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Chapter 1

Introduction

Matching theory, a name referring to several loosely related research areas concerning matching,

allocation, and exchange of indivisible resources, such as jobs, school seats, houses, etc., lies at the

intersection of game theory, social choice theory, and mechanism design. Matching can involve the

allocation or exchange of indivisible objects, such as dormitory rooms, transplant organs, courses,

summer houses, etc. Or matching can involve two-sided matching, in markets with two sides, such

as firms and workers, students and schools, or men and women, that need to be matched with each

other. Auctions can be seen as special cases of matching models, in which there is a single seller.

Recently, matching theory and its application to market design have emerged as one of the success

stories of economic theory and applied mechanism design.

The seminal research paper on the subject was written by Gale and Shapley (1962), who in-

troduced the two-sided matching model and a suitable solution concept called stability. They also

showed that a stable matching always exists and proved this result through a simple iterative algo-

rithm known as the deferred acceptance algorithm. Gale and Shapley were most likely unaware that

this short note published in the American Mathematical Monthly would spark a new literature in

game theory, which is now commonly referred to as matching theory.

Shapley and Shubik (1972) and Kelso and Crawford (1982) introduced variants of the two-sided

matching model where monetary transfers are also possible between matching sides. However, Gale

and Shapley’s short note was almost forgotten until 1984, when Roth (1984) showed that the same

algorithm was independently discovered by the National Residency Matching Program (NRMP)1 in

the United States (US), and since the 1950s, it had been used in matching medical interns with

hospital residency positions (Roth 2008a also attributes the same discovery to David Gale). This

discovery marked the start of the convergence of matching theory and game-theoretical field appli-

cations. In 1980s, several papers were written on the two-sided matching model and its variants

exploring strategic and structural issues regarding stability.2 Recently, new links between auctions,

1See http://www.nrmp.org, retrieved on 10/16/2008.
2An excellent survey of these theoretical and practical developments from the 1950s to the 1990s is explored in
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2 CHAPTER 1. INTRODUCTION

two-sided matching, and lattice theory were discovered (for example, see Hatfield and Milgrom 2005

for a summary of these discoveries and new results in a general two-sided matching domain).3

In this survey, we will focus on the other branch of matching theory, allocation and exchange

of indivisible goods, which was also initiated by Shapley and (indirectly) Gale together with Scarf

(Shapley and Scarf 1974).4 The basic model, referred to as the housing market, consists of agents

each of whom owns an object, e.g. a house. They have preferences over all houses including their

own. The agents are allowed to exchange the houses in an exchange economy. Shapley and Scarf

showed that such a market always has a (strict) core matching, which is also a competitive equilibrium

allocation. They also noted that a simple algorithm suggested by David Gale, now commonly referred

to as Gale’s top trading cycles algorithm, also finds this particular core outcome.

In the two-sided matching model, both sides of the market consist of agents, whereas in a housing

market only one side of the market consists of agents. Subsequent research on the housing market

showed that both competitive and core allocations are unique when preferences are strict (Roth and

Postlewaite 1977). Moreover, when the core concept is used as a direct mechanism, it is strategy-

proof (Roth 1982a). Subsequently, Ma (1994) showed that this is the only direct mechanism that

is strategy-proof, Pareto-efficient, and individually rational. Although the core as a mechanism is

the unique nice direct mechanism (unlike in most game-theoretical models including the two-sided

matching model), the research on housing market model remained limited until recently with respect

to the two sided-matching model. The links between the two models were later discovered and

explored by Balinski and Sönmez (1999), Ergin (2002), Abdulkadiroğlu and Sönmez (2003a), Klaus

and Ehlers (2006), and Kojima and Manea (2007b), among others.

The allocation model consists of objects and agents, each of whom has preferences over the

objects. These objects will be allocated to the agents. Monetary transfers are not available. An

exogenous control rights structure regarding the objects can be given in the definition of the problem.

For example, each agent can have objects to begin with (as in the kidney exchange problem of

Roth, Sönmez, and Ünver 2004, or the housing market), or some agents can have objects while

others have none (as in the house allocation problem with existing tenants of Abdulkadiroğlu and

Sönmez 1999). There can also be more complicated exogenous control rights structures, as in the

school choice problem, where each school prioritizes the students (as defined by Abdulkadiroğlu and

Sönmez 2003a). In the simplest of these models, there are no initial property rights, and objects

Roth and Sotomayor (1990). Also see Gusfield and Irving (1989) on the complementary work in operations research
and computer science on algorithms regarding two-sided matching theory.

3For surveys on market design of the US Federal Communications Commission (FCC) auctions (see
http://wireless.fcc.gov/auctions/default.htm?job=auctions_home , retrieved on 10/16/2008), electricity mar-
kets (e.g., for California market see http://www.caiso.com, retrieved on 10/16/2008), and other aspects of matching
markets and their links to game theory and more specifically to auction and matching theory see Milgrom (2000, 2004,
2007), Klemperer (2004), Wilson (2002), and Roth (2002, 2008b), respectively.

4Nevertheless, we will also give basic results regarding Gale and Shapley’s (1962) model and summarize important
market design contributions on the subject in Chapter 4 under the "College Admissions" heading.
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are socially endowed (as in the house allocation problem of Hylland and Zeckhauser 1979). Almost

all of these models have real-life applications. In all of these applications, there exists a central

planner (such as the housing office of a college allocating dorm rooms to students, a central health

authority deciding which patients will receive kidneys, or a school board for assigning students to

schools) that implements a direct mechanism by collecting preference information from the agents.

The central authority uses a well-defined procedure that we will simply refer to as a mechanism. In

this survey, we will inspect properties of different mechanisms proposed in the literature for these

allocation problems. Most of the mechanisms we will introduce will be implemented by intuitive

iterative algorithms.

In the models with initial property rights, various fairness and individual rights protection prop-

erties should be respected by any plausible mechanism for normative, institutional, or economic

reasons. Some examples can be given as follows:

Normatively, one would expect there to be equal chances of assigning an object to agents who

have identical rights over objects. In a school choice problem, students are the agents. Students

who have the same priority at a school may be given the same chances of admission. Thus, from a

fairness point of view, an even lottery can be used to order such students for tie-breaking purposes.

On the other hand, if there exists a student who prefers a school to her assigned school and this more

preferred school has admitted a student who has lower priority than her, then she has justified envy

toward this student. Besides following certain normative criteria for institutional and legal reasons,

adopted school choice mechanisms are expected to eliminate justified envy. For example, if there

is justified envy regarding a student, her family can potentially take legal action against the school

district.

In a kidney exchange problem, if a kidney transplant patient is not assigned a kidney as good as

her live paired-donor’s, she will not participate in the exchange in the first place. Under incomplete

information, such possibilities may cause unnecessary efficiency loss. Thus, individual rationality is

important for the kidney exchange problem.

Moreover, if possible, we would like the mechanisms to be incentive compatible: decision makers

such as students, patients, and doctors should not be able to manipulate these systems by misre-

porting their preferences. This will be important not only in achieving allocations that satisfy the

properties of the mechanisms under true preferences, but also for fairness reasons. For example, not

all students are sophisticated enough to manipulate a mechanism successfully (see Pathak and Sön-

mez 2008 and also Vickrey 1961 for similar arguments in auction design). Moreover, one can expect

that implementing a strategy-proof mechanism will minimize the informational burden of the agents.

They will only need to form their (expected) preference ordering correctly and will not need to guess

the preferences of other agents before submitting their preferences. Hence, in this survey, besides

introducing several plausible mechanisms, we will explore what properties make these mechanisms

plausible.
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The survey will consist of four main chapters: In Chapter 2, we will introduce the house alloca-

tion problem and the housing market and explore mechanisms in this domain. As the market design

application of these models, we will introduce one additional model and mechanism, inspired by dor-

mitory room allocation at colleges. In Chapter 3, we will introduce the kidney exchange models under

various institutional and modeling restrictions. We will draw parallels between some of these models

and the house allocation and exchange models. We will also inspect real-life mechanisms designed

by economists for these problems. In Chapter 4, we will explore the school admissions problem, and

plausible mechanisms under different institutional restrictions. We will explore school admissions

under three different models, the college admissions problem, the student placement problem, and the

school choice problem. In Chapter 5, we will introduce general classes of mechanisms that can be

used to characterize desirable house allocation mechanisms.



Chapter 2

House Allocation and Exchange Models

2.1 House Allocation

The simplest of the indivisible goods allocation models is known as the house allocation problem and

is due to Hylland and Zeckhauser (1979). In this problem, there is a group of agents and houses

(representing indivisible objects). Each agent shall be allocated a house by a central planner using

their preferences over the houses. All houses are social endowments. Formally, a triple (A,H,Â) is
a house allocation problem if

• A = {a1, a2, ..., an} is a set of agents,

• H = {h1, h2, ..., hn} is a set of houses,

• Â= (Âa)a∈A is a strict preference profile such that for each agent a ∈ A, Âa is a strict
preference relation over houses.1 The induced weak preference relation of agent a is denoted
by %a and for any h, g ∈ H, h %a g ⇔ h Âa g or h = g (i.e., a binary relation, which is a linear

order).2

There are various applications of the house allocation problem, such as organ allocation for

transplant patients waiting for deceased donor organs, dormitory room allocation at universities,

and parking space and office allocation at workplaces.

1For any subset of agents B, we will use Â−B to denote (Âa )a∈A\B and ÂB to denote (Âa )a∈B .
2A binary relation β defined on a set X is a linear order if

— it is complete, i.e. for all x, y ∈ X, either xβy or yβx,

— it is reflexive, i.e. for all x ∈ X, xβx,

— it is transitive, i.e. for all x, y, z ∈ X, xβy and yβz imply xβz, and

— it is anti-symmetric, i.e. for all x, y ∈ X, xβy and yβx imply x = y.

5
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Throughout this subsection, we will fix A and H. A problem is denoted only through the prefer-

ence profile Â.
The outcome of a house allocation problem is a matching, which is a one-to-one and onto

function μ : A → H such that house μ (a) is the assigned house of agent a under matching μ. Let

M be the set of matchings.

We will inspect several desirable properties of matchings. A matching μ is Pareto-efficient if
there is no other matching ν such that ν (a) %a μ (a) for all a ∈ A and ν (a) Âa μ (a) for some agent

a ∈ A.

A (deterministic direct) mechanism is a procedure that assigns a matching for each house

allocation problem. For any problem Â, let φ [Â] ∈ M refer to the matching outcome of φ for

problem Â.
Next, we discuss several desirable properties of mechanisms. A mechanism φ is strategy-proof

if for any problem Â, any agent a ∈ A and any preference relation Â∗a

φ [Âa,Â−a] (a) %a φ [Â∗a,Â−a] (a) .

That is, in a game induced by the direct mechanism φ, when agents reveal their preferences and the

central planner implements a matching using φ according to the revealed preference profile, it is a

weakly dominant strategy for each agent to truthfully report her preferences.

A mechanism is Pareto-efficient if it assigns a Pareto-efficient matching for each problem.
Next, we introduce a fundamental class of mechanisms, commonly referred to as serial dictator-

ships (or priority mechanisms) (for example, see Satterthwaite and Sonnenschein 1981 and Svensson

1994). A serial dictatorship is defined through a priority ordering of agents. A priority ordering
is a one-to-one and onto function f : {1, 2, ..., n} → A. That is, for any k ∈ {1, ..., n}, f(k) ∈ A is

the agent with the kth highest priority agent under f . Let F be the set of orderings. Each priority

ordering induces a direct mechanism. We refer to the direct mechanism πf as the serial dictator-
ship induced by priority ordering f ∈ F , and its matching outcome πf [Â] is found iteratively
as follows:

Algorithm 1 The serial dictatorship induced by f :
Step 1: The highest priority agent f(1) is assigned her top choice house under Âf(1)

...

Step k: The kth highest priority agent f(k) is assigned her top choice house under Âf(k) among

the remaining houses.

We can summarize the desirable properties of serial dictatorships with the following theorem:

Theorem 1 A serial dictatorship is strategy-proof and Pareto-efficient.
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Moreover, Abdulkadiroğlu and Sönmez (1998) show that for any Pareto-efficient matching of a

given problem, there exists a serial dictatorship that achieves this matching.

Serial dictatorships can be easily implemented in real-life applications; therefore, they are very

appealing. If it is not possible to distinguish between agents to determine the control rights of houses

and order them as serial dictators, then a random ordering can be chosen and the induced serial

dictatorship can be implemented to sustain fairness.

2.2 The Housing Market

The second model we consider is a variant of the house allocation problem and is known as a housing

market (Shapley and Scarf, 1974). The only difference between this problem and the house allocation

problem is that now each agent owns a house, i.e. has the initial property right of a house. Hence,

a housing market is an exchange market (with indivisible objects) where agents have the option to

trade their house in order to get a better one. On the other hand, a house allocation problem has

no predefined control rights structure. The houses are social endowments, and the central planner

allocates them.

Formally, a housing market is a list
¡
A, (a, ha)a∈A ,Â

¢
such that

• A = {1, ..., n} is a set of agents and {h1, ..., hn} is a set of houses such that each agent a
occupies house ha satisfying hb 6= ha for any b 6= a, and

• Â= (Âa)a∈A is a strict preference profile such that for each agent a ∈ A, Âa is a strict
preference relation over houses.

Throughout this subsection, we fix the set of agents A. We also fix the endowments of agents as

above and denote the set as H. Thus, each market is denoted by a preference profile Â.
There are several real-life applications of housing markets. We will focus on an important one in

the next section. In this application, agents are end-stage kidney disease patients, are endowed with

a live donor who would like to donate a kidney to them, and have the option to trade their donors

to receive a better quality kidney.

Next, we define solution concepts for housing markets. The definitions of a matching, a mecha-

nism, and their properties introduced for the housing allocation problem also apply to the housing

market.

We also introduce a new concept about the additional structure of the housing market regarding

initial property rights. A matching μ is individually rational if for each agent a ∈ A, μ (a) %a ha,

that is, each agent is assigned a house at least as good as her own occupied house. A mechanism is

individually rational if it always selects an individually rational matching for each market.
Although we focused on allocation through direct mechanisms, a decentralized solution may

naturally exist for a housing market, which is an exchange economy with indivisible objects. A
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competitive equilibrium may be achieved through decentralized trading. We define a price vector as

a positive real vector assigning a price for each house, i.e. p = (ph)h∈H ∈ Rn
++ such that ph is the

price of house h. A matching - price vector pair (μ, p) ∈M×Rn
+ finds a competitive equilibrium

if for each agent a ∈ A,

• pμ(a) ≤ pha (budget constraint), and

• μ (a) %a h for all h ∈ H such that ph ≤ pha (utility maximization).

Under a competitive equilibrium, each agent is assigned the best house that she can afford.

Another important concept for exchange economies is the core. With divisibilities, it is well

known that any competitive equilibrium allocation is also in the core.

We formulate the core for a housing market as follows: A matching μ is in the core if there exists
no coalition of agents B ⊆ A such that for some matching ν ∈M such that for all a ∈ B, ν (a) = hb

for some b ∈ B, we have ν (a) %a μ (a) for all a ∈ B and ν (a) Âa μ (a) for some a ∈ B. That is, the

core is the collection of matchings such that no coalition could improve their assigned houses even if

they traded their initial occupied houses only among each other.

Although competitive equilibrium and the core are very intuitive solution concepts with nice

economic properties, it is not immediately clear that they exist and are related to each other for the

housing market. Shapley and Scarf also proved that the core is non-empty and there exists a core

matching that can be sustained under a competitive equilibrium.

Theorem 2 The core of a housing market is non-empty and there exists a core matching that can
be sustained as part of a competitive equilibrium.

As an alternative proof to their initial proof, they introduced an iterative algorithm that is a core

and competitive equilibrium matching. They attribute this algorithm to David Gale. This algorithm

is a clearing algorithm that forms a directed graph in each iteration and assigns houses to a subset

of agents. In order to define the algorithm, we define the following concept:

Consider a directed graph in which agents and houses are the vertices and edges are formed by

each agent pointing to one house and each house pointing to one agent. We define a special subgraph

of this graph. A cycle is a list of houses and agents (h1, a1, h2, a2, ..., hm, am) such that each agent
ak points to house hk+1 for k ∈ {1, ...,m− 1}, am points to h1, and each house hk points to agent ak
for k ∈ {1, ...,m}. The figure below depicts such a cycle.

  h1        a1 

h2 

 
 
a2 

am 

 
 
hm 

…
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An interesting fact about any directed graph that is formed as explained above is the following:

Lemma 1 Each directed graph formed by each agent pointing to a house and each house pointing to
an agent has a cycle, and no two cycles intersect.

This lemma will enable us to define the following algorithm properly:

Algorithm 2 Gale’s top trading cycles (TTC) algorithm:
Step 1: Let each agent point to her top choice house and each house point to its owner. In this

graph there is necessarily a cycle and no two cycles intersect (by Lemma 1). Remove all cycles from

the problem by assigning each agent the house that she is pointing to.
...

Step k: Let each remaining agent point to her top choice among the remaining houses and each
remaining house point to its owner (note that houses leave with their owners and owners leave with

their houses, so a house remaining in the problem implies that the owner is still in the problem and

vice versa). There is necessarily a cycle and no two cycles intersect. Remove all cycles from the

problem by assigning each agent the house that she is pointing to.

The algorithm terminates when no agents and houses remain. The assignments formed during

the execution of the algorithm is the matching outcome.

Shapley and Scarf also proved the following theorem:

Theorem 3 Gale’s TTC algorithm achieves a core matching that is also sustainable by a competi-

tive equilibrium.

A competitive equilibrium price vector supporting this core matching at the equilibrium can be

formed as follows: Partition the set of agents as C1, C2, ..., Cr where Ck is the set of agents removed

in Step k of Gale’s TTC algorithm. Price vector p is such that for any pair of houses ha, hb if the

owners a and b were removed in the same step, i.e. a, b ∈ Ck for some Step k, then we set pha = phb,

if (without loss of generality) owner a is removed before agent b, i.e. a ∈ Ck and b ∈ C such that

k < , then we set pha > phb . That is, (1) the prices of the occupied houses whose owners are removed

in the same step are set equal to each other and (2) the prices of those whose owners are removed in

different steps are set such that the price of a house that leaves earlier is higher than the price of a

house that leaves later.

Below, we demonstrate how Gale’s TTC algorithm works with an involved example:
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Example 1 The execution of Gale’s TTC algorithm

Let

A = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16} .

Here hi is the occupied house of agent ai. Let the preference profile Â be given as:

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

h15 h3 h1 h2 h9 h6 h7 h6 h11 h7 h2 h4 h6 h8 h1 h5
... h4 h3

...
...

...
... h12

... h3 h4 h14 h13
...

...
...

...
...

... h12 h16
...

...

h10
...

...

We depict the directed graphs that are formed in each step of the algorithm below. The cycles

are shown through bold arrows. Observe that we abbreviated in the graphs below the arrows through

which each house points to its owner. When a cycle is removed, each agent in the cycle is assigned

the house she is pointing to.

Step 1:

           
                      a1-h1           a2-h2      a3-h3      a4-h4       a5-h5 
  . . . . . 
 
           a16-h16                 a6-h6 
                .    .  
  
                       
                a15-h15 .    .  a7-h7 
 
                                   

 .    .   
          a14-h14              a8-h8 
 
  . . . . .   
                        a13-h13    a12-h12    a11-h11    a10-h10     a9-h9   
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Step 2: 
            
                      
                     a2-h2      a3-h3      a4-h4       a5-h5 

 . . . . 
  
           a16-h16     
                .     
  
                       
                                       
 
                                   

 .    .   
          a14-h14              a8-h8 
 
  . . . . .   
                        a13-h13    a12-h12    a11-h11    a10-h10     a9-h9   
 
 
 
 

Step 3:         
                              a2-h2                     a4-h4       a5-h5 

 .  . . 
  
           a16-h16     
                .     
  
                       
                     
 
                                   

 .    .   
          a14-h14              a8-h8 
 
    . . . .   
                      a12-h12    a11-h11    a10-h10     a9-h9   
 

Step 4:                        a5-h5
      . 
  
           a16-h16     
                .     
  
                       
                                     
 
                                   

 .    .   
       a14-h14                  a8-h8 
 
   . . . .   
                          a12-h12     a11-h11   a10-h10     a9-h9   
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Step 5:    .  
                                                      a10-h10           

The outcome is:

μ =

Ã
a1 a2 a3 a4 a5 a6 a7 a8 a9

h15 h4 h3 h2 h9 h6 h7 h12 h11

a10 a11 a12 a13 a14 a15 a16

h10 h16 h14 h13 h8 h1 h5

!
After Shapley and Scarf’s paper, a series of papers proved that the core of a housing market has

really nice properties when it is used as a direct mechanism:

Theorem 4 (Roth and Postlewaite 1977) The core of a housing market has exactly one matching
which is also the unique matching that can be sustained at a competitive equilibrium.

The above result together with Shapley and Scarf’s result implies that the core can be used as

a mechanism, and Gale’s TTC can be used to find it. By definition, the core is Pareto-efficient and

individually rational. The following theorem shows that this mechanism also has good incentive

properties:

Theorem 5 (Roth 1982a) The core mechanism is strategy-proof.

Moreover, there is no other mechanism with these properties:

Theorem 6 (Ma 1994) The core mechanism is the only mechanism that is individually rational,

Pareto-efficient, and strategy-proof for a housing market.

Thus, from theoretical, practical, and economic points of view, the core is the best solution

concept for housing markets. It is the decentralized solution concept and can be implemented in

a centralized manner. In economics, there are very few problem domains with such a property.

For example, in exchange economies with divisible goods, the competitive equilibrium allocation is a

subset of the core, but both the competitive equilibrium and any other core selection are manipulable

as a direct mechanism.3,4

In the next subsection, we focus on a market design problem that has the features of both housing

markets and house allocation problems.
3Positive results of this section no longer hold in an economy in which one agent can consume multiple houses or

multiple types of houses. Even the core may be empty (Konishi, Quint, and Wako 2001). Also see Pápai (2003), Wako
(2005), and Klaus (2008) on the subject under different preference assumptions.
On the other hand, if there are no initial property rights, serial dictatorships can still be used for strategy-proof

and Pareto-efficient allocation (see Klaus and Miyagawa 2002). Also see Pápai (2003) and Ehlers and Klaus (2003)
for other characterizations under different preference assumptions.

4See Quinzzii (1984) for the existence results of core allocations and competitive equilibria in a generalized model
with both discrete and divisible goods. See Bevia, Quinzii, and Silva (1999) for a generalization of this model when
an agent can consume multiple indivisible goods.
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2.3 House Allocation with Existing Tenants

In some US universities, a probabilistic version of the serial dictatorship is used for allocating dor-

mitory rooms to students. By a (usually equally weighted) lottery, a priority ordering is determined

and students reveal a preference ordering over possible dormitory rooms. Then the induced serial

dictatorship is used to allocate these rooms to students. This is known as the housing lottery at

campuses.

Motivated by real-life on-campus housing practices, Abdulkadiroğlu and Sönmez (1999) in-

troduced a house allocation problem with existing tenants: A set of houses shall be allocated
to a set of agents by a centralized clearing house. Some of the agents are existing tenants, each of
whom already occupies a house, referred to as an occupied house, and the rest of the agents are
newcomers. Each agent has strict preferences over houses. In addition to occupied houses, there
are vacant houses. Existing tenants are entitled not only to keep their current houses but also to
apply for other houses.

Here, existing tenants can be likened to the current college students who occupy on-campus houses

(or dormitory rooms, condos, etc.) from the previous year. The newcomers can be likened to the

freshman class and any other current student who does not already occupy a house. Vacant houses

are the houses vacated by the graduating class and the students who no longer need on-campus

housing.

The mechanism known as the random serial-dictatorship (RSD) with squatting rights is
used in most real-life applications of these problems. Some examples include undergraduate housing

at Carnegie Mellon, Duke, Michigan, Northwestern, and Pennsylvania. This mechanism works as

follows:

Algorithm 3 The RSD with squatting rights:

1. Each existing tenant decides whether she will enter the housing lottery or keep her current

house (or dormitory room). Those who prefer keeping their houses are assigned their houses.

All other houses (vacant houses and houses of existing agents who enter the lottery) become

available for allocation.

2. An ordering of agents in the lottery is randomly chosen from a given distribution of orderings.

This distribution may be uniform or it may favor some groups.

3. Once the agents are ordered, available houses are allocated using the induced serial dictator-

ship: The first agent receives her top choice, the next agent receives her top choice among the

remaining houses, and so on.

Since it does not guarantee each existing tenant a house that is as good as what she already

houses, some existing tenants may choose to keep their houses even though they wish to move, and

this may result in a loss of potentially large gains from trade.
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In contrast, Abdulkadiroğlu and Sönmez propose a mechanism that has the features of both

the core in housing markets and serial dictatorships in house allocation problems. We refer to this

mechanism as the "You request my house - I get your turn" (YRMH-IGYT) mechanism.
Let f ∈ F be a priority ordering of agents in A. Each f defines a YRMH-IGYT mechanism. The

corresponding YRMH-IGYT algorithm clears as follows:

Algorithm 4 The YRMH-IGYT algorithm induced by f :

• Assign the first agent her top choice, the second agent her top choice among the remaining
houses, and so on, until someone requests the house of an existing tenant.

• If at that point the existing tenant whose house is requested is already assigned another house,
then do not disturb the procedure. Otherwise modify the remainder of the ordering by inserting

the existing tenant before the requestor at the priority order and proceed with the first step of

procedure through this existing tenant.

• Similarly, insert any existing tenant who is not already served just before the requestor in the
priority order once her house is requested by an agent.

• If at any point a cycle forms, it is formed by exclusively existing tenants and each of them re-

quests the house of the tenant who is next in the cycle. (A cycle is an ordered list (ha1 , a1, . . . , hak , ak)

of occupied houses and existing tenants where agent a1 demands the house of agent a2, ha2,

agent a2 demands the house of agent a3, ha3, . . ., agent ak demands the house of agent a1,ha1.)

In such cases, remove all agents in the cycle by assigning them the houses they demand and

proceed similarly.

Below, we present an example showing how the algorithm clears:

Example 2 The execution of the YRMH-IGYT algorithm

AE = {a1, a2, a3, a4, a5, a6, a7, a8, a9} is the set of existing tenants,
AN = {a10, a11, a12, a13, a14, a15, a16} is the set of newcomers, and
HV = {h10, h11, h12, h13, h14, h15, h16} is the set of vacant houses.

Suppose that each existing tenant ak occupies hk for each k ∈ {1, ..., 9}. Let the preference profile Â
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be given as:

AEz }| {
a1 a2 a3 a4 a5 a6 a7 a8 a9

h15 h3 h1 h2 h9 h6 h7 h6 h11
... h4 h3

...
...

...
... h12

...
...

...
...

ANz }| {
a10 a11 a12 a13 a14 a15 a16

h7 h2 h4 h6 h8 h1 h5

h3 h4 h14 h13
...

...
...

h12 h16
...

...

h10
...

...

Let

f = (a13, a15, a11, a14, a12, a16, a10, a1, a2, a3, a4, a5, a6, a7, a8, a9)

be the ordering of the agents. We will denote the outcome of the mechanism by ψf [Â]. The following
series of figures illustrates the dynamics of the YRMH-IGYT algorithm:

                                               h1  h2  h3  h4  h5  h6  h7  h8  h9  h10  h11  h12  h13  h14  h15  h16 
 
 
a13  a15  a11  a14  a12  a16  a10  a1  a2  a3  a4  a5  a6  a7  a8  a9 

 

 

 
h6                                                h1  h2  h3  h4  h5  h7  h8  h9  h10  h11  h12  h13  h14  h15  h16 
 
          ψf(a6) = h6 
a6  a13  a15  a11  a14  a12  a16  a10  a1  a2  a3  a4  a5  a7  a8  a9 

 

 
 
                                               h1  h2  h3  h4  h5  h7  h8  h9  h10  h11  h12  h13  h14  h15  h16 
   
          ψf(a13) = h13  
 a13  a15  a11  a14  a12  a16  a10  a1  a2  a3  a4  a5  a7  a8  a9 

 

 
                                         h1  h2  h3  h4  h5  h7  h8  h9  h10  h11  h12  h14  h15  h16 
 
 
 a15  a11  a14  a12  a16  a10  a1  a2  a3  a4  a5  a7  a8  a9 

 
 
 
 
h1                                           h2  h3  h4  h5  h7  h8  h9  h10  h11  h12  h14  h15  h16 
          ψf(a1) = h15 
          ψf(a15) = h1  
a1   a15  a11  a14  a12  a16  a10  a2  a3  a4  a5  a7  a8  a9 
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                                   h2  h3  h4  h5  h7  h8  h9  h10  h11  h12  h14  h16 
 
 
   a11  a14  a12  a16  a10  a2  a3  a4  a5  a7  a8  a9 

 
 

 
 h2                                     h3  h4  h5  h7  h8  h9  h10  h11  h12  h14  h16 
 
 
 a2    a11  a14  a12  a16  a10  a3  a4  a5  a7  a8  a9 

 
 
 
h3   h2                                     h4  h5  h7  h8  h9  h10  h11  h12  h14  h16 
 
          ψf(a3) = h3 
a3   a2    a11  a14  a12   a16  a10  a4  a5  a7  a8  a9 

 

 
 h2                                     h4  h5  h7  h8  h9  h10  h11  h12  h14  h16 
 
 
 a2    a11  a14  a12  a16  a10  a4  a5  a7  a8  a9 

 

 
 
h4   h2                                     h5  h7  h8  h9  h10  h11  h12  h14  h16 
          ψf(a4) = h2 
          ψf(a2) = h4 
a4   a2    a11  a14  a12   a16  a10  a5  a7  a8  a9 

 

 
 
                                   h5   h7  h8   h9  h10  h11  h12  h14  h16 
 
          ψf(a11) = h16 
 a11   a14  a12   a16  a10  a5  a7  a8   a9 

 

 
                            h5   h7   h8   h9  h10  h11  h12  h14 
 
 
a14  a12   a16   a10  a5   a7  a8   a9 

 
 
 
 
h8                               h5   h7   h9  h10  h11  h12  h14 
          ψf(a8) = h12 
          ψf(a14) = h8 
a8   a14  a12   a16   a10  a5   a7  a9 
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                      h5   h7   h9  h10  h11  h14  
 
          ψf(a12) = h14 
a12   a16   a10  a5   a7   a9 

 
 
                 h5   h7   h9    h10    h11 
 
 
a16    a10   a5   a7    a9    

 
 
h5                   h7   h9  h10  h11 
 
 
a5    a16   a10  a7   a9 

 

 

 
 
h9    h5                  h7   h10  h11  
          ψf(a9) = h11 
          ψf(a5) = h9 
a9      a5    a16   a10  a7           ψf(a16) = h5  

 

       h7   h10   
 
 
a10  a7    
 

 

 
h7    h10 
          ψf(a7) = h7 
 
a7    a10 

 

 
h10   
 
          ψf(a10) = h10 
a10     
 

The outcome of the algorithm is

μ =

Ã
a1 a2 a3 a4 a5 a6 a7 a8 a9

h15 h4 h3 h2 h9 h6 h7 h12 h11

a10 a11 a12 a13 a14 a15 a16

h10 h16 h14 h13 h8 h1 h5

!

The following theorem shows that this mechanism has desirable properties:
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Theorem 7 (Abdulkadirŏglu and Sönmez 1999) Any YRMH-IGYT mechanism is individually
rational, Pareto-efficient, and strategy-proof.

Thus, the YRMH-IGYT mechanisms have nice features. The priority ordering can be determined

through a lottery. Chen and Sönmez (2002) showed through a laboratory experiment that this

mechanism is practically better than the RSD mechanism with squatting rights. The treatments of

the YRMH-IGYT mechanism were more efficient than the RSD with squatting rights mechanism,

and manipulation did not occur to a significant degree.

Moreover, it is the unique mechanism that satisfies certain desirable properties:

A mechanism is coalitionally strategy-proof if for any problem there is no coalition of agents
who can jointly misreport their preferences and all weakly benefit while at least one in the coalition

strictly benefits.

A mechanism is consistent if, we remove the agents and their assigned houses by the mechanism
from the problem together with some unassigned houses, provided that in the remaining problem if

an existing tenant remains her occupied house also remains, then rerunning the mechanism for this

subproblem does not change the assignments of agents in the subproblem.

A mechanism is weakly neutral if, when the vacant houses are relabeled and the mechanism
is rerun, then every agent who was assigned a vacant house in the original problem is assigned the

relabeled version of the vacant house, and every agent who was assigned an occupied house in the

original problem is assigned the same occupied house.

The characterization theorem is as follows:

Theorem 8 (Sönmez and Ünver 2006) A mechanism is coalitionally strategy-proof, individ-

ually rational, Pareto-efficient, weakly neutral, and consistent if and only if it is equivalent to a

YRMH-IGYT mechanism.

We conclude by stating some other characterizations regarding restricted domains. In the re-

stricted domains, the mechanisms characterized are equivalent to YRMH-IGYT mechanisms.

Theorem 9 (Svensson 1999) In the house allocation problem, a mechanism is coalitionally strategy-
proof, and (weakly) neutral if and only if it is equivalent to a serial dictatorship.

Theorem 10 (Ergin 2000) In the house allocation problem, a mechanism is Pareto-efficient,

(weakly) neutral, and consistent if and only if it is equivalent to a serial dictatorship.

On the other hand, when there are no newcomers, as in the housing market domain, Theorems 5 by

Roth (1982a) and 6 by Ma (1994) imply that the core mechanism is the only desirable mechanism: A

mechanism is individually rational, strategy-proof, and Pareto-efficient if and only if it is equivalent

to the core mechanism. Observe that these three theorems do not follow from Theorem 8, since

smaller sets of axioms are needed in characterization in the more restricted domains.



Chapter 3

Kidney Exchange

In the recent years, the design of kidney exchange (in the medical literature also known as kidney

paired donation) mechanisms has been one of the important market design applications of the house

allocation and exchange models. A new theory has been developed to accommodate the institutional

restrictions imposed by the nature of the problem. This chapter surveys three articles on this design

problem (Roth, Sönmez, and Ünver, 2004, 2005a, 2007).

Transplantation is the preferred treatment for the end-stage kidney disease. There are more

than 70000 patients waiting for a kidney transplant in the US. In 2005, only 16500 transplants were

conducted, 9800 from deceased donors and 6570 from living donors, while 29160 new patients
joined the deceased donor waiting list and 4200 patients died while waiting for a kidney.1 Buying

and selling a body part is illegal in many countries in the world including the US. Donation is the
only source of kidneys in many countries. There are two sources of donation:

1. Deceased donors: In the US and Europe a centralized priority mechanism is used for the

allocation of deceased donor kidneys. The patients are ordered in a waiting list, and the first

available donor kidney is given to the patient who best satisfies a metric based on the quality

of the match, waiting time in the queue, age of the patient, and other medical and fairness

criteria.

2. Living donors: Generally friends or relatives of a patient (due to the "no buying and selling"
constraint) would like to donate one of their kidneys to a designated patient.2 Live donations

have been an increasing source of donations in the last decade. The design problem determines

in the most efficient manner of allocating the kidneys of these donors.

1According to SRTR/OPTN national data retrieved at http://www.optn.org on 2/27/2007.
2Although the number of "non-directed" good Samaritan altruistic donors has steadily been increasing, it is still

small relative to the number of "directed" live donors.

19
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3.1 Directed Live Donations and Donor Exchanges

After a patient identifies a willing donor, the transplant is carried out if the donor kidney is compatible

with the patient. There are two tests that a donor should pass before she is deemed compatible with

the patient:

1. Blood compatibility test: There are 4 blood types, "O," "A," "B," and "AB." "O" type
kidneys are blood-type compatible with all patients; "A" type kidneys are blood-type compat-

ible with "A" and "AB" type patients; "B" type kidneys are blood-type compatible with "B"

and "AB" type patients; and "AB" type kidneys are only blood-type compatible with "AB"

type patients.

2. Tissue compatibility test (or crossmatch test): 6 HLA (short for human leukocyte anti-
gen) proteins (3 inherited from the mother and 3 inherited from the father) located on patient

and donor DNA helices respectively play two roles in determining tissue compatibility. If an-

tibodies exist in the patient blood against the donor HLA, then the donor kidney cannot be

transplanted to the patient and it is deemed tissue-type incompatible. It is reported that, on

average, there is only 11% chance of tissue-type incompatibility for a random donor and patient

(Zenios, Woodle, and Ross, 2001).

Exact HLA match is not required for tissue compatibility; however, there is a debate in the

medical literature about how important the closeness of HLA proteins of the patient and donor

are for the long-run survival rate of a transplanted kidney.

Traditionally, if either test fails, the patient remains on the deceased donor waiting list and the

donor goes home unutilized. However, the medical community came up with two ways of utilizing

these "unused" donors.

An (paired) exchange involves two incompatible patient-donor pairs such that the patient in
each pair feasibly receives a transplant from the donor in the other pair. This pair of patients

exchange donated kidneys. For example, see the figure below:

 

Donor 1   Patient 1

Patient 2   Donor 2

Of course the number of pairs in a paired exchange can be larger than two.



3.2. THE DESIGNS 21

A list exchange involves an exchange between one incompatible patient-donor pair and the
deceased donor waiting list. The patient in the pair becomes the first priority person on the deceased

donor waiting list in return for the donation of her donor’s kidney to someone on the waiting list.

   Donor        Patient  

Deceased Donor
Waiting List 

 
1st        Patient 
2nd Patient 
3rd  Patient 
… 

List exchanges can potentially harm O blood-type patients waiting on the deceased donor waiting

list. Since the O blood type is the most common blood type, a patient with an incompatible donor

is most likely to have O blood herself and a non-O blood-type incompatible donor. Thus, after

the list exchange, the blood type of the donor sent to the deceased donor waiting list has generally

non-O blood, while the patient placed at the top of the list has O blood. Thus, list exchanges are

deemed ethically controversial. Only the New England region in the US adopted list exchange. A list

exchange can also involve more pairs than one. Doctors also use non-directed live altruistic donors

instead of deceased donors. There is no uniform national policy regarding the handling of non-

directed live donors. Many regions conduct exchanges induced by non-directed live donors. Since

live donor kidneys are better quality than deceased donor kidneys, such exchanges create better

participation incentives for patients and their live paired donors.

3.2 The Designs

Two live donor exchange programs have already been established in the US through collaboration

between economists and medical doctors, one in New England and one in Ohio. A national exchange

program is being developed.

The surveyed designs illustrate how the exchange system may be organized from the point of

view of efficiency, providing consistent incentives to patients-donors-doctors. Although medical
compatibilities are important for matching, the incentives to patients and doctors are also quite

important. Patients (doctors) hold private information about their (their patients’) preferences over

several dimensions such as the geographic distance of the match or the number of willing donors they
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have. Under some designs, they may not want to reveal this information truthfully, since they (their

patients) may benefit from manipulation of information revelation. The initial two designs we will

discuss in this survey extract the private information truthfully from patients (doctors) under any

circumstance (strategy-proofness). We impose several other important economic or normative criteria

on our designs besides incentive compatibility, such as Pareto efficiency and fairness. For fairness,

we consider two different approaches: (1) giving priorities to patients based on their exogenous

characteristics or (2) making every patient as equally well off as the medical constraints permit (also

known as egalitarianism). Finally, the last design we will discuss refines Pareto efficiency and focuses

on aggregate efficiency concerns.

3.3 The Model

A kidney exchange problem consists of

• a set of donor (kidney)-(transplant) patient pairs {(k1, t1) , ... (kn, tn)},

• a set of compatible kidneys Ki ⊂ K = {k1, ..., kn} for each patient ti, and

• a strict preference relation Âi over Ki∪{ki, w} where w refers to the priority in the waiting
list in exchange for kidney ki.

An outcome of a problem is a matching of kidneys/waiting list option to patients such that
multiple patients can be matched with the w option (and lotteries over matchings are possible). A

kidney exchangemechanism is a systematic procedure to select a matching for each kidney exchange

problem (and lottery mechanisms are possible).3

A matching is Pareto-efficient if there is no other matching that makes everybody weakly better
off and at least one patient strictly better off. A mechanism is Pareto-efficient if it always chooses
Pareto-efficient matchings.

A matching is individually rational if each patient is matched with an option that is weakly
better than her own paired-donor. A mechanism is individually rational if it always selects an
individually rational matching.4

A mechanism is strategy-proof if it is always the best strategy for each patient to

1. reveal her preferences over other available kidneys truthfully, and

3For the time being, we exclude the possibility of non-directed altruistic donors. However, such donors can be
incorporated into the problem easily as w option. But there is one difference: an altruistic donor cannot be matched

to more than one patient.
4We will assume that an incompatible own paired-donor is the opt-out option of a patient.
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2. declare the whole set of her donors (in case she has multiple donors) to the system without

hiding any (the model treats each patient as having a single donor, but the extension to multiple

donors is straightforward).

3.4 Multi-Way Kidney Exchanges with Strict Preferences

The first design and the set of results are due to Roth, Sönmez, and Ünver (2004). Unless otherwise

noted, all stated results are from this paper. In this design the underlying assumptions are as follows:

• Any number of patient-donor pairs can participate in an exchange, i.e., exchanges are possibly
multi-way.

• Patients have heterogeneous preferences over compatible kidneys; in particular, no two kidneys
have the same quality, i.e., the preferences of a patient are strict and they linearly order

compatible kidneys, the waiting list option, and her own paired-donor. Opelz (1997) shows

in his data set that among compatible donors, the increase in the number of HLA protein

mismatches decreases the likelihood of kidney survival. Body size, age of donor etc. also affect

kidney survival.

• List exchanges are allowed.

Under these assumptions, this model is very similar to the house allocation model with existing

tenants. We will consider a class of mechanisms that clear through an iterative algorithm.

Since the mechanism relies on an algorithm consisting of several rounds, let’s first focus on some

of the graph-theoretical objects encountered by the algorithm. In each step

• each patient ti points either toward a kidney in Ki ∪ {ki} or toward w, and

• each kidney ki points to its paired patient ti.

In such a directed graph, we are interested in two types of subgraphs: One is a cycle (as defined
in housing markets, where agents refer to patients and houses refer to kidneys). Each cycle is of even

size and no two cycles can intersect. The other is a new concept. A w-chain is an ordered list of
kidneys and patients (k1, t1, k2, t2, ..., km, tm) such that ki points to ti for each patient, ti points to

ki+1 for each i 6= m, and tm points to w.
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  tm        km 

  k1        t1 

k2

 
 
t2

…

w 

We refer to the last pair (km, tm) as the head and the first pair (k1, t1) as the tail in such a
w-chain. A w-chain is also of even size but, unlike in a cycle, a kidney or a patient can be part of
several w-chains (see the figure below):

w
 
 
t1 
 
 k1 
 

    t2          t3 
 
    k2          k3 
 
 
     t4        t5 
 
     k4     k5 

In this figure, there are 5 w-chains initiated by each of the 5 pairs: (k1, t1), (k2, t2,k1, t1),

(k3, t3,k1, t1), (k4, t4, k3, t3, k1, t1), and (k5, t5, k3, t3, k1, t1)

One practical possibility is choosing among w-chains with a well-defined chain selection rule. The

choice of chain selection rule has implications for efficiency and incentive-compatibility.

We can now state our first result of this section:

Lemma 2 Consider a graph in which both the patient and the kidney of each pair are distinct nodes
as is the waiting list option w. Suppose each patient points either toward a kidney or w, and each

kidney points to its paired patient. Then either there exists a cycle or each pair initiates a w-chain.

Moreover, when cycles exist, no two cycles intersect.
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Based on this lemma, we can formulate the following exchange procedure that is referred to as

the top trading cycles and chains algorithm (TTCC) algorithm. Fix a chain selection rule.
At a given time and for a given kidney exchange problem, the TTCC mechanism determines the

exchanges as follows:

Algorithm 5 The TTCC algorithm with a chain selection rule:

1. Initially all kidneys are available and all agents are active. At each stage of the procedure

• each remaining active patient ti points to the best remaining unassigned kidney or to the
waiting list option w, whichever is more preferred,

• each remaining passive patient continues to point to her assignment, and

• each remaining kidney ki points to its paired patient ti.

2. By Lemma 2, there is either a cycle, or a w-chain, or both.

(a) Proceed to Step 3 if there are no cycles. Otherwise locate each cycle and carry out the

corresponding exchange. Remove all patients in a cycle together with their assignments.

(b) Each remaining patient points to her top choice among remaining choices and each kidney

points to its paired patient. Proceed to Step 3 if there are no cycles. Otherwise locate all

cycles, carry out the corresponding exchanges, and remove them.

(c) Repeat Step 2b until no cycle exists.

3. If there are no pairs left, we are done. Otherwise by Lemma 2, each remaining pair initiates a

w-chain. Select only one of the chains with the chain selection rule. The assignment is final

for the patients in the selected w-chain. In addition to selecting a w-chain, the chain selection

rule also determines

(a) whether the selected w-chain is removed, or

(b) the selected w-chain remains in the procedure although each patient in it is henceforth

passive.

If the w-chain is removed, then the tail kidney is assigned to a patient in the deceased donor

waiting list. Otherwise, the tail kidney remains available in the problem for the remaining steps.

4. Each time a w-chain is selected, a new series of cycles may form. Repeat Steps 2 and 3 with

the remaining active patients and unassigned kidneys until no patient is left. If there exist some

tail kidneys of w-chains remaining at this point, remove all such kidneys and assign them to

the patients in the deceased-donor waiting list.
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Below we list a number of plausible chain selection rules:

a. Choose minimal w-chains and remove them.

b. Choose the longest w-chain and remove it.

c. Choose the longest w-chain and keep it.

d. Prioritize patient-donor pairs in a single list. Choose the w-chain starting with the highest

priority pair and remove it.

e. Prioritize patient-donor pairs in a single list. Choose the w-chain starting with the highest

priority pair and keep it.

Each w-chain selection rule induces a TTCC mechanism. The removal and non-removal of w-

chains has implications for efficiency.

Theorem 11 (Roth, Sönmez, and Ünver 2004) Consider a chain selection rule where any
w-chain selected at a non-terminal step remains in the procedure and thus the kidney at its tail

remains available for the next step. The TTCC mechanism induced by any such chain selection rule

is Pareto-efficient.

In the absence of list exchanges, the kidney exchange problem is a direct application of housing

markets, and therefore, Theorem 5 implies that TTCC is strategy-proof. What happens when list

exchanges are allowed?

Theorem 12 (Roth, Sönmez, and Ünver 2004) The TTCC mechanism induced by chain se-

lection rules (a), (d), or (e) is strategy-proof. On the other hand, the TTCC mechanism induced by

chain selection rules (b) or (c) is not strategy-proof.

We mentioned that the current model is very similar to the house allocation model with existing

tenants. There is also a close relationship between the TTCC algorithm and YRMH-IGYT algorithm,

when we introduce to the house allocation problem with existing tenants a house similar to the w

option of the kidney exchange problem.

Proposition 1 (Krishna and Wang 2007) The TTCC algorithm induced by chain selection rule
(e) is equivalent to the YRMH-IGYT algorithm.



3.5. TWO-WAY KIDNEY EXCHANGES WITH 0-1 PREFERENCES 27

3.5 Two-Way Kidney Exchanges with 0-1 Preferences

Although the previous model is a variation of the house allocation and exchange model, there are

intricate restrictions of the kidney exchange problem that this model cannot handle.

Since kidney donation is considered a gift, a donor cannot be forced to sign a contract regarding the

donation. Thus, all transplants in an exchange should be conducted simultaneously, since otherwise

a donor in the exchange could potentially back out after her paired-patient receives a kidney. This

is an important restriction and almost always respected in real life. Since there should be a separate

transplant team of doctors present for each donation and consequent transplant, this constraint puts

a physical limit on the number of pairs that can participate simultaneously in one exchange. Because

of this restriction, most of the real-life exchanges have been two-way exchanges including two pairs

in one exchange. Roth, Sönmez, and Ünver (2005a) considered a model of kidney exchange using

this restriction.

Another controversial issue in the market design for kidneys concerns the preferences of patients

over kidneys. In the previous model, the assumption was that these preferences are heterogeneous.

Although this is certainly the correct modeling approach from a theoretical point of view, small

differences in quality may be only of secondary importance. Indeed, in the medical empirical literature

several authors make this claim. In this second model, we will assume that all compatible kidneys

have the same likelihood of survival, following Delmonico (2004) and Gjertson and Cecka (2000) who

statistically show this in their data set. The medical doctors also point out that if the paired-donor

of a patient is compatible with her, she will directly receive a kidney from her paired-donor and will

not participate in the exchange.

The following model and the results are due to Roth, Sönmez, and Ünver (2005a), unless otherwise

noted.

Let N be the set of pairs of all and only incompatible donors and their patients. Preferences

are restricted further such that, for each pair i ∈ N , and k, k0 ∈ Ki, k ∼i k0, i.e. a patient is

indifferent among all compatible kidneys. Moreover we restrict our attention to individually rational

and two-way exchanges in this subsection. That is, for any μ ∈ M and pair i, if μ (ti) = kj for

some pair j then μ (tj) = ki, and kj ∈ Ki, ki ∈ Kj. By a slight abuse of notation, we treat both

the patient and the donor as one entity, and rewrite μ (i) = j, meaning that patient ti is matched

with donor kj, instead of μ (ti) = kj.5 Since we focus on two-way exchanges, we need to define the

following concept: Pairs i, j are mutually compatible if j has a compatible donor for the patient
of i and i has a compatible donor for the patient of j, that is, kj ∈ Ki and ki ∈ Kj. We can focus on

a mutual compatibility matrix that summarizes the feasible exchanges and preferences. A mutual

5Moreover, throughout this section, whenever it is appropriate, we will use the term “patient” instead of “pair.”
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compatibility matrix R = [ri,j]i∈N,j∈N is defined as for any i, j ∈ N ,

ri,j =

(
1 if i and j are mutually compatible

0 otherwise
.

A two-way kidney exchange problem is denoted by (N,R). The following figure depicts an

undirected graph representation of a kidney exchange problem with N = {1, 2, ..., 14}, Problem
(N,R) is given as

2    3   6     
 
 
 
1 4  5   
       
               
                  
7               8                  11            12 
         
 
              
 
9    10     13          14

where the edges are the set of feasible two-way exchanges and the vertices are the incompatible pairs.

A subproblem of (N,R) is denoted as (I, RI) where I ⊆ N and RI is the restriction of R to the

pairs in I. For example, the following graph depicts subproblem (I, RI) of the above problem with

I = {8, 9, 10, 11, 12, 13, 14} :
                
      8    11    12  
 
              
 
9      10      13    14

Below, we depict with boldface edges a matching for the above problem (R,N).

 

A Pareto-inefficient matching

A problem is connected if the corresponding graph of the problem is connected, i.e., one can

traverse between any two nodes of the graph using the edges of the graph. A component is a largest
connected subproblem. In the above problem (R,N), there is only one component, the problem itself.
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On the other hand, in the above subproblem (I, RI) , there are two components, the first consisting

of pairs 8, 9, and 10 and the second consisting of pairs 11, 12, 13, and 14. We refer to a component

as odd if it has an odd number of pairs, and as even if it has an even number of pairs. In the above
example, the first component is odd and the second component is even.

Besides deterministic outcomes, we will also define stochastic outcomes. A stochastic outcome

is a lottery λ = (λμ)μ∈M that is a probability distribution on all matchings. Although in many

matching problems, there is no natural definition of von Neumann - Morgenstern utility functions,

there is one for this problem: It takes value 1 if the patient is matched and 0 otherwise. We can

define the (expected) utility of a patient ti under a lottery λ as the probability of the patient

getting a transplant and we denote it by ui(λ). The utility profile of lottery λ is denoted by

u (λ) = (ui (λ))i∈N .

A matching is Pareto-efficient if there is no other matching that makes every patient weakly
better off and some patient strictly better off. A lottery is ex-post efficient if it gives positive
weight to only Pareto-efficient matchings. A lottery is ex-ante efficient if there is no other lottery
that makes every patient weakly better off and some patient strictly better off. Although in many

matching domains ex-ante and ex-post efficiency are not equivalent (for example, see Bogomolnaia

and Moulin, 2001), because of the following lemma, they are equivalent for two-way kidney exchanges

with 0-1 preferences.

Lemma 3 (Roth, Sönmez, and Ünver 2005a) The same number of patients are matched at
each Pareto-efficient matching, which is the maximum number of pairs that can be matched.

Thus, finding a Pareto-efficient matching is equivalent to finding a matching that matches the

maximum number of pairs. In graph theory, such a problem is known as a cardinality matching

problem (see e.g. Korte and Vygen 2002, for an excellent survey of this and other optimization

problems regarding graphs), and various intuitive polynomial time algorithms are known to find one

Pareto-efficient matching starting with Edmonds’ (1965) algorithm.

This lemma would not hold if exchange were possible among three or more patients. Moreover,

we can state the following lemma regarding efficient lotteries:

Lemma 4 (Roth, Sönmez, and Ünver 2005a) A lottery is ex-ante efficient if and only it is

ex-post efficient.

There are many Pareto-efficient matchings, and finding all of them is not computationally feasible

(i.e. NP-complete). Therefore, we will focus on two selections of Pareto-efficient matchings and

lotteries that have nice fairness features.
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3.5.1 Priority Mechanism

In many situations a natural priority ordering may arise that naturally orders patients. For example,

the sensitivity of a patient to the tissue types of others, known as PRA, is a good criterion accepted

also by medical doctors. Some patients may be sensitive to almost all tissue types other than their

own and have a PRA=99%, meaning that they will reject 99% of donors from a random sample

based solely on tissue incompatibility. So, one can order the patients from high to low with respect

to their PRA’s and use the following priority mechanism:

Algorithm 6 The two-way priority (kidney exchange) mechanism:
Given a priority ordering of patients, a priority mechanism
matches Priority 1 patient if she is mutually compatible with a patient, and skips her otherwise.
...

matches Priority k patient in addition to all the previously matched patients if possible, and
skips her otherwise.

Thus, the mechanism determines which patients are to be matched first, and then one can select

a Pareto-efficient matching that matches those patients. Thus, the mechanism is only unique-valued

for the utility profile induced. Any matching inducing this utility profile can be the final outcome.

The following result makes a priority mechanism very appealing:

Theorem 13 A two-way priority mechanism is Pareto-efficient and strategy-proof.

Although the above model did not consider multiple paired-donors, the extension of the model

to multiple paired-donors is straightforward.

One can find additional structure about Pareto-efficient matchings (even though finding all such

matchings is exhaustive) thanks to the results of Gallai (1963, 1964) and Edmonds (1965) in graph

theory and combinatorial optimization. We can partition the patients (as a matter of fact, the

incompatible pairs) into three sets as NU , NO, NP . The members of these sets are defined as follows:

An underdemanded patient is one for whom there exists a Pareto-efficient matching that leaves
her unmatched. Set NU is formed by underdemanded patients, and we will refer to this set as the set

of underdemanded patients. An overdemanded patient is one who is not underdemanded, yet is
mutually compatible with an underdemanded patient. Set NO is formed by overdemanded patients.

A perfectly matched patient is one that is neither underdemanded nor mutually compatible with
any underdemanded patient. Set NP is formed by perfectly matched patients.

3.5.2 The Structure of Pareto-Efficient Matchings

The following result, due to Gallai and Edmonds, is the key to understand the structure of Pareto-

efficient matchings:
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Lemma 5 Gallai (1963,1964)-Edmonds (1965) Decomposition (GED): Let μ be any Pareto-
efficient matching for the original problem (N,R) and (I,RI) be the subproblem for I = N \NO.

Then we have:

1. Any overdemanded patient is matched with an underdemanded patient under μ.

2. J ⊆ NP for any even component J of the subproblem (I,RI) and all patients in J are

matched with each other under μ.

3. J ⊆ NU for any odd component J of the subproblem (I,RI) and for any patient i ∈ J, it is

possible to match all remaining patients with each other under μ. Moreover, under μ

• either one patient in J is matched with an overdemanded patient and all others are matched
with each other,

or

• one patient in J remains unmatched while the others are matched with each other.

One can interpret this lemma as follows: There exists a competition among odd components of the

subproblem (I,RI) for overdemanded patients. Let D = {D1, . . . , Dp} be the set of odd components
remaining in the problem when overdemanded patients are removed. By the GED Lemma, all

patients in each odd-component are matched but at most one, and all of the other patients are

matched under each Pareto-efficient matching. Thus, such a matching leaves unmatched |D|− |NO|
patients each of whom is in a distinct odd component.

A depiction of the GED Lemma for a problem is given in the following figure:

Overdemanded 
Patients 

Odd 
Components 

Even 
Components 

First suppose that we determine the set of overdemanded patients, NO. After removing those

from the problem, we mark the patients in odd components as underdemanded, and patients in

even components as perfectly matched. Moreover, we can think of each odd component as a single

entity, which is competing to get one overdemanded patient for its patients under a Pareto-efficient
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matching. An example of a Pareto-efficient matching is given in the following figure for the above

problem:

 

It turns out that the sets NU , NO, NP and the GED decomposition can also be found in polyno-

mial time thanks to Edmonds’ algorithm.

Below, we introduce another mechanism that takes into consideration another notion of fairness.

This mechanism is also due to Roth, Sönmez, and Ünver (2005a).

3.5.3 Egalitarian Mechanism

Recall that the utility of a patient under a lottery is the probability of receiving a transplant.

Equalizing utilities as much as possible may be considered very plausible from an equity perspective,

which is also in line with the Rawlsian notion of fairness (Rawls 1971). We define a central notion

in Rawlsian egalitarianism:

A feasible utility profile is Lorenz-dominant if

• the least fortunate patient receives the highest utility among all feasible utility profiles, and
...

• the sum of utilities of the k least fortunate patients is the highest among all feasible utility

profiles.6

Is there a feasible Lorenz-dominant utility profile? Roth, Sönmez, and Ünver answer this question

affirmatively. It is constructed with the help of the GED of the problem. Let

• J ⊆ D be an arbitrary set of odd components of the subproblem obtained by removing the

overdemanded patients,

6By k least fortunate patients under a utility profile, we refer to the k patients whose utilities are lowest in this
utility profile.
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• I ⊆ NO be an arbitrary set of overdemanded patients, and

• C(J , I) denote the neighbors of J among I, that is, each overdemanded patient in C(J , I)

is in I and is mutually compatible with a patient in an odd component of the collection J .

Suppose only overdemanded patients in I are available to be matched with underdemanded

patients in
S

J∈J J . Then, what is the upper bound of the utility that can be received by the least

fortunate patient in
S

J∈J J? The answer is

f (J , I) =

¯̄S
J∈J J

¯̄
− (|J |− |C (J , I)|)¯̄S

J∈J J
¯̄

and it can be received only if

1. all underdemanded patients in
S

J∈J J receive the same utility, and

2. all overdemanded patients in C(J , I) are committed for patients in
S

J∈J J .

The function f is the key in constructing an egalitarian utility profile. The following procedure

can be used to construct it:

Algorithm 7 The construction of the egalitarian utility profile uE :
Partition D as D1,D2, . . . and NO as NO

1 , N
O
2 , . . . as follows:

Step 1.

D1 = arg minJ⊆D
f
¡
J , NO

¢
and

NO
1 = C

¡
D1, NO

¢
...

Step k.

Dk = arg min
J⊆D\ k−1

=1 D
f

Ã
J , NO

-
k−1[
=1

NO

!
and

NO
k = C

Ã
Dk, N

O

-
k−1[
=1

NO

!

Construct the vector uE = (uEi )i∈N as follows:

1. For any overdemanded patient and perfectly matched patient i ∈ N \NU ,

uEi = 1.
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Figure 3.1: Graphical Representation for Example 2.

2. For any underdemanded patient i whose odd component left the above procedure at Step k(i),

uEi = f(Dk(i), N
O
k(i)).

We provide an example explaining this construction:

Example 3 Let N = {1, . . . , 16} be the set of patients and let the reduced problem be given by the

graph in Figure 3.1. Each patient except 1 and 2 can be left unmatched at some Pareto-efficient

matching and hence NU = {3, . . . , 16} is the set of underdemanded patients. Since both patients 1
and 2 have links with patients in NU , NO = {1, 2} is the set of overdemanded patients.

D = {D1, . . . , D6}

where

D1 = {3}, D2 = {4},D3 = {5}, D4 = {6, 7, 8}
D5 = {9, 10, 11}, D6 = {12, 13, 14, 15, 16}

Consider J1 = {D1,D2} = {{3}, {4}}. Note that by the GED Lemma, an odd component that has
k patients guarantees k−1

k
utility for each of its patients. Since f(J1, NO) = 1

2
< 2

3
< 4

5
, none of

the multi-patient odd components is an element of D1. Moreover, patient 5 has two overdemanded
neighbors and f(J , NO) > f(J1, NO) for any J ⊆ {{3}, {4}, {5}} with {5} ∈ J . Therefore

D1 = J1 = {{3}, {4}}, NO
1 = {1},

uE3 = uE4 =
1

2
.

Next consider J2 = {D3,D4,D5} = {{5}, {6, 7, 8}, {9, 10, 11}}. Note that f(J2, NO \ NO
1 ) =

7−(3−1)
7

= 5
7
. Since f(J2, NO \ NO

1 ) =
5
7
< 4

5
, the 5-patient odd component D6 is not an element
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of D2. Moreover,

f({D3}, NO \NO
1 ) = f({D4}, NO \NO

1 )

= f({D5}, NO \NO
1 ) = 1,

f({D3, D4}, NO \NO
1 ) = f({D3,D5}, NO \NO

1 ) =
3

4
,

f({D4, D5}, NO \NO
1 ) =

5

6
.

Therefore,

D2 = J2 = {{5}, {6, 7, 8}, {9, 10, 11}},
NO
2 = {2},

and uE5 = · · · = uE11 =
5

7
.

Finally since NO \ (NO
1 ∪NO

2 ) = ∅,

D3 = {{12, 13, 14, 15, 16}},
NO
3 = ∅,

and uE12 = · · · = uE16 =
4

5
.

Hence the egalitarian utility profile is

uE = (1, 1,
1

2
,
1

2
,
5

7
,
5

7
,
5

7
,
5

7
,
5

7
,
5

7
,
5

7
,
4

5
,
4

5
,
4

5
,
4

5
,
4

5
).

Roth, Sönmez, and Ünver (2005a) proved the following results:

Theorem 14 (Roth, Sönmez, and Ünver 2005a) The vector uE is a feasible utility profile.

In particular, the proof of Theorem 14 shows how a lottery that implements uE can be constructed.

Theorem 15 (Roth, Sönmez, and Ünver 2005a) The utility profile uE Lorenz-dominates any
other feasible utility profile (efficient or not).

The egalitarian mechanism is a lottery mechanism that selects a lottery whose utility profile is

uE. It is only unique-valued for the utility profile induced. As a mechanism, the egalitarian approach

has also appealing properties:

Theorem 16 (Roth, Sönmez, and Ünver 2005a) The egalitarian mechanism is Pareto-efficient
and strategy-proof.

The egalitarian mechanism can be used for cases in which there is no exogenous way to distin-

guish among patients. The related literature for this subsection include two other papers, one by

Bogomolnaia and Moulin (2004), who inspected a two-sided matching problem with the same setup

as the model above, and one by Dutta and Ray (1989), who introduced the egalitarian approach for

convex TU-cooperative games.
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3.6 Multi-Way Kidney Exchanges with 0-1 Preferences

Roth, Sönmez, and Ünver (2007) inspected what is lost when the central authority conducts only two-

way kidney exchanges rather than multi-way exchanges. More specifically, they inspected the upper

bound of marginal gains from conducting 2&3-way exchanges instead of only two-way exchanges,

2&3&4-way exchanges instead of only 2&3-way exchanges, and unrestricted multi-way exchanges

instead of only 2&3&4-way exchanges. The setup is very similar to the previous subsection with

only one difference: a matching does not necessarily consist of two-way exchanges. All results in this

subsection are due to Roth, Sönmez, and Ünver (2007) unless otherwise noted.

An example helps illustrate why the possibility of a 3-way exchange is important:

Example 4 Consider a sample of 14 incompatible patient-donor pairs. A pair is denoted as type

x-y if the patient and donor are ABO blood-types x and y respectively. There are nine pairs, who are

blood-type incompatible, of types A-AB, B-AB, O-A, O-A, O-B, A-B, A-B, A-B, and B-A; and five

pairs, who are incompatible because of tissue rejection, of types A-A, A-A, A-A, B-O, and AB-O. For

simplicity in this example there is no tissue rejection between patients and other patients’ donors.

• If only two-way exchanges are possible:

(A-B,B-A); (A-A,A-A); (B-O,O-B); (AB-O,A-AB) is a possible Pareto-efficient matching.

• If three-way exchanges are also feasible:

(A-B,B-A); (A-A,A-A,A-A); (B-O,O-A,A-B); (AB-O, O-A, A-AB) is a possible maximal Pareto-

efficient matching.

The three-way exchanges allow

1. an odd number of A-A pairs to be transplanted (instead of only an even number with two-way

exchanges), and

2. a pair with a donor who has a blood type more desirable than her patient’s to facilitate three

transplants rather than only two. Here, the AB-O type pair helps two pairs with patients having

less desirable blood type than their donors (O-A and A-AB), while the B-O type pair helps one

pair with a patient having a less desirable blood type than her donor (O-A) and a pair of type

A-B. Here, note that another A-B type pair is already matched with a B-A type, and this second

A-B type pair is in excess.

First we introduce two upper-bound assumptions and find the size of Pareto-efficient exchanges

with only two-way exchanges:

Assumption 1 (Upper Bound Assumption) No patient is tissue-type incompatible with another
patient’s donor.
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Assumption 2 (Large Population of Incompatible Patient-Donor Pairs) Regardless of the
maximum number of pairs allowed in each exchange, pairs of types O-A, O-B, O-AB, A-AB, and

B-AB are on the "long side" of the exchange in the sense that at least one pair of each type remains

unmatched in each feasible set of exchanges.

The first result is about the greatest lower bound of the size of two-way Pareto-efficient matchings:

Proposition 2 (Roth, Sönmez, and Ünver 2007) The Maximal Size of Two-Way Match-
ings: For any patient population obeying Assumptions 1 and 2, the maximum number of patients

who can be matched with only two-way exchanges is:

2 (#(A-O)+#(B-O)+#(AB-O)+#(AB-A)+#(AB-B))

+ (#(A-B)+#(B-A)− |#(A-B)−#(B-A)|)

+ 2

µ¹
#(A-A)
2

º
+

¹
#(B-B)
2

º
+

¹
#(O-O)
2

º
+

¹
#(AB-AB)

2

º¶
where bac refers to the largest integer smaller than or equal to a and #(x-y) refers to the number of
x-y type pairs.

We can generalize the above example in a proposition for three-way exchanges. We introduce an

additional assumption for ease of notation. The symmetric case implies replacing types "A" with

"B" and "B" with "A" in all of the following results.

Assumption 3 #(A-B) > #(B-A).

The following is a simplifying assumption.

Assumption 4 There is either no type A-A pair or there are at least two of them. The same is also
true for each of the types B-B, AB-AB, and O-O.

When three-way exchanges are also feasible, as we noted earlier, Lemma 3 no longer holds. Thus,

we consider the largest of the Pareto-efficient matchings under 2&3-way matching technology.

Proposition 3 (Roth, Sönmez, and Ünver 2007) The Maximal Size of 2&3-Way Match-
ings: For any patient population for which Assumptions 1-4 hold, the maximum number of patients

who can be matched with two-way and three-way exchanges is:

2 (#(A-O)+#(B-O)+#(AB-O)+#(AB-A)+#(AB-B))

+ (#(A-B)+#(B-A)− |#(A-B)−#(B-A)|)
+ (#(A-A)+#(B-B)+#(O-O)+#(AB-AB))

+ #(AB-O)

+min{(#(A-B)−#(B-A)), (#(B-O)+#(AB-A))}
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And to summarize, the marginal effect of availability of 2&3-way kidney exchanges over two-way

exchanges is:

#(A-A)+#(B-B)+#(O-O)+#(AB-AB)

− 2
µ∙
#(A-A)
2

¸
+

∙
#(B-B)
2

¸
+

∙
#(O-O)
2

¸
+

∙
#(AB-AB)

2

¸¶
+#(AB-O)

+min{(#(A-B)−#(B-A)), (#(B-O)+#(AB-A))}

What about the marginal effect of 2&3&4-way exchanges over 2&3-way exchanges? It turns out

that there is only a slight improvement in the maximal matching size with the possibility of four-way

exchanges. We illustrate this using the above example:

Example 5 (Example 4 Continued) If four-way exchanges are also feasible, instead of the ex-
change (AB-O, O-A, A-AB) we can now conduct a four-way exchange (AB-O, O-A, A-B, B-AB).

Here, the valuable AB-O type pair helps an additional A-B type pair in excess in addition to two

pairs with less desirable blood-type donors than their patients.

Proposition 4 (Roth, Sönmez, and Ünver 2007) The Maximal Size of 2&3&4-Way
Matchings: For any patient population in which Assumptions 1-4 hold, the maximum number

of patients who can be matched with two-way, three-way, and four-way exchanges is:

2 (#(A-O)+#(B-O)+#(AB-O)+#(AB-A)+#(AB-B))

+ (#(A-B)+#(B-A)− |#(A-B)−#(B-A)|)
+ (#(A-A)+#(B-B)+#(O-O)+#(AB-AB))

+ #(AB-O)

+min{(#(A-B)−#(B-A)),
(#(B-O)+#(AB-A)+#(AB-O))}

Therefore, in the absence of tissue-type incompatibilities between patients and other patients’ donors,

the marginal effect of four-way kidney exchanges is bounded from above by the rate of the very rare

AB-O type.

It turns out that under the assumptions above, larger exchanges do not help to match more

patients. This is stated as follows:

Theorem 17 (Roth, Sönmez, and Ünver 2007) Availability of Four-Way Exchange Suf-
fices: Consider a patient population for which Assumptions 1, 2, 4 hold and let μ be any maximal
matching (when there is no restriction on the size of the exchanges). Then there exists a maximal

matching ν that consists only of two-way, three-way, and four-way exchanges, under which the same

set of patients benefits from exchange as in matching μ.
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In fact, Roth, Sönmez, and Ünver proved a more general theorem, which states that as long as

there are n object types (e.g. for kidneys, 4 blood-types) and compatibility is determined by a partial

order (i.e. a transitive, reflexive, anti-symmetric binary relation, e.g. blood-type compatibility is a

partial order with "O" at the highest level, "A" and "B" incomparable with each other at the next

level, and "AB" at the bottom level of compatibility), if Assumptions 2 and 4 hold, and μ is any

maximal matching, then there exists a maximal matching ν which consists only of 2&3&...&n-way

exchanges, in which the same agents are matched as in μ.

The strategic properties of multi-way kidney exchange mechanisms are inspected by Hatfield

(2005) in the 0-1 preference domain. This result is a generalization of Theorem 13.

A deterministic kidney exchange mechanism is consistent* if whenever it only selects a multi-
way matching in set X ⊆M as its outcome, where all matchings in X generate the same utility

profile when the set of feasible individually rational matchings isM, then for any other problem for

the same set of pairs such that the set of feasible individually rational matchings is N ⊂M with

X ∩N 6= ∅, it selects a multi-way matching in set X ∩N .7,8 The last result of this section is as
follows:

Theorem 18 (Hatfield 2005): If a deterministic mechanism is non-bossy and strategy-proof

then it is consistent*. Moreover, a consistent* mechanism is strategy-proof.9

Thus, it is trivial to create strategy-proof mechanisms using maximal-priority or priority multi-

way exchange rules. By maximal-priority mechanisms, we mean mechanisms that maximize the

number of patients matched (under an exchange restriction such as 2, 3, 4, etc., or no exchange size

restriction) and then use a priority criterion to select among such matchings.

3.7 Recent Developments and Related Literature

In closing of this section, we would like to note that New England Program for Kidney Exchange

(NEPKE)10 is using a priority-based mechanism that incorporates 2&3&4-way paired exchanges, list

exchanges, and non-directed altruistic donor exchanges (similar to the list exchanges, instead of the

pair initiating a list exchange, an altruistic donor is used, e.g. see Sönmez and Ünver, 2006 and Roth,

Sönmez, Ünver, Delmonico, and Saidman, 2006; also see Roth, Sönmez, and Ünver, 2005b). The

Alliance for Paired Donation (APD)11 is another kidney exchange program that has been established

7Recall that a kidney exchange mechanism may select many matchings that are utilitywise equivalent in the 0-1
preference domain. A two-way priority mechanism is an example.

8We use the * superscript to distinguish this new property from the consistency property we introduced in the
house allocation problem.

9When there are possible indifferences in preferences, non-bossiness and strategy-proofness together are not neces-
sarily equivalent to coalitional strategy-proofness.
10See http://www.nepke.org retrieved on 10/16/2008.
11See http://www.paireddonation.org retrieved on 10/16/2008.
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with the help of economists. This program is larger than its New England counterpart in number

of transplant centers participating. In 2007, remarkably most of the kidney exchanges conducted in

NEPKE and APD were chain exchanges initiated by a non-directed altruistic donor.

At the time of the preparation of this survey, the United Network for Organ Sharing (UNOS), the

contractor for the federal Organ Procurement and Transplant Network (OPTN) that is in charge of

the allocation of deceased donor kidneys in the US, has been designing the national kidney exchange

program in collaboration with medical doctors, economists, and computer scientists.

Finding maximal multi-way matchings with a size limit is an NP-complete problem unlike its

counterpart for two-way exchanges. Especially in large patient pools this may create a computational

handicap. In the computer science literature, Abraham, Blum, and Sandholm (2007) introduced an

integer programming algorithm that can compute the maximal multi-way exchanges with size-limit

in a fast fashion exploiting the special structure of the multi-way kidney exchange problem. They

use the Roth, Sönmez, and Ünver (2007) formulation of the multi-way exchange problem in their

algorithm. Ünver (2007) considered a dynamic exchange problem where pairs arrive at the pool under

a stochastic Poisson process. He finds optimal dynamic matching in this framework and shows that it

may always not be optimal to conduct the largest exchange currently possible. Yilmaz (2008a) found

an egalitarian mechanism that allows multi-way list and paired exchanges under compatibility-based

preferences.

Zenios (2002) studied the optimal control of a paired and list exchange program. In addition

to the simulations reported in Roth, Sönmez, and Ünver (2004, 2005b, and 2007), in the medical

literature starting with Segev et al. (2005), who simulated possible gains in the US population

using Edmonds’ (1965) algorithm from weight-maximal two-way exchanges, several papers reported

Monte-Carlo simulations estimating possible gains from various ideas in kidney exchange.

In the algorithmic design literature, there are theoretically related studies to the kidney exchange

problem such as Abraham et al. (2005), Cechlárová, Fleiner, and Manlove (2005), Biró and Cech-

lárová (2007), Irving (2007), and Biró and McDermid (2008). These studies study computational

complexity of different proposed solutions to the house allocution and kidney exchange problems.



Chapter 4

School Admissions

4.1 College Admissions

In Gale and Shapley’s (1962) seminal model, there exist two sides of agents referred to as colleges

and students. Each student would like to attend a college and has preferences over colleges and

the option of remaining unmatched. Each college would like to recruit a maximum number of

students determined by their exogenously given capacity. They have preferences over individual

students, which translate into preferences over groups of students under a responsiveness (Roth

1985) assumption. More specifically, a college admissions problem consists of

• a finite set of students I,

• a finite set of schools S,

• a quota vector q = (qs)s∈S such that qs ∈ Z++ is the quota of school s,

• a preference profile for students ÂI= (Âi)i∈I such that Âi is a strict preference relation

over schools and remaining unmatched, denoting the strict preference relation of student i, and

• a preference profile for schools over individual students ÂS= (Âs)s∈S such that Âs is

a strict preference relation over students and remaining unmatched, such that when such a

relation is extended over groups of students it satisfies the following two restrictions known as

responsiveness (Roth 1985):1

— whenever i, j ∈ I and J ⊆ I\ {i, j}, i ∪ J Âs j ∪ J if and only if i Âs j,

— whenever i ∈ I and J ⊆ I\i, i∪J Âs J if and only if i Âs ∅, which denotes the remaining
unmatched option for a school (and for a student).

1By an abuse of notation, we will denote a singleton without {} .

41
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A matching is the outcome of a problem, and is defined by a function μ : I ∪ S → 2S ∪ 2I such
that for each student i ∈ I, μ (i) ∈ 2S with |μ (i)| ≤ 1, for each school s, μ (s) ∈ 2I with |μ (s)| ≤ qs,

and μ (i) = s if and only if i ∈ μ (s). A (deterministic direct) mechanism selects a matching for

each problem.

The central solution concept in the literature is stability (Gale and Shapley 1962). A matching μ

is stable if

• each match is individually rational, i.e., there is no blocking agent x and a partner y ∈ μ (x)

such that μ (x) \y Âx μ (x), that is, no agent would rather not be matched with one of her

mates under μ (if x is a student, then she prefers remaining unmatched to her mate), and

• there is no blocking pair (i, s) ∈ I × S such that

— s Âi μ (i) and

— i ∪ (μ (s) \x) Âi μ (s) for some x ∈ μ (s) or |μ (s)| < qs and μ (s) ∪ i Âs μ (s),

that is, there exists no student-school pair who would prefer to be matched with each other

rather than at most one of their current mates under μ.

Gale and Shapley prove that for each market there exists a stable matching that can be found

through the school-proposing or student-proposing versions of the deferred acceptance (DA)
algorithm. We state these algorithms below:

Algorithm 8 The school-proposing DA algorithm:
Step 1: Each school s proposes to its top choice qs students (if it has fewer individually rational

choices than qs, then it proposes to all its individually rational students). Each student rejects

any individually irrational proposals and, if more than one individually rational proposal is received,

"holds" the most preferred.
...

Step k: Any school s that was rejected in the previous step by students makes a new proposal to

its most preferred students who haven’t yet rejected it (if there are fewer than individually rational

students, it proposes to all of them). Each student "holds" her most preferred individually rational

offer to date and rejects the rest.

The algorithm terminates after a step where no rejections are made by matching each student to

the school (if any) whose proposal she is "holding."

Algorithm 9 The student-proposing DA algorithm:
Step 1: Each student proposes to her top-choice individually rational school (if she has one).

Each school s rejects any individually irrational proposals and, if more than qs individually rational

proposals are received, "holds" the most preferred qs of them and rejects the rest.
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...

Step k: Any student who was rejected in the previous step makes a new proposal to her most
preferred individually rational school that hasn’t yet rejected her (if there is one). Each school s

"holds" at most qs best student proposals to date, and rejects the rest.

The algorithm terminates after a step where no rejections are made by matching each school to

the students (if any) whose proposals it is "holding."

These algorithms have desirable properties:

Theorem 19 (Gale and Shapley 1962) The student- and school-proposing DA algorithm each

converge to a stable matching in a finite number of steps.

Moreover, these algorithms can be used to determine the outcomes of important stable mecha-

nisms:

Theorem 20 (Gale and Shapley 1962) The outcome of the student-proposing DA algorithm is

at least as good as any other stable matching for all students. The outcome of the school-proposing

DA algorithm is at least as good as any other stable matching for all schools.

We will refer to the mechanism whose outcome is reached by the student-proposing DA algorithm

as the student-optimal stable mechanism and the mechanism whose outcome is reached by the

school-proposing DA algorithm as the school-optimal stable mechanism.2

Stability implies Pareto efficiency. However, it imposes many restrictions on mechanisms:

Theorem 21 (Roth 1982b) There is no stable and strategy-proof college admissions mechanism.

Yet, a partially positive result exists:

Theorem 22 (Dubins and Freedman 1981, Roth 1982b) It is a weakly dominant strategy for
students to tell the truth under the student-optimal stable mechanism.

However, we have a negative result for schools’ incentives under stable mechanisms:

Theorem 23 (Roth 1985) There exists no stable mechanism that makes it a dominant strategy

for each school to state its preferences over the students truthfully.

2See Roth and Sotomayor (1990) for other properties of stable matchings, such as the lattice property, conflict of
interest, and parallels between the model in which a school can also be matched with a single student (also known as
the one-to-one matching market or marriage market) and the college admissions model.
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While these results are true in the college admissions setting, the hospital-intern entry-level labor

markets in the US can be modeled using the same framework. In the US, the National Residency

Matching Program (NRMP) oversees this matching procedure. Roth (1984) showed that the previous

NRMP mechanism that was in use from 1950s to 1997 was equivalent to the school-optimal stable

mechanism. Roth (1991) observed that several matching mechanisms that have been used in Britain

for hospital-intern matching were unstable and as a result were abandoned, while stable mechanisms

survived. This key observation helped to pin down stability as a key property of matching mechanisms

in the college admissions framework. Roth and Peranson (1999) introduced a new design for the

NRMP matching mechanism based on the student-optimal stable mechanism. Interestingly, the

replacement of the older stable mechanism with the newer mechanism was partially attributed to the

positive and negative results in Theorems 22 and 23, respectively.

4.1.1 Differences between College Admissions, Student Placement, and
School Choice Problems

Although Gale and Shapley named their model as the college admissions problem, not all college

admission procedures can be studied within this framework. For example, US college admissions

are usually decentralized. However, there are countries, such as Turkey, Greece, and China, where

the process of college admissions is centralized. In such countries, colleges are not strategic agents

unlike in the college admissions model, while students potentially are. School seats are objects to be

consumed, and there are priority orderings for each school over students based on their exam scores.

We will refer to such a problem as a student placement problem (Balinski and Sönmez 1999). In

the US, K-12 public school admissions are centralized in many states. Moreover, there is relative

freedom of school choice freedom, i.e., students do not have to attend the neighborhood school, but

have the chance to attend a different school. In such a problem, schools seats are objects to be

consumed, and students are potential strategic agents. Priorities that order students for each school

are exogenously determined by geography and demographics. We will refer to such a problem as a

school choice problem (Abdulkadiroğlu and Sönmez 2003a). We explore these models and real-life

mechanisms below.

4.2 Student Placement

A student placement problem consists of

• a finite set of students I,

• a finite set of schools S,

• a quota vector q = (qs)s∈S such that qs ∈ Z++ is the quota of school s,
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• a preference profile for students ÂI= (Âi)i∈I such that Âi is a strict preference relation

over schools and remaining unmatched option, denoting the strict preference relation of student

i,

• a finite set of categories for schools C,

• an exam score profile for students e = (ei)i∈I such that for any i ∈ I and ei = (eic)c∈C where

for each category c ∈ C, eic ∈ R+ is the exam score of student i in this category and there are

no other students j ∈ I\ {i} such that eic = ejc, and

• a type function mapping each school to a category type, t : S → C.

Throughout this subsection we fix I, S,C, and t. Thus a placement problem is denoted through

a triple (ÂI , q, e) .

Each school s admits students according to the exam scores of students in category t (s).

For each student placement problem, we can construct an associated college admissions
problem by assigning each school s a preference relation Âs based on the ranking in its category

t(s).

We will define a matching and mechanism in this domain together with a new concept.

Amatching is a function μ : I −→ S∪{∅} such that no school is assigned to more students than
its capacity. When μ(i) = ∅, we say that student i is unmatched or matched to no school option.
A tentative student placement is a correspondence μ : I ⇒ S ∪ {∅} such that no school is

assigned to more students than its capacity. Observe that a tentative student placement allows a

student to be assigned to more than one school.

A mechanism is a function that assigns a matching for each student placement problem.

Next, we will define desirable properties of student placement mechanisms.

A matching μ eliminates justified envy if, whenever a student i prefers another student j’s
assignment μ(j) to her own, she ranks worse than j in the category of school μ(j).

A matching μ is non-wasteful if, whenever a student i prefers a school s to her own, there is no
empty slot at school s under μ.

We introduced these new concepts to relate elimination of justified envy, non-wastefulness, and

individual rationality to stability in the college admissions model as follows:

Proposition 5 (Balinski and Sönmez 1999) A school placement matching eliminates justified
envy and is non-wasteful and individually rational if and only if the matching is stable in the asso-

ciated college admissions problem. That is, there is an isomorphism with stable college admissions.

Elimination of justified envy is a critical property in the context of Turkish college admissions.

In Turkey, colleges have schools in different areas such as medicine, engineering, humanities, social

sciences, and management. The score categories for these schools are typically different from each
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other. Medical schools usually admit based on a science-weighted score, engineering schools use a

math-weighted score, management schools use an equal-language-math-weighted score, and many

social sciences and humanities use a social-science-weighted score. Elimination of justified envy is

used as the basic notion of fairness in Turkish placement system.

A mechanism eliminates justified envy (or is non-wasteful) if it always selects a matching
that eliminates justified envy (is non-wasteful).

4.2.1 Simple Case: One Skill Category

If there is a single category, then the following proposition follows:

Proposition 6 (Balinski and Sönmez 1999) If there is only one category (and hence only one
ranking) then there is only one mechanism that is Pareto-efficient and eliminates justified envy: The

simple serial dictatorship induced by this ranking.

It is also useful to observe that there is a unique stable matching in the associated college admis-

sions model that coincides with the outcome of the above serial dictatorship.

An example from Turkey is again useful in this context. There exist merit-based Turkish high

schools that admit their students using the results of a centralized exam. This exam has a single

score and category. It turns out that the mechanism used in Turkey, developed independently by

computer programmers, is the induced serial-dictatorship.

4.2.2 Current Mechanism in Turkish College Student Placement: Multi-
Category Serial Dictatorship

Currently, the Turkish centralized mechanism uses the following iterative algorithm:

Algorithm 10 The multi-category serial dictatorship:
Step 1:

• For each category c: Consider the ranking induced by the exam scores in this category and

assign the school seats in this category to students with the induced simple serial dictatorship.

• Assign the "no school" option to all students who are not assigned a school.

• This in general leads to a tentative student placement.

• For each student i construct Â1i from Âi as follows:

— If the student is not assigned more than one school then Â1i=Â1i .
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— If the student is assigned more than one school then obtain Â1i by moving the "no school"
option ∅ right after the best of these assignments, otherwise keeping the ranking of the

schools the same.

Let Â1= (Â1i )i∈I be the list of adjusted preferences.

...

Step k: Construct Âk from Âk−1 as it is described in Step 1.

The procedure terminates at the step in which no student is assigned more than one school. The

multi-category serial dictatorship selects this matching.

We give an example to show how this algorithm works.

Example 6 I = {i1, i2, i3, i4, i5}, S = {s1, s2, s3}, q = (qs1 , qs2, qs3) = (2, 1, 1), C = {c1, c2}, t(s1) =
c1, t(s2) = t(s3) = c2, with preference profile Â and exam score profile e given as:

i1 : s2 − s1 −∅ ei1 = (9, 9)

i2 : s1 − s2 − s3 −∅ ei2 = (8, 6)

i3 : s1 − s3 − s2 −∅ ei3 = (7, 7)

i4 : s1 − s2 −∅ ei4 = (6, 8)

i5 : s2 − s3 − s1 −∅ ei5 = (5, 5)

Note that these scores induce the following rankings in categories c1 and c2:

c1 : i1 i2 i3 i4 i5

c2 : i1 i4 i3 i2 i5

Step 1: In Step 1 we first find the serial dictatorship outcomes for Â:

c1 :
i1 i2

s1 s1
c2 :

i1 i4 i3

s2 ∅ s3

Step 1 yields the following tentative student placement:

ν1 =

Ã
i1 i2 i3 i4 i5

s1, s2 s1 s3 ∅ ∅

!
Since student i1 is assigned two schools her preferences are truncated:

i1 : s2 −∅

For other students: Â1i2=Âi2, Â1i3=Âi3, Â1i4=Âi4, and Â1i5=Âi5.
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Step 2: In Step 2 we first find the serial dictatorship outcomes for Â1:

c1 :
i1 i2 i3

∅ s1 s1
c2 :

i1 i4 i3

s2 ∅ s3

Step 2 yields the following tentative student placement:

ν2 =

Ã
i1 i2 i3 i4 i5

s2 s1 s1, s3 ∅ ∅

!
.

Since student i3 is assigned two schools her preferences are truncated:

i3 : s1 −∅

For other students: Â2i1=Â1i1, Â2i2=Â1i2, Â2i4=Â1i4, and Â2i5=Â1i5.
Step 3: In Step 3 we first find the serial dictatorship outcomes for Â2:

c1 :
i1 i2 i3

∅ s1 s1
c2 :

i1 i4 i3 i2

s2 ∅ ∅ s3

Step 3 yields the following tentative student placement:

ν3 =

Ã
i1 i2 i3 i4 i5

s2 s1, s3 s1 ∅ ∅

!

Since student i2 is assigned two schools her preferences are truncated:

i2 : s1 −∅

For other students: Â3i1=Â2i1, Â3i3=Â2i3, Â3i4=Â2i4, and Â3i5=Â2i5.
Step 4: In Step 4 we first find the serial dictatorship outcomes for Â3.

c1 :
i1 i2 i3

∅ s1 s1
c2 :

i1 i4 i3 i2 i5

s2 ∅ ∅ ∅ s3

Step 4 yields the following tentative student placement (which is also a matching):

ν4 =

Ã
i1 i2 i3 i4 i5

s2 s1 s1 ∅ s3

!

Since no student is assigned more than one school in ν4 the algorithm terminates and ϕmsd(ÂI , e, q) =

ν4.
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4.2.3 Mechanisms via the Associated College Admissions Problem

We can introduce two desirable mechanisms using the isomorphism between the student placement

and school admissions models:

• The Gale-Shapley school-optimal stable mechanism: The mechanism that selects the

school-optimal stable matching of the associated college admissions problem for each student

placement problem.

• The Gale-Shapley student-optimal stable mechanism: The mechanism that selects the

student-optimal stable matching of the associated college admissions problem for each student

placement problem.

The following theorem proves the relationship between the Gale-Shapley mechanisms and the

multi-category serial dictatorship.

Theorem 24 (Balinski and Sönmez 1999) The multi-category serial dictatorship is equivalent
to the Gale-Shapley school-optimal stable mechanism.

Next, we comment on the properties of this mechanism:

4.2.4 Pareto Efficiency and Elimination of Justified Envy

Although all stable mechanisms (including Gale and Shapley’s) are Pareto-efficient in the college

admissions model, in the student placement model, this is no longer true. The reason can be summa-

rized as follows: Since schools are no longer agents in the latter model, we are no longer interested

in their welfare. Moreover, unstable matchings can raise the welfare of students over the student-

optimal stable matching in the college admissions model. These two results together imply that the

outcome of any stable mechanism can be Pareto-inefficient in the student placement model:

Example 7 There are three students i1, i2, i3 and three schools s1, s2, s3, each of which has only one
seat and admit according to the following two categories c1 and c2 as t (s1) = c1, t (s2) = c2, and

t (s3) = c3. The preferences and exam scores are as follows:

i1 : s2 − s1 − s3 −∅
i2 : s1 − s2 − s3 −∅
i3 : s1 − s2 − s3 −∅

ei1 = (10, 7)

ei2 = (8, 8)

ei3 = (9, 3)

These exam scores induce the following ranking for categories:

c1 : i1 − i3 − i2

c2 : i2 − i1 − i3
.
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Only μ eliminates justified envy but it is Pareto-dominated by ν:

μ =

Ã
i1 i2 i3

s1 s2 s3

!
ν =

Ã
i1 i2 i3

s2 s1 s3

!
However, the multi-category serial dictatorship mechanism is not even Pareto-efficient within the

set of mechanisms that eliminate justified envy.

Example 8 Let I = {i1, i2} S = {s1, s2} q = (1, 1) C = {c1, c2}, t(s1) = c1, t(s2) = c2. The

preferences of students are given as follows:

i1 : s1 − s2 −∅ ei1 = (6, 8)

i2 : s2 − s1 −∅ ei2 = (8, 6)

The algorithm terminates in one step resulting in the following Pareto-inefficient matching:

ϕmsd [ÂI , e, q] =

Ã
i1 i2

s2 s1

!
It is Pareto-dominated by the following matching that eliminates justified envy:

μ =

Ã
i1 i2

s1 s2

!
.

On the other hand, we can adopt Theorem 20 (due to Gale and Shapley) in the school placement

domain for the Gale-Shapley student-optimal stable mechanism as follows:

Theorem 25 (Gale and Shapley 1962) The Gale-Shapley student-optimal stable mechanism
Pareto-dominates any other mechanism that eliminates justified envy.

4.2.5 Strategy-Proofness and Elimination of Justified Envy

On the other hand, strategy-proofness is no longer at odds with the elimination of justified envy, yet

the multi-category serial dictatorship is not strategy-proof:

Example 9 (Example 8 continued) Recall that

ϕmsd [ÂI , e, q] =

Ã
i1 i2

s2 s1

!
Now suppose i1 announces a fake preference relation Â0i1 where only s1 is individually rational.
In this case

ϕmsd
£
Â0i1 ,Âi2 , e, q

¤
=

Ã
i1 i2

s1 s2

!
and hence, student i1 successfully manipulates the multi-category serial dictatorship.
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A mechanism is strategy-proof if truth telling is a weakly dominant strategy for each student
in its associated preference revelation game. We can adopt Theorem 22 for the student placement

model:

Theorem 26 (Dubins and Freedman 1981, Roth 1982b): The Gale-Shapley student-optimal
stable mechanism is strategy-proof.

The following theorem shows that there is no other desirable mechanism:

Theorem 27 (Alcalde and Barberà 1994): The Gale-Shapley student-optimal stable mechanism
is the only mechanism that eliminates justified envy, and is individually rational, non-wasteful, and

strategy-proof.

4.2.6 Respecting Improvements

Example 10 Example 8 continued Recall that

ϕmsd [ÂI , e, q] =

Ã
i1 i2

s2 s1

!
.

Now suppose student i1 scores worse in both tests and her new exam scores are e0i1 = (5, 5). In this

case

ϕmsd
£
ÂI , e

0i1, ei2, q
¤
=

Ã
i1 i2

s1 s2

!
.

and student i1 is rewarded by getting her top choice as a result of worse performance!

Note the example is about rewarding worse performance, not respecting better performance. We

define this as a property: A mechanism respects improvements if a student never receives a worse
assignment as a result of an increase in one or more of her exam scores. The following theorems give

another characterization of the Gale-Shapley student-optimal stable mechanism:

Theorem 28 (Balinski and Sönmez 1999): The Gale-Shapley student-optimal stable mecha-
nism respects improvements.

Theorem 29 (Balinski and Sönmez 1999): The Gale-Shapley student-optimal stable mech-
anism is the only mechanism that is individually rational and non-wasteful, and that eliminates

justified envy and respects improvements.

Thus, the Gale-Shapley student-optimal stable mechanism is the clear winner for student place-

ment, while the Turkish student placement system uses a mechanism that is equivalent to the Gale-

Shapley school-optimal stable mechanism.3

3See Ehlers and Klaus (2006) and Kojima and Manea (2007b) for two other characterizations regarding the Gale-
Shapley student-optimal stable mechanism in resource allocation problems.
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4.3 School Choice

Next, we discuss the third model in this section: A school choice problem (Abdulkadiroğlu and

Sönmez 2003a) models the school choice in public schools in many school districts in the US, such

as Boston, St. Petersburg (Florida), Minneapolis, etc. It consists of a number of students, each of

whom should be assigned a seat at one of a number of schools. Each school has a maximum capacity

but there is no shortage of the total seats. Each student has preferences over all schools and each

school has a priority ordering of all students. The priorities are exogenous.

Formally, a school choice problem consists of

• a finite set of students I,

• a finite set of schools S,

• a quota vector q = (qs)s∈S such that qs ∈ Z++ is the quota of school s,

• a preference profile for students ÂI= (Âi)i∈I such that Âi is a strict preference relation

over schools and remaining unmatched, denoting the strict preference relation of student i,

• a priority profile for schools %S= (%s)s∈S such that for each school s ∈ S, %s is a binary

relation over the set of students that is complete, reflexive, and transitive. That is, i %s j means

that student i has at least as high priority as student j at school s. Two distinct students i and

j can have the same priority at school s, which is denoted as i ∼s j (i.e., ∼s is the cyclic part

of %s). If i has higher priority than j at s, we denote it as i Âs j (i.e., Âs is the antisymmetric

part of %s).

This problem has a number of differences from the college admissions problem and the student

placement problem:

• Differences from college admissions:

— Students are (possibly strategic) agents; school seats are objects to be consumed.

— Elimination of justified envy is plausible but not a must. If imposed, then the school
choice problem is isomorphic to stable college admissions.

• Differences from student placement:

— Priorities are exogenous, and

— Elimination of justified envy is plausible but not a must.
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4.3.1 The Boston School Choice Mechanism

The most commonly used school choice mechanism is that used by the Boston Public Schools (BPS)

until 2005:

Algorithm 11 The Boston (school choice) mechanism:

1. For each school a priority ordering is exogenously determined. (In case of Boston, priorities

depend on home address, whether the student has a sibling already attending a school, and a

lottery number to break ties.)

2. Each student submits a preference ranking of the schools.

3. The final phase is the student assignment based on preferences and priorities:

Step 1: In Step 1 only the top choices of the students are considered. For each school, consider
the students who have listed it as their top choice and assign seats of the school to these students

one at a time following their priority order until either there are no seats left or there is no

student left who has listed it as her top choice.
...

Step k: Consider the remaining students. In Step k only the kth choices of these students are
considered. For each school still with available seats, consider the students who have listed it as

their kth choice and assign the remaining seats to these students one at a time following their

priority order until either there are no seats left or there is no student left who has listed it as

her kth choice.

4.3.2 Incentives, Pareto Efficiency, and Justified-Envy-Freeness with
Strict and Weak Priorities

The major difficulty with the Boston mechanism is that it is not strategy-proof. Moreover, it is

almost straightforward to manipulate it. Even if a student has a very high priority at school s,

unless she lists it as her top choice she loses her priority to students who have top ranked school s.

Hence the Boston mechanism gives parents strong incentives to overrank schools where they have

high priority.

There is also some evidence in the popular media regarding the ease of manipulation of this

mechanism. Consider the following quotation from the St. Petersburg Times (09/14/2003):

"Make a realistic, informed selection on the school you list as your first choice. It’s

the cleanest shot you will get at a school, but if you aim too high you might miss. Here’s

why: If the random computer selection rejects your first choice, your chances of getting
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your second choice school are greatly diminished. That’s because you then fall in line

behind everyone who wanted your second choice school as their first choice. You can fall

even farther back in line as you get bumped down to your third, fourth and fifth choices."

Further evidence comes from the 2004-2005 BPS School Guide:

"For a better choice of your ‘first choice’ school . . . consider choosing less popular

schools."

The Boston mechanism does not eliminate justified envy, either. Priorities are lost unless the

school is ranked as the top choice. In the previous section we argued that if elimination of justified

envy is plausible, then the Gale-Shapley student-optimal stable mechanism is the big winner! How-

ever, unlike in the student placement problem, in which ties in student exam scores are rare, there

are possibly many students who have the same priority in the school choice problem. For example,

in Boston, all students who live in the walking zone of a school and have no siblings attending the

school have the same priority. Thus, the student-proposing DA algorithm can be used after break-

ing the tie among equal priority students through a single even lottery. This lottery preserves the

strategy-proofness and justified-envy-freeness of the Gale-Shapley mechanism.

The following theorem is about the Nash equilibria of the Boston Mechanism revelation game:

Theorem 30 (Ergin and Sönmez 2006): When priorities are strict, the set of Nash equilibrium
outcomes of the preference revelation game induced by the Boston mechanism is equal to the set of

stable matchings of the associated college admissions game under true preferences.

Thus, we can state the following corollary regarding the Boston mechanism and the Gale-Shapley

student-optimal stable mechanism:

Corollary 1 When priorities are strict, the dominant-strategy equilibrium outcome of the Gale-

Shapley student-optimal stable mechanism either Pareto-dominates or is equal to the Nash equilib-

rium outcomes of the Boston mechanism.

The preference revelation game induced by the Boston mechanism is a "coordination game"

among large numbers of parents in which there is incomplete information. So it is unrealistic to

expect to reach a Nash equilibrium in practice.

On the other hand, if there is a limit to the number of schools that a student can reveal to

the centralized match (as in Boston and New York City), then Corollary 1 no longer holds, while

Theorem 30 still holds:

Theorem 31 (Haeringer and Klijn 2007) When priorities are strict and students can reveal
only a limited number of schools in their preference lists, the Gale-Shapley student-optimal stable

mechanism may have Nash equilibria in undominated strategies that induce justified envy.
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Haeringer and Klijn (2007) also found the sufficient conditions when equilibria of the above game

eliminate justified envy.

On the other hand, the following nice property of the Gale-Shapley mechanism relates its efficiency

properties to any other strategy-proof and Pareto-efficient mechanism:

Theorem 32 (Kesten 2008a)When priorities are strict, the Gale-Shapley student-optimal stable
mechanism is not Pareto-dominated by any other Pareto-efficient mechanism that is strategy-proof.

When a school has the same priority for two or more students, some results under strict priorities

extend, while some don’t.

Under weak priorities, there can be many student-optimal justified-envy-free matchings,
matchings that are not Pareto-dominated by any other justified-envy-free matching and Pareto-

dominate any justified-envy-free matching that is not student optimal. Recall that when priorities

are strict, there is a unique such matching (see Theorem 25). The above mechanism also has desirable

properties for recovering such matchings:

Theorem 33 (Ehlers 2006, Erdil and Ergin 2008) When priorities are weak, all student-
optimal justified-envy-free matchings can be found by different tie-breaking rules among equal priority

students using the student-proposing DA algorithm.

This above result is a generalization of an earlier result of Abdulkadiroğlu and Sönmez (1998) who

showed that when all students have the same priority, all Pareto-efficient matchings can be achieved

through different serial dictatorships.

The following is a stronger generalization of the earlier result of Kesten (2008a) (Theorem 32) for

weak priorities:

Theorem 34 (Abdulkadirŏglu, Pathak, and Roth 2008) When priorities are weak, the Gale-
Shapley student-optimal stable mechanism with any tie breaking rule is not Pareto-dominated by

any other mechanism that is strategy-proof.

On the other hand, the Gale-Shapley student-optimal stable mechanism is not Pareto-efficient.

As we discussed in the previous section, there is an efficiency cost to the elimination of justified envy.

We restate a version of Example 7 below. Observe that this result does need strict priorities among

at least three students to hold:

Example 11 There are three students i1, i2, i3 and three schools s1, s2, s3, each of which has only
one seat. Priorities and preferences are as follows:

s1 : i1 − i3 − i2

s2 : i2 − i1 − i3

s3 : i2 − i1 − i3

i1 : s2 − s1 − s3

i2 : s1 − s2 − s3

i3 : s1 − s2 − s3
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Only μ eliminates justified envy but it is Pareto-dominated by ν:

μ =

Ã
i1 i2 i3

s1 s2 s3

!
ν =

Ã
i1 i2 i3

s2 s1 s3

!

Actually, the efficiency cost of justified envy is much more severe with weak priorities. The

following result can be contrasted with Theorems 25 and 26, which show that the Gale-Shapley

student-optimal stable mechanism is strategy-proof and Pareto-dominant among mechanisms that

eliminate justified envy when priorities are strict:

Theorem 35 (Erdil and Ergin 2008) When priorities are weak, there is no mechanism that is

constrained Pareto-efficient (within the justified-envy-free class) among (lottery) mechanisms that

eliminate justified envy and are (weakly) strategy-proof.4 ,5

To summarize, with weak priorities, the above results show the tension between strategy-proofness

and constrained efficiency for justified-envy-free mechanisms. The Gale-Shapley student-optimal

stable mechanism (with a tie-breaking rule that makes it strategy-proof, such as a single tie-breaking

lottery) is strategy-proof and Pareto-undominated by other strategy-proof mechanisms. Yet, there

exist justified-envy-free and non-strategy-proof mechanisms that Pareto-dominate this mechanism.

Two examples of constrained efficient and justified-envy-free mechanisms are given by Erdil and

Ergin (2008) and Kesten (2008a). These mechanisms are non-strategy-proof.

4.3.3 The School Choice TTC Mechanism

Given these negative results, one can argue that Pareto efficiency is a more important property than

elimination of justified envy. School boards can interpret priorities as trading rights to a particular

school. In this case a version of the TTC mechanism becomes very plausible. Abdulkadiroğlu

and Sönmez (2003a) introduced a mechanism whose outcome can be determined by the following

algorithm:

Algorithm 12 The school choice TTC algorithm:

• Break the ties among equal priority students of each school through a single even lottery.

• Assign a counter for each school that keeps track of how many seats are still available at the
school. Initially set the counters equal to the capacities of the schools.

4"Weak" strategy-proofness is defined for lottery mechanisms, and requires existence of at least one von Neumann-
Morgenstern utility function compatible with preferences, under which truth telling is a dominant strategy.

5Yilmaz (2008b) obtained a similar impossibility result for the house allocation with existing tenants domain.
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• Each student "points to" her favorite school. Each school points to the student who has the
highest priority.

• There is at least one cycle (by Lemma 2). Every student in a cycle is assigned a seat at the
school she points to and is removed. The counter of each school in a cycle is reduced by one

and if it reduces to zero, the school is also removed. Counters of all other schools stay put.

• Repeat above steps for the remaining "economy."

TTC simply trades priorities of students among themselves starting with the students with highest

priorities. TTC inherits the plausible properties of Gale’s TTC:

Theorem 36 (Abdulkadirŏglu and Sönmez 2003a) The school choice TTCmechanism is Pareto-
efficient and strategy-proof.

Chen and Sönmez (2006) conducted an experimental study and found that the Gale-Shapley

mechanism outperforms TTC and the Boston mechanism in terms of truthful revelation of prefer-

ences and overall efficiency. They related this result to the fact that TTC has a tedious algorithmic

description with respect to the Gale-Shapley mechanism; thus students understood the second al-

gorithm, better than the first one, under which they tried to manipulate their preferences. On the

other hand, Pais and Pintér (2007) showed that when the same games are played in an incomplete

information setting then TTC resulted with more efficiency than the Gale-Shapley mechanism and

the Boston mechanism.

4.4 Recent Developments and Related Literature

In New York City (Abdulkadiroğlu, Pathak, and Roth 2005), the Gale-Shapley student-optimal

stable mechanism was adopted in Fall 2003. The New York City school choice problem is a hybrid

between college admissions and school choice, since there are some strategic schools. In Boston

(Abdulkadiroğlu, Pathak, Roth, and Sönmez 2005, 2006), though TTC had a head start, the Gale-

Shapley student-optimal stable mechanism was selected to replace the Boston mechanism.

Ergin (2002) showed that under an acyclicity condition of priorities, the Gale-Shapley mecha-

nism finds Pareto-efficient outcomes in the school admissions domain. Moreover, the Gale-Shapley

mechanism is coalitionally strategy-proof in this case.

Since in the adopted mechanisms we discussed above, ties among equal priority students are

broken randomly, we may observe some unnecessary inefficiency under the Gale-Shaley student-

optimal stable mechanism.

Kesten (2008a) introduced a hybrid approach for the school choice domain that compensates

for the inefficiency of the Gale-Shapley student-optimal stable mechanism through a compromise
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mechanism that introduces minimal instability while creating more efficient outcomes. Moreover,

the instability is created with the consent of participating students: a blocking student will never be

worse off if she gives consent for such stability violations.

Erdil and Ergin (2008) recognized that the artificial tie-breaking of priorities induces inefficiencies

under the Gale-Shapley student-optimal stable mechanism. Therefore, after the algorithm converges

they proposed a second stage. This is also an iterative procedure. They proposed a random trading

stage so that each student can trade her seat as long as other students agree. However, not all trades

are acceptable. Trades involving students with the highest priority are deemed feasible. After a

"stable" trading cycle is randomly found, the trades are realized. Thus this process does not induce

further inefficiencies. One can conduct feasible trades again and repeat the above procedure until

no stable trades are left. Although the Erdil-Ergin mechanism is ex-post Pareto efficient, it is not

strategy-proof, and yet truth-telling is an ordinal Bayesian-Nash equilibrium in a low and symmetric

information setting. Using data from NYC schools, Abdulkadiroğlu, Pathak, and Roth (2008) showed

that over 1,500 student applicants among 8th graders could have improved their assignment in the

Erdil-Ergin mechanism among 90,000 students, if the same student preferences would have been

revealed.

Pathak and Sönmez (2008) inspected the Boston mechanism’s revelation game when not all

students are sophisticated. Sincere players are restricted to report their true preferences, while

strategic players play a best response. Although there are multiple equilibrium outcomes, a sincere

student receives the same assignment in all equilibria. Finally, the assignment of any strategic student

under the Pareto-dominant Nash equilibrium of the Boston mechanism is weakly preferred to her

assignment under the student-optimal stable mechanism.

Abdulkadiroğlu and Ehlers (2007) inspected the school choice problem, when there are minimum

quotas for students from different backgrounds at schools. These minimum quotas in general lead to

non-existence of justified-envy-free matchings. Thus, they introduced a new definition of justified-

envy-freeness. Under this new definition, they showed that a justified-envy-free matching always

exists in a "controlled" school choice problem.

There is also an emerging literature regarding the lottery mechanisms in school choice. We cite

some of the recent papers below.

Abdulkadiroğlu, Che, and Yasuda (2008) introduced a new tie-breaking rule: each student has

the option to designate a target school besides revealing her preferences. Whenever tie-breaking is

needed among multiple students for a school, students who designate this school as target get priority

in tie-breaking. Then the Gale-Shapley student-optimal stable mechanism is applied on the modified

priority structure. The authors found plausible properties of this mechanism over the Gale-Shapley

version.

Pathak (2006) inspected lottery design in the school choice domain. He proved an equivalence

result between RSD and random school-choice TTC mechanism, when all priority orders of schools
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are independently and uniformly randomly drawn. This corresponds to two versions of tie-breaking

among equal priority students: tie-breaking for all schools using a single lottery or tie-breaking

independently for each school. However, such an equivalence does not exist for random multiple tie-

breaking version of the Gale-Shapley student-optimal stable mechanism and RSD (which is equivalent

to Gale-Shapley mechanism with random single tie-breaking).

Kesten and Ünver (2008) introduced two lottery mechanisms which result in lotteries over student-

optimal justified-envy-free matchings according to two new definitions of justified-envy-freeness. This

is the first study that employed an "ex-ante" lottery design approach in school choice, while the

previous approaches were "ex-post." All previous approaches that use "ex-ante" random tie-breaking

followed by an "ex-post" implementation of a deterministic mechanism, including Erdil and Ergin’s,

resulted with efficiency loss that could be avoided using an alternative "ex-ante" approach.

Featherstone and Niederle (2008) observed that Boston mechanism resulted with better efficiency

than the Gale-Shapley student-optimal mechanism in laboratory experiments, when ties are broken

randomly, and preferences are private information. Thus, Boston mechanism is effectively manipu-

lated by the students in these experiments. They also prove this result in a symmetric environment

in theory.
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Chapter 5

Axiomatic Mechanisms and Market
Design

5.1 House Allocation and Hierarchical Exchange

In the house allocation domain, Pápai (2000) introduced a wide class of mechanisms called hierarchical

exchange mechanisms that are inspired by Gale’s TTC algorithm and serial dictatorships such that

they uniquely characterize the class of Pareto-efficient, reallocation-proof, and coalitionally strategy-

proof mechanisms.

A mechanism φ is reallocation-proof if for any problemÂ, there is no pair of agents a and b and
two preference relations Â0a andÂ0b such that φ [Â0a,Â−a] (a) = φ [Â] (a) and φ [Â0b,Â−b] (b) = φ [Â] (b)
and yet φ

£
Â0a,Â0b,Â−{a,b}

¤
(b) %a φ [Â] (a) and φ

£
Â0a,Â0b,Â−{a,b}

¤
(a) Âb φ [Â] (b) .

The idea behind hierarchical exchange mechanisms is as follows:

Suppose that we assign houses to the agents initially according to an inheritance rule that is

described by the mechanism. As the agents who have the property rights of the houses leave the

market while the houses remain unmatched, their property rights are passed to other agents according

to the inheritance rule.

A submatching is the matching of a subset of agents B ⊆ A to houses G ⊆ H, i.e., a one-to-one

and onto function σ : B → G. Let Aσ = B and Hσ = G. Let S be the set of submatchings. For each
house h, let S−h be the set of submatchings that do not assign house h.
Note that amatching is a submatching σ with Aσ = A. LetM ⊂ S be the set of matchings, as

before.

Formally, a hierarchical exchange mechanism is described through an inheritance function f =

(fh)h∈H such that each fh : S−h\M→ A determines who has the property rights of house h, once a

submatching is already fixed. That is, for any σ ∈ S−h\M, fh (σ) ∈ A\Aσ, such that fh (σ) is the

61
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agent who has the property right of house h when the submatching σ is already fixed.1

We have the following restriction on fh : For all σ ⊆ σ0 with fh (σ) 6∈ Aσ0, we have fh (σ0) = fh (σ).

That is, if an agent has the right of a house, when more matches are determined, and this agent is

not matched, she does not lose her right for this house. Let F be the set of such f functions. Each

f ∈ F induces a hierarchical exchange mechanism, let φf be this mechanism.
An iterative algorithm is used to find the allocation under a hierarchical exchange mechanism:

Algorithm 13 The hierarchical exchange induced by f:
Step k: Suppose σk is a submatching already determined at the end of the previous step (we

start with σ1 = ∅ initially at k = 1). If σk is a matching then we terminate the algorithm, and σk

is the outcome of the algorithm. Otherwise, each remaining house h points to its inheritance right

holder fh
¡
σk
¢
, each remaining agent points to her top choice house among the remaining houses,

and we obtain a directed graph. There exists at least one cycle (by Lemma 2). We clear each cycle

by assigning each agent in the cycle the house she is pointing to. Let σk+1 be the submatching that

is determined by clearing these cycles, and the matches already determined under σk. We continue

with Step k+1.

Below, we give examples about the relationship of hierarchical exchange and other mechanisms

we introduced in the previous chapters of this survey:

Example 12 Suppose that μ is a matching, and for each agent a ∈ A, fμ(a) (∅) = a. Then this

inheritance rule gives a house to each agent initially. The rest of the inheritance rule is defined

arbitrarily.

The induced hierarchical exchange algorithm is equivalent to Gale’s top trading cycles algo-
rithm and finds the core of the housing market induced by initial endowment μ.

Example 13 Let p = (a1, ...., an) be an ordering of agents in A. Suppose that for all h and all σ,

fh (σ) = ak where k is the lowest index such that ak not matched under σ.

This inheritance rule gives the control rights of all houses to the same agent as long as that

agent is available. That is, the induced hierarchical exchange mechanism is the serial dictatorship
induced by p.

Example 14 Suppose that there are two types of agents and houses, AE, AN and HO, HV , respec-

tively. For each a ∈ AE, ha ∈ HO, we set fha (∅) = a. Moreover, suppose there is an ordering of

agents p = (a1, ...., an) such that for all h ∈ HV , fh (σ) = ak where ak is the agent with lowest k such

that ak is not matched under σ. For all ha ∈ HO, whenever a is matched under σ but ha is not, then

fha (σ) = ak where ak is the agent with lowest k such that ak is not matched under σ.

The induced hierarchical exchange mechanism is the YRMH-IGYT mechanism induced by

priority order p.

1This simplified definition is due to Pycia and Ünver (2007).
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Example 15 Suppose the property rights of the houses are given according to the following inheri-
tance table for houses H = {h1, h2, h3, h4} over A = {1, 2, 3, 4} .

h1 h2 h3 h4

1 1 2 4

2 2 3 3

3 3 1 2

4 4 4 1

An inheritance table refers to a specific inheritance rule profile such that regardless of the assigned

house of the owner of a remaining house, this remaining house is inherited by the same new owner.

The induced inheritance profile f by the above table is as follows: fh1 (∅) = 1, fh1 ({(1, x)}) = 2 for
any x ∈ {h2, h3, h4} (that is, when 1 is matched, the right goes to 2), fh1 ({(1, x) , (2, y)}) = 3 for all
{x, y} ⊆ {h2, h3, h4}. fh1 ({(1, x) , (2, y) , (3, z)}) = 4 for all {x, y, z} ⊆ {h2, h3, h4}. The rights for
houses h2, h3, and h4 are similarly defined.

One interpretation of the above table is that the inheritance table gives the priority profile of
houses over the students (for example, houses are school seats and the agents in A are students,

and the priority profile is induced by f). Then the induced school choice top trading cycles
mechanism (Abdulkadirŏglu and Sönmez 2003a) is a hierarchical exchange mechanism.

Hierarchical exchange mechanisms constitute a proper superset of the mechanisms we introduced

earlier. We illustrate this with an example, in which the hierarchical exchange mechanism introduced

is neither a serial dictatorship, the core mechanism, a YRMH-IGYT mechanism, nor a school choice

TTC mechanism:

Example 16 Let A = {1, 2, 3}, H = {h1, h2, h3}. Suppose the inheritance rule profile f induces a
tree for house h1 :

h1

1

(h2) . & (h3)

3 2

(h3) ↓ ↓ (h2)

2 3

This means, fh1 (∅) = 1, fh1 ({(1, h2)}) = 3, fh1 ({(1, h3)}) = 2, fh1 ({(1, h2) , (3, h3)}) = 2,

fh1 ({(1, h3) , (2, h2)}) = 3. Suppose for houses h2 and h3 we have the following inheritance table

for fh2 and fh3 :
h2 h3

1 2

2 3

3 1
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Let the preferences of the agents be given as:

1 2 3

h2 h2 h1

h3 h1 h2

h1 h3 h3

The induced hierarchical exchange outcome is found as follows through the directed graphs formed:

Step 1: 1→ h2 → 1, 2→ h2 → 1, 3→ h1 → 1.

There is only one cycle: 1→ h2 → 1, agent 1 is assigned h2.

Now according to h1’s inheritance tree the right of house h1 goes to agent 3.

Step 2: 2→ h1 → 3, 3→ h1 → 3.

There is one cycle: 3→ h1 → 3, agent 3 is assigned house h1.

Step 3: 2→ h3 → 2, there is one cycle: 2→ h3 → 2.

No agent is left, thus the algorithm terminates. The outcome of the hierarchical exchange mech-

anism is given as

μ =

Ã
1 2 3

h2 h3 h1

!
.

Our result of this chapter is as follows:

Theorem 37 (Pápai 2000) A mechanism is reallocation-proof, Pareto-efficient, and coalitionally
strategy-proof if and only if it is a hierarchical exchange mechanism.

5.2 Trading Cycles with Brokers and Owners

In this section, we introduce a new algorithm called trading cycles with brokers and owners (Pycia and

Ünver, 2007), which is more general than hierarchical exchange. This will remove the reallocation-

proofness axiom from the above characterization result.

The algorithm works as follows: In each round, it assigns the control rights of each unremoved

house to some unremoved agent. This agent controls this house as an "owner" or as a "broker."

The hierarchical exchange only designated control rights holders as "owners". Thus "brokers" are

innovation of this new algorithm. In either case, this house cannot be matched in this round unless

its control rights holder is matched. The algorithm is based on the top-trading cycles idea, yet it is

substantially different.

The assignment produced by this algorithm depends on the structure of control rights. Let us

define this new concept first. A structure of control rights
¡
ac, hb

¢
consists of a profile of control

functions ac = (ach : S−h −→ A)h∈H such that for all h and all σ ∈ S−h, ach (σ) ∈ A − Aσ; and a

brokered house function hb : S −M −→ H ∪ {∅} such that for all σ ∈ S −M, if |Aσ| = |A|− 1,
then hb (σ) = ∅.
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For all control rights structures, the assignment of houses to agents is determined by an iterative

algorithm that we refer to as the trading-cycles-with-brokers-and-owners algorithm (TCBO
algorithm for short).

Algorithm 14 The trading cycles with brokers and owners (TCBO) induced by (
Since we assign at least one agent a house in every round, and since there are finitely many agents,

the algorithm stops after finitely many rounds.

The terminology of owners and brokers is motivated by the trading analogy. In each round of

the algorithm, an owner can either trade a house he controls for another house (in a cycle of several

exchanges), or can leave in this round matched with a house he owns. A broker can trade the house

he owns for another house (in a cycle of several exchanges), but cannot leave in this round matched

with the house he brokers. One interpretation of this is that the owner can consume his house, but

the broker cannot.

Example 17 (Execution of the TCBO algorithm) Let A = {1, 2, 3} and H = {h1, h2, h3}.
Suppose the control rights structure is such that

• h1 is owned by 1 as long as 1 and h1 are unmatched, is owned by 2 when 2 and h1 are unmatched

and 1 is matched, and is owned by 3 when 3 and h1 are unmatched and 1 and 2 are matched,

• h2 is owned by 2 as long as 2 and h2 are unmatched, is owned by 1 when 1 and 2 are unmatched

and 2 is matched, and is owned by 3 when 3 and h2 are unmatched, and 1 and 2 are matched,

• h3 is controlled by 3; he has the brokerage right as long as either 1 and 2 are unmatched and the

ownership right when 1 and 2 are matched (notice that we do not need to specify who inherits

h3 when 3 is matched, because 3 may be matched only in a cycle that also contains h3).

The above structure of control rights may be represented as follows:

ach1 ach2 ach3
1 2 3 b

2 1

3 3

The b sign, above, next to 3 in h3’s control right column, shows that h3 is a brokered-house (when

some agents other than 3 who controls h3 are unmatched). The preferences of the agents are given

as follows:

agent 1: h3 Â1 h2 Â1 h1

agent 2: h3 Â2 h1 Â2 h2

agent 3: h3 Â3 h1 Â3 h2
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We run the algorithm as follows:

Step 1. Owned-house h1 points to ach1 (∅) = 1, owned-house h2 points to ach2 (∅) = 2, brokered-
house hb (∅) = h3 points to achb(∅) (∅) = 3. Agents 1 and 2 point to h3 and broker 3 points to his first
choice owned-house, that is h1. There exists one cycle

h1 → 1→ h3 → 3→ h1,

and by removing it, we obtain

σ1 = {(1, h3) , (3, h1)}

Step 2. O-house h2 points to ach2 (σ
1) = 2 and agent 2 points to h2. There exists one cycle

h2 → 2→ h2,

and by removing it, we obtain

σ2 = {(1, h3) , (2, h2) , (3, h1)} .

This is a matching, since no agents are left.

We terminate the algorithm, and the outcome of the mechanism is σ2.

Observe that this outcome cannot be reproduced by a hierarchical exchange mechanism. Consider

a modified problem obtained by changing preferences of agent 3 so that h2 is preferred to h1:

agent 1: h3 Â1 h1 Â1 h2

agent 2: h3 Â2 h2 Â2 h1

agent 3: h3 Â03 h2 Â03 h1

In this case, the TCBO outcome is

σ0 = {(1, h1) , (2, h3) , (3, h2)} .

However, any hierarchical exchange mechanism that assigns h3 to 1 in the first problem should

continue to do so in the second problem. Thus, no hierarchical exchange mechanism can reproduce

this TCBO’s outcome.

We are ready to formally define TCBO mechanism class (Pycia and Ünver 2007). A control rights

structure
¡
ac, hb

¢
is compatible if for all submatchings σ ∈ S −M,

C1. Persistence of ownership: If agent a owns house h at σ, and a and h are unmatched at

σ0 ⊃ σ, then a owns h at σ0.

C2. No ownership for brokers: If agent b is a broker at σ, then hb does not own any house at σ.
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C3. Limited persistence of brokerage: If agent hb brokers house f at σ, agent a0 6= b and house

g 6= f are unmatched at σ, and b does not broker f at submatching σ ∪ {(a0, g)} , then either

• Broker-to-heir transition: (i) there is exactly one agent a who owns a house both at
σ and σ ∪ {(a0, g)}, (ii) agent a owns house f at σ ∪ {(a0, g)} , and (iii) at submatching
σ ∪ {(a0, g) , (a, f)} , agent b owns all houses that a owns at σ,
or

• Direct exit from brokerage: there is no agent who owns a house at both σ and

σ ∪ {(a0, g)}.

Each compatible pair
¡
ac, hb

¢
induces a trading-cycles-with-brokers-and-owners mecha-

nism (TCBO mechanism for short). Its outcome is found through the TCBO algorithm that was

introduced earlier. The control rights structure introduced in the previous example is compatible,

thus the mechanism implemented is TCBO.

The main theorem regarding this larger class is proven by Pycia and Ünver (2007) and removes

reallocation-proofness property of Pápai from the axiomatic characterization. We further assume

that |H| ≥ |I| :

Theorem 38 (Pycia and Ünver 2007) A mechanism is coalitionally strategy-proof and Pareto-
efficient if and only if it is a TCBO mechanism.

The characterization does not need Pareto-efficiency, if the mechanisms have full range, i.e.,

mechanism φ has full range if for every matching μ ∈ M, there exists some preference profile Â
such that φ [Â] = μ.

Corollary 2 (Pycia and Ünver 2007) A full-range mechanism is coalitionally strategy-proof if

and only if it is a TCBO mechanism.

As an example of a mechanism design problem in which brokerage rights are useful, consider a

manager who assigns n tasks t1, ..., tn to n employees w1, ..., wn with strict preferences over the tasks.

The manager wants the allocation to be Pareto-efficient with regard to the employees’ preferences.

Within this constraint, she would like to avoid assigning task t1 to employee w1. She wants to use

a coalitionally strategy-proof direct mechanism, because she does not know employees’ preferences.

The only way to do it using the previously known mechanisms is to endow employees w2, ..., wn with

the tasks, let them find the Pareto-efficient allocation through a top-trading cycles procedure, such

as Pápai’s (2000) hierarchical exchange, and then allocate the remaining task to employee w1. Ex

ante each such procedure is unfair to the employee w1. Using a trading-cycles-with-brokers-and-

owners mechanism, the manager can achieve her objective without the extreme discrimination of the

employee w1. She makes w1 the broker of t1, allocates the remaining tasks among w2, ..., wn (for

instance she may make wi the owner of ti, i = 2, ..., n), and runs trading cycles with brokers and

owners.
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5.3 Related Literature

Unlike the core mechanism for housing markets (see Theorem 6), there are many desirable mech-

anisms in the house allocation (with existing tenants) domain. We already stated some axiomatic

characterization results in Theorems 8, 9, and 10. Also in the school admissions domain, we stated

two characterization results (see Theorems 27 and 29, see also Ehlers and Klaus 2006, and Kojima

and Manea 2007b, for other characterizations in the same domain).

We will cite several other papers below:

On the other hand, if we do not insist on strict preferences, coalitional strategy-proofness and

Pareto efficiency are incompatible in general. Ehlers (2002) found the largest possible preference

domain under which these two properties are not at odds, and characterized the set of coalitionally

strategy-proof and Pareto-efficient mechanisms. Similarly, Bogomolnaia, Deb, and Ehlers (2005)

characterized two classes of strategy-proof mechanisms in the same preference domain.

There are several other axiomatic studies that focus on more specialized properties of mechanisms

in different domains, such as Ehlers, Klaus, and Pápai (2002), Miyagawa (2002), Ehlers and Klaus

(2007), Pápai (2007), Velez (2008), and Kesten (2008b).



Chapter 6

Concluding Remarks

We would like to conclude by commenting on the literature that we left out of this survey. Our

attention to axiomatic mechanism design was brief. Similarly, we did not explore lottery mechanisms

in depth. Such explorations deserve their own survey papers. We give a brief summary of the

literature on lottery mechanisms below, since the literature may have important implications for

market design.

6.1 Lottery Mechanisms in Matching

In the house allocation domain, a study by Chambers (2004) showed that a probabilistic consistency

property is difficult to achieve if fairness is also imposed. He showed that a uniform lottery allocation

of houses is the unique stochastically consistent mechanism that is also fair in the sense of equal

treatment of equals. Clearly, such an allocation is not Pareto-efficient.

On the positive side, Bogomolnaia and Moulin (2001) introduced an algorithm class, which we can

refer to as eating algorithms, that implement different lottery mechanisms. Randomization is used to

sustain fairness among the agents, since as we have seen, desirable deterministic mechanisms impose

an artificial hierarchical structure that can favor some agents over others. A central mechanism in

the class, which gives "equal eating speeds" to all agents, is known as the probabilistic serial (PS)

mechanism.

One shortcoming of the PSmechanism is that it is not strategy-proof. Yet, all mechanisms induced

by eating algorithms including PS are ordinally efficient, in the sense that the probability distribution

of houses assigned is not first-order stochastically dominated by any other (lottery) mechanism. In

fact, a mechanism is ordinally efficient if and only if its outcome can be found through an eating

algorithm.1

1Crés and Moulin (2001) and Bogomolnaia and Moulin (2002) introduced a strategy-proof and ordinally efficient
lottery mechanism in a preference domain where relative preferences of the agents are identical for the houses, but
opting-out can be ranked differently for each different agent.
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On the other hand, another central mechanism, obtained by randomly drawing a priority ordering

of agents and implementing the resulting serial dictatorship, is not ordinally efficient. This is a

surprising result, since serial dictatorships are Pareto-efficient mechanisms. On the other hand, this

lottery mechanism, known as the random serial dictatorship (RSD) is strategy-proof.

PS and RSDmechanisms are both fair (in the sense of equal treatment of equals). Yet, it turns out

that ordinal efficiency, equal treatment of equals, and strategy-proofness are incompatible properties.

Thus, PS favors ordinal efficiency, while RSD favors strategy-proofness. RSD is only ex-post efficient

and PS is only weakly strategy-proof.

Kojima and Manea (2007a) showed that manipulability of the PS mechanism may not be a big

problem. If there are sufficiently many copies of the houses (e.g., when "houses" represent "slots at

schools" in the school choice domain), then PS will be a strategy-proof mechanism. In such cases,

one can claim that PS is a superior mechanism to RSD.2

Abdulkadiroğlu and Sönmez (1998) gave a theoretical intuition in support of the use of RSD.

One can imagine another fair mechanism as follows: randomly assign houses to agents and find

the core of the resulting housing market (core from random endowments). It turns out that this

mechanism is equivalent to RSD through their result. On the other hand, Sönmez and Ünver (2005)

showed that in the house allocation with existing tenants domain, randomly endowing newcomers

with vacant houses, and finding the core of the resulting housing market in which existing tenants

initially own their occupied houses, is equivalent to randomly drawing a priority order of agents in

which existing tenants are always ordered after the newcomers and implementing the induced YRMH-

IGYT mechanism. Thus, the core idea favors newcomers by giving all rights to vacant houses to

newcomers.

Abdulkadiroğlu and Sönmez (2003b) explored why serial dictatorships, Pareto-efficient mecha-

nisms, could result in an ordinally inefficient probability distribution over assigned houses when they

are used following a uniformly random priority order drawing (i.e., RSD). They discovered that the

probability distribution induced by RSD can also be generated by equivalent lotteries over inefficient

quasi-matchings. Moreover, they also found a full characterization of ordinally efficient matchings

through this intuition.

Kesten (2008c) explored the origins of ordinal inefficiencies under RSD (equivalently core from

random endowments) from a different point of view. He discovered that these inefficiencies are not

the results of the allocation or trading procedures used, but the deterministic problem definition.

That is, if we can allocate or endow agents fractions of houses (equivalent to probabilities) through

the algorithms we introduced, then RSD, PS, and Gale’s TTC are essentially equivalent.

Katta and Sethuraman (2006) generalized the PS mechanism when indifferences are allowed in

preferences. Yilmaz (2008b,c) included individual rationality constraints as in the house allocation

2See Manea (2006) and Che and Kojima (2008) about results on asymptotic ordinal inefficiency and efficiency of
RSD in different large economies, respectively.
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with existing agents domain and introduced a natural generalization of the PS mechanism with and

without indifferences in preferences. Athanassoglou and Sethuraman (2007) allowed fractional house

endowments in the house allocation domain (i.e., the existing tenants initially own a probability

distribution over houses) and found a generalization of Yilmaz’s mechanisms.

6.2 Other Literature

We end with a series of citations pointing out new and emerging areas in discrete resources allocation

and exchange problems.

First of all, there is an emerging literature on generalizations of the matching problem to dif-

ferent domains which simultaneously include hedonic games, housing markets, two-sided matching

problems, etc (see for example Sönmez 1996, 1999, and Pápai 2007).

Additionally, Ben-Shoham, Serrano, and Volij (2004) looked into the evolutionary dynamics that

drive decentralized robust exchange in a housing market (for a generalization of this process to

multiple house consumption see Bochet, Klaus, and Walzl 2007). Kandori, Serrano, and Volij (2008)

inspected a similar decentralized process for housing markets with transfers when there are random

and persistent shocks to the preferences of agents.

Recently, Bade (2008) studied rationalizable and non-rationalizable behavior of agents in housing

problems and markets.

Market design has recently been the driving force in the advance of theory in discrete resource

allocation and exchange problem. Market design applications are not limited to the ones discussed

throughout this survey. Guillen and Kesten (2008) discovered that the mechanism used to assign

students to rooms in an MIT dormitory is essentially equivalent to a version of the Gale-Shapley

student-optimal stable mechanism that takes into consideration individual rationality constraints,

and compared YRMH-IGYT and the MIT dormitory allocation mechanisms experimentally. In an-

other market design study, Kesten and Yazici (2008) introduced an ex-post fair "discrete resource"

allocation mechanism for possible applications in large corporations and organizations such as the

navy or a university. However, in general such an allocation is not efficient. When multiple ob-

jects, such as courses, are being distributed to agents, such as students at a university, competitive

equilibrium from equal (artificial) budgets is a natural candidate for sustaining ex-post fairness and

efficiency together. Since a competitive equilibrium may not exist in general, Sönmez and Ünver

(2003) introduced a "course" allocation mechanism based on bidding under equal budgets, which

can replace the most popular course bidding mechanism used in many business schools. This bidding

mechanism was intended to create competitive equilibrium under equal budgets, but it fails by the

impossibility result. Even under a modified definition of competitive equilibrium, this mechanism is

not a competitive mechanism, while the Sönmez and Ünver proposal is. Krishna and Ünver (2008)

showed that the Sönmez and Ünver (2003) proposal is superior to the current bidding mechanisms in
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a designed experimental environment and in a field experiment at University of Michigan Business

School. Harvard Business School course bidding mechanism tries to achieve ex-post fairness using

a series of serial dictatorships with reversal of priority orders in each round of course allocation.

Budish and Cantillon (2009) tested the Harvard Business School course allocation scheme in a field

experiment and showed that it is manipulable and causes significant welfare losses. Budish (2009)

endenized competitive prices and bidding using a direct mechanism. He proposed an approximate

competitive equilibrium concept and a mechanism which finds such equilibria. The proposed di-

rect mechanism calculates an approximate competitive equilibrium by finding approximately market

clearing prices from approximately equal (artificial bid) budgets for students. This equilibrium is

also approximately strategy-proof and ex-post envy-free.

There are other experimental studies on matching market design that we did not mention earlier.

Calsamiglia, Haeringer, and Klijn (2007) supported the Haeringer and Klijn (2007) theoretical study

on constrained school choice with laboratory experiments and complemented the Chen and Sönmez

(2006) experimental study on unconstrained school choice. In the marketing literature, Wang and

Krishna (2006) made an experimental study of the TTCC mechanism of Roth, Sönmez, and Ünver

(2004), which was employed for time-share summer housing exchange.

Dynamic models of house allocation and exchange have been attracting attention recently: In

addition to Ünver (2007), Bloch and Cantala (2008), and Kurino (2008) considered intertemporal

house allocation when some agents leave and new agents join the agent population over time. Ab-

dulkadiroğlu and Loertscher (2007) considered dynamic house allocation when the preferences of

agents are uncertain.
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[6] Abdulkadiroğlu, Atila, Parag A. Pathak, Alvin E. Roth, and Tayfun Sönmez (2005) "The

Boston Public School Match." American Economic Review, Papers and Proceedings, 95(2),

368-371.
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