In particular, '[�⇤

i ,��i](i) = g. QED

Claim 2. Suppose � 2 M, houses g and h 2 H� are different, and '[�0]�1(h) = i 2 I� for
all �02 P[�, h, g]. If �2 P[�, h] and there is some �02 P[�, h, g] such that �k2 hh, g, ...i for
k = '[�0]�1(g), then '[�](i) = h.

Proof of Claim 2. Assume that '[�00]�1(h) = i 2 I� for all �02 P[�, h, g]. By way of
contradiction suppose �2 P[�, h] and there is some �02 P[�, h, g] such that �k2 hh, g, ...i
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for k = '[�0]�1(g), and yet '[�](i) 6= h. By strategy-proofness, we can choose �i2 hh, g, ...i.
Furthermore, we can choose � such that � and �0 differ only in the preferences of a single
agent j 2 I� and in how house g is ranked by the agents.

Let �⇤2 P[�, h] be the unique profile, such that �⇤ and � differ only in the preferences of
agent j, and �⇤ and �0 differ only in how house g is ranked by the agents. Notice that j 6= k

as otherwise Maskin monotonicity would imply that i gets h at �. Thus, �⇤
k2 hh, g, ...i , and

Maskin monotonicity implies that '[�⇤](i) = h.
Let h0 be the house that j gets at � and let �00 be the unique profile in P[�, h, g] such

that �00 and � differ only in how house g is ranked by agents. By Maskin monotonicity, we
may assume that �00

j2 hh, g, h0, ...i.
By Claim 1 and strategy-proofness, '[�00

j ,��j](i) equals either h or g. At the same
time, strategy-proofness implies that '[�00

j ,��j](j) equals either g or h0. In either case,
agent j prefers the allocation of agent i at [�00

j ,��j]. If '[�00
j ,��j](i) = g, this would be a

contradiction with Lemma 3, as j could improve the allocation of i by switching from [�00
j

,��j] to [�⇤
j ,��j] =�⇤. Hence, '[�00

j ,��j](i) = h, and by non-bossiness '[�00
j ,��j](j) = g.

However, k 6= j gets g at �0 and by strategy-proofness j cannot get it at [�00
j ,�0

�j]. This is
a contradiction because [�00

j ,��j] = [�00
j ,�0

�j]. QED

We are ready to finish the proof of the lemma. Fix � 2 M. We proceed by way of
contradiction. Let i 2 I� be such that '[�0](i) = h for all �02 P⇤[�, h]. Let �2 P[�, h] be
such that '[�]�1(h) = j 6= i. For all unmatched houses g 6= h at �, define �g to be the
unique profile in P[�, h, g] that differs from � only in how agents rank g.

Take a house g1 6= h unmatched at �, and let k1 be the agent that gets g1 at �g1 . By
Claim 2, agent i gets h at any profile in P[�, h] at which k1 ranks g1 second. Hence, by
Maskin monotonicity, i also gets h at any profile in P[�, h] at which k1 gets g1.

Let g2 = '[�](k1) and let k2 be the agent that gets g2 at �g2 . Because i does not get
h at �, the previous paragraph yields g2 6= g1 and k2 6= k1. As in the previous paragraph,
Claim 2 and Maskin monotonicity imply that i gets h at any profile in P[�, h] at which k2

gets g2 or ranks g2 second.
Furthermore, we will show that i gets h at any profile �02 P[�, h] at which k2 ranks g1

second. Indeed, suppose �0
k2
2 hh, g1, ...i and i does not get h at �0. Let �00

i2 hh, g1, ...i. By
Claim 1 and strategy-proofness, agent i gets g1 at [�00

i ,�0
�i]. By the previous paragraph and

strategy-proofness, k2 does not get h at [�00
i ,�0

�i], and thus k2 envies i at [�00
i ,�0

�i]. However,
by the previous paragraph k2 can improve the outcome of agent i, contrary to Lemma 5.
Thus, i gets h at any profile in P[�, h] at which k2 ranks g1 second.

Let g3 be the house that k2 gets at � and let k3 be the agent that gets g3 at �g3 . As
above, we can show that i gets h at any profile in P[�, h] at which k3 ranks g3 or g2 or g1
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second.
Since the number of agents is finite, by repeating the procedure we arrive at an agent

kn who ranks one of the houses g1, ..., gn second at �. That means that i gets h at �, a
contradiction that concludes the proof. QED

Lemmas 10 and 11 and the definitions of owned* and brokered* houses give us the key
result of this subsection:

Proposition 3. (Houses are either brokered* or owned*) For any � 2 M, any house
h 2 H� is owned* or brokered* at �, but not both. In particular, if there is only one agent
who owns* houses at � then h is not a brokered* house.

Although the starred control rights do not allow having a broker* when there is a single
owner*, R1-R6 do not eliminate this possibility from consistent control rights structures.
However, it turns out that for any control rights obeying R1-R6, it is trivial to construct an
equivalent one in which control rights are set equal to the original ones at all submatchings
except possibly submatchings with single owners, where all houses are now owned by this
original owner. In particular, if there is a broker in a submatching with a single owner in the
original control rights structure, then in the superior submatching that matches the owner
with the originally brokered house, the new control rights are set such that the original
broker owns the remaining houses.

F.2 The Starred Control Rights Structure Satisfies R1-R6

Before proving R1-R6 let us state and prove one more auxiliary result.

Lemma 12. (Relationship between brokerage* and ownership*). Let � 2 M, agent
k be a broker* of house e at �, and �002 P⇤[�, e]. Then agent '[�00]�1(e) is the owner* of
house '[�00](k) at �.

Proof of Lemma 12. Let �002 P⇤[�, e] and h = '[�00](k). Because k is a broker* at �,
Lemma 10 implies that house h is agent k’s second choice. Since �002 P⇤[�, e], house h is
the second choice of all agents in I� at �00, and thus,

�002 P[�, e, h].

There exists an agent i 2 (I�) � {k} such that '[�00]�1(e) = i. By Lemma 9, for all
�2 P[�, e, h], agent i gets e at �. We are to show that i is the owner* of h at �.

Claim 1. If �2 P[�, e, h], then '[�](i) = e and '[�](k) = h.
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Proof of Claim 1. The first claim follows from Lemma 9, and the second from Lemma 10.
QED

Claim 2. '[�](i) = e and '[�](k) = h.

Proof of Claim 2. Let preference profile � be such that �i0=�00
i0 for all i0 2 {k, i} [ I� and

all houses in H� are ranked above the houses in H� for all i0 2 I�. By Claim 1 and Maskin
monotonicity, '[�](i) = e and '[�](k) = h. QED.

Claim 3. '[�⇤
i ,��i](i) = h.

Proof of Claim 3. Let �⇤
i2 hh, e, ....i. By the strategy-proofness of ', since '[�](i) = e,

agent i gets at least e at [�⇤
i ,��i], and since all other agents in I� prefer e over h, the Pareto

efficiency of ' implies that '[�⇤
i ,��i](i) = h.

Claim 4. '[�⇤
k,��k] = '[�].

Proof of Claim 4. Let �⇤
k2 hh, e, ....i. Since '[�](k) = h, profile [�⇤

k,��k] is a monotonic
transformation of � and by the Maskin monotonicity of ', we have '[�⇤

k,��k] = '[�].

Claim 5. '[�⇤
{i,k},��{i,k}](i) = h.

Proof of Claim 5. By Claim 4, '[�⇤
k,��k](i) = '[�](i) = e, and, by the strategy-proofness

of ', i gets at least e at [�⇤
{i,k},��{i,k}]. Thus, if i does not get h at [�⇤

{i,k},��{i,k}] then one
of the following two cases would have to obtain.

Case 1. An agent j 62 {i, k} gets h at [�⇤
{i,k},��{i,k}]: Then i gets e, and k gets some

house worse than e. But then jointly i and k can report �{i,k} instead of �⇤
{i,k} and they

would jointly improve at �⇤
{i,k}, i.e., '[�](i) = e = '[�⇤

i,k,��i,k](i) and '[�](k) = h �⇤
k

'[�⇤
i,k,��i,k](k), contradicting the fact that ' is group strategy-proof.
Case 2. Agent k gets h at [�⇤

i,k,��i,k]: By the strategy-proofness of ', agent k should at
least get h at [�⇤

i ,��i]. But we know by Step 2 that '[�⇤
i ,��i](i) = h, and thus we should

have '[�⇤
i ,��i](k) = e. Then by the Maskin monotonicity of ', we have '[�⇤

i,k,��i,k](i) =

'[�⇤
i ,��i](i) = h where the last equality follows by Step 2, a contradiction that proves the

claim. QED

Claim 6. If '[�⇤
{i,k},��{i,k}](i) = h, then '[�⇤

{i,k},��{i,k}](k) 6= e.

Proof of Claim 6. For an indirect argument, suppose that '[�⇤
{i,k},��{i,k}](i) = h and

'[�⇤
{i,k},��{i,k}](k) = e. Then, '[�⇤

i ,��i](k) = e by the strategy-proofness of '. Since e

is a brokered* house at �, there exists some house g 62 {e, h} and some preference profile
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�02 P[�, e, g] such that '[�0]�1(e) = j for some agent j 62 {i, k}. By Lemma 9, we may
assume that each agent i0 2 I� ranks houses other than g and h in the same way at �0

i0 and
�i0 and that �0

i02 he, g, h, ...i. Since k is the broker* of e at �, we have '[�0](k) = g. By
Maskin monotonicity,

'[�0] = '[�0
{i,k},��{i,k}].

Now i gets a house weakly worse than h at [�0
{i,k},��{i,k}]. However, if i and k manipulated

and submitted �⇤
{i,k} instead of �0

{i,k}, they would get h and e respectively at [�⇤
{i,k},��{i,k}].

Both agents weakly improve, while k strictly improves. This contradicts the fact that ' is
group strategy-proof. QED

Now, Claims 5 and 6 imply that '[�⇤
{i,k},��{i,k}](i) = h and '[�⇤

{i,k},��{i,k}](k) 6= e. By
Maskin monotonicity, we can drop the ranking of e in �⇤

i and �⇤
k, and yet, the outcome of

' will not change. Recall that ��{i,k} was an arbitrary profile in which all houses in H� are
ranked above the houses in H� by i0 2 I� � {i, k}. Thus, i gets h at all profiles of P[�, h].
QED

The following six lemmas show that the starred control rights structure satisfies R1-R6
(respectively).

Lemma 13. (R1; Uniqueness of a brokered* house). Let � 2 M. If e is a brokered*
house at �, then no other house is a brokered* house at � (and all other unmatched houses
are owned* houses).

Proof of Lemma 13. Let e be a brokered* house at �. By Lemma 10, there is a broker*
of e at �; let us denote him as k. Consider a house h 2 I� � {e}. By Lemma 9, there is an
agent i who gets e at all profiles in P[�, e, h]. By Lemma 11, i is the owner* of h. Thus h is
not a brokered* house at �. QED

Lemma 14. (R2; Last unmatched agent is an owner). Let � 2 M, such that there
exists a unique agent i unmatched at �. Then i owns* all unmatched houses at � 2 I�.

Proof of Lemma 14. Let �2 P[�, h] for h 2 H�. By Pareto efficiency of ', '[�](i) = h,
implying that i owns* h at �. QED

Lemma 15. (R3; Broker* does not own*). Let � 2 M. If agent k is the broker* of
house e at �, then he cannot own* any houses at �.
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Proof of Lemma 15. Suppose that k owns* a house h 6= e at �. By Lemma 9, there exists
some agent i 6= k who gets e at all profiles in P[�, e, h]. Thus, i gets h at all �2 P⇤[�, h],
contradicting the fact that k owns* h. QED

Lemma 16. (R4; Persistence of ownership*). Let i own* h at some � 2 M. If
�0 ) �, and i and h are unmatched at �0, then i owns* h at �0.

Proof of Lemma 16. Imagine to the contrary that i gets h at all �2 P[�, h], but there
is some �02 P[�0, h] such that some agent j 2 I�0 � I�, such that j 6= i, gets h at �0. Take
�2 P[�, h] such that

• for each agent k 62 I�0 � I�, �k=�0
k, and

• each agent k 2 I�0 � I� ranks �0(k) as his second choice (just behind h) in �k .

Each k 2 I�0 � I� is indifferent between �0 and � because:

• at �0 agent k gets �0(k) by Lemma 8,

• at � agent k gets �0(k) by the Pareto efficiency of ' and the fact that '[�](i) = h.

The only difference between the profiles �0 and � are the preferences of the agents in I�0�I�.
Thus, agents I�0 � I� are indifferent between � and �0, while agent j is strictly better off at
�0. This contradicts the fact that ' is group strategy-proof. QED

Lemma 17. (R5; Limited persistence of brokerage*) Let �, �0 2 M be such that
�0 ) �. Suppose that agent k is the broker* of house e at �, agent i is the owner* of house
h at �, and agent i0 6= i is the owner* of house h0 at �. If k, i, i0, e, h, h0 are unmatched at
�0, then k brokers* e at �0.

Proof of Lemma 17. First, notice that Lemma 12 implies that i gets e at all �2 P[�, e, h]

and i0 gets e at all �2 P[�, e, h0], and that k gets h and h0, at the respective profiles. Take
�h2 P[�, e, h] and �h02 P[�, e, h0] such that each agent j 2 I�0 � I� has �0(j) as his third
choice and each agent j 2 I�I�0 ranks each house unmatched at �0 above all houses matched
at �0 at both preference profiles. Let profile �0h be obtained from �h by moving �0(j) for
all j 2 I�0 � I� up to be the first choice of j. Let �0h0be obtained analogously from �h0 . By
Maskin monotonicity, '[�0h]�1(e) = i 6= i0 = '[�0h0

]�1(e). Since �0h and �0h0 2 P⇤[�0, e],
house e is a brokered* house at �0.

For an indirect argument for the second part of the proof, suppose that k is not the
broker* of e at �0. Then, by Lemma 10 there exists some other agent k0 6= k who brokers* e

at �0.
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Let �02 P[�0, e, h] be arbitrary and �2 P[�, e, h] be such that each agent j in I�0 � I�

lists �0(j) as his third choice at �, each agent in I� I�0 lists houses in H�0 lower than houses
in H�0 �H� at �, and the rest of the relative rankings of the houses are the same between
� and �0. Since k brokers* e at � and i owns* h at �, by Lemma 12 '[�](k) = g and
'[�](i) = e. Then, by Pareto efficiency, '[�0](j) = �0(j) for all j 2 I�0 � I�, and thus, by
Maskin monotonicity, '[�0] = '[�]. Now, '[�0](k) = h , however, this contradicts the fact
that agent k0 6= k brokers* e at �0 and thus, '[�0](k0) = h. Therefore, k brokers* e at �0, as
well. QED

Lemma 18. (R6; Consolation for lost control rights*) Let � 2 M, i, j 2 I�, and
g, h 2 H� be such that i 6= j and g 6= h, i controls* h at �, and j controls* g at �. Then i

owns* g at �0 = � [ {(j, h)}.

Proof of Lemma 18. First consider the case i brokers* h and j owns* g at �. By Lemmas 11
and 12 and Maskin monotonicity, for all profiles �2 P[�] such that �i2 hh, g, ...i, �j2 hh, ...i,
we have '[�](i) = g and '[�](j) = h. Then, by Maskin monotonicity, for any �02 P[�0, g],
'[�](i) = g, i.e., i owns* g at �0.
Next consider the case i owns* h and j owns* g at �. For all profiles �2 P[�] such that
�i2 hg, h...i and �j2 hh, g, ...i, strategy-proofness for i implies '[�](i) ⌫i h as '[�0

i,��i

](i) = h for �0
i2 hh, ...i. Similarly, '[�](j) ⌫j g. Pareto efficiency implies '[�](i) = g and

'[�](j) = h. Hence, by Maskin monotonicity, for all �002 P[�0, g], '[�00](i) = g, i.e., i owns*
g at �0.
Finally consider the case where i owns* h and j brokers* g at �. By Lemmas 11 and 12
and Maskin monotonicity, for all profiles �2 P[�] such that �i2 hg, ...i and �j2 hg, h...i,
we have '[�](i) = g and '[�](j) = h. Then, by Maskin monotonicity, for any �02 P[�0, g],
'[�](i) = g, i.e., i owns* g at �0. QED

Lemma 19. (R6; Brokered*-to-Owned* House Transition) Let � 2 M, k, j, i 2 I�,
and e, g, h 2 H� be such that k 6= j and e 6= g, k brokers* e at � but not at �0 = � [ {(j, g)},
and i owns* h at �. Then i owns* e at �0.

Proof of Lemma 19. By Lemmas 11 and 12 and Maskin monotonicity, for all profiles
�2 P[�] such that �i2 he, ...i and �k2 he, h, ...i, we have '[�](i) = e and '[�](k) = h.
Since P[�0] ⇢ P[�], Proposition 3 implies that either i owns* e at �0 or k brokers* e at �0.
The latter is not true, by an assumption made in the lemma; hence i owns* e at �0. QED
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F.3 The TC Mechanism Defined by the Starred Control Rights
Structure Equals '

We showed above that the starred control rights structure (c, b) is well defined and consistent
(satisfies R1-R6). We will now close the proof of Theorem 2 by showing that the resulting
TC mechanism,  c,b, maps preferences to outcomes in the same way as ' does.

Fix �2 P. We will show that '[�] =  c,b[�] proceeding by induction on the rounds of
 c,b. Let Ir be the set of agents removed in round r of  c,b. For each agent i 2 Ir, there is
a unique house that points to him and is removed in the same cycle as i; let us denote this
house by hi. Let us construct the following preference profile �⇤ by modifying �.

• If  c,b[�](i) = hi, then �⇤
i=�i.

• If  c,b[�](i) 6= hi and if no brokered house was removed in the same cycle as i or the
brokered house was assigned to i, then we construct �⇤

i from �i by moving hi just
after  c,b[�](i) (we do not change the ranking of other houses).

• If i is removed as owner and a brokered house er was removed in the same cycle as i

but not assigned to i, then we construct �⇤
i from �i by moving er just after  c,b[�](i)

and moving hi just after er.

• If a broker kr was removed in a cycle

hi1 ! i1 ! hi2 ! i2 ! ...hin ! in ! er ! kr ! hi1 ,

then we construct �⇤
kr from �kr by moving hin just below hi1 .

We will show that

'[�⇤](i) =  c,b[�⇤](i) 8i 2 [srI
s, 8r = 0, 1, 2, ... (1)

by induction over the round r of  c,b. The claim is trivially true for r = 0. Fix round r � 1

and let �r�1 be the matching fixed before round r (in particular, �0 = ?). For the inductive
step, assume that

'[�⇤](i) =  c,b[�⇤](i) 8i 2 [sr�1I
s = I�r�1

We will prove that the same expression holds for agents in Ir using the following three claims.

Claim 1. '[�⇤](i) ⌫⇤
i hi for all owners i 2 Ir.
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Proof of Claim 1. Let �02 P[�r�1, hi] be a preference profile such that the relative ranking
of all houses in H � H�r�1 � {hi} in �0

j is the same as in �⇤
j for all j 2 (I � I�r�1) � {i},

and let �002 P[�r�1] be a preference profile such that the relative ranking of all houses in
H �H�r�1 in �00

j is the same as in �⇤
j for all j 2 (I � I�r�1)� {i}.

By Maskin monotonicity,

'[�⇤] = '[�00
(I�I�r�1 )�{i},�0

I�r�1
,�⇤

i ].

Furthermore, by definition hi is owned by i at �r�1 under  c,b and the construction of the
control rights structure (c, b) from ' means that hi is owned* by i in '. Thus,

'[�0](i) = hi,

and no agent j 2 (I� I�r�1)� {i} gets hi at '[�0]. These agents also do not get houses from
H�r�1 at '[�0]. Maskin monotonicity thus implies that

'[�0] = '[�00
(I�I�r�1 )�{i},�0

I�r�1[{i}].

Taken together the first above-displayed equation, the strategy-proofness of ', and the third
and second above-displayed equations give us

'[�⇤](i) = '[�00
(I�I�r�1 )�{i},�0

I�r�1
,�⇤

i ](i) ⌫⇤
i '[�00

(I�I�r�1 )�{i},�0
I�r�1[{i}](i) = '[�0](i) = hi.

QED

Claim 2. If i 2 Ir and no brokered house was removed in the cycle of i, then '[�⇤](i) =

 c,b[�⇤](i).

Proof of Claim 2. The inductive assumption implies that all houses better than  c,b[�⇤](i)

are already given to other agents; hence

 c,b[�⇤](i) ⌫⇤
i '[�⇤](i).

For an indirect argument, suppose '[�⇤](i) 6=  c,b[�⇤](i). Then, Claim 1 and the construc-
tion of �⇤ imply that

'[�⇤](i) = hi.

Let
hi ! i ! hi2 ! i2 ! ... ! hin ! in ! hi
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be the cycle in which i is removed under  c,b[�⇤]. From

'[�⇤](i) = hi =  c,b[�⇤](in),

we conclude that '[�⇤](in) 6=  c,b[�⇤](in), and Claim 1 and the construction of �⇤ imply
that

'[�⇤](in) = hin =  c,b[�⇤](in�1).

As we continue iteratively, we obtain that

'[�⇤](j) = hj

for all j 2 {i, i2, ..., in}. Hence, the matching obtained by assigning  c,b[�⇤](j) to each agent
j 2 {i, i2, ..., in} and '[�⇤](j) to each agent j 2 I � {i, i2, ..., in} Pareto dominates '[�⇤] at
�⇤, contradicting '[�⇤] being Pareto efficient. QED

Claim 3. If i 2 Ir and a brokered house was removed in the cycle of i, then '[�⇤](i) =

 c,b[�⇤](i).

Proof of Claim 3. Let e ⌘ hi0 be the brokered house and k ⌘ i0 be the broker at �r�1. Let

hi1 ! i1 ! hi2 ! ... ! in ! e ! k ! hi1

be the cycle in which they are removed in round r of  c,b. By the inductive assumption, for
each i`, ` = 1, ..., n, all houses better than hi`+1 are given to other agents before round r.
Hence, Claim 1 implies that

'[�⇤](i`) 2 {hi`+1 , e, hi`} , ` = 1, ..., n (2)

Recall that h⇤
i`+1 ⌫⇤

i`
e �i` hi` . We prove Claim 3 in two steps:

Step 1. Let us show that '[�⇤](in) = e =  c,b[�⇤](in). Suppose not. Then, '[�⇤](in) 6= e.
Since e = hin+1 , the above displayed inclusion gives us '[�⇤](in) = hin . Thus, the above
displayed inclusion tells us that '[�⇤](i`) 2 {e, hi`} for ` = n � 1. We cannot have '[�⇤

](i`) = e as it would not be Pareto efficient because agents in and in�1 would be better off
by swapping their allocations. Thus, '[�⇤](i`) = hi` . Iterating this last argument we show
that

'[�⇤](i`) = hi` , ` = n, n� 1, ..., 1.

Let us construct an auxiliary preference profile �02 P[�r�1] from �⇤ by pushing up �r�1 (i) in
preferences of agents i 2 I�r�1 , pushing down houses matched at �r�1 in preferences of agents
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i 2 I�I�r�1 , and pushing down h2 in preferences of i1 while preserving the relative ranking of
houses otherwise. By the above observations, �0 is a '-Maskin-monotone transformation of
�⇤, and hence '[�⇤] = '[�0]. Notice that agent i1 owns* h1 at �r�1 in ' and agent k brokers*
e at �r�1 in ' (by construction of  c,b in which i1 is the owner of h1 and agent k is the broker
of e at �r�1). Because �0

k2 Pk[�r�1, hi1 , ...][Pk[�r�1, e, hi1 , ...], and �0
i12 Pk[�r�1, e, hi1 , ...],

we get '[�0](i1) = e and thus '[�⇤](i1) = e contrary to the above displayed equations. This
contradiction concludes Step 1.

Step 2. Let us show that

'[�⇤](i`) = hi`+1 =  c,b[�⇤](i`) 8 ` 2 {0, ..., n� 1} .

By way of contradiction, suppose there exists some ` 2 {0, ..., n� 1} such that '[�⇤](i`) 6=
hi`+1 . Then, inclusion 2 and Step 1 imply that '[�⇤](i`) = hi` . Thus, '[�⇤](i`�1) 6= hi(`�1)+1 .
Iterating this argument we show

'[�⇤](im) = him m = `� 1, `� 2, ..., 1.

Let us construct an auxiliary preference profile �02 P[�r�1] from �⇤ by pushing up
�r�1 (i) in preferences of agents i 2 I�r�1 , pushing down houses matched at �r�1 in preferences
of agents i 2 I � I�r�1 , and pushing down h1 in preferences of i0 ⌘ k while preserving the
relative ranking of houses otherwise.

The above-displayed equations imply '[�⇤](k) 6= hi1 , and thus �0 is a '-Maskin-monotone
transformation of �⇤, and hence '[�⇤] = '[�0]. Notice that agent in owns* hn at �r�1 in '
and agent k brokers* e at �r�1 in ' (by construction of  c,b in which i1 is the owner of h1

and agent k is the broker of e at �r�1). Because �0
k2 Pk[�r�1, hin , ...] [ Pk[�r�1, e, hin , ...],

and �0
i12 Pk[�r�1, e, hin , ...], we get '[�0](k) = hin and thus

'[�⇤](k) = hin .

In consequence, inclusion 2 and Step 1 imply that '[�⇤](in�1) = hin�1 . Thus, '[�⇤](in�2) 6=
hin�1 . Iterating this argument we show

'[�⇤](im) = him m = n� 1, n� 2, ..., 1.

The above-displayed equations and Step 1 imply that '[�⇤] is Pareto dominated by the
allocation in which each agent im, m = 0, ..., n� 1, gets house hm+1, and all other agents get
their '[�⇤] houses. This contradiction concludes Step 2, and proves Claim 3. QED
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Claims 2 and 3 show that '[�⇤](i) =  c,b[�⇤](i) for all i 2 Ir. This completes the
inductive proof of equations (1). Now, the theorem follows from

 c,b[�] =  c,b[�⇤],  c,b[�⇤] = '[�⇤], and '[�⇤] = '[�].

The first of these equations follows directly from the construction of �⇤. The second equation
is equivalent to equations (1). To prove the third equation, observe that for every agent i 2 I,

8
><

>:
h 2 H : h ⌫i  c,b[�](i)| {z }

= c,b[�⇤](i)='[�⇤]

9
>=

>;
=

8
><

>:
h 2 H : h ⌫⇤

i  c,b[�](i)| {z }
= c,b[�⇤](i)='[�⇤]

9
>=

>;
.

In particular,

{h 2 H : h ⌫i '[�⇤](i)} = {h 2 H : h ⌫⇤
i '[�⇤](i)} for all i 2 I,

and hence � is a '�monotonic transformation of �⇤. The third equation thus follows from
Maskin monotonicity of '. QED

G Appendix: Proof of Theorem 3

The equivalence of the three pairs of incentive and efficiency conditions follows the same steps
as in Theorem 1. Also, the argument for the Pareto efficiency of TC follows the same steps
as in the case without outside options. As before, group strategy-proofness is equivalent to
individual strategy-proofness and non-bossiness.

Lemma 20. In the environment with outside options, a mechanism is group strategy-proof
if and only if it is individually strategy-proof and non-bossy.

The proof is analogous to the proof of Lemma 1 in Pápai (2000).
Our arguments for individual strategy-proofness and non-bossiness go through with two

modifications. First, when in the proof of Theorem 2 we assume that an agent is matched
with a house, we should now substitute “matched with a house or the agent’s outside option.”
If the agent is matched in a cycle of a length above 1, we can then conclude that the agent
is indeed matched with a house. Second, in some steps of the proof we consider separately
the case when a broker is matched with his outside option. We handle these cases below.
This allows us to assume this case away in the relevant parts of the original proof.
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Consider the proof of individual strategy-proofness. In Case 1: s  s0, let i be a broker of
house e and suppose he leaves with his outside option in round s under �i. Since the same
houses are matched under �i and �0

i, under �0
i the best the broker can do is to leave either

with his outside option, or—if he prefers the brokered house e to his outside option—to leave
with the brokered house e. We need to prove that the latter cannot happen. By Lemma
4, in round s of TC under �0

i, agent i is a broker of e and there is an owner j whose first
preference is e. For i to be matched with e, he would need to lose the brokerage right, but by
R5-R6 if this happens then j becomes the owner of e, and is then matched with it, ending the
argument for Case 1. In Case 2: s > s0, if i be a broker of house e matched with his outside
option under �0

i, then submitting this preference profile cannot be better than submitting
the true profile �i, as under any profile agent i is matched with at least his outside option.

Consider the proof of non-bossiness. We run the same induction as in the proof without
outside options. In the initial step of the induction, consider the additional case when i⇤

is a broker and is matched with his outside option at time s under �. By assumption i⇤

is matched with his outside option under �0 and the inductive hypothesis is true. In the
inductive step, consider the additional case in which i1 is a broker and is matched with his
outside option at time r > s under � (handling this case separately allows us to assume
this case away in all claims of the inductive step). By the inductive assumption, there is
an r⇤ such that �r�1 [�] ✓ �r⇤ [�0]. At �r�1 [�], i1 brokers a house h and all houses other
than h that i1 prefers to his outside option are matched. Since i1 gets at least his outside
option, he either gets his outside option (and the inductive step is true) or he gets h. In the
latter case, as in the proof of individual strategy-proofness, at �r�1 [�], there is an owner j

whose top preference is h. He remains unmatched as long as h is unmatched. Since for i1

to obtain h he would need to lose his brokerage right, conditions R5-R6 imply that j would
get ownership over h, and would match with h. Hence i1 cannot be matched with h and is
matched with his outside option.

To prove that any group strategy-proof and efficient mechanism is a TC we follow the
same steps as in the proof of Theorem 2 with one important modification. For � 2 M, n � 0

and h1, h2, ..., hn 2 H�, and i 2 I, we redefine Pi[�, h1, ..., hn] to be the set of preferences �i

of agent i such that

• if i 2 I�, then
�(i) �i g for all g 2 H � {�(i)} ,

• if i 2 I�, then
h1 ⌫i h

2 ⌫ ... ⌫i h
n �i yi � g for all g 2 H�.
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In particular, the definitions of ownership* and brokerage* are repeated word-by-word, but
the meaning of Pi[�, h1, ..., hn] is changed as above. With this modification, the proof goes
through. QED‌

H Proof of Proposition 2 (Lorenz Dominance)

Let  c⇤,b⇤ be the TC mechanism in which at the empty submatching i` owns h` for all ` 6= n

and in brokers hn (the brokerage right is permanent). Let  c,b be any TTC mechanism
satisfying the manager’s constraints, which implies that in does not own any objects as long
as other agents are present and hn is unallocated. Let � be the uniform lottery over profiles
of preferences in which all agents rank objects in the same way, and for any mechanism �

let ⇢�[�](i, r) be the average of ⇢�[�](i, r) over the distribution �.
Since all agents share the same ranking under every realization of �, in every Pareto

efficient mechanism � we have

⇢�(�) (i1, r) + ...+ ⇢�(�) (in, r) = r. (3)

By symmetry among agents i1, ..., in�1, the value ⇢ c⇤,b⇤ [�](ik, r) is the same for all of them
and for all r < n. Moreover, this common value is larger than ⇢ c⇤,b⇤ [�](in, r). Thus,

min
J✓I,|J |=k

X

j2J

⇢ 
c⇤,b⇤ [�] (j, r) =

k � 1

n� 1

⇣
r � ⇢ 

c⇤,b⇤ [�](in, r)
⌘
+ ⇢ 

c⇤,b⇤ [�](in, r).

Let us denote this value by X⇤ (k).
Now, consider agent in and k� 1 agents i1, ..., in�1 with the lowest ⇢ c,b

(·, r). By (3), the
sum of ⇢ c,b

(·, r) over these k agents is at most

min
J✓I�{in},|J |=k�1

X

j2J

⇢ 
c⇤,b⇤ [�] (j, r) + ⇢ 

c,b[�](in, r)

Let us denote this value by X (k).
To show that X⇤ (k) � X (k) for all k notice that

X (k)  k � 1

n� 1

⇣
r � ⇢ 

c,b[�](in, r)
⌘
+ ⇢ 

c,b[�](in, r).

It is thus enough to show that ⇢ c⇤,b⇤ [�](in, r) � ⇢ 
c,b[�](in, r). This inequality obtains because

(i) in a TTC satisfying the manager’s constraints agent in cannot be allocated an object
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before another agent takes hn or before in is the only unmatched agent remaining, and (ii)
with any common ranking any TTC allocates one object per round, from the most preferred
object down everybody’s list, and  c⇤,b⇤ allocates objects in the same way in rounds preceding
the allocation of hn, and then in the round in which hn is allocated  c⇤,b⇤ allocates to in his
most preferred object among objects that remain.

To close the proof notice that for at least one k we must have X⇤ (k) > X (k). Indeed, if
X⇤ (1) = X (1) then in has the same ⇢·(in, r) at both mechanisms. Then, however, X⇤ (k) >

X (k) for all k = 2, ..., n�1. Indeed, in  c,b there is at least one agent who owns at least two
objects at the empty submatching. Such an agent i has ⇢ c,b[�](i, r) strictly larger than the
common value of ⇢ c⇤,b⇤ [�](i`, r) for ` = 1, ..., n � 1. By (3), the sum of the relevant ⇢· (·, r)
for the remaining n� 2 agents is thus strictly less under  c,b than under  c⇤,b⇤ . QED
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