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Abstract

It is often argued in the US that HOV (high occupancy vehicle) lanes are wasteful
and should be converted to HOT (high occupancy vehicles and toll lanes). In this
paper, we construct a simple model of commuters using a highway with multiple lanes,
in which commuters are heterogeneous in their carpool organization costs. We �rst
look at the HOV lanes and investigate under what conditions introducing HOV lanes
is socially bene�cial. Then we examine whether converting HOV lanes to HOT lanes
improves the e¢ ciency of road use. It is shown that the result depends on functional
form and parameter values. We also discuss the e¤ect of alternative policies: simple
congestion pricing without lane division; and congestion pricing with HOV lanes. The
analysis using speci�c functional form is presented to explicitly obtain the conditions
determining the rankings of HOV, HOT, and other policies based on aggregate social
cost.

1 Introduction

High occupancy vehicle (HOV) lanes have been introduced in many cities in the US and
abroad in order to encourage commuters to carpool and ease tra¢ c congestions. According
to an analysis by the U.S. Census Bureau (2004), the share of people carpooling was 12.2
percent in 2000, which accounts for the second largest share: 77 percent of people drive alone;
4.7 percent use public transit.1 Recently, however, single occupancy vehicle drivers complain
about underused HOV lanes, and many transportation researchers also criticize HOV lanes
for their poor e¤ectiveness in easing congestion. Employing a dynamic queuing model with
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1Note that the above �gures are averages of the whole country: the share of carpooling should be higher in

the areas where HOV lanes are available. For example, the share of carpooling is around 40% in Washington
D.C. (see Table 7 of Houde, Sa�rova, and Harrington 2007).
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discrete choices, Dahlgren (1998) argues that adding a regular lane to existing lanes is more
e¤ective in reducing delay costs than adding an HOV lane in most cases. Yang and Huang
(1999) also show that HOV lanes may reduce social welfare. Poole and Balaker (2005) report
that recent evidence suggests that HOV lanes shift some travelers from vanpools and buses
to less e¢ cient carpools. Pointing out that 43% of carpoolers are members of the same
household as some other carpooler, Fielding and Klein (1993) propose to convert HOV lanes
to high occupancy and toll (HOT) lanes that are not only for carpoolers but also for solo
drivers who are willing to pay tolls. HOT lanes have been adopted by the Los Angeles, San
Diego, Houston, Salt Lake City, Denver, and Minneapolis-St. Paul metropolitan areas, and
many other cities are considering introducing HOT lanes.
The reasons that HOT lanes are so hot are mainly three-fold: First, HOT lanes can make

better use of underused HOV lanes, and ease the tra¢ c in the regular lanes by shifting some
drivers to HOT lanes. Second, HOT lanes generate revenue that can be used to �nance new
roads and lanes. Finally, HOT lanes are politically feasible policies. Although researchers
agree that congestion pricing is the only policy that will make a noticeable di¤erence in
peak congestion (see Small, 1997), congestion pricing is regarded as politically infeasible.
Obviously, political feasibility is important, and raising revenues from tolls is important, too.
However, there is only a limited number of papers that analyze HOV and HOT lanes from
a social welfare point of view. Sa�rova, Gillingham, Parry, Nelson, Harrington, and Mason
(2004) compute the e¤ects of converting existing HOV lanes to HOT Lanes for metropolitan
Washington, D.C., and show that although all income groups, on aggregate, bene�t from
the policy, among them, wealthier households bene�t considerably more than the lowest-
income households. Small, Winston, and Yan (2006) show similar results by employing
numerical simulations based on a general and empirically estimatable discrete-choice model.2

Although their results are based on a realistic model, their simulations are conducted for a
limited range of parameter values. Therefore, it is still unclear whether their results generally
hold. Yang and Huang (1999) considered combinations of congestion pricing and HOV lanes
assuming that each commuter would incur an identical cost to form a carpool. However,
they assume that the congestion toll is levied on both lanes; thus their results are not about
HOT lanes. On the other hand, Small and Yan (2001) and Verhoef and Small (2004) analyze
welfare performance of discriminatory pricing of di¤erent lanes assuming that commuters are
heterogeneous in their time values.3 However, they do not consider endogenous carpools in
their model.4 Thus, the welfare e¤ects of policies associated with car-pooling remain largely
unknown.
In this paper, we introduce a simple model with commuters whose carpool organization

2Although results are not shown in the main text, they suggest in the introduction that HOT lanes may
lower social welfare compared with keeping all lanes regular, if they are priced high enough to allow motorists
to travel at approximately free-�ow speeds.

3In the literature of industrial organization, Reitman (1991) analyzed if a monopolist can improve its
pro�t by using discriminatory pricing in a queueing model with heterogeneous time values.

4Small and Yan (2001) include car-pooling in their simulations to compute the e¤ects of alternative pricing
policies. However, the number of car-poolers is given exogenously and therefore not a¤ected by di¤erent
policies.
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costs are heterogeneous. This model is probably the simplest possible model that can analyze
both HOV lanes and HOT lanes. For analytical tractability, we assume that commuters
have the same time value, in order to focus on incentives to carpool. Obviously, assuming
homogeneous time values has strong implications, and we are de�nitely assuming away some
practical aspects. While HOV lanes can be seen as a sorting mechanism to sort out travelers
with di¤erent carpool organization costs, HOT lanes can further sort out travelers with
di¤erent congestion costs. Since we do not incorporate the latter e¤ect with homogeneous
time values, the result will have a bias against HOT lanes.5 When travelers�congestion costs
are very di¤erent, introducing HOT lanes is more likely to improve the e¢ ciency of HOV
lanes. Of course, ultimately, the most important thing is to provide policy recommendations
by taking practical and political considerations into account. However, we believe that
it is also important to analyze a simple benchmark case fully to get a good sense of the
relationships among the �rstbest, secondbest, uniform congestion pricing, HOV, and HOT
policies. In the literature, it is not even known how the �rstbest policy looks like. As long
as the implications of simpli�cation assumption are correctly recognized, we believe that
a complete analysis of simpli�ed model will be quite useful to understand the realworld
problem.6 We will provide cautious remarks on our analysis in the conclusion section.
The results of this paper are as follows. We �rst consider HOV and HOT policies in which

the capacities of HOV/HOT lanes and regular lanes are predetermined, and no toll can be
imposed on regular lane users. This is the closest case to the real-world HOV/HOT lanes,
but the results really depend on the particular situation. As is shown in Dahlgren (1998),
introducing HOV lanes can improve or deteriorate social welfare in our model. Converting
HOV lanes to HOT lanes can improve or deteriorate social welfare, too. In some cases, con-
verting HOV lanes to HOT lanes reduces every commuter�s welfare for all positive tolls. We
further discuss the e¤ect of two alternative policies: uniform congestion pricing and di¤er-
ential pricing with lane division. Uniform pricing is equivalent to a conventional Pigouvian
toll, but we show that this policy is not the �rst-best option. The optimal allocation can
be attained by di¤erential pricing in which there are two groups of lanes with di¤erentiated
tolls and no charge for carpoolers7. We characterize the optimal toll structures under dif-
ferential pricing for two possibilities: solo drivers do not use HOV/HOT lanes; solo drivers
use HOV/HOT lanes. Our results suggest that under the di¤erential pricing, a positive toll
needs to be charged on regular lanes even in the presence of HOV/HOT lanes. Optimal toll
structure in the latter case may provide justi�cation to HOT policy in that a higher toll is
charged on HOV lanes. However, a (lower) toll on regular lanes is necessary to accompany
a HOT policy, since otherwise the carpooling incentive is thwarted. This policy reduces the

5Verhoef and Small (2004) stressed the danger of underestimating such a bias by assuming heterogeneous
time values away (in a model without carpooling possibilities). See also Small and Yan (2001).

6Allowing commuters� heterogeneity in their time values makes our model more realistic. We adopt
homogeneous time values for analytical simplicity: otherwise, we need to deal with consumers�joint frequency
distribution over time values and carpooling organization costs. It would be hard to get empirical estimates
on such joint distribution.

7The di¤erential pricing is essentially same as two-route HOT examined by Small, Winston, and Yan
(2006).
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total number of vehicles by promoting carpooling while controlling the distortion from any
di¤erence in congestion levels between lanes.
This paper is organized as follows. In Section 2 we present a formal model. Section 3

provides an analysis of HOV and HOT lanes when regular lanes are free. In Sections 4, we
discuss alternative pricing policies. Section 5 provides an example illustrating the analysis
using speci�c functional forms. Section 6 concludes. Most proofs and examples are included
in the appendices.

2 The Model

There is a highway that connects a suburb and the CBD (central business disctrict). All
commuters must travel from the suburb to the CBD (inelastic demand). The highway has
multiple lanes. These lanes are partitioned into two groups: � lanes and � lanes. We
normalize the total number of lanes to one, and describe the numbers (capacities) of � and
� lanes as fractions. The capacities of � and � lanes are denoted by K� and K�, respectively
(K� + K� = 1). When we endogenize lane capacities, we ignore capacity indivisibility.
Except for the case of uniform congestion pricing, we let carpoolers use � lanes if any: i.e.,
� lanes are used as HOV or HOT lanes. We assume that m carpoolers share one car.8

The cost of organizing carpooling is heterogeneous (there are neighbors who have the same
destination or not, or have small kids or not, etc.). Types of commuters are described by
their carpool organization costs t 2 R+. There is a unit mass of commuters with their t
distributed according to distribution function F : R+ ! [0; 1] with density f . The measure
of commuters who choose lane i 2 f�; �g is denoted ni � 0, and n� + n� = 1. The measure
of cars (tra¢ c volume) in lane i 2 f�; �g is denoted by Qi. The commuting cost itself is
common to all drivers, and depends on the congestion ratio (volume-capacity ratio), qi ,
i.e., C(qi) = C(Qi=Ki).We assume that C is twice continuously di¤erentiable and convex,
C(q) � 0, C 0(q) � 0 and C 00(q) � 0 for all q � 0. We partition � lane users into two groups,
carpoolers and solo drivers: ncp� + n

s
� = n�, where n

cp
� and n

s
� represent measures of � lane

users who are carpoolers and solo drivers, respectively. A type t commuter�s total cost is
described by

C(qi) + et+ �
e
i ;

where qi is the volume-capacity ratio of lane i 2 f�; �g, and e 2 f0; 1g denotes the com-
muter�s carpooling decision: if no carpooling e = 0 holds, if carpooling e = 1 holds. The last
term � ei is the toll of type i lanes when the commuter�s carpooling decision is e 2 f0; 1g.

8In practice, the de�nition of a high occupancy vehicle is the one with m people or more (m = 2; 3; or 4).
That is, some cars may carry more than m people. Here, we assume that all HOVs carry exactly m people.
This is justi�ed by interpreting that m is the minimal passengers for being eligible to use HOV lanes. In
this case, each commuter should choose m to minimize the cost of carpooling.
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3 HOV and HOT Lanes

From now on, we assume that K� and K� are �xed, and that � lanes are for commuters who
use carpooling (HOV) and possibly for solo-drivers who pay a toll (HOT). In either case,
� lanes are free of charge. Thus, the problem is necessarily the second-best one. We �rst
start with the case of complete laissez faire: no HOV lane and no toll. Then, we consider
HOV lanes only. We investigate under what conditions introducing HOV lanes is socially
bene�cial.

3.1 Without Policy Intervention

Suppose that neither � nor � is an HOV lane. Since there is no incentive to carpool, we have
Q� = n� and Q� = n�. Due to arbitrage, Q�=K� = Q�=K� = 1. Thus, everybody pays the
same commuting cost C(1).

3.2 With HOV Lane

Suppose that lane � is now an HOV lane. Let type �t be indi¤erent between the HOV lane
� and the regular lane �. All drivers with t � �t use the HOV lane, thus the number of
commuters who use the HOV lane is n� = F (�t), which means that the number of cars on
the HOV lane is F (

�t)
m
, since m people share the same car. Thus, Q� =

F (�t)
m
. The conventional

lane is used by 1� F (�t) commuters, and Q� = 1� F (�t) (single person in each car). If type
�t commuter uses the HOV lane, the cost is

C(q�) + �t = C

�
F (�t)

mK�

�
+ �t:

If type �t commuter uses the regular lane, the cost is

C(q�) = C

�
1� F (�t)
K�

�
.

Since type �t is indi¤erent between the two lanes, we have

C

�
F (�t)

mK�

�
+ �t = C

�
1� F (�t)
K�

�
: (1)

Since C is monotonically increasing, C(0) < C( 1
K�
) and C( 1

mK�
) > C(0) hold. Thus the

above equation has a unique solution: �tHOV . The total social cost in equilibrium with HOV
lanes is

SCHOV = F (�tHOV )�C
�
F (�tHOV )

mK�

�
+

Z �tHOV

0

tdF+
�
1� F (�tHOV )

�
�C

�
1� F (�tHOV )

K�

�
(2)
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3.3 Are HOV Lanes Cost-Reducing?

Proposition 1 Let t� be a type that satis�es F (t�) = K�. Then, an introduction of HOV
lane with capacity K� reduces tra¢ c on both HOV and regular lanes and is Pareto-improving
if and only if

C(1)� C( 1
m
) � t�:

The condition says that if there are many low-carpool-organization-cost-type commuters,
Pareto improvement can be achieved. We, however, provide a cautious remark on the above
result. Our model does not consider "operation costs" of the car such as gasoline and
parking costs. If they were included, low t type commuters would carpool even if there were
no HOV lane. The introduction of an HOV lane improves these commuters�commuting costs
and encourages carpooling further. However, regular lanes can be more easily congested in
this case, since low-carpool-organization-cost commuters would carpool even without HOV
lanes.9

What about the aggregate social cost? If Pareto-improvement is made, the aggregate
social cost is obviously improved. Thus, the above condition in the proposition is a su¢ cient
condition for a social cost reduction. However, in some cases, introducing HOV lanes can
deteriorate the social welfare by increasing the social cost. When K� is too large, it is not
surprising that introducing HOV lanes can deteriorate the social welfare. But this is not
the only case. An example (Example 1) in the appendix shows that introducing HOV lanes
can increase every commuter�s cost even when K� is reasonably low (K� = 1=4).

3.4 HOT Lanes

In O�Sullivan (2007), it is reported that the Riverside Freeway (California State Route 91)
converted its two HOV lanes to HOT lanes (either high occupancy vehicles or toll-paying
cars can use HOT lanes). O�Sullivan says, �The conversion to a HOT increases tra¢ c
volume, with about 80% of users paying the toll. The conversion also decreased tra¢ c
volume and increased speeds along the regular lanes on Route 91, generating bene�ts for
other commuters�(page 218).
Here, we investigate O�Sullivan�s statement through our simple model. Let � > 0 be the

toll for the HOT lanes. There are two types of users of HOT lanes: HOV users and solo
drivers. Let the numbers of HOV users and solo drivers be ncp� and n

s
�, respectively. Then,

the HOV user t�s incentive condition is

C

�
ncp�
mK�

+
ns�
K�

�
+ t � C

�
1� ncp� � ns�

K�

�
;

the toll user t�s incentive condition is

C

�
ncp�
mK�

+
ns�
K�

�
+ � � C

�
1� ncp� � ns�

K�

�
;

9Note that this implies that our model has a bias against HOV lanes.
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and the regular lane users�incentive condition is

C

�
ncp�
mK�

+
ns�
K�

�
+ � � C

�
1� ncp� � ns�

K�

�
:

Thus, in equilibrium, the toll users and the regular lane users must be indi¤erent between
the two types of lanes, i.e.,

C

�
ncp�
mK�

+
ns�
K�

�
+ � = C

�
1� ncp� � ns�

K�

�
:

Let us denote by tHOT the threshold type of users so that the HOV users are type t � tHOT .
Then equilibrium also requires

C

�
ncp�
mK�

+
ns�
K�

�
+ t

HOT
= C

�
1� ncp� � ns�

K�

�
:

Hence, the toll and regular lane users are type t > t
HOT , and tHOT = � holds. Since

ncp� = F (�t
HOT ) = F (�), the equilibrium with HOT lanes is characterized by

C

�
F (�)

mK�

+
ns�
K�

�
+ � = C

�
1� F (�)� ns�

K�

�
: (3)

3.5 Converting HOV Lanes to HOT Lanes

Now, let us go back to the equilibrium with HOV lanes and consider converting HOV lanes
into HOT lanes. In the HOV lane equilibrium, we have

C

�
F (�tHOV )

mK�

�
+ �tHOV = C

�
1� F (�tHOV )

K�

�
:

and all type t � �tHOV commuters choose HOV lanes while all t > �tHOV commuters choose
regular lanes. It is easy to see that if � � �tHOV , conversion of HOV lanes to HOT lanes has
no e¤ect, since no commuters are willing to pay the toll. And if � < �tHOV , then there would
be a positive measure of toll users.
Let us conduct a comparative static analysis with respect to � when � � �tHOV . Totally

di¤erentiating (3), we have

dns�
d�

=

�
 
C0
�
F (�)
mK�

+
ns�
K�

�
F 0(�)

mK�
+

C0
�
1�F (�)�ns�

K�

�
F 0(�)

K�
+ 1

!
C0
�
F (�)
mK�

+
ns�
K�

�
K�

+
C0
�
1�F (�)�ns�

K�

�
K�

< 0: (4)

We now have the following proposition.
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Proposition 2 There is a toll �(= �tHOV ) such that equilibrium with HOV lanes is equivalent
to equilibrium with HOT lanes, where no commuter pays a toll. Starting from the HOT
equilibrium with � = �tHOV , reduce � slightly. Then, the social welfare goes down if

F 0(�) +
dns�
d�

� 0;

or

F 0(�)� C 0
�
F (�)

mK�

�
� K� �

m

m� 1 ; (5)

for � 2 (�tHOV � �; �tHOV ) for small � > 0. Thus, with some toll lower than �tHOV , converting
HOV lanes to HOT lanes improves the social welfare under (5).

The above condition shows that if K� is high and m is low, then HOT lanes tend to
dominate HOV lanes. This makes sense since highK� and lowmmake HOV lanes ine¢ cient.
However, it is a pretty strict requirement. Consider a uniformly distributed F over interval
[0; 1

f
] (with density F 0(t) = f for all t 2 [0; 1

f
]), linear cost function C(q) = cq, and K� =

1
4

and m = 4. Then, the condition becomes fc � 1
3
. That is, the distribution of the carpool

organization cost should not be very condensed and the congestion cost is relatively mild.
Under this condition, HOT lanes are guaranteed to perform better than HOV lanes. Note,
however, that the above condition is nothing but a su¢ cient condition. Even if it is violated,
HOT lanes can perform better than HOV lanes. It appears to be widely believed that
converting underused HOV lanes to HOT lanes is a good idea in order to reduce tra¢ c in
the conventional lane. On the other hand, however, if the tra¢ c in the HOV lane increases,
that might discourage commuters from organizing a carpool despite the original objective
of introducing HOV lanes. An example (Example 2) in the appendix shows that the latter
negative e¤ect may dominate the former positive e¤ect in a strong manner (in the Pareto
sense), and that HOT lanes perform worse than HOV lanes.

4 Alternative Pricing Policies

Under HOV or HOT policy, regular lane users could not be charged a toll. In this section, we
remove this restriction, and analyze alternative policies. We also allow the transit authority
to choose K�.

4.1 Uniform Congestion Pricing

Suppose that there is no division of lanes on the highway and the transportation authority
chooses the toll that minimizes the social cost. In this case, commuting costs in all lanes
of the highway must be the same. Since the number of commuters is �xed, the sole role
of tolling is to control the level of carpooling, which is represented by the threshold value �t
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commuter type: all commuters with t � �t carpool, but not others. The social aggregated
cost in such an allocation characterized by �t is

C

�
1� F (�t) + F (

�t)

m

�
� 1 +

Z �t

0

tf(t)dt: (6)

The �rst-order condition with respect to �t for the minimization of the above (assuming an
interior solution) is

C 0
�
1� F (�t) + F (

�t)

m

��
�f(�t) + f(

�t)

m

�
+ �tf(�t) = 0;

or

m� 1
m

C 0
�
1� F (�t) + F (

�t)

m

�
= �t: (7)

The LHS shows the commuting cost savings from increasing �t, while the RHS shows the
organizing cost increase from increasing �t, and the �rst-order condition shows that these two
are equated. Let us denote by �tU the solution to the above equation.
We derive the uniform toll to attain �tU in a decentralized equilibrium. If a type �tU

commuter carpools, the cost she pays is

C

�
1� F (�tU) + F (

�tU)

m

�
+ �tU +

�

m
;

and if she does not, she pays

C

�
1� F (�tU) + F (

�tU)

m

�
+ � :

In equilibrium, type �tU commuters need to be indi¤erent between paying toll �U and car-
pooling. Thus, the optimal uniform toll �U to attain �tU is

�U =
m

m� 1
�tU = C 0

�
1� F (�tU) + F (

�tU)

m

�
: (8)

The latter equality holds by the �rst-order condition (7). The above pricing rule is equivalent
to the conventional Pigouvian toll: the toll should be equal to the congestion externality that
is the sum of the delay caused by an additional vehicle for all road users.
There is another way to achieve the same allocation as above if K� and K� can be chosen

freely. Let us assume that � lanes are HOV lanes that only carpoolers use. Thus the number

of cars for � lanes is
F(�tU)
m
, and the one for � lanes is 1� F (�tU). Since capacities should be

chosen so that the congestion level is common to all lanes, we have

K�
� =

F(�tU)
m

F (�tU )
m

+ 1� F (�tU)
=

F (�tU)

m� (m� 1)F (�tU) : (9)
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To decentralize this allocation, � lane should be tolled. Suppose that � lanes charge a toll
� ��. If a type �t

U commuter chooses an � lane, she pays

C

�
1� F (�tU) + F (

�tU)

m

�
+ �tU ;

and if she chooses a � lane, she pays

C

�
1� F (�tU) + F (

�tU)

m

�
+ � ��:

Hence, we have
� �� = �t

U :

This is summarized as the following proposition.

Proposition 3 The allocation under the optimal uniform pricing can be achieved by using
HOV lanes with capacity

K�
� =

F (�tU)

m� (m� 1)F (�tU) ;

and by charging regular lane commuters a discriminatory toll

� �� = �t
U :

There are three important points on this decentralization. First, if HOV lanes are used,
their capacity needs to be chosen optimally. This means that if the number of HOV lanes
cannot be chosen freely (by the integer problem or political considerations), the allocation
with the optimal uniform toll cannot be achieved. Second, the toll is levied on non-HOV
lanes. Third, both regular and HOV lanes have the same congestion level. Finally, we have
�U = m

m�1�
�
� > �

�
�. If there is political pressure to keep a toll low, the latter method may be

more appealing.
It is important to realize that uniform congestion pricing is not the �rst-best policy. In

the next section, we will see that the HOV lane policy can be better than the optimal uniform
congestion pricing for some parameter range. Here, however, we will demonstrate that there
is always a policy that is better than uniform congestion pricing. In order to show this, we
utilize the above proposition. The optimal uniform pricing policy is equivalent to an HOV
lane policy with capacity K�

� and a regular lane toll �
�
�. The type �t

U is indi¤erent between
the two lanes. Now reduce � so that the indi¤erent type �t = � is reduced. From the previous
subsection, we know10

dSC(�t)

d�t
= C 0

�
F (t)

mK�

�
F (t)

mK�

+ C

�
F (t)

mK�

�
| {z }
�SC in HOV lanes by having more carpoolers

+ t|{z}
�(carpooling costs)

�C 0
�
1� F (t)
K�

� �
1� F (t)

�
K�

� C
�
1� F (t)
K�

�
| {z }

��SC in regular lanes by having more carpoolers

:

10Note that equation (10) is the same as dSC(�t)
d�t = 0. Setting ns� = 0, we obtain the formula here.
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Note that under uniform congestion pricing, the congestion levels of HOV and regular lanes
are the same: i.e.,

F (t
U
)

mK�
�

=
1� F (tU)
K�
�

:

Thus, we have
dSC(�t)

d�t

����
�t=�tU

= �tU > 0:

This means that starting from the optimal uniform pricing allocation, we can reduce social
costs by discouraging carpooling (by reducing � = �t). Such a policy obviously reduces tra¢ c
in HOV lanes and increases it in regular lanes. Therefore, we can conclude that under the
optimal uniform congestion pricing, the carpooling level is too high in comparison with the
e¢ cient level.

4.2 The Optimal Allocation with Arbitrary or Optimal Lane Di-

vision

As shown above, conventional Pigouvian toll is not e¢ cient when the decision to carpool
is involved. So what does the optimal policy look like? We �rst characterize the �rst best
optimal allocation, then show that the optimal allocation can be attained in two lane setting
where the road is divided into HOV (HOT) and regular lanes. Suppose that there are n
equally-sized lanes. That is, each lane has capacity 1

n
. The �rst-best is de�ned as the

allocation of car-poolers and solo-drivers among n lanes that minimizes the social cost, the
sum of trip time cost and car-pooling organization cost. Details of optimality conditions are
given in Appendix B. The optimal allocation is decentralized by levying the tolls per vehicle
based on congestion externality. Thus tolls on k-th lane for solo-drivers and car-poolers are,
C 0 (nQk)nNk and 1

m
C 0 (nQk)nNk, respectively, where Qk and Nk are the measures of tra¢ c

and users on lane k, respectively.
Should we levy di¤erential toll on each of n lanes? Clearly, n lanes will be classi�ed into

three types of lanes: car-pool lanes, mixed lanes, and solo lanes.

Proposition 4 In the �rst-best allocation, we have

1. there exists �t 2 [0; 1] such that the sum of carpoolers in car-pool lanes and mixed lanes
is equal to F (�t).

2. (i) in all car-pool lanes and all mixed lanes, the level of congestion is the same, and
(ii) in all solo lanes, the levels of congestion is the same.

This proposition has an interesting implication. At the �rst best allocation, commuters
sort out by their car-pool organization cost t, and all car poolers experience the same con-
gestion level, and all solo drivers also experience the same congestion level. Even with a
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large number of lanes, there are only two congestion levels. So n lanes can be bundled into
two groups of lanes, in each of which congestion level is the same. This implies that we can
rewrite the optimization problem for n lanes as the one for two types of lanes, i.e., in a form
compatible to that presented in the previous sections. Let fraction K� =

k
n
lanes be reserved

for HOV (or HOT) lanes (� lanes), and fraction K� =
n�k
n
lanes for solo lanes (� lanes),

where k is the sum of car-pool and mix lanes.
Below we discuss the optimal allocation in two steps. First, we characterize the optimal

allocation under an arbitrary lane division (i.e., allocation of lane capacity, K�). Second,
among these optimal allocations under di¤erent lane divisions, we choose the lane division
that minimizes the social cost: this is the �rst best allocation11.
In the �rst step, the optimization problem is basically to (i) choose t 2 [0; 1] such that

all types t � t choose � lanes while all types t > t choose � lanes, and (ii) choose ns� under
the constraint of 0 � ns�. Since the optimal t must be an interior solution, the Kuhn-Tucker
problem for the social cost minimization is:

L(t; ns�) =

"
C

�
F (t)

mK�

+
ns�
K�

�
F (t) +

Z t

0

tdF + ns�C

�
F (t)

mK�

+
ns�
K�

�
+
�
1� F (t)� ns�

�
C

�
1� F (t)� ns�

K�

��
� �ns�:

The �rst-order conditions with respect to t and ns� are:

C 0
�
F (t)

mK�

+
ns�
K�

� �
F (t) + ns�

�
mK�

+ C

�
F (t)

mK�

+
ns�
K�

�
+ t (10)

�C 0
�
1� F (t)� ns�

K�

� �
1� F (t)� ns�

�
K�

� C
�
1� F (t)� ns�

K�

�
= 0;

and

C 0
�
F (t)

mK�

+
ns�
K�

� �
F (t) + ns�

�
K�

+ C

�
F (t)

mK�

+
ns�
K�

�
(11)

�C
�
1� F (t)� ns�

K�

�
� C 0

�
1� F (t)� ns�

K�

� �
1� F (t)� ns�

�
K�

� �

= 0;

respectively, where we have � � 0 and �ns� = 0.
We will show that the optimal allocation is decentralizable with a di¤erential toll system.

By arranging the optimality conditions, we obtain the following result.

11Choice of lane division does not exist in the problem for n lanes: drivers sort themselves into solo lanes,
car-pool lanes and mixed lanes, led by pricing on each of n lanes.
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Proposition 5 In the optimal allocation under an arbitrary lane division, � lanes are always
less crowded than � lanes:

F (t
D
)

mK�

+
ns�
K�

<
1� F (tD)� ns�

K�

;

where �tD and ns� are solutions of equations (10) and (11). The optimal allocation is decen-
tralizable by charging di¤erential tolls.(i) When ns� = 0, the optimal toll for solo-drivers on
� lanes is

�D� = C
0

 
1� F (tD)
K�

!
1� F (tD)
K�

� C 0
 
F (t

D
)

mK�

!
F (t

D
)

mK�

> 0:

(ii) When ns� > 0, the optimal toll for solo-drivers on � lanes is

�D� = C
0

 
1� F (tD)� ns�

K�

! 
1� F (tD)� ns�

K�

!
� C 0

 
F (t

D
)

mK�

+
ns�
K�

! 
F (t

D
) + ns�

mK�

!
> 0;

and the toll for solo-drivers on � lanes is higher than the one on � lanes

�D� = C 0

 
F (t

D
)

mK�

+
ns�
K�

! 
F (t

D
) + ns�
K�

!
� C 0

 
F (t

D
)

mK�

+
ns�
K�

! 
F (t

D
) + ns�

mK�

!

= �D� + C

 
1� F (tD)� ns�

K�

!
� C

 
F (t

D
)

mK�

+
ns�
K�

!
> �D� :

The above pricing rule is equivalent to the �rst-best one while carpoolers are free of
charge12. Since � lanes are tolled in the optimal allocation under any arbitrary lane division,
simple HOV or HOT lane policy cannot support the optimal allocation. Tolling on � lane
gives commuters greater incentive to carpool. In this way, the optimal allocation can improve
on simple HOV or HOT lane policy.
Clearly, the same statement holds when the division of lanes (choice of K�) is optimal.

Corollary 6 In the �rst-best allocation, � lanes are always less crowded than � lanes, and
the �rst-best allocation is decentralizable by charging di¤erent tolls provided in the previous
proposition.

It may be somewhat interesting to consider the limit case: a large number of n or a
perfectly divisible lanes. Obviously, such a case is not realistic situation, but we can learn
what sort of allocation realizes when the ideal lane division happens to be achievable with a
�nite lane case. We have the following lemma.

Lemma 7 In the �rst-best allocation, there is at most one mixed lane.
12Since total mass of commuters is �xed, the choice of commuters are a¤ected only by the relative amount

of tolls. The pricing rule here is obtained by subtracting the congestion externality by carpoolers.
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The above lemma immediately implies that as n goes to in�nity, the fraction of commuters
who use the mixed lane becomes negligible, or ns� goes to zero. Thus, in the ideal situation,
we have the following proposition.

Proposition 8 Suppose that n goes to in�nity, or that the globally optimal lane division K�
�

is achievable. Then, ns� = 0 holds.

The above proposition implies that the case ns� > 0 (as in HOT lanes) is not optimal in
the ideal world, but arises as the result of indivisibility (the integer problem), or ine¢ cient
capacity allocation.

5 A Special Case

5.1 Aggregate Social Costs under HOV and HOT lanes

Let F be uniform distribution over [0; 1]: i.e., F (t) = t for 0 � t � 1, and C(q) = cq with
c > 0. If there is no HOV or HOT lane, then everybody pays C(1) = c; thus the aggregate
social cost with no policy is SC; = c. If there are HOV lanes, then an indi¤erent commuter
�t satis�es

CHOV� + �t =
c�t

mK�

+ �t =
c(1� �t)
1�K�

= CHOV�

Solving the above equation yields

�tHOV =
cmK�

cmK� + (c+mK�)(1�K�)
: (12)

The aggregate social cost is

SCHOV

= �tHOV � CHOV� +

Z �tHOV

0

tdt+ (1� �tHOV )� CHOV�

= CHOV� + �tHOV +

Z �tHOV

0

(t� �tHOV )dt

=
c�tHOV

mK�

+ �tHOV � (
�tHOV )2

2

=
c (c�mK�)

c� cK� + cmK� +mK� �mK2
�

� 1
2

�
cmK�

c� cK� + cmK� +mK� �mK2
�

�2
: (13)

Thus, we have the following proposition.
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Proposition 9 The introduction of HOV lanes improves social welfare if and only if c >
~c(K�;m), where

ec(K�;m)

=
4K2

�m
2 � 3K�m

2 � 4K2
�m+ 4K�m+

p
�8K3

�m
4 + 9K2

�m
4 + 8K3

�m
3 � 8K2

�m
3

2 (2K�m2 � 4K�m+ 2m+ 2K� � 2)
(14)

=
�m(3� 4K�) + 4(1�K�) +

p
m2 (9� 8K�)� 8m (1�K�)

4
�
m� 2 + 1

K�
+ 1

m
� 1

K�m

� :

The above proposition states that the introduction of HOV lanes improves the social
welfare as the congestion cost exceeds a threshold level, which is a highly nonlinear function
of K� and m. Although it is di¢ cult to directly deal with the inequality, we can say that
HOV lanes policy is more likely to improve the social welfare as capacity of HOV lanes is
smaller, or the number of people sharing the car is larger13.

Now, we turn to HOT lanes. Equilibrium with the HOT policy requires

CHOT� (�) + � = c

�
�

mK�

+
ns�
K�

�
+ � = c

�
1� � � ns�
1�K�

�
= CHOT� (�);

Solving the above equation yields

ns� =
cmK� + � (mK

2
� + cK� � cmK� �mK� � c)

cm
:

Thus,

CHOT� (�) = c

�
1� � � ns�
1�K�

�
=

cm+ � (�mc+ c+mK�)

m

The aggregate social cost under HOT is obtained as

SCHOT (�)

= 1� CHOT� (�) +

Z �

0

(t� �)dt| {z }
cost saving for
HOV users

� � � ns�| {z }
toll revenue

=
(�2mK2

� + 2(c(m� 1) +m)K� + c(2�m)) � 2 + (2c2 � 2c2m) � + 2mc2
2cm

(15)

13It is seen that ec(K�;m) = 0 at K� = 0 and ec(K�;m) =
m

2(m�1) at K� = 1. This suggests that the
threshold value ec is increasing with K�, at least somewhere for 0 < K� � 1. As for the e¤ect of m, the

condition that HOV lanes policy reduces the social cost is expressed as m > em (c;K�).
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Di¤erentiating SCHOT (�) with respect to � and applying � = 0, we have dSCHOT (�)
d�

j�=0 =
c(1�m)
m

< 0 (see Appendix). We have the following result.

Proposition 10 Converting HOV lanes to HOT lanes (with some toll rate) improves the
social welfare if and only if the following condition holds

c <
mK�

m� 1 : (16)

Proposition 10 implies that converting HOV lanes to HOT lanes improves the social
welfare, if (i) the unit cost of congestion, c, is small, (ii) m is small, and (iii) K� is large.
Condition (ii) means that an SOV (single-occupant vehicle) does not impose much more
congestion than does an HOV (say, if m = 2).14 Condition (iii) means that if � lanes has
large capacity, the social cost of underused � lanes is high. Converting HOV lanes to HOT
lanes reduces congestion in � lanes under such circumstances.
It should be noted that, in this special case, the su¢ cient condition in Proposition 3

becomes c < mK�

m�1 . In other words, this inequality becomes a necessary and su¢ cient
condition. The threshold relation c = mK�

m�1 is also critical for other results. Applying
speci�cations to Proposition 1, the condition of Pareto improvement becomes c > mK�

m�1 .
Combining the results so far, we classify the possible patterns regarding the e¤ects of

introducing HOV lanes and converting HOV lanes to HOT lanes, as depicted in Figure 1A-
C.15 The parameter range of each pattern is shown in Figure 2 in which letters A, B, C
attached to areas correspond to the patterns in Figure 1 A, B, C, respectively. According
to Figure 2, an HOV lanes policy is wasteful (the case of Figure 1A emerges) when K� is
relatively large. This condition is consistent with the claim based on casual observations: in
this case, HOV lanes are likely to be underused. It is also true that converting HOV to HOT
lanes is not always e¤ective for congestion mitigation: it improves the social welfare only if
the capacity of the HOT lanes is larger and the congestion level is not too heavy (Figure 1A
and 1B). There are situations where adopting simple HOV lanes is the best policy (Figure
1C). On the other hand, HOT lanes may be e¤ective even when the introduction of HOV
lanes aggravates the situation (Figure 1A).
In the cases of Figure 1A and B, there exists an optimal HOT toll that minimizes the

aggregate social cost. Let us denote the optimal HOT toll by �HOT , which is a solution of
dSCHOT (�)

d�
= 0. We have �HOT and the minimized social cost, SCHOT (�HOT ), as follows.

�HOT =
c2(m� 1)

�2mK2
� + 2(c(m� 1) +m)K� � c(m� 2)

(17)

SCHOT (�HOT ) = �c (4m
2K2

� � 4m(c(m� 1) +m)K� + c (c(m� 1)2 + 2(m� 2)m))
2m (�2mK2

� + 2(c(m� 1) +m)K� � c(m� 2))
(18)

14It is because in our model the carpool organization cost is assumed to be independent of the value of m.
15Although the curve in Figure 1C is concave, it may be convex in some cases, as discussed in the proof

of Proposition 6.
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In the cases shown in Figure 1C, optimal policy is not to adopt HOT. Thus SCHOT (�HOT ) =
SCHOV holds.

5.2 Comparing Alternative Policies

Under the uniform pricing policy, the number of HOV users is obtained by solving (8) as
t
U
= cm�1

m
. Substituting this in (6) we have the aggregate social cost as

SCU = �c (c(m� 1)
2 � 2m2)

2m2

There are two cases in the optimal pricing in Proposition 6: ns� = 0 and n
s
� > 0. Hereafter

we call this policy the di¤erential pricing, and superscript "D" is applied. When ns� = 0, the
number of HOV users and the aggregate social cost are

t
D
=

2cmK�

2c�mK2
� + (2c(m� 1) +m)K�

SCD =
c (2c+mK�)

2c�mK2
� + (2c(m� 1) +m)K�

On the other hand, when ns� > 0,

t
D
=

2c(m� 1)mK�

(c(m� 1)2 + 2m2)K� � c(m� 1)2

SCD =
c (2m2K� � c(m� 1)2)

(c(m� 1)2 + 2m2)K� � c(m� 1)2

The condition for ns� > 0 to be the case is c <
mK�

m�1 .
The ranking of alternative policies in terms of t and SC varies depending on parameter

values. It is helpful to illustrate the results numerically. We choose the parameters as
c = 0:15;m = 3. In this case, if 1 of 5 lanes is used as an HOV lane (i.e., K� = 0:2), the
share of carpooling with HOV lanes, tHOV , is 0.130, which is similar to the average share in
the US (0.122 in 2000). Figures 3 and 4 respectively plot the share of carpoolers and the
aggregate social cost for alternative policies against the capacity of � lanes. In both �gures,
the results of three policies, HOV, HOT, and Uniform Pricing, coincide at K� = 0:1, which
is the critical capacity level as cm�1

m
= 0:1. In these �gures, the result for the HOT policy

is not shown for K� < 0:1. This is because the results for the HOT policy in the �gures are
based on (17)(18) that correspond to the optimal HOT toll. As shown in Proposition 10 and
Figure 2, the social cost under HOT is greater than that under HOV for K� < c

m�1
m
= 0:1.

Therefore the optimal HOT policy in this range of K� is not allowing solo drivers in � lane.16

16It is possible to interpret the social cost under the optimal HOT policy in this case as coinciding with
that under HOV policy.
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Figure 4 also shows that the social cost for HOV lanes becomes larger than that without the
policy for K� > 0:159. This result is again consistent with Proposition 9 and Figure 2.
Let us look at the results concerning pricing policies. Figure 3 shows that the share

of carpoolers under uniform pricing (tU) is constant and lower than that under di¤erential
pricing (tD). tD is increasing with K� for K� < 0:1 (ns� = 0), while it is decreasing for
K� > 0:1 (ns� > 0). In the former case, as K� is larger, carpooling is more advantageous
because � lanes are less congested. On the other hand, when ns� > 0, more solo drivers use
� lanes as K� is larger. This crowds out carpooling. Figure 4 shows that di¤erential pricing
performs better than uniform pricing unless K� is very small. This is because division
of lanes induces sorting of heterogeneous users so that each user �nds a better trade-o¤
between congestion and the carpool organizing cost. This sorting e¤ect is enhanced by
choosing di¤erential tolls optimally, which raises the share of carpoolers with only a small
distortion from di¤erence in congestion levels between lanes. As shown in Figure 3, the
share of carpoolers under di¤erential pricing is higher than that under uniform pricing.
The uniform pricing has some advantages in that there is no distortion from di¤erence in
congestion levels, and it also gives an incentive to carpool in the form of saving toll payment.
Our result shows, however, that the above stated advantages of uniform pricing are not large
enough to exceed the sorting e¤ect of di¤erential pricing. It is observed in Figure 4 that
there exists the optimal K� for di¤erential pricing policy that minimizes the social cost.
Note that the optimal K� is smaller than 0:1 = cm�1m , where no solo driver uses lane �, i.e.,
ns� = 0. This result is consistent with Proposition 8.
Note that uniform pricing is inferior even to HOV policy for K� < 0:1. This result

is due to the e¤ect of capacity allocation between lanes. Suppose that K� is reduced from
K� = c

m�1
m
= 0:1, where SCHOV = SCU . One unit of decrease inK� has two direct e¤ects: a

reduction in congestion on � lanes and an increase in congestion in � lanes. The net of the two
direct e¤ects is positive (the social cost is decreased). A reduction in K� also have indirect
e¤ect that is a change in distortion through change of tHOV . Since @t

@K�
= c(m�1)2+m

m2 > 0,

the indirect e¤ect works in the opposite direction of the direct e¤ect, but the latter is larger
than the former.

6 Conclusion

This paper shows that the welfare e¤ects of HOV and HOT lanes policies vary depending on
the parameters and road conditions. As already pointed out by several authors, introducing
HOV policy improves the social welfare in some cases, but aggravates the situation in other
cases. HOV policy encourages carpooling, thereby reducing the total tra¢ c, but it also
causes distortion from the di¤erence in congestion levels between the two types of lanes.
This distortion can be reduced by converting HOV lanes to HOT lanes: it allows solo drivers
in HOV lanes. However, HOT policy has an adverse e¤ect in that it discourages carpooling.
As a result, contrary to the wide belief, converting HOV lanes to HOT lanes may reduce the
social welfare under conditions that are not too unrealistic.
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We examine the alternative pricing policies: uniform and di¤erential congestion pric-
ing. The optimal uniform congestion pricing is not necessarily e¢ cient, and the di¤erential
congestion pricing with HOV (HOT) lanes achieves the �rst-best e¢ cient allocation if the
capacity of HOV lanes is optimally chosen. Our result suggests that a better way to reduce
the di¤erence in tra¢ c congestion in the two types of lanes is not to toll solo drivers in
HOV lanes only (i.e., HOT policy) but to toll in regular lanes. Tolling in the regular lanes
encourages carpooling, the number of the HOV lane users is increased, and the number of
regular (now toll) lane users is decreased. This policy reduces the total number of vehicles
by promoting carpooling while controlling the distortion from the di¤erence in congestion
levels between lanes.
For analytical simplicity, we assumed away some practical aspects in this paper. First,

our model ignores the heterogeneity in travelers�congestion costs (time costs), as we have
mentioned in the introduction. HOV lanes can be seen as a sorting mechanism to sort out
travelers with di¤erent carpool organization costs. HOT lanes can further sort out travelers
with di¤erent congestion costs. Since our paper does not incorporate the latter e¤ect, the
result has a bias against HOT lanes. When travelers�congestion costs are very di¤erent,
introducing HOT lanes is more likely to improve the e¢ ciency of HOV lanes. Second, we
assumed that there are no additional costs in introducing HOV lanes and converting HOV
lanes to HOT lanes. However, in reality, costs are incurred in painting stripes or placing
tra¢ c cones to delineate HOV lanes, and in enforcing occupancy requirements. Infrastructure
and operating costs are also appreciably higher for HOT lanes than HOV lanes. A cost-
bene�t comparison of the alternatives should take into account implementation costs as well
as user costs. Third, HOT lane policy generates revenues that can be used to maintain
the highway and �nance the operation cost of the policy, and is politically feasible policy.
These practical considerations can a¤ect the relative merits of HOV, HOT, and the status
quo. Finally, we assumed that the organization cost of a carpool, t, is independent of the
size of the carpool, m. However, if carpoolers come from di¤erent families and work at
di¤erent locations the cost per person will generally rise with m because of the time and
extra distance required to collect participants and to drop them o¤. We also ignored the
complication that the m participants in a carpool will generally have di¤erent values of t.
This point becomes an issue particularly if we consider m as a policy variable. We plan to
relax these assumptions in our further work.

Appendix A: Examples

Here, we provide two examples indicating that the results in the special case (F (t) = t and
C(q) = cq) may not be robust. The �rst example shows that even if K� is reasonably small
(K� = 1=4), introducing HOV lanes may increase every commuter�s cost. Consider the
following example:

Example 1. (Introducing HOV lanes may increase every commuter�s cost.) Let F (t) = 0
for all t < 17

18
, and F (t) = 18(t � 17

18
) for t 2 [17

18
; 1]. Let C(q) = q, K� =

1
4
and m = 3. The
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equilibrium condition

C(
F (�tHOV )

mK�

) + �tHOV = C(
1� F (�tHOV )

K�

);

can be written as
18(�tHOV � 17

18
)

3
4

+ �tHOV =
18(1� �tHOV )

3
4

:

Thus, we have
�tHOV =

20

21
;

and

CHOV� (t) = 18

�
20

21
� 17
18

�
� 4
3
+ t

=
4

21
+ t

� 4

21
+
17

18
=
143

126
;

CHOV� = 24� 1

21
=
8

7
:

Thus, all commuters pay more than 1, which can be achieved without HOV lanes (unit
population with road capacity 1 makes q = 1). This implies that introducing HOV lanes
increases all commuters�costs, thus reducing social welfare.�

The result is derived from a combination of a large value of m and a small range of
(relatively) high values of t. The latter assumption means that individuals are relatively
homogeneous and carpool organization costs are substantial so that it is more likely for an
HOV policy shift to a¤ect everyone in the same direction and greatly increase the carpool
organization costs. Even if we require that F (t) > 0 for all t > 0, it is easy to show
that an introduction of HOV lanes may reduce the social welfare (though small number of
commuters are better o¤). Thus, this example shows that if low-carpool-organization-cost
type commuters are not present, and if there are large population of medium-high types,
then an introduction of HOV lanes tends to reduce the social welfare.
The next example shows that converting HOV lanes to HOT lanes may increase every

commuter�s cost for any nontrivial toll level.

Example 2. (Converting HOV lanes to HOT lanes may increase every commuter�s cost.)
Let F : [0; 1]! [0; 1] be such that F (t) = 0 for all t < 3

4
, and F (t) = 4(t� 3

4
) for all t 2 [3

4
; 1].

Let C(q) = q, K� =
1
4
and m = 4. The toll revenue is returned to commuters equally.

Suppose that there are no HOV or HOT lanes initially. Then all commuters use regular
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lanes, and each commuter pays C(1) = 1. We �rst show that in this example, introducing
HOV lanes is not welfare-enhancing. Suppose �rst that HOV lanes are introduced. Then,
the (interior solution) equilibrium choice of commuters is described by commuter type tHOV

who is indi¤erent between the two routes:

4(t
HOV � 3

4
)

1
+ t

HOV
=
4(1� tHOV )

3
4

;

or
t
HOV

=
25

31
:

This implies that 17

CHOV� (t) = 4�
�
25

31
� 3
4

�
+ t =

7

31
+ t:

CHOV� =
q�
3
4

= 4(1� 25
31
)� 4

3
=
32

31
> 1:

Thus, the total social cost is

7

31
� 7

31
+

Z 25
31

3
4

4tdt+
32

31
� 24
31
=
7887

7688
> 1:

Thus, introducing HOV lanes is social welfare-reducing (but not in the Pareto sense in this
example: some lowest t commuters are made better o¤ by the introduction of HOV lanes).
Now, let us convert HOV lanes to HOT lanes with toll � . Toll � needs to satisfy � < 25

31
:

otherwise, no commuter pays a toll. In order to conduct a social cost comparison, we
assume that toll revenue is returned to commuters equally. The number of HOV commuters
(carpooling commuters) is

4

�
� � 3

4

�
.

Given that the toll is � , we have
q� + � = q�;

where

q� = 4

�
� � 3

4

�
� 1

mK�

+
ns�
K�

= 4

�
� � 3

4

�
+
ns�
K�

;

q� =
4 (1� �)� ns�
1�K�

:

17Thus, in this example, the lowest t commuters (t = 3
4 ) are slightly better o¤ by the introduction of HOV

lanes: C�( 34 ) =
7
31 +

3
4 =

119
124 < 1. It is easy to construct an example where all commuters are worse o¤ by

the introduction of HOV lanes.
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Thus,

4

�
� � 3

4

�
+ 4ns� + � =

16

3
(1� �)� 4

3
ns�;

or
ns� =

25� 31�
16

:

The toll revenue is
TR(�) =

25� 31�
16

� � = 25

16
� � 31

16
� 2;

and each commuter receives this amount since the population is normalized to unity. Since
toll payers and regular lane users pay the same cost (indi¤erent)

CHOT� (�) = q� � TR(�)

=
16

3
(1� �)� 4

3
ns� � TR(�)

=
16

3
(1� �)� 4

3
� 25� 31�

16
� 25
16
� +

31

16
� 2

=
13

4
� 69
16
� +

31

16
� 2

>
13

4
� 11
4
� 25
31
=
32

31
= CHOV�

for all � < 25
31
. (CHOT� (�) is a convex function that is monotonically decreasing in the relevant

range.) Thus, all commuters with t � � are made worse o¤ by the conversion. Moreover,

q� = 4

�
� � 3

4

�
+
ns�
K�

= 4

�
� � 3

4

�
+
25� 31�
1
4
� 16

=
13� 15�

4
:

and

CHOT� (t; �) =
13� 15�

4
+ t� TR(�)

=
13� 15�

4
� 25
16
� +

31

16
� 2 + t

=
13

4
� 85
16
� +

31

16
� 2 + t

>
13� 15� 25

31

4
+ t

=
7

31
+ t = CHOV� (t);

22



for all � � 25
31
. Thus, all commuters with t < � are made worse o¤ by the conversion for all

� < 25
31
. This proves that in our numerical example, converting HOV lanes into HOT lanes

increases all commuters�commuting costs.�

This result is derived by the following mechanism. As � goes down, fewer people carpool
and the total number of cars on the road increases. With a high value of m, this e¤ect is
large. Thus, the regular lanes become more crowded. Although HOT policy moves some
SOVs from the regular lanes to HOT lanes, a toll-paying SOV increases HOV lane tra¢ c as
well with a small value of K�.

Appendix B: Proofs

In this appendix, we collect all proofs.

Proof of Proposition 1

Suppose that commuters of type t � t� use HOV lanes, and others use regular lanes. Then,
type t � t� pays cost

C(
F (t�)

mK�

) + t = C(
1

m
) + t:

If she switches to the regular lane, then she pays

C(
1� F (t�)
K�

) = C(1):

Thus, if the condition in the proposition is satis�ed with a strict inequality (with an equality),
then type t� strictly prefers HOV lanes (is indi¤erent between HOV and regular lanes).
Thus, �tHOV � t� holds (equality if C(1)�C( 1m) = t�). This implies that q� � 1, and for all
t > �tHOV � t�, the payo¤ increases. Moreover, since type �tHOV is better o¤, we have

C(
F (�tHOV )

mK�

) + t � C(F (
�tHOV )

mK�

) + �tHOV = C(
1� F (�tHOV )

K�

) � C(1):

Since commuters with type t < �tHOV used to pay C(1), they are all better o¤ (equality
holds only when t = �tHOV = t�). Hence, tra¢ c congestion in both HOV and regular lanes is
eased, and commuters are better o¤ in the Pareto sense. On the other hand, if the condition
is violated, then �tHOV < t� holds. This implies that the tra¢ c congestion in regular lanes
increases. Thus, commuters with t � �tHOV would be worse o¤.�
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Proof of Proposition 2

The aggregate social cost with HOT lanes is written as

SC(�) = C

�
F (�)

mK�

+
ns�
K�

�
F (�) +

Z �

0

tdF

+ns�C

�
F (�)

mK�

+
ns�
K�

�
+(1� F (�)� ns�)C

�
1� F (�)� ns�

K�

�
:

The �rst, second, and third lines represent the aggregated costs of HOV lane users, toll
payers, and regular lane users, respectively. Di¤erentiating them with respect to � , we
obtain

SC 0(�)

=

�
C

�
F (�)

mK�

+
ns�
K�

�
+ C 0

�
F (�)

mK�

+
ns�
K�

�
F (�)

mK�

+ �

�C
�
1� F (�)� ns�

K�

�
� C 0

�
1� F (�)� ns�

K�

�
(1� F (�)� ns�)

K�

�
F 0(�)

+

�
C 0
�
F (�)

mK�

+
ns�
K�

�
F (�)

mK�

+ C

�
F (�)

mK�

+
ns�
K�

�
+ C 0

�
F (�)

mK�

+
ns�
K�

�
ns�
K�

�C
�
1� F (�)� ns�

K�

�
� (1� F (�)� n

s
�)

K�

C 0
�
1� F (�)� ns�

K�

��
dns�
d�

=

�
C 0
�
F (�)

mK�

+
ns�
K�

�
F (�)

mK�

� C 0
�
1� F (�)� ns�

K�

�
(1� F (�)� ns�)

K�

�
F 0(�)

+

�
�� + C 0

�
F (�)

mK�

+
ns�
K�

�
F (�)

mK�

+C 0
�
F (�)

mK�

+
ns�
K�

�
ns�
K�

� (1� F (�)� n
s
�)

K�

C 0
�
1� F (�)� ns�

K�

��
dns�
d�
:

Thus,

SC 0(�) = �(�)�
�
F 0(�) +

dns�
d�

�
�C 0

�
F (�)

mK�

+
ns�
K�

�
� ns�
K�

� F 0(�)

�� � dn
s
�

d�
;
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where

�(�)

= C 0
�
F (�)

mK�

+
ns�
K�

��
F (�)

mK�

+
ns�
K�

�
�C 0

�
1� F (�)� ns�

K�

�
(1� F (�)� ns�)

K�

:

Since the congestion ratio in the regular lanes is always higher than in HOT lanes, we have

F (�)

mK�

+
ns�
K�

<
(1� F (�)� ns�)

K�

:

The non-decreasing and convex congestion cost function satis�es

C 0
�
F (�)

mK�

+
ns�
K�

�
� C 0

�
1� F (�)� ns�

K�

�
:

Therefore, we have
�(�) < 0;

for all ns� � 0. Now, recall dns�
d�

< 0. Thus, if the second term is zero, SC 0(�) > 0 is
guaranteed by having F 0(�) + dns�

d�
� 0. The second term is zero when � = �tHOV holds, since

it assures that ns� = 0 holds. Thus, evaluating the above formula at � = �t
HOV ,18 we have

SC 0(�)j�=�tHOV

=

�
C 0
�
F (�)

mK�

�
F (�)

mK�

� C 0
�
1� F (�)
K�

�
(1� F (�))

K�

��
F 0(�) +

dns�
d�

�
�� � dn

s
�

d�

In order to determine the sign of SC 0(�)j�=�tHOV , we check the sign of the contents of the
parenthesis:

F 0(�) +
dns�
d�

= F 0(�)�
C0( F (�)mK�

)F 0(�)
mK�

+
C0
�
1�F (�)
K�

�
F 0(�)

K�
+ 1

C0( F (�)mK�
)

K�
+

C0
�
1�F (�)
K�

�
K�

R 0

18More precisely speaking, we take limit from below:

SC 0(�)j�=�t = lim
�"t
SC 0(�).
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if and only if

C 0
�
F (�)
mK�

�
K�

+
C 0
�
1�F (�)
K�

�
K�

R
C 0
�
F (�)
mK�

�
mK�

+
C 0
�
1�F (�)
K�

�
K�

+
1

F 0(�)
:

That is,

F 0(�) +
dns�
d�

R 0, m� 1
mK�

� C 0
�
F (�)

mK�

�
R 1

F 0(�)

, m� 1
m

� F
0(�)

K�

� C 0
�
F (�)

mK�

�
R 1:

Since dns�
d�
< 0, we conclude that SC 0(�)j�=�tHOV > 0 if we have

m� 1
m

� F
0(�)

K�

� C 0
�
F (�)

mK�

�
< 1:

Hence, we have shown the desired result.�

Proof of Proposition 4

Let e = 0 and e = 1 represent "solo" or "carpooling," respectively. Let �ek : R+ ! R+ be
a measurable function such that �ek(t) is the measure of commuters whose choice is the kth
lane and e, and whose carpool organization cost t0 satis�es t0 � t. Let � = (�ek)k2f1;:::;ng;e2f0;1g
be such that

Pn
k=1

P1
e=0 �

e
k(t) = F (t) for all t 2 R+. Thus, � describes an assignment of

commuters over n lanes and their carpooling/solo decisions. Let M be the set of all �
functions.
Consider the social planner�s optimization problem.

min
�2M

nX
k=1

�Z
C (nQk) d�

0
k +

Z
[C (nQk) + t] d�

1
k

�

s.t.
nX
k=1

1X
e=0

�ek(t) = F (t)

and �ek(t) � 0

where Qk =
R
d�0k +

1
m

R
d�1k, which is the measure of tra¢ c on lane k. By the Weierstrass�s

Theorem, we have the optimal solution. Let �� be the solution of the above. �� satis�es the

26



following conditions.

C (nQk) + C
0 (nQk)nNk = �(t); if ��0k (t) > 0

C (nQk) + C
0 (nQk)nNk � �(t); if ��0k (t) = 0

C (nQk) + t+
1

m
C 0 (nQk)nNk = �(t); if ��1k (t) > 0

C (nQk) + t+
1

m
C 0 (nQk)nNk � �(t); if ��1k (t) = 0

where Nk =
R
d�0k +

R
d�1k, which is the measure of commuters using lane k. It is easy to

see that the optimal allocation is decentralizable by levying toll per vehicle that equal to the
congestion externality: C 0 (nQk)nNk for solo drivers, and 1

m
C 0 (nQk)nNk for car-poolers.

We can show some properties of ��. Let fE0(��); E1(��); Em(��)g be a partition of
f1; :::; ng such that for all k 2 E0(��), ��1k (1) = 0 (a solo lane); for all k 2 E1(��),
��0k (1) = 0 (a carpool lane), and for all k 2 Em(��), ��0k (1) > 0 and ��1k (1) > 0 (a mixed
lane).
Suppose that there are two carpool lanes with di¤erent congestion levels. Since C is

strictly convex, by equating the congestion levels of the two lanes the social cost can be
reduced. This is a contradiction. Similarly, in all categories, the same congestion levels must
be achieved.
Second, focus on carpool and solo lanes. We claim that there exists �t 2 R+ such thatP
k2E1 �

�0
k (�t) = 0 and

P
k2E0 �

�1
k (�t) =

P
k2E0 �

�1
k (1). Suppose not. Then, for all �t 2 R+,

either
P

k2E1 �
�0
k (�t) > 0 or

P
k2E0 �

�1
k (�t) <

P
k2E0 �

�1
k (1). Either way, we can �nd ~t and two

sets of commuters with the same positive measures: the former is composed by car poolers
whose t satis�es t > ~t, and the latter is composed by solo drivers whose t satis�es t < ~t. By
swapping the roles of these two sets of commuters, the total social cost is decreased. This is
a contradiction. Thus, there exists �t 2 R+ such that

P
k2E1 �

�0
k (�t) = 0 and

P
k2E0 �

�1
k (�t) =P

k2E0 �
�1
k (1).

Third, similarly to the second point, among mixed lane commuters, we can say there
exists ~t 2 R+ such that

P
k2Em �

�0
k (~t) = 0 and

P
k2Em �

�1
k (~t) =

P
k2Em �

�1
k (1).

Fourth, we claim �t in the second point and ~t in the third point must be the same. The
proof is again by contradiction. If �t 6= ~t, then by swapping solo drivers whose ts are lower
with carpoolers whose ts are higher, the total social cost can be lowered.
The above four observations prove the statement of Proposition 4.�

Proof of Proposition 5
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The �rst-order condition with respect to ns� (11) can be rearranged to

C 0
�
F (t)

mK�

+
ns�
K�

� �
F (t) + ns�

�
K�

� C 0
�
1� F (t)� ns�

K�

� �
1� F (t)� ns�

�
K�

+C

�
F (t)

mK�

+
ns�
K�

�
� C

�
1� F (t)� ns�

K�

�
� �

= 0:

First consider the case where ns� = 0. In this case, � � 0 holds, and we have

C 0
�
F (t)

mK�

�
F (t)

mK�

+ C

�
F (t)

mK�

�
+ t� C 0

�
1� F (t)
K�

� �
1� F (t)

�
K�

� C
�
1� F (t)
K�

�
= 0;

and

C 0
�
F (t)

mK�

�
F (t)

K�

� C 0
�
1� F (t)
K�

� �
1� F (t)

�
K�

+ C

�
F (t)

mK�

�
� C

�
1� F (t)
K�

�
� 0:

Since C is a convex function and t > 0 holds ( F (t)
mK�

= 0, otherwise), the �rst-order condition
with respect to t (10) implies

F (t
D
)

mK�

� 1� F (tD)
K�

:

where tDis the optimal solution. The above inequality implies that the regular lanes are
more congested than HOV lanes.
We derive the pricing rule that is compatible with the optimal conditions above. In order

to achieve tD as the threshold type, we need to charge the following �D� to � lane users,

�D� = C

 
F (t

D
)

mK�

!
+ t

D � C
 
1� F (tD)
K�

!
:

As long as this toll is charged, all types t > tD have no incentive to carpool. The �rst-order

condition with respect to tD (10) together with F (t
D
)

mK�
� 1�F (tD)

K�
implies

�D� = C

 
F (t

D
)

mK�

!
+ t

D � C
 
1� F (tD)
K�

!

= C 0

 
1� F (tD)
K�

! �
1� F (tD)

�
K�

� C 0
 
F (t

D
)

mK�

!
F (t

D
)

mK�

� 0:
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Now, consider the case where ns� > 0. Since � = 0 holds, this requires

0 = C 0

 
F (t

D
)

mK�

+
ns�
K�

! �
F (t

D
) + ns�

�
K�

� C 0
 
1� F (tD)� ns�

K�

! �
1� F (tD)� ns�

�
K�

+C

 
F (t

D
)

mK�

+
ns�
K�

!
� C

 
1� F (tD)� ns�

K�

!

> C 0

 
F (t

D
)

mK�

+
ns�
K�

! 
F (t

D
)

mK�

+
ns�
K�

!
� C 0

 
1� F (tD)� ns�

K�

! �
1� F (tD)� ns�

�
K�

+C

 
F (t

D
)

mK�

+
ns�
K�

!
� C

 
1� F (tD)� ns�

K�

!
:

This inequality necessarily implies

F (t
D
)

mK�

+
ns�
K�

<
1� F (tD)� ns�

K�

:

Thus, if � lanes are open to non-carpooling commuters, then � lanes are more congested
than � lanes. Now, focus on the �rst-order condition with respect to tD. Rearranging this,
we can write

�D� = C

 
F (t

D
)

mK�

+
ns�
K�

!
+ t

D � C
 
1� F (tD)� ns�

K�

!

= C 0

 
1� F (tD)� ns�

K�

! �
1� F (tD)� ns�

�
K�

� C 0
 
F (t

D
)

mK�

+
ns�
K�

! �
F (t

D
) + ns�

�
mK�

> C 0

 
1� F (tD)� ns�

K�

! �
1� F (tD)� ns�

�
K�

� C 0
 
F (t

D
)

mK�

+
ns�
K�

! 
F (t

D
)

mK�

+
ns�
K�

!
> 0:

The last inequality holds since we have F (t
D
)

mK�
+ ns�

K�
< 1�F (tD)�ns�

K�
.�

Proof of Lemma 7

Suppose that there are multiple mixed lanes. Swapping 1 SOV and m HOVs between
mixed lanes does not a¤ect the congestion levels of lanes, so the social cost are unchanged.
Repeating the reallocation as above yields new solo lanes and car-pool lanes, then end up
leaving one mixed lane. As the congestion level remains constant after swapping, new solo
lanes are less congested than existing solo lanes. In this case, the social cost can be reduced
by reallocating SOVs between new and existing solo lanes. Thus it is not optimal that there
are multiple mixed lanes.�
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Proof of Proposition 9

Subtracting SCHOV from SC;, we have

c� c (c�mK�)

c� cK� + cmK� +mK� �mK2
�

+
1

2

�
cmK�

c� cK� + cmK� +mK� �mK2
�

�2
=

cK� (c
2 (2K�(m� 1)2 + 2(m� 1)) + c (m(3m� 4)K� � 4(m� 1)mK2

�) + 2m
2K2

�(K� � 1))
2 (�mK2

� + (c(m� 1) +m)K� + c)
2

Let us de�ne 
(c;m;K�) that is the numerator of the above expression:


(c;m;K�)

= cK�

�
c2
�
2K�(m� 1)2 + 2(m� 1)

�
+ c
�
m(3m� 4)K� � 4(m� 1)mK2

�

�
+ 2m2K2

�(K� � 1)
�

Function 
(c;m;K�) is a cubic function of c in which the coe¢ cient of c3 is positive.
Also note that 
(0;m;K�) = 0 and @


@c
jc=0 = 2m2K3

�(K� � 1) < 0. Thus there exists ec such
that 
(c;m;K�) R 0 , c R ec(K�;m), where ec(K�;m) is the larger root of the quadratic
equation for c in the bracket of 
(c;m;K�), i.e.,

ec(K�;m)

=
4K2

�m
2 � 3K�m

2 � 4K2
�m+ 4K�m+

p
�8K3

�m
4 + 9K2

�m
4 + 8K3

�m
3 � 8K2

�m
3

2 (2K�m2 � 4K�m+ 2m+ 2K� � 2)

We have completed the proof.�

Proof of Proposition 10

There are two cases: the coe¢ cient of � 2 on the numerator of (15) is positive or negative,
i.e.,

�2mK2
� + 2(c(m� 1) +m)K� + c(2�m) R 0;

or

c Q 2mK�(1�K�)

m� 2� 2(m� 1)K�

:

If c < 2mK�(1�K�)
m�2�2(m�1)K�

, SCHOT is convex in � for � 2 [0; �t], while if c > 2mK�(1�K�)
m�2�2(m�1)K�

,
SCHOT is concave in � for � 2 [0; �t] (if equality, both concave and convex). The shape of
SCHOT (�) can be concave if K� is small and m is large.
We �rst consider the case where SCHOT is concave in � (c > 2mK�(1�K�)

m�2�2(m�1)K�
). In this

case, dSC
HOT (�)
d�

j�=0 < 0 implies dSCHOT (�)
d�

< 0 for all � > 0. Di¤erentiating SCHOT (�) with
respect to � , we obtain

dSCHOT (�)

d�
=
(c(2�m) + 2c(m� 1)K� + 2mK�(1�K�)) � + (1�m)c2

cm
:
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Applying � = 0 to the above relation we have dSCHOT (�)
d�

j�=0 = c(1�m)
m

< 0 . Thus, SCHOT

is monotonically decreasing in � , and SCHOT (�) > SCHOT (�tHOV ) for all � < �tHOV , and
converting HOV lanes to HOT lanes unambiguously deteriorates the social welfare.
In contrast, if SCHOT is convex in � (c < 2mK�(1�K�)

m�2�2(m�1)K�
), converting HOV lanes to HOT

lanes reduces the social cost for some values of toll � , if and only if dSC
HOT (�)
d�

j�=�tHOV > 0.
If SCHOT (�) is U-shaped, then there is the interior optimal toll rate �HOT < �tHOV . For
� = t

HOV we have

dSCHOT (�)

d�
j�=�tHOV

=
2m2K2

�(1�K�)� cmK� ((2m� 3)� 3(m� 1)K�)� c2(m� 1) (K�(m� 1) + 1)
cm ((m� 1)K� + 1) +m2K�(1�K�)

The denominator is always positive, so let us investigate the sign of the numerator. Note
that the numerator is a quadratic function of c, and the coe¢ cient of c2 is negative. In this
case, we obtain the condition that the numerator has a positive value as

�2mK�(1�K�)

1 + (m� 1)K�

< c <
mK�

m� 1

Since c is supposed to have positive values, only the latter inequality should apply, i.e.,
c < mK�

m�1 . And this inequality su¢ ces as the condition for the proposition since parameters
satisfying c < mK�

m�1 are included in the set of parameters satisfying the convexity condition

c < 2mK�(1�K�)
m�2�2(m�1)K�

.�
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Fig.1A:  Social cost may be reduced by converting HOV lane to HOT lane. 
        Introducing HOV lane increases the social cost, i.e., 0HOVSC SC>  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1B: Social cost may be reduced by converting HOV lane to HOT lane. 
        Introducing HOV lane reduces the social cost, i.e., 0HOVSC SC<  
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Fig.1C  Converting HOV lane to HOT lane increases the social cost. 
        Introducing HOV lane reduces the social cost, i.e., 0HOVSC SC<  
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Figure 2  Parameters and welfare ranking of HOV and HOT 
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Figure 4  Aggregate social costs under alternative policies 
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Figure 3  Shares of car-poolers under alternative policies 
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