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Abstract. Conditional quantile estimation is an essential ingredient in modern risk man-
agement. Although GARCH processes have proven highly successful in modeling finan-
cial data it is generally recognized that it would be useful to consider a broader class of
processes capable of representing more flexibly both asymmetry and tail behavior of con-
ditional returns distributions. In this paper, we study estimation of conditional quantiles
for GARCH models using quantile regression. Quantile regression estimation of GARCH
models is highly nonlinear; we propose a simple and effective two-step approach of quantile
regression estimation for linear GARCH time series. In the first step, we employ a quan-
tile autoregression sieve approximation for the GARCH model by combining information
over different quantiles; second stage estimation for the GARCH model is then carried out
based on the first stage minimum distance estimation of the scale process of the time series.
Asymptotic properties of the sieve approximation, the minimum distance estimators, and
the final quantile regression estimators employing generated regressors are studied. These
results are of independent interest and have applications in other quantile regression set-
tings. Monte Carlo and empirical application results indicate that the proposed estimation
methods outperform some existing conditional quantile estimation methods.

1. Introduction

Distributional information such as conditional quantiles and variances play an essential
role in risk measurement. Evaluation of Value-at-Risk, as mandated in many current reg-
ulatory contexts, is explicitly a conditional quantile estimation problem. Closely related
quantile-based concepts such as expected shortfall, conditional value at risk, and limited
expected loss, are also intimately linked to quantile estimation, see, e.g., Artzner, Delbaen,
Eber, and Heath (1999), Wang (2000), Wu and Xiao (2002), and Bassett, Koenker, and
Kordas (2004).

The literature on estimating conditional quantiles is large. Many existing methods of
quantile estimation in economics and finance are based on the assumption that financial
returns have normal (or conditional normal) distributions. Under the assumption of a con-
ditionally normal returns distribution, the estimation of conditional quantiles is equivalent
to estimating conditional volatility of returns. The massive literature on volatility model-
ing offers a rich source of parametric methods of this type. However, there is accumulating
evidence that financial time series, and returns distributions are not well approximated by
Gaussian models. In particular, it is frequently found that market returns display negative

Version: March 13, 2009. We thank the editor, an associate editor, three referees and participants at
the 2007 JSM, MIT, and the Cass Conference in Econometrics for helpful comments and discussions on an
earlier version of this paper. We also thank Chi Wan for excellent research assistance. Research was partially
supported by NSF grant SES-05-44673.

1



2 ZHIJIE XIAO AND ROGER KOENKER

skewness and excess kurtosis. Extreme realizations of returns can adversely effect the per-
formance of estimation and inference designed for Gaussian conditions; this is particularly
true of ARCH and GARCH models whose estimation of variances are very sensitive to large
innovations. For this reason, research attention has recently shifted toward the development
of more robust estimators of conditional quantiles.

There is growing interest in non-parametric estimation of conditional quantiles; although
local, nearest neighbor and kernel methods are somewhat limited in their ability to cope
with more than one or two covariates. Other approaches to estimating VaR include the
hybrid method of Boudoukh, Richardson, and Whitelaw (1998) and methods based on
extreme value theory see, e.g. Boos (1984), McNeil (1998), and Neftci (2000)

Quantile regression as introduced by Koenker and Bassett (1978) is well suited to estimat-
ing conditional quantiles. Just as classical linear regression methods based on minimizing
sums of squared residuals enable one to estimate models for conditional mean, quantile
regression methods offer a mechanism for estimating models for the conditional quantiles.
These methods exhibit robustness to extreme shocks, and facilitate distribution-free infer-
ence.

In recent years, quantile regression estimation for time-series models has gradually at-
tracted more attention. Koenker and Zhao (1996) extended quantile regression to linear
ARCH models where σt = γ0 + γ1 |ut−1| + · · · + γq |ut−q| , and estimate conditional quan-
tiles of ut by a linear quantile regression of ut on (1, |ut−1| , · · ·, |ut−q|). However, evidence
from financial applications indicates that, comparing to the GARCH models, ARCH type
of models can not parsimoniously capture the persistent influence of long past shocks.

Engle and Manganelli (2004) suggest a nonlinear dynamic quantile model where con-
ditional quantiles themselves follow an autoregression. In particular, they propose the
following Conditional Autoregressive Value at Risk (CAViaR) specification for the τ -th
conditional quantile of yt:

Qyt(τ |Ft−1) = β0 +
p∑
i=1

βiQyt−i(τ |Ft−i−1) +
q∑
j=1

αj`(xt−j)

where xt−j ∈ Ft−j , Ft−j is the information set at time t − j, and Qyt(τ |Ft−1) is the
conditional quantile of yt given information set Ft−1. The CAViaR model has attracted
a great deal of research attension in recent years. The focus of Engle and Manganelli
(2004) is on introduction of the CAViaR model instead of how to estimate such models. In
the CAViaR model, since the regressors Qyt−i(τ |Ft−i−1) are latent and are dependent on
the unknown parameters, estimation of the CAViaR model is complicate and conventional
nonlinear quantile regression techniques are not directly applicable. Engle and Manganelli
(2004) use grid searching combined with recursive iteration of existing Matlab optimization
algorithms to obtain an approximation for the conditional quantile. Rossi and Harvey
(2009) recently proposed an iterative Kalman filter method to calculate dynamic conditional
quantiles that can be applied to calculate the CAViaR model.

There are some recent studies on estimation and applications of estimating conditional
quantiles. In particular, based on a relation between expectile and quantile, Taylor (2008a)
and Kuan, Yeh, and Hsu (2009) estimate conditional quantiles using asymmetric least
squares methods. Taylor (2008b) proposes the exponentially weighted quantile regression
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for estimating time-varying quantiles. Gourieroux and Jasiak (2008)) proposed the Dynamic
Additive Quantile (DAQ) model for calculating conditional quantiles. Giot and Laurent
(2003) model Value-at-Risk using parametric ARCH models based on skewed t-distributions.
Coroneo and Veredas (2008) analyze the density of high frequency financial returns using
quantile regression of ARCH models and conducted intradaily Value-at-Risk assessment.

In this paper, we study quantile regression estimation for a class of GARCH models.
GARCH models have proven to be highly successful in modelling financial data, and is
arguably the most widely used class of models in financial applications. However, quantile
regression GARCH models are highly nonlinear and thus complicated to estimate. As will
become apparent in our later discussion, the quantile estimation problem in GARCH models
corresponds to a restricted nonlinear quantile regression and conventional nonlinear quan-
tile regression techniques are not directly applicable, adding a new challenge to the already
complicated estimation problem. To circumvent these difficulties, we propose a robust and
easy-to-implement two-step approach for quantile regression on GARCH models. The pro-
posed estimation procedure consists a global estimation in the first step to incorporate the
global restriction on the conditional scale parameter, and a second step local estimation for
the conditional quantiles. In particular, although different implementations are possible,
we suggest that in the first step, a sieve quantile regression approximation is estimated
for multiple quantiles, and combined via minimum distance methods to obtain preliminary
estimators for the parameters of the global GARCH model. In the terminology of Aitchi-
son and Brown (1957) this procedure can be viewed as an extension of their “method of
quantiles.” The second step then focuses on the local behavior at the specific quantile and
estimates the conditional quantile based on the first stage results. The proposed method is
relatively easy to implement compared to other nonlinear estimation techniques in quantile
regression and has good sampling performance in our simulation experiments. The methods
that we employ to study the asymptotic behavior of our two-stage procedure: combining
information over quantiles via minimum distance estimation, and quantile regression with
generated regressors are also of independent interest and applicable in other econometric
and statistical applications.

As will be made explicit in section 2, the linear GARCH process has a CAViaR(p, q)
representation Instead of focusing on discussion of the model itself, we focus on estimation
of this model. In this sense, the estimation procedure that we propose in the current
paper provides a method of calculating a class of CAViaR models. Comparing to studies in
the existing literature, instead of only looking at local properties at the specified quantile,
the proposed procedure takes into account both global model coherence and optimal local
approximation. Since the GARCH model has been proved to be highly successful in financial
applications, estimates that are globally coherent with the GARCH feature seem appealing
in financial applications. Third, the estimation procedure in our paper also provides a robust
estimator for the conditional volatility. Such an estimator is not dependent on distributional
assumptions, and thus robust to skewed and heavy-tailed innovations.

The remainder of the paper is organized as follows: We discuss the estimation of con-
ditional quantiles in GARCH models and propose the two-stage estimation procedure in
the next section; Section 3 studies the asymptotic behavior of the proposed estimators in
each stage, including the sieve quantile estimation, the minimum distance estimation that
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combines information over various quantiles, and the proposed two-step estimator. The
results of a small Monte Carlo experiment are reported in Section 4.

2. Quantile Regression for Linear GARCH Models

Since Bollerslev (1986), a variety of GARCH models have been proposed by various
researchers, including the EGARCH model of Nelson (1991) and the linear GARCH model
of Taylor (1986). In the original quadratic form of the GARCH model we say that : ut
follows a GARCH(p, q) process if

ut = σt · εt,
σ2
t = β0 + β1σ

2
t−1 + · · ·+ βpσ

2
t−p + γ1u

2
t−1 + · · ·+ γqu

2
t−q,

where εt is an iid sequence of mean zero Gaussian random variables. As noted by Pan and
Duffie (1997), maximum likelihood estimation of this form of the GARCH model has the
potential disadvantage that it is overly sensitivity to extreme returns. For example, if we
consider a market crash, extreme daily absolute returns may be 10 to 20 times normal daily
fluctuation, so the quadratic form of GARCH model yields a return effect which is 100 to
400 times the normal variance. This not only causes overshooting in volatility forecasting,
but also carries this influence far into the future. As an alternative, Taylor (1986) suggested
a modified GARCH model: we will say that ut follows a linear GARCH(p, q) process if

ut = σt · εt,(1)
σt = β0 + β1σt−1 + · · ·+ βpσt−p + γ1 |ut−1|+ · · ·+ γq |ut−q| .(2)

The quadratic GARCH model seems computationally more convenient than the linear
GARCH model, but linear GARCH may be more appropriate in modelling financial re-
turns. The linear GARCH structure is less sensitive to extreme returns, but it is more
difficult to handle mathematically. However, the linear structure is well suited for quantile
estimation.

We will consider quantile regression estimation for the linear GARCH model (1) and (2),
where β0 > 0, (γ1, · · ·, γq)> ∈ <q+, and εt are independent and identically distributed with
mean zero and unknown distribution function Fε(·). We will admit a general class of dis-
tributions for εt, including the normal distribution and other commonly used distributions
for financial applications with asymmetry and heavier tails. Our primary purpose is to
estimate the τ -th conditional quantile of ut, but we also provide robust estimators for the
conditional volatility as well as the GARCH parameters.

2.1. Conditional Quantiles for the Linear GARCH Model. Let Ft−1 represents in-
formation up to time t− 1, the τ -th conditional quantile of ut is given by

Qut(τ |Ft−1) = θ(τ)>zt,

where

zt = (1, σt−1, · · ·, σt−p, |ut−1| , · · ·, |ut−q|)>,
θ(τ)> = (β0, β1, · · ·, βp, γ1, · · ·, γq)F−1(τ).



CONDITIONAL QUANTILE ESTIMATION FOR GARCH MODELS 5

Notice that σt−jF−1(τ) = Qut−j (τ |Ft−j−1), the conditional quantile Qut(τ |Ft−1) has the
following CAViaR(p, q) representation

(3) Qut(τ |Ft−1) = β∗0 +
p∑
i=1

β∗iQut−i(τ |Ft−i−1) +
q∑
j=1

γ∗j |ut−j |

where

β∗0 = β0(τ) = β0F
−1(τ), β∗i = βi, i = 1, · · ·, p and γ∗j = γj(τ) = γjF

−1(τ), j = 1, · · ·, q.

Remark. More generally, we may consider a time series yt in a regression model, say,

(4) yt = µ>Xt + ut,

where the residuals ut follow a linear GARCH process as characterized by (1). Under weak
regularity conditions, the τ -th conditional quantile of yt in the model (4) is given by

Qyt(τ |Ft−1) = µ>Xt + θ(τ)>zt,

where Xt = (1, x2,t, ....., xk,t)>. In the above problem, the key component is the estimation
of conditional quantiles of the process ut: Qut(τ |Ft−1) = θ(τ)>zt. For this reason, we focus
our discussion on model (1) and (2).

2.2. Quantile Regression Estimation of GARCH Models. Quantile regression pro-
vides a convenient approach of estimating conditional quantiles. It has the important virtue
of robustness to distributional assumptions and makes no prior presumption about the sym-
metry of the innovation process. Such properties are especially attractive for financial ap-
plications since often financial data like portfolio returns or log returns are heavy-tailed and
asymmetrically distributed. We begin by considering estimating of the conditional quantiles
of ut given by (1) employing quantile regression.

Since zt contains σt−k (k = 1, · · ·, q) which in turn depend on unknown parameters
θ = (β0, β1, · · ·, βp, γ1, · · ·, γq), we will write zt as zt(θ) whenever it is necessary to emphasize
the nonlinearity and its dependence on θ. To estimate the conditional quantiles of the
process ut we consider the following nonlinear quantile regression estimator solving:

(5) min
θ

∑
t

ρτ (ut − θ>zt(θ)),

where ρτ (u) = u(τ − I(u < 0)). However, estimation of (5) for a fixed τ in isolation cannot
yield a consistent estimate of θ since it ignores the global dependence of the σt−k’s on the
entire function θ(·). If the dependence structure of ut is characterized by (1) and (2), we
can consider the following restricted quantile regression1 instead of (5):(

π̂, θ̂
)

=

 arg minπ,θ
∑

i

∑
t ρτi(ut − π>i zt(θ))

s.t. πi = θ(τi) = θF−1(τi).

1If we look at the CAViaR(p,q) representation of the GARCH model (2), the parameters β∗i , (i = 1, · · ·, p)
are global and are not dependent on the specific quantile; however, parameters β∗0 and γ∗j , (j = 1, · · ·, q)
are local in the sense that they vary over different τ . In this sense, the linear GARCH model (1) has
a CAViaR(p, q) representation: Qut(τk|Ft−1) = β∗0k +

Pp
i=1 β

∗
iQut−i(τk|Ft−i−1) +

Pq
j=1 γ

∗
jk |ut−j |, which

satisfies the global restriction: β∗0k = β0F
−1(τk), γ∗jk = γjF

−1(τk), j = 1, · · ·, q, for k = 1, · · ·,K.
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Estimation of this global restricted nonlinear quantile regression is complicated both
computationally and theoretically. In this paper, we propose a simpler two-stage estimator
that both incorporates the global restrictions and also focuses on the local approximation
around the specified quantile. The proposed procedure is easily implemented, and asymp-
totic theory as well as Monte Carlo evidence indicates that the proposed estimator has good
performance compared to conventionally used methods in estimating conditional quantiles
based on parametric GARCH models.

2.3. A Two-Step Estimator for Conditional Quantiles. In this section, we describe
our two-step estimator for conditional quantiles of the linear GARCH model. The proposed
estimation consists the following two steps: (i) We consider a global estimation in the first
step to incorporate the global dependence of the latent σt−k’s on θ. (ii) Then, using results
from the first step, we focus on the specified quantile to find the best local estimate for the
conditional quantile.

In general, different estimation methods may be used in the first step - see additional
discussions on related issues in Section 3.4. We focus our discussion on the following quantile
autoregression based approach primarily due to its simplicity and its effectiveness as a
preliminary estimator.

We propose the following estimation procedure: In the first stage unrestricted estimates
of several quantile autoregressions are combined via minimum distance methods to construct
global estimates of the conditional scale parameters; in the second stage local estimates of
the conditional quantiles are computed based on the local scale estimates.

Giving the GARCH model (1) and (2), let

A(L) = 1− β1L− · · · − βpLp, B(L) = γ1 + · · ·+ γqL
q−1,

under regularity assumptions presented in Section 3 ensuring the invertibility of A(L), we
obtain an ARCH(∞) representation for σt :

(6) σt = a0 +
∞∑
j=1

aj |ut−j | ,

where the coefficients aj satisfy summability conditions implied by the regularity conditions.
For identification, we normalize a0 = 1. Substituting the above ARCH(∞) representation
into (1) and (2), we have

(7) ut =

a0 +
∞∑
j=1

aj |ut−j |

 εt,

and

Qut(τ |Ft−1) = α0(τ) +
∞∑
j=1

αj(τ) |ut−j | ,

where αj(τ) = ajQεt(τ), j = 0, 1, 2, · · ·.
Under our regularity conditions the coefficients aj decrease geometrically, so letting m =

m(n) denote a truncation parameter we may consider the following truncated quantile
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autoregression:

Qut(τ |Ft−1) ≈ a0(τ) + a1(τ) |ut−1|+ · · ·+ am(τ) |ut−m| .

See Koenker and Xiao (2006) for a discussion of this class of autoregressive models. By
choosing m suitably small relative to the sample size n, but large enough to avoid serious
bias, we obtain a sieve approximation for the GARCH model.

One could estimate the conditional quantiles simply using a sieve approximation:

Q̌ut(τ |Ft−1) = â0(τ) + â1(τ) |ut−1|+ · · ·+ âm(τ) |ut−m| ,

where âj(τ) are the quantile autoregression estimates. Under the assumptions of Section 3,
we have

Q̌ut(τ |Ft−1) = Qut(τ |Ft−1) +Op(m/
√
n).

However, as shown in the Monte Carlo experiment, this simple sieve approximation pro-
vides a a rather noisey estimator for the GARCH coefficients, but it serves as an adequate
preliminary estimator.

Since our first step estimation focuses on the global model, it is desirable to use informa-
tion over multiple quantiles in estimation. Combining information over multiple quantiles
also helps us to obtain globally coherent estimate of the scale parameters. In order to use
information over multiple quantiles, we estimate the unrestricted model at various quantiles
and assemble independent quantile estimates. (Alternatively, one could try to estimate the
first step model over several quantiles jointly). In this paper, we combine information at
different quantiles via minimum distance estimation.

Suppose that we estimate the m-th order quantile autoregression

(8) α̃(τ) = arg min
α

n∑
t=m+1

ρτ

ut − α0 −
m∑
j=1

αj |ut−j |


at quantiles (τ1, · · ·, τK), and obtain estimates

α̃(τk), k = 1, · · ·,K.

Let ã0 = 1 in accordance with the identification assumption. Denote

a = [a1, · · ·, am, q1, · · ·, qK ]> , π̃ =
[
α̃(τ1)>, · · ·, α̃(τK)>

]>
,

where qk = Qεt(τk), and

φ(a) = g ⊗ α =
[
q1, a1q1, · · ·, amq1, · · ·, qK , a1qK , · · ·, amqK

]>
,

where g = [q1, · · ·, qK ]> and α = [1, a1, a2, · · ·, am]>, we consider the following estimator
for the vector a that combines information over the K quantile estimates based on the
restrictions αj(τ) = ajQεt(τ):

(9) ã = arg min
a

(π̃ − φ(a))>An (π̃ − φ(a)) ,

where An is a (K(m+1))×(K(m+1)) positive definite matrix. To summarize: We propose
the following two-step estimator for the conditional quantiles of ut:
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Step 1: Estimate the following m-th order quantile autoregression (8) at quantiles
(τ1, · · ·, τK), and obtain α̃(τk), k = 1, · · ·,K. By setting ã0 = 1 and solving the
minimum distance estimation problem (9), we obtain an estimator for (a0, · · ·, am),
denoting it as (ã0, · · ·, ãm). Thus σt can be estimated by

σ̃t = ã0 +
m∑
j=1

ãj |ut−j | .

Step 2: Quantile regression of ut on z̃t = (1, σ̃t−1, · · ·, σ̃t−p, |ut−1| , · · ·, |ut−q|)> by

(10) min
θ

∑
t

ρτ (ut − θ>z̃t),

the two-step estimator of θ(τ)> = (β0(τ), β1(τ), · · ·, βp(τ), γ1(τ), · · ·, γq(τ)) is then
given by solution of (10), θ̂(τ), and the τ -th conditional quantile of ut can be esti-
mated by

Q̂ut(τ |Ft−1) = θ̂(τ)>z̃t.
Iteration can be applied to the above procedure for further improvement

In the next section, we develop the asymptotic theory of the related estimators.

3. Asymptotic Properties of The Proposed Estimator

This section investigates the asymptotic behavior of the proposed estimators, including
the sieve quantile autoregression, the minimum distance estimation and the second stage
estimation with generated regressors.

3.1. A Quantile Autoregression Sieve Approximation. In this subsection, we study a
quantile autoregression approximation for our underlying linear GARCH model. The nature
of the sieve approximation used in the first stage of the procedure plays a crucial role in
the proposed estimator. There is an extensive literature on the asymptotic behavior of
regression estimators with increasing parametric dimensions. Huber (1973) first considered
M-estimation of linear regression with continuously differentiable ρ (objective) function,
and showed that asymptotic normality can be preserved if m3/n → 0 as n → ∞. Several
subsequent researchers successfully improved on Huber’s results, including Portnoy (1985),
Mammen (1989), Welsh (1989), and Bai and Wu (1994). Welsh (1989) and He and Shao
(2000) studied nonlinear M-estimation with increasing dimension and an objective function
with possible nondifferentiability at finitely many points.

The focus of most prior studies is to determine the best possible expansion rate for
the number of parameters m as a function of the sample size n, and generally assumed
independent observations. Our objectives are somewhat different. Rather than trying to
determine the best rate for the truncation parameter m, our focus will be estimation of
conditional quantiles in the second step and the sieve regression is only a preliminary step.
In fact, as will become clear later in our analysis, under Assumption S1, the error coming
from an m-th order truncation is of order Op(bm) ( b < 1) and the approximation error
of σ̃t is of order Op(

√
m/n), it would suffice to consider a truncation m as a sufficiently
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large constant multiple of log(n). In addition, we consider time dependent data, and treat
truncation as an approximation, assuming that the true quantile function is an infinite
summation. In prior literature there is typically a sequence of true models with increasing
parametric dimension.

For convenience of the asymptotic analysis, we make the following assumptions. We
again stress that we are not seeking to achieve the weakest possible regularity conditions
for the asymptotic analysis, but instead to focus on the design of a robust, flexible and
easy-to-implement procedure for estimation of the GARCH model.

Assumption S1. The polynomials A(L) and B(L) have no common factors, A(z) 6= 0,
for |z| ≤ 1 ; and B(z) 6= 0, for|z| ≤ 1.

Assumption S2. {εt}are iid random variables with mean 0 and variance σ2 < ∞.The
distribution function of εt, Fε, has a continuous density fεwith 0 < fε

(
F−1
ε (τ)

)
<∞ .

Assumption S3. Denote the conditional distribution function Pr[ut < ·|xt] as Fu|x(·) and
its derivative as fu|x(·) is continuously differentiable and 0 < fu|x(·) <∞ on it’s support.

Assumption S4: Let xt = (1, |ut−1| , · · ·, |ut−m|)>, and

Dn = −E

(
1
n

n∑
t=m+1

xtx
>
t

σt

)
,

and denote the maximum and minimum eigenvalues of Dnas λmax

(
Dn

)
and λmin

(
Dn

)
then

lim inf
n→∞

λmin

(
Dn

)
> 0, lim sup

n→∞
λmax

(
Dn

)
<∞.

Assumption S5: There exist (small) positive constants δ1 > 0 and δ2 > 0 such that

Pr
(

max
1≤t≤n

u2
t > nδ1

)
≤ exp(−nδ2).

Assumption S6: The truncation parameter m satisfies m(n) = c log n for some c > 0.

Assumptions S1 and S2 are standard assumptions in the GARCH literature. Assumption
S1 is an invertibility condition on the ARCH operator and ensures that ut is stationary
with weak dependence and that appropriate limiting theory can be applied. This condition
is useful in our technical development and, no doubt could be weakened, but we do not
attempt to do so, or to find minimal conditions under which our results hold. The variance
of εt is usually standardized to be 1, but we assume that εt has variance σ2 in Assumption
S2 because we prefer the slightly different standardization that the first coefficient in the
ARCH(∞) representation (7) is 1 (a0 = 1). Assumptions S3 and S4 are similar to those in
the previous literature on sieve estimation. Assumption S5 assumes that the maximum of
u2
t has a generalized extreme value distribution. This is is a higher level assumption and

generally holds under weak dependence assumptions. The expansion rate of the truncation
parameter given in Assumption S6 is also for convenience and similar results can be expected
to hold for a much wider range of m.

Under Assumption S1, A(L) is invertible and we have an ARCH(∞) representation (7) for
σt, where the coefficients aj decrease at a geometric rate, i.e. there exits positive constants



10 ZHIJIE XIAO AND ROGER KOENKER

b < 1 and c such that |aj | ≤ cbj . Consequently,

σt = a0 + a1 |ut−1|+ · · ·+ am |ut−m|+Op(bm).

Denoting α(τ) = (a0(τ), a1(τ), · · ·, am(τ))> ∈ Rm+1, and xt = (1, |ut−1| , · · ·, |ut−m|)>, the
sieve quantile regression can be written as

(11) α̃(τ) = arg min
α

n∑
t=m+1

ρτ (ut − α>xt).

The following result establishes consistency and asymptotic normality for the sieve estima-
tor.

Theorem 1. Let α̃(τ) be the solution of (11), then under Assumptions S1 - S6, we have

(12) ‖α̃(τ)− α(τ)‖2 = Op(m/n).

and

(13)
√
n (α̃(τ)− α(τ)) = − 1

fε
(
F−1
ε (τ)

)D−1
n

(
1√
n

n∑
t=m+1

xtψτ (utτ )

)
+ op(1)

where

ψτ (u) = τ − I(u < 0), andDn =

[
1
n

n∑
t=m+1

xtx
>
t

σt

]
.

For any λ ∈ Rm+1, √
nλ> (α̃(τ)− α(τ))

σλ
⇒ N(0, 1),

where σ2
λ = 1

fε(F−1
ε (τ))2λ

>D−1
n Σn(τ)D−1

n λ, and Σn(τ) = 1
n

∑n
t=m+1 xtx

>
t ψ

2
τ (utτ ).

3.2. Minimum Distance Estimation of Conditional Scale. Having estimated the
truncated quantile autoregressions on a grid of τ ’s, we would now like to combine these
estimates to obtain estimates of the conditional scale parameters, σt. This is accomplished
most easily using the minimum distance methods proposed in Section 2.3. The asymptotic
properties of this estimator are summarized in the following Theorem.

Theorem 2. Under assumptions S1 - S6, the minimum distance estimator ã solving (9)
has the following asymptotic representation:

√
n(â− a0) = −

[
G>AnG

]−1
G>An

[
1√
n

n∑
t=m+1

ΥKt ⊗
[
D−1
n xt

]]
+ op(1)

where

G =
[
g0 ⊗ Jm

...IK ⊗ α0

]
,ΥKt =


ψτ1 (utτ1 )

fε(F−1
ε (τ1))
· · ·

ψτm (utτK )

fε(F−1
ε (τK))

 , g0 =

 Qεt(τ1)
· · ·
Qεt(τK)

 ,
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where g0 and α0 are the true values of vectors g = [q1, · · ·, qK ]> and α = [1, a1, a2, · · ·, am]>,
and

Jm =


0 · · · 0
1 · · · 0
...

. . .
...

0 · · · 1


is an (m+ 1)×m matrix and IK is an K-dimensional identity matrix.

When An is an identity matrix,

G>AnG = G>G =
[ [

g>0 g0 ⊗ J>mJm
] [

g>0 IK ⊗ J>mα0

][
I>Kg0 ⊗ α>0 Jm

] [
I>KIK ⊗ α>0 α0

] ] .
Alternatively, setting D = IK ⊗Dn, Vxt = xtx

>
t , Vψt = ΥKtΥ>Kt, and

ΨK =
1
n

n∑
t=m+1

Vψt ⊗ Vxt,Λ = D−1ΨKD−1,

the optimal choice of A is given by

A = Λ−1 = DΨ−1
K D.

In this case, G>AnG = G>DΨ−1
K DG, and DG =

[
(IKg0 ⊗DnJm)

... (IK2 ⊗Dnα0)
]
.

The first stage estimation immediately delivers an estimator for the conditional variance:

σ̃t = ã0 +
m∑
j=1

ãj |ut−j | .

For convenience of later analysis, we partition the (K(m+1))×(K(m+1)) weighting matrix
An as [An1, · · ·, AnK ], where Ank (k = 1, · · ·,K) are (K(m + 1)) × (m + 1) sub-matricies.
Let x>t = (|ut−1| , · · ·, |ut−m|),

Lm/K = [Im, 0m×K ], Hj = Lm/K

[
G>AnG

]−1
G>

[
An1D

−1
n xj , · · ·, AnKD−1

n xj
]
,

and denote H = n−1
∑

j Hj∆Hj , where

∆ =


τ1(1−τ1)

fε(F−1
ε (τ1))2 · · · τ1∧τK−τ1τK

fε(F−1
ε (τ1))fε(F−1

ε (τK))

· · · . . . · · ·
τ1∧τK−τ1τK

fε(F−1
ε (τ1))fε(F−1

ε (τK)) · · · τK(1−τK)

fε(F−1
ε (τK))2

 ,
the asymptotic behavior of this preliminary estimator for the scale parameter is given below.

Corollary 1. Under assumptions S1-S6, let ω2
t = x>t Hxt, as n→∞

√
n (σ̃t − σt)

ωt
⇒ N (0, 1) .
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In contrast to most existing estimators of conditional volatility based on Gaussian distri-
butional assumptions, our volatility estimator has the nice property that is relatively robust
to assumptions on the error distribution.

3.3. Asymptotic Distribution of the Second Stage Estimator. Using the results
from the first stage estimation, the second step local estimator θ(τ) can be obtained by
quantile regression of ut on z̃t = (1, σ̃t−1, · · ·, σ̃t−p, |ut−1| , · · ·, |ut−q|)>, and the τ -th condi-
tional quantile of ut can be estimated by

Q̂ut(τ |Ft−1) = θ̂(τ)>z̃t.

The limiting behavior of the second-stage estimator minimizing (10) is described in the
following result.

Theorem 3. Under assumptions S1-S6, the two-step estimator θ̂(τ) based on (10) has the
asymptotic representation:

√
n
(
θ̂(τ)− θ(τ)

)
= − 1

fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

ztψτ (utτ )

}
+ Ω−1Γ

√
n (ã− a) + op(1)

where a = [a1, a2, · · ·, am]>, Ω = E
[
ztzt

>/σt
]
, and

Γ =
p∑

k=1

θkCk, Ck = E
[
(|ut−k−1| , · · ·, |ut−k−m|)

zt
σt

]
.

In particular, since the first stage estimation is based on (9) the above asymptotic represen-

tation can be rewritten, denoting Lm/K =
[
Im

...0m×K

]
, as,

√
n
(
θ̂(τ)− θ(τ)

)
= − 1

fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

ztψτ (utτ )

}

−Ω−1ΓLm/K
[
G>AnG

]−1
G>An

[
1√
n

n∑
t=m+1

ΥKt ⊗
[
D−1
n xt

]]
+op(1).

The asymptotic distribution of the two-step estimator θ̂(τ) can be immediately obtained
from the above Theorem. Let

Ψt =
[

ψτ (utτ )

fε(F−1
ε (τ)) ,

ψτ1 (utτ1 )

fε(F−1
ε (τ1)) , · · ·,

ψτK (utτK )

fε(F−1
ε (τK))

]>
,

Mt =
[
zt, ΓLm/K

[
G>AnG

]−1
G>An1D

−1
n xt, · · ·, ΓLm/K

[
G>AnG

]−1
G>AnKD

−1
n xt

]
,

and define

M = p lim
n

[
1
n

∑
t

MtΞM>t

]
,
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where

Ξ =



τ(1−τ)
fε(F−1

ε (τ))2
τ∧τ1−ττ1

fε(F−1
ε (τ))fε(F−1

ε (τ1)) · · · τ∧τK−ττK
fε(F−1

ε (τ))fε(F−1
ε (τK))

τ∧τ1−ττ1
fε(F−1

ε (τ))fε(F−1
ε (τ1))

τ1(1−τ1)

fε(F−1
ε (τ1))2 · · · τ1∧τK−τ1τK

fε(F−1
ε (τ1))fε(F−1

ε (τK))

· · · · · · . . . · · ·
τ∧τK−ττK

fε(F−1
ε (τ))fε(F−1

ε (τK))
τ1∧τK−τ1τK

fε(F−1
ε (τ1))fε(F−1

ε (τK)) · · · τK(1−τK)

fε(F−1
ε (τK))2


.

The limiting distribution of the two stage estimator is summarized in the following corollary.

Corollary 2. Under assumptions S1-S6, the two-step estimator θ̂(τ) has the following
limiting distribution:

√
n
(
θ̂(τ)− θ(τ)

)
⇒ N

(
0,Ω−1MΩ−1

)
, as n→∞.

In the simple case that we estimate the first stage model at a single quantile τ , let
α̃(τ) = (α̃0(τ), · · ·, α̃m(τ))>, by setting ã0 = 1 and solving the equations α̃j(τ) = ãjQ̃εt(τ),
we obtain the following estimator for (a0, · · ·, am):

ã0 = 1, ã1 =
α̃1(τ)
α̃0(τ)

, · · ·, ãm =
α̃m(τ)
α̃0(τ)

,

In this case, the estimator

σ̃t = ã0 +
m∑
j=1

ãj |ut−j | ,

in Step 1 has the following representation:

σ̃t = σt +
1

α0(τ)
[α̃(τ)− α(τ)]> x̆t +Op

(
m2

n

)
= σt +Op

(√
m

n

)
+Op

(
m2

n

)
,

where

x̆t =

(
−
∑m

j=1 αj(τ)
α0(τ)

, |ut−1| , · · ·, |ut−m|

)
,

and the two-stage estimator has the following simplified asymptotic representation.

Corollary 3. Under our assumptions S1 - S6, if we estimate the first stage model at same
single quantile τ , the second stage quantile regression estimator θ̂(τ) based on (10) has the
following Bahadur representation:

√
n
(
θ̂(τ)− θ(τ)

)
= − 1

fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

[
zt +R>D−1

n xt

]
ψτ (utτ )

}
+ op(1)

where R> = 1
α0(τ)

(
−
∑m

j=1
αj(τ)
α0(τ)rj , r1, · · ·, rm

)
, and rj =

∑p
k=1 θkE

[
|ut−k−j | ztσt

]
. Conse-

quently,
√
n
(
θ̂(τ)− θ(τ)

)
⇒ N

(
0,

τ(1− τ)

fε
(
F−1
ε (τ)

)2 Ω−1MΩ−1

)
,
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where M = M1+M2+M3, with M1 = E
[
ztz
>
t

]
, M2 = lim 1

n

∑
t

[
R>D−1

n xtz
>
t + ztx

>
t D
−1
n R

]
,

and M3 = lim 1
n

∑
tR
>D−1

n xtx
>
t D
−1
n R.

Remark. We may compare the quantile regression estimator θ̂(τ) based on generated
regressors z̃t with the infeasible quantile regression estimator θ̃(τ) based on unobserved
regressors zt. Note that the infeasible estimator θ̃(τ) has the following Bahadur represen-
tation:

√
n
(
θ̃(τ)− θ(τ)

)
= − 1

fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

ztψτ (utτ )

}
+ op(1),

and
√
n
(
θ̂(τ)− θ(τ)

)
⇒ N

(
0,

τ(1− τ)

fε
(
F−1
ε (τ)

)2 Ω−1M1Ω−1

)
.

Comparing it with the Bahadur representation of θ̂(τ) given in Corollary 1, we see that the
Bahadur representation (and thus the variance) of θ̂(τ) contains an additional term that
arises from the preliminary estimation.

The proposed estimation procedure in this paper can be extended in several different
directions. First, like many other nonlinear estimation procedures, the propsed estimation
procedure may be iterated to achive further improvement. From the two step estimation, we
obtain estimates of θ(τ) and Qut(τ |It−1) at different quantiles. Consequently, estimates of θ
and F−1(τ) can be derived immediately, and updated estimates of σt can also be obtained.
The updated estimator of σt can then be used to re-estimate θ(τ) and Qut(τ |It−1). The
above procedure can be iterated to obtain estimators for both the conditional quantiles
and the conditional volatility σt. Second, different estimation methods may be used in the
first step global estimation. The current paper considers QAR estimation in the first stage
due to its convenience in implementation and effectiveness for a wide range of time series.
We conjecture that when the process are nearly integrated, a different first step estimation
methods may be preferred since the autoregression representation is obtained for invertible
ARMA models. Third, the basic idea of the two-step method can be applied to other types
of GARCH processes.

4. Monte Carlo Results

In this section, we report on a Monte Carlo experiment designed to examine the sam-
pling performance of the proposed estimation procedures and compare them with existing
methods. In particular, we compare the proposed quantile regression GARCH estimation
procedures with the simple quantile autoregression approximation; the RiskMetrics method
that is widely used in industry; and the CAViaR model proposed by Engle and Manganelli
(2004). The CAViaR model is estimated using the Matlab code of Manganelli (2002).

As measures of performance we report bias and mean square error (MSE) of the various
estimators of the 0.05 conditional quantile of the response as averaged over the sample. For
comparison purpose, we consider the following eight estimation procedures:
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(1) RiskM: The conventional RiskMetrics method RiskMetrics Group (1996), based
on Gaussian GARCH(1,1) with fixed parameters, that is widely used in financial
applications for estimation of Value-at-Risk;

(2) GGARCH: The Gaussian GARCH(1,1) with estimated parameters.
(3) ARCH: Sieve ARCH quantile regression approximation with m = 3n1/4.
(4) QGARCH1: The proposed two-step estimation method using information at the

specified quantile in the first step estimation.
(5) QGARCH2: The proposed two-step estimation method using information over mul-

tiple quantiles in the first step estimation. In particular, we estimate the sieve
ARCH quantile regression at each percentile (τk = 5k%, k = 1, · · ·, 19.), and es-
timate the GARCH parameters using the Minimum distance estimation (An = I)
coupled with trimming to avoid the random denominator going to zero.

(6) QGARCH3: The proposed estimation method using information at the specified
quantile in the first step estimation and iterate for potential improvements. Thus,
following Step 1 in our procedure, we estimate a sieve quantile autoregression and
obtain estimates of σt, then we run quantile regression of ut based on the estimated
regressors and obtain the two-step estimator of θ(τ)> = (β0(τ), β1(τ), γ1(τ)). Esti-
mates of parameters of the GARCH model can then be derived from the quantile
regression estimates by solving

β1(τ)
β0(τ)

=
β1

β0
,
γ1(τ)
β0(τ)

=
γ1

β0
,

β0

1− β1
= 1.

Finally, we recompute the estimates of σt and iterate the process to convergence.
(7) CAViaR1: CAViaR estimator using the Matlab code of Manganelli (2002), the

number of grid points is chosen to be n (=sample size).
(8) CAViaR2: CAViaR estimator using the Matlab code of Manganelli (2002), the

number of grid points is chosen to be 10000.

The data were generated from a linear GARCH(1,1) process with several choices of
parameter values and error distributions. Two different choices for the distribution of εt
are considered: (i) i.i.d Normal; (ii) i.i.d. t(4) - Student-t distribution with 4 degrees of
freedom; The first design of εt actually has normal distribution and we expect the traditional
methods based on normal assumption should be reasonable. The second design of εt has
a heavier tail. Two sample sizes n = 100, n = 500, are examined in the simulation, and
number of repetitions is 50. In each instance we estimate the 0.05 quantile. We consider
the following three sets of parameter values:

P1. β0 = 0.1, β1 = 0.5, γ1 = 0.3.
P2. β0 = 0.1, β1 = 0.8, γ1 = 0.1
P3. β0 = 0.1, β1 = 0.9, γ1 = 0.05.

The first set of parameter values (P1) satisfies the regularity conditions and the generates
a stationary linear GARCH process. Table 1 reports result of bias and mean squared
error of different estimation procedures for this case. The Monte Carlo results in Table
1 provide some baseline evidence in evaluating the sampling performance of the proposed
method when the regularity conditions are satisfied. In addition to (P1), we also consider
parameter values that are close to nonstationary GARCH, and examine the performance of
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Normal Student with 4 df.
n=100 n=500 n=100 n=500

Bias MSE Bias MSE Bias MSE Bias MSE
RiskM 0.1522 0.0382 0.1362 0.0305 0.6479 0.6884 0.8299 1.1840
GGARCH 0.2653 0.1433 0.1315 0.0301 0.7961 0.9813 0.5092 0.3968
ARCH 0.2545 0.1119 0.1348 0.0308 0.5140 0.5834 0.2985 0.2418
CAViaR2 0.1693 0.0549 0.1310 0.0282 0.3582 0.2883 0.2208 0.1390
CAViaR5 0.1647 0.0518 0.1306 0.0283 0.3311 0.2576 0.2208 0.1390
QGARCH1 0.1278 0.0286 0.0685 0.0083 0.3038 0.1917 0.1687 0.0757
QGARCH2 0.1257 0.0267 0.0715 0.0087 0.3116 0.2096 0.1643 0.0865
QGARCH3 0.1003 0.0185 0.0576 0.0064 0.2954 0.2041 0.1248 0.0477
Table 1. Bias and MSE for Estimates at τ = 0.05, β0 = 0.1, β1 = 0.5, γ1 = 0.3.

Normal Student with 4 df.
n=100 n=500 n=100 n=500

Bias MSE Bias MSE Bias MSE Bias MSE
RiskM 0.2653 0.1433 0.1315 0.0301 0.7961 0.9813 0.5092 0.3968
GGARCH 0.3557 0.2957 0.2323 0.0959 1.6455 3.5759 1.8645 4.1445
ARCH 0.5395 0.4834 0.3014 0.1497 1.1976 4.2614 0.5966 0.6739
CAViaR2 0.2643 0.1239 0.1262 0.0275 0.6441 0.8417 0.2417 0.1078
CAViaR5 0.2290 0.0883 0.1213 0.0256 0.6260 0.7680 0.2388 0.1045
QGARCH1 0.2570 0.1143 0.1405 0.0318 0.6233 0.7460 0.3101 0.2002
QGARCH2 0.2528 0.1091 0.1546 0.0400 0.6197 0.7283 0.3427 0.2093
QGARCH3 0.2266 0.0844 0.1236 0.0265 0.5235 0.5404 0.2749 0.1352
Table 2. Bias and MSE for Estimates at τ = 0.05, β0 = 0.1, β1 = 0.8, γ1 = 0.1.

the estimation procedures in this situation. In the second and third sets (P2 and especially
P3) of parameter values, β1 are large and β1 + γ1 are close to 1. When β1 + γ1 = 1, the
process becomes nonstationary and the regularity assumption S1 no longer holds. When
β1 + γ1 is close to 1, the process becomes nearly integrated and the ARCH approximation
used in the first step becomes poor. Monte Carlo results confirm this. In particular,
Table 2 gives results corresponding to β1 = 0.8, γ1 = 0.1. Table 3 corresponds to the case
β1 = 0.9, γ1 = 0.05.

The Monte Carlo results indicate that in general, the proposed GARCH quantile estima-
tor has reasonably good performance for a wide range of time series. They generally have
better performance over other estimation procedures in the stationary case. As the data
becomes more nonstationary, the performance of all these estimation procedures decreases.
In table 2, the proposed quantile regression GARCH estimation procedures still have rela-
tively better performance in general, but the difference between the CAViaR and GARCH
quantile estimation becomes smaller. In table 3, when the data are generated from a nearly
integrated GARCH process with β1 = 0.9, γ1 = 0.05, the CAViaR model has relatively
better performance than the two-step estimators.
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Normal Student with 4 df.
n=100 n=500 n=100 n=500

Bias MSE Bias MSE Bias MSE Bias MSE
RiskM 0.3557 0.2957 0.2323 0.0959 1.6455 3.5759 1.8645 4.1445
GGARCH 0.3557 0.2957 0.2323 0.0959 1.6455 3.5759 1.8645 4.1445
ARCH 1.0650 1.8698 0.5960 0.5856 2.1401 9.4193 1.2103 2.7186
CAViaR1 0.5181 0.4475 0.2464 0.1037 1.1364 2.3682 0.4788 0.4044
CAViaR2 0.4995 0.4222 0.2149 0.0785 1.1704 2.5111 0.4858 0.4193
QGARCH1 0.4387 0.3233 0.2608 0.1084 1.0568 2.0841 0.6293 0.6849
QGARCH2 0.4482 0.3462 0.2651 0.1154 1.0035 1.8752 0.5924 0.6046
QGARCH3 0.4623 0.3657 0.2466 0.1087 0.9436 1.7429 0.5506 0.5300
Table 3. Bias and MSE for Estimates at τ = 0.05, β0 = 0.1, β1 = 0.9, γ1 = 0.05.

S&P 500 Nikkei 225 FTSE 100 Hang Seng
Mean 0.00166 0.0010 0.0017 0.0023
Std. Dev. 0.0201 0.0240 0.0240 0.0369
Max 0.1002 0.1213 0.1389 0.1547
Min -0.1566 -0.1322 -0.2486 -0.4061
Skewness -0.4676 -0.3125 -1.8523 -1.7155
Kurtosis 3.3561 3.2958 16.198 11.376
AC(1) -0.0709 -0.0211 -0.0219 0.0899
AC(2) 0.0501 0.0527 0.0928 0.0776
AC(3) -0.0211 0.0333 -0.0511 -0.0241
AC(4) -0.0031 -0.0088 -0.0118 -0.0110
AC(5) -0.0199 0.0143 -0.0596 -0.0396
AC(10) -0.0535 -0.0716 -0.0165 -0.0285

Table 4. Table 4: Summary Statistics: Weekly returns (in decimal) of four
major equity indexes. AC(k) denotes autocorrelation of order k. The sample
period is from July 1981 to March 2008. The source of the data is the online
data service Datastream.

5. An Empirical Application To International Equity Markets

We employ the proposed estimation procedure to study returns in international equity
markets. The data that we use are the weekly return series, from July 1981 to March
2008, for four major world equity market indexes: the U.S. S&P 500 Composite Index,
the Japanese Nikkei 225 Index, the U.K. FTSE 100 Index, and the Hong Kong Hang Seng
Index.

While the U.S. and U.K. equity markets are mature and appreciated significantly over the
sample period, the emerging market in Hong Kong experienced much higher volatility and
more dramatic jumps in prices. The Japanese market, though mature, generated somewhat
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lower returns over the sample period, although it went through a bubbly period in the late
1980’s and then a bursting of the bubble in the 1990’s. The rather different risk dynamics
of these markets provide a rich ground for analyzing the risk management performance of
various estimators of Value at Risk.

Table 4 reports some summary statistics of the data. The mean weekly returns of the
four indexes ranges from 0.16% to 0.23% per week, or about 8.32% to 11.96% annually.
The Hong Kong Hang Seng Index returned an average 0.23%, a 10-fold increase in the
index level over the 20-year sample period. In comparison, the Nikkei 225 index only
increased by 6-fold. The U.S. S&P 500 Index and the FTSE 100 Index on average return
about 0.17% per week, slightly below that of the Hong Kong Hang Seng Index. However,
the Hang Seng’s phenomenal rise come with much higher risk than the S&P 500 or the
FTSE 100. The weekly sample standard deviation of the index is 3.69%, the highest of the
four indexes, as compared to 2.01% for the S&P 500 and 2.40% for the FTSE 100. The
Nikkei 225 Index exhibit a weekly standard deviation of 2.40%. As has been documented
extensively in the literature, all four indexes display negative skewness and excess kurtosis.
The autocorrelation coefficients for all four indexes are quite small. Prior to estimation of the
GARCH model, we demean each of the return series using a parsimonious autoregression.
Since mean returns at this frequency are small and autocorrelation coefficients are also very
modest this step has little impact on the results.

We estimate the Value at Risk for several distinct quantiles, {.01, .03, .05, .10, .15} for
each of the indices, employing the proposed quantile regression estimation procedure based
on the GARCH(1,1) model. We compare the results estimated by the proposed method
with results estimated by the CAViaR model and the ARCH models as described in the
previous section.

To compare the relative performance, we compute the coverage ratios, that is, the per-
centage of realized returns that fall below the estimated quantiles. These results are reported
in Tables 5-9. Since VaR is an out of sample concept, we consider prediction of VaR for
the last 500 periods. Thus, at each time point t (in the last 500 periods), we estimate the
model based on data up to time t, and predict the next period (t+ 1) conditional quantiles
(using estimates based on this period information). We compute the coverage ratios based
on the percentage of next period realized returns that are below the predicted quantiles .

Formal tests for the out of sample evaluation have been studied in the literature (see e.g.
Berkowitz, Christoffersen, and Pelletier (2009) for related literature). A widely used test is
the Kupiec (1995) proportion of failure test. The Kupiec test is a likelihood ratio test and
has asymptotic χ2 distribution with one degree of freedom.

Other tests have also been proposed in the literature. For example, if we consider the
indicator function: It+1(τ) = 1(ut ≤ Qut(τ |Ft−1)), then It+1(τ)− τ has mean zero and is a
martingale difference sequence, thus

Zn =
1√

nτ(1− τ)

∑
(It+1(τ)− τ)⇒ N(0, 1), as n→∞.

(see, e.g., Campbell (2005)). A two-sided test can be constructed based on the above
asymptotic normal staistic.

We conduct both the Kupiec test and the Zn test in our applications. The calculated
testing statistics are also reported in Tables 5-9. The 5% level critical values for the Kupiec
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% VaR 1% 3% 5% 10% 15%
SP500

Coverage Rate 0.0320 0.0500 0.0660 0.1160 0.1880
Kupiec Test 15.4671 5.7489 2.4592 1.3598 5.3140
Zn Test 4.9441 2.6216 1.6416 1.1926 2.3797

Nikkei225
Coverage Rate 0.0380 0.0680 0.0920 0.148 0.2280
Kupiec Test 23.1298 18.3993 15.0408 11.3256 21.1596
Zn Test 6.2925 4.9811 4.3091 3.5777 4.8845

FTSE100
Coverage Rate 0.0280 0.0560 0.0860 0.1320 0.1840
Kupiec Test 10.9940 22.3282 11.3308 5.2231 4.2805
Zn Test 4.0452 5.7499 3.6935 2.3851 2.1292

Hang Seng
Coverage Rate 0.018 0.020 0.038 0.1120 0.174
Kupiec Test 2.6126 1.9421 1.6469 0.7732 2.1671
Zn Test 1.7979 -1.3108 -1.2312 0.8944 1.5029
Table 5. Coverage Rates and Testing Results for QAR Model

% VaR 1% 3% 5% 10% 15%
SP500

Coverage Rate 0.0140 0.0380 0.0600 0.1200 0.1780
Kupiec Test 0.7187 1.0159 0.9921 2.1025 2.9307
Zn Test 0.8989 1.0486 1.0260 1.4907 1.7534

Nikkei225
Coverage Rate 0.0180 0.0480 0.086 0.1580 0.2380
Kupiec Test 2.6126 4.7282 11.3308 16.1835 26.5904
Zn Test 1.7979 2.3595 3.6935 4.3231 5.5108

FTSE100
Coverage Rate 0.0180 0.0420 0.0840 0.1240 0.1680
Kupiec Test 2.6126 2.2064 10.1945 2.9967 1.2312
Zn Test 1.7979 1.5730 3.4883 1.7889 1.1272

Hang Seng
Coverage Rate 0.0040 0.0120 0.034 0.0940 0.1620
Kupiec Test 2.3530 7.1705 3.0215 0.2037 0.5528
Zn Test -1.3484 -2.3595 -1.6416 -0.4472 0.7515

Table 6. Coverage Rates and Testing Results for QGARCH1 Model

test and the Zn test are 3.841 and 1.96 respectively. The testing results indicates that both
the CAViaR method and the quantile GARCH method provide reasonable coverage rates,
and are substantially better than the ARCH based estimation.
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% VaR 1% 3% 5% 10% 15%
SP500

Coverage Rate 0.0160 0.0340 0.0640 0.1240 0.1660
Kupiec Test 1.5383 0.2638 1.9027 2.9967 0.9761
Zn Test 1.3484 0.5243 1.4364 1.7889 1.0020

Nikkei225
Coverage Rate 0.0120 0.052 0.060 0.1160 0.2360
Kupiec Test 0.1899 6.8538 0.9921 1.3598 25.4596
Zn Test 0.4495 2.8838 1.0260 1.1926 5.3855

FTSE100
Coverage Rate 0.020 0.032 0.0700 0.0840 0.1580
Kupiec Test 3.9136 0.0673 3.7651 1.4957 0.2474
Zn Test 2.2473 0.2622 2.0520 -1.1926 0.5010

Hang Seng
Coverage Rate 0.004 0.018 0.0360 0.096 0.1720
Kupiec Test 2.3530 2.8791 2.2765 0.0900 1.8270
Zn Test -1.3484 -1.5730 -1.4364 -0.2981 1.3777

Table 7. Coverage Rates and Testing Results for QGARCH2 Model

% VaR 1% 3% 5% 10% 15%
SP500

Coverage Rate 0.0140 0.0260 0.0620 0.1200 0.1940
Kupiec Test 0.7187 0.2876 1.4130 2.1025 7.0602
Zn Test 0.8989 -0.5243 1.2312 1.4907 2.7554

Nikkei225
Coverage Rate 0.034 0.0627 0.118
Kupiec Test 0.2638 1.4215 1.7119
Zn Test 0.5243 1.2425 1.3416

FTSE100
Coverage Rate 0.0180 0.0520 0.0700 0.1060
Kupiec Test 2.6126 6.8538 3.8651 0.1965
Zn Test 1.7979 2.8838 2.0520 0.4472

Hang Seng
Coverage Rate 0.0020 0.0250 0.0425 0.0667 0.1160
Kupiec Test 4.8134 0.3639 0.4980 3.0736 4.8539
Zn Test -1.7979 -0.5862 -0.6882 -2.3608 -2.1292

Table 8. Coverage Rates and Testing Results for CAViaR1 Model

Appendix A. Proofs

A.1. Proof of Theorem 1. Our proofs rely heavily on the theory of empirical processes as
in Welsh (1989) and employ exponential inequalities for weakly dependent and martingale
difference sequences. We use the notation Et to signify the conditional expectation E(·|xt).
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% VaR 1% 3% 5% 10% 15%
SP500

Coverage Rate 0.0140 0.0260 0.0600 0.1240 0.1940
Kupiec Test 0.7187 0.2876 0.9921 2.9967 7.0602
Zn Test 0.8989 -0.5243 1.0260 1.7889 2.7554

Nikkei225
Coverage Rate 0.0175 0.0575 0.0620 0.120 0.186
Kupiec Test 1.8574 8.2419 1.4130 2.1025 7.1598
Zn Test 1.5076 3.2242 1.2312 1.4907 2.8333

FTSE100
Coverage Rate 0.0200 0.0520 0.0680 0.1140 0.1825
Kupiec Test 3.9136 6.8538 3.0806 2.0879 3.1363
Zn Test 2.2473 2.8838 1.8468 1.2981 1.8204

Hang Seng
Coverage Rate 0.0020 0.029 0.0425 0.0658 0.1160
Kupiec Test 4.8134 0.3277 0.4980 4.749 4.8539
Zn Test -1.7979 -0.4389 -0.6882 -2.667 -2.1292

Table 9. Coverage Rates and Testing Results for CAViaR2 Model

Let
ψτ (u) = τ − I(u < 0),

then ψτ (u) is the right-hand derivative of ρτ (u). (ρτ (u) is differentiable everywhere except
at u = 0.) The derivative of ρτ (ut − α>xt) w.r.t. α (except at point ut = α>xt) is then

ϕtτ (α) = ψτ (ut − α>xt)xt =
[
τ − I(ut < α>xt)

]
xt.

Notice that
Qut(τ |Ft−1) = α(τ)>xt +Rm(τ).

where Rm(τ) =
(∑∞

j=m+1 aj |ut−j |
)
Qε(τ) = Op(bm) under Assumption S1. Let u∗tτ =

ut − α(τ)>xt, and

utτ = ut −Qut(τ |Ft−1) =

a0 +
∞∑
j=1

aj |ut−j |

 [εt −Qε(τ)] = σtεtτ ,

then u∗tτ = utτ +Rm(τ), and
Et [ψτ (utτ )] = 0.

Under Assumption S3,

Et (ϕtτ (α(τ))) = Et
[
τ − I(ut < α(τ)>xt)

]
xt

=
[
τ − Fu|x(Qut(τ |xt) +Rm(τ))

]
xt

= Op (bm · ‖xt‖) ,
where we define ‖α‖ to be the L2 norm of α.
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We first show that ‖α̂(τ) − α(τ)‖2 = Op(m/n). Let λ ∈ S = {λ ∈ Rm+1 : ‖λ‖ = 1},
by convexity of the objective function, it suffices to show that for any ε > 0, there exists
B <∞ such that, for sufficiently large n,

Pr

{
inf
λ∈S

∑
t

λ>ϕtτ (α(τ) +B(mn)1/2λ) > 0

}
> 1− ε.

For notational convenience, we next define

ηt(v) = ϕtτ (α(τ) + v)− ϕtτ (α(τ))

then∑
t

λ>ϕtτ (α(τ) +B(mn)1/2λ) =
∑
t

λ>ϕtτ (α(τ))(14)

+
∑
t

λ>Et
{
ηt(B(mn)1/2λ)

}
(15)

+
∑
t

λ>
[
ηt(B(mn)1/2λ)− Et

{
ηt(B(mn)1/2λ)

}]
(16)

we analyze each of the right-hand-side terms (14), (15) and (16), and show that∑
t

λ>ϕtτ (α(τ) +B(m/n)1/2λ) ≈
∑
t

λ>ϕtτ (α(τ)) +B(mn)1/2fε
(
F−1
ε (τ)

)
λ>Dnλ

For (15), notice that if ‖α− α(τ)‖ ≤ B(m/n)1/2,

(17) Et
[
I(ut < α(τ)>xt)− I(ut < α>xt)

]
= −fu|x(Qut(τ |xt))x>t [α− α(τ)] +Op(m2/n).

Thus, given the GARCH structure (1) and (2),

Fu|x(u) = Fε(u/σt), fu|x(u) = fε(u/σt)/σt
thus

Qut(τ |xt) = σtF
−1
ε (τ), fu|x(Qut(τ |xt)) =

1
σt
fε
(
F−1
ε (τ)

)
,

and

1
n

n∑
t=m+1

fu|x(Qut(τ |xt))xtx>t = fε
(
F−1
ε (τ)

) [ 1
n

n∑
t=m+1

xtx
>
t

σt

]
= fε

(
F−1
ε (τ)

)
Dn,

so by (17) we have∑
t

λ>Et
{
ηt(B(mn)1/2λ)

}
≈ B(mn)1/2fε

(
F−1
ε (τ)

)
λ>Dnλ.

To show that the third term (16) is of smaller order of magnitude and can be dropped,
we need stochastic equicontinuity corresponding to ηt(v)−Et {ηt(v)} using weak dependence
property of u and the martingale difference sequence property of the term, as well as the
moment condition on x. In particular, we want to show that,

sup
‖v‖≤B(m/n)1/2

∣∣∣∣∣∑
t

λ> [ηt(v)− Et {ηt(v)}]

∣∣∣∣∣ = op

(
1√
nm

)
.
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Covering the ball
{
‖v‖ ≤ B(m/n)1/2

}
with cubes C = {Ck} where Ck is a cube with

center vk, side length (m/n5)1/2B, so card(C) = (2n2)m = N(n), and for v ∈ Ck, |v − vk| ≤
(m/n5/2)B. Thus, since I(ut < z) is nondecreasing in z,

sup
‖v‖≤B(m/n)1/2

∣∣∣∣∣∑
t

λ> [ηt(v)− Et {ηt(v)}]

∣∣∣∣∣
≤ max

1≤k≤N(n)

∣∣∣∣∣∑
t

λ> [ηt(vk)− Et {ηt(vk)}]

∣∣∣∣∣(18)

+ max
1≤k≤N(n)

∣∣∣∣∣∑
t

∣∣∣λ>xt∣∣∣ {btτ (vk)− Et [btτ (vk)]}

∣∣∣∣∣(19)

+ max
1≤k≤N(n)

∑
t

∣∣∣λ>xt∣∣∣Et [dtτ (vk)](20)

where

btτ (vk) = I(ut < (α(τ) + vk)
> xt)− I(ut < (α(τ) + vk)

> xt + (m/n5/2)B‖xt‖),
dtτ (vk) = I(ut < (α(τ) + vk)

> xt + (m/n5/2)B‖xt‖)
−I(ut < (α(τ) + vk)

> xt − (m/n5/2)B‖xt‖).

The analysis of terms (19) and (20) are similar to Welsh (1989). We focus on the first term
(18). Notice that card(C) = (2n2)m, an exponential inequality is needed to control the rate.
Since ‖vk‖ ≤ B(m/n)1/2, by calculation of moments, we have

ω2
n =

∑
t

Et
[
λ> [ηt(vk)− Et {ηt(vk)}]

]2
= Op((mn)1/2m3/2,

and

S2
n =

∑
t

[
λ> [ηt(vk)− Et {ηt(vk)}]

]2
= Op((mn)1/2m3/2.

Let M = (mn)1/2, noting that ξt = [ηt(vk)− Et {ηt(vk)}] is a martingale difference sequence
we have

Pr

[
max

1≤k≤N(n)

∣∣∣∣∣ 1√
n

∑
t

λ> [ηt(vk)− Et {ηt(vk)}]

∣∣∣∣∣ > ε

]

≤ N(n) max
k

Pr

(∣∣∣∣∣ 1√
n

∑
t

λ> [ηt(vk)− Et {ηt(vk)}]

∣∣∣∣∣ > ε

)

≤ N(n) max
k

Pr

(∣∣∣∣∣∑
t

λ>ξt

∣∣∣∣∣ > √nε; S2
n + ω2

n ≤M

)

+N(n) max
k

Pr

(∣∣∣∣∣∑
t

λ>ξt

∣∣∣∣∣ > √nε; S2
n + ω2

n > M

)
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For the first term, by exponential inequality for martingale difference sequences (see, e.g.,
Bercu and Touati (2008)), we have

N(n) max
k

Pr

(∣∣∣∣∣∑
t

λ>ξt

∣∣∣∣∣ > √nε; S2
n + ω2

n ≤M

)
≤ 2N(n) exp

(
−nε

2

2M

)
.

For the second term,

Pr
(
S2
n + ω2

n > M
)
≤ Pr

(
S2
n > M/2

)
+ Pr

(
ω2
n > M/2

)
,

and each term can be bounded exponentially under assumptions S1 and S5. Thus,∑
t

λ>ϕtτ (α(τ) +B(m/n)1/2λ) =
∑
t

λ>ϕtτ (α(τ)) + B(mn)1/2fε
(
F−1
ε (τ)

)
λ>Dnλ

+ op

(
(nm)1/2

)
.

By Assumption S4, the minimum eigenvalue of Dn is bounded from below, and∑
t

ϕtτ (α(τ)) = Op(
√
nm)

so for large n,{
inf
λ∈S

∑
t

λ>ϕtτ (α(τ) +B(mn)1/2λ) > 0

}

⊇

{
1√
nm

inf
λ∈S

∑
t

λ>ϕtτ (α(τ)) > −B
2
λmin

[
fε
(
F−1
ε (τ)

)
Dn

]}

whose probability goes to 1 as B and n→∞. Thus we have proved (12).
If α̃(τ) is the solution of (11), let v̂ =

√
n(α̃(τ)−α(τ)), from the above analysis we have,

√
n (α̂(τ)− α(τ)) = − 1

fε
(
F−1
ε (τ)

)D−1
n

(
1√
n

n∑
t=m+1

xtψτ (utτ )

)
+ op(1),

thus for any λ ∈ Rm+1,
√
nλ> (α̂(τ)− α(τ))

σλ
⇒ N(0, 1),

where

σ2
λ = λ>D−1

n ΣnD
−1
n λ,Σn =

1
n

n∑
t=m+1

xtx
>
t ψ

2
τ (utτ ).
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A.2. Proof of Theorem 2. To analyze the asymptotic behavior of our estimators, we
need to first derive the asymptotic representation for π̃. Notice that

√
n (α̃(τk)− α(τk)) = − 1

fε
(
F−1
ε (τk)

)D−1
n

(
1√
n

n∑
t=m+1

xtψτk(utτk)

)
+ op(1),

thus,

√
n(π̃ − π) = −


(

1√
n

∑n
t=m+1D

−1
n xt

ψτ1 (utτ1 )

fε(F−1
ε (τ1))

)
· · ·(

1√
n

∑n
t=m+1D

−1
n xt

ψτK (utτK )

fε(F−1
ε (τK))

)
+ op(1)

= − 1√
n

n∑
t=m+1

ΥKt ⊗
[
D−1
n xt

]
+ op(1)

Let D = IK ⊗Dn, Vxt = xtx
>
t , and

Vψt = ΥKtΥ>Kt =


ψ2
τ1

(utτ1 )

fε(F−1
ε (τ1))2 · · · ψτ1 (utτ1 )ψτ1 (utτK )

fε(F−1
ε (τ1))fε(F−1

ε (τK))

· · · . . . · · ·
ψτ1 (utτ1 )ψτ1 (utτK )

fε(F−1
ε (τ1))fε(F−1

ε (τK)) · · · ψ2
τK

(utτK )

fε(F−1
ε (τK))2

 .
And set,

ΨK =
1
n

n∑
t=m+1

Vψt ⊗ Vxt

=


1
n

∑
xtx
>
t

ψ2
τ1

(utτ1 )

fε(F−1
ε (τ1))2 · · · 1

n

∑
xtx
>
t

ψτ1 (utτ1 )ψτ1 (utτK )

fε(F−1
ε (τ1))fε(F−1

ε (τK))

· · · . . . · · ·
1
n

∑
xtx
>
t

ψτ1 (utτ1 )ψτ1 (utτK )

fε(F−1
ε (τ1))fε(F−1

ε (τK)) · · · 1
n

∑
xtx
>
t

ψ2
τ1

(utτK )

fε(F−1
ε (τK))2

 .
Define Λ = D−1ΨKD−1, and denote

G =
∂φ(a)
∂a>

∣∣∣∣
a=a0

= φ̇(a0) =
[
g ⊗ Jm

...IK ⊗ α
]
.

The objective function may be equivalently written as

Qn(a) = (π̃ − φ(a))>An (π̃ − φ(a))

= ([π̃ − π]− [φ(a)− φ(a0)])>An ([π̃ − π]− [φ(a)− φ(a0)])

and the first order condition is given by:

1
2
∂Qn(â)
∂a

= − (π̃ − π)>Anφ̇(â) + φ̇(â)>An (φ(â)− φ(a0)) = 0
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Thus,
√
n(â− a0) =

[
φ̇(a0)>Anφ̇(a0)

]−1
φ̇(â)An

√
n (π̃ − π) + op(1)

=
[
G>AnG

]−1
G>An

√
n (π̃ − π) + op(1)

= −
[
G>AnG

]−1
G>An

[
1√
n

n∑
t=m+1

ΥKt ⊗
[
D−1
n xt

]]
+ op(1).

A.3. Proof of Corollary 3. Notice that

ΨK ∼


τ1(1−τ1)

fε(F−1
ε (τ1))2 · · · τ1∧τK−τ1τK

fε(F−1
ε (τ1))fε(F−1

ε (τK))

· · · . . . · · ·
τ1∧τK−τ1τK

fε(F−1
ε (τ1))fε(F−1

ε (τK)) · · · τK(1−τK)

fε(F−1
ε (τK))2

⊗
[

1
n

∑
xtx
>
t

]

= ∆⊗
[

1
n

∑
xtx
>
t

]
where

∆ =


τ1(1−τ1)

fε(F−1
ε (τ1))2 · · · τ1∧τK−τ1τK

fε(F−1
ε (τ1))fε(F−1

ε (τK))

· · · . . . · · ·
τ1∧τK−τ1τK

fε(F−1
ε (τ1))fε(F−1

ε (τK)) · · · τK(1−τK)

fε(F−1
ε (τK))2

 ,
thus, for λ ∈ Rm+K ,

λ>
√
n(â− a0) = λ>

[
G>AnG

]−1
G>An

√
n (π̃ − π) + op(1)

= λ>
[
G>AnG

]−1
G>AnN

(
0,∆⊗D−1ΣD−1

)
+ op(1)

By definition,

σ̃t = ã0 +
m∑
j=1

ãj |ut−j | ,

we have

√
n (σ̃t − σt) =

m∑
j=1

√
n (ãj − aj) |ut−j |+ op

(
m2

n

)

= (|ut−1| , · · ·, |ut−m|)

 √n (ã1 − a1)
· · ·√

n (ãm − am)

+ op (1)

Notice that  √n (ã1 − a1)
· · ·√

n (ãm − am)

 =
1√
n

∑
j

HjΥKj ,
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let H = 1
n

∑
j Hj (E [ΥKjΥKj ])Hj = 1

n

∑
j Hj∆Hj , xt = (|ut−1| , · · ·, |ut−m|)>, and ω2

t =
x>t Hxt, we have, conditional on information prior to t,

√
n (σ̃t − σt)

= − (|ut−1| , · · ·, |ut−m|)Lm/K
[
G>AnG

]−1
G>An

[
1√
n

n∑
t=m+1

ΥKt ⊗
[
D−1
n xt

]]
+ op(1)

= (|ut−1| , · · ·, |ut−m|)
1√
n

∑
j

HjΥKj + op(1)

⇒ N
(

0, x>t Hxt
)
,

thus the result can be obtained.

A.4. Proof of Theorem 4. We consider quantile regression of ut on

z̃t = (1, σ̃t−1, · · ·, σ̃t−p, |ut−1| , · · ·, |ut−q|).
For convenience of analysis, we may rewrite z̃t = zt(ã) since it contains elements of

σ̃t−k = σ̃t−k (ã) = a0 +
m∑
j=1

ãj |ut−k−j | .

The second stage estimation can then be rewritten as

min
θ

∑
t

ρτ (ut − θ>zt(ã)).

Denote

Gn(θ, a) =
1
n

∑
t

ψτ (ut − θ>zt (a))zt (a) =
1
n

∑
t

[
τ − I(ut < θ>zt (a))

]
zt (a) ,

and

G(θ, a) = E
[
ψτ (ut − θ>zt (a))zt (a)

]
.

By iterated expectations

G(θ, a) = E
{

Et
[
τ − I(ut < θ>zt (a))

]
zt (a)

}
= E

[{
τ − Fu|x(θ>zt (a))

}
zt (a)

]
.

Under our conditions, the asymptotic behavior of the second stage estimator θ̂ (τ) is the
same as that of arg minθ ‖Gn(θ, ã)‖, and θ(τ) solves minθ ‖G(θ, a0)‖.

We first establish
√
n-consistency of θ̂ (τ) to θ (τ). Let

Γ1(θ, a) =
∂G(θ, a)
∂θ

= −Efu|x(θ>zt (a))zt (a) zt (a)> ,

and notice that, denoting the vector of true values of a as a∗,

Γ10 = Γ1(θ, a)|θ=θ(τ),a=a∗ ≈ −Efu|x(Qut(τ |xt))ztzt> = −fε
(
F−1
ε (τ)

)
Ω,
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under Assumption S3, Γ1(θ, α) is continuous at θ = θ (τ) and Γ10 is nonsingular, thus
there exists a constant C > 0 such that C‖θ̂ (τ)− θ (τ) ‖ is bounded by ‖G(θ̂ (τ) , a0)‖ with
probability going to 1. Define the (p+ q + 1)×m matrix,

Γ2(θ, a) =
∂G(θ, a)
∂a>

= E
[{
τ − Fu|x(θ>zt (a))

} ∂zt (a)
∂a>

]
− E

fu|x(θ>zt (a))zt (a)
p∑
j=1

θj
∂σt−j(a)
∂a>


Notice that ‖G(θ (τ) , α∗)‖ = Op(bm) and ‖Gn(θ (τ) , a∗)‖ = Op(n−1/2), so by the triangle
inequality we have

‖G(θ̂ (τ) , a∗)‖ ≤ ‖G(θ̂ (τ) , a∗)−G(θ̂ (τ) , ã)‖(21)

+‖G(θ̂ (τ) , ã)−G(θ (τ) , a∗)−Gn(θ̂ (τ) , ã) +Gn(θ (τ) , a∗)‖(22)

+‖Gn(θ̂ (τ) , ã)‖(23)

+Op(n−1/2).

We now analyze the terms (21), (22) and (23).
First, for (21), again, by triangle inequality

‖G(θ̂ (τ) , a∗)−G(θ̂ (τ) , ã)‖ ≤ ‖G(θ̂ (τ) , ã)−G(θ̂ (τ) , a∗)− Γ2(θ̂ (τ) , a∗)(α̃− a∗)‖
+‖Γ2(θ̂ (τ) , a∗)(ã− a∗)− Γ2(θ (τ) , a∗)(ã− a∗)‖
+‖Γ2(θ (τ) , a∗)(ã− a∗)‖.

Under Assumption S1, S2 and S3, we have

‖G(θ̂ (τ) , ã)−G(θ̂ (τ) , a∗)− Γ2(θ̂ (τ) , a∗)(ã− a∗)‖ = Op
(
‖ã− a∗‖2

)
and

‖Γ2(θ̂ (τ) , a∗)(ã− a∗)− Γ2(θ (τ) , a∗)(ã− a∗)‖ = Op

(
‖θ̂ (τ)− θ (τ) ‖

)
op(1).

Thus,

‖G(θ̂ (τ) , a∗)−G(θ̂ (τ) , ã)‖ ≤ Op
(
‖ã− a∗‖2

)
+Op

(
‖θ̂ (τ)− θ (τ) ‖‖ã− a∗‖

)
+‖Γ2(θ (τ) , a∗)(ã− a∗)‖.(24)

In addition,

Γ2(θ (τ) , a∗) ≈ −E

fu|x(Qut(τ |xt))zt
p∑
j=1

θj
∂σt−j(a)
∂a>


= −fε

(
F−1
ε (τ)

)
E

 p∑
j=1

θj
zt
σt

∂σt−j(a)
∂a>


since

Et

[{
τ − Fu|x(θ (τ)> zt (a∗))

} ∂zt (a∗)
∂a

]
≈ Et

[{
τ − Fu|x(Qut(τ |Ft−1))

} ∂zt (a∗)
∂a

]
= 0.
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Thus,

‖G(θ̂ (τ) , a∗)−G(θ̂ (τ) , ã)‖ ≤ ‖Γ2(θ (τ) , a∗)(ã− a∗)‖(1 + op(1)),

and

‖G(θ̂ (τ) , ã)‖ ≤ ‖G(θ̂ (τ) , a∗)‖(1 + op(1)).

For (22), we need to verify stochastic equicontinuity. If we denote

mτ (Zt, θ, a) = ψτ (ut − θ>zt (a))zt (a) ,

for each element mjτ (Zt, θ, a) = ψτ (ut − θ>zt (a))zjt (a) of mτ (Zt, θ, a),∣∣mjτ (Zt, θ, a)−mjτ (Zt, θ, a)
∣∣ ≤ τ |zjt (a)− zjt (a)|

+
∣∣∣I (ut < θ

>
zt (a)

)
zjt (a)− I

(
ut < θ>zt (a)

)
zjt (a)

∣∣∣ .
For τ |zjt (a)− zjt (a)|, if ‖a− a‖ ≤ δ,

τ rE |zjt (a)− zjt (a)|r ≤ Cj1(δ/m)r .

For the second term,∣∣∣I (ut < θ
>
zt (a)

)
zt (a)− I

(
ut < θ>zt (a)

)
zt (a)

∣∣∣ ≤∣∣∣I (ut < θ
>
zt (a)

)
zjt (a)− I

(
ut < θ>zt (a)

)
zjt (a)

∣∣∣
+
∣∣∣I (ut < θ>zt (a)

)
zjt (a)− I

(
ut < θ>zt (a)

)
zjt (a)

∣∣∣
Since I (ut < ·) is a monotonic function,

E
∣∣∣I (ut < θ

>
zt (a)

)
zjt (a)− I

(
ut < θ>zt (a)

)
zjt (a)

∣∣∣
≤ sup

‖a−a‖≤δ,‖θ−θ‖≤δ
E
[
Fu|x

(
θ
>
zt (a)

)
− Fu|x

(
θ>zt (a)

)]
E |zjt (a)|

≤ Cj2(δ/m),

under our smoothness assumption on Fu|x (·) and the moment condition on u. Thus, by
Lemma 4.2 of Chen (2008), we have,

sup
‖a−a∗‖≤δ,‖θ−θ(τ)‖≤δ

√
n‖Gn(θ, a)−G(θ, a)−Gn(θ (τ) , a∗) +G(θ (τ) , a∗)‖

1 +
√
n {‖Gn(θ, a)‖+ ‖G(θ, a)‖}

= op(1),

consequently,

‖G(θ̂ (τ) , ã)−G(θ (τ) , a∗)−Gn(θ̂ (τ) , ã) +Gn(θ (τ) , a∗)‖

≤ op(1)×
{
‖Gn(θ̂ (τ) , ã)‖+ ‖G(θ̂ (τ) , ã)‖

}
≤ op(1)×

{
‖Gn(θ̂ (τ) , ã)‖+ ‖G(θ̂ (τ) , a∗)‖(1 + op(1)

}
,
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where the last inequality comes from (24). Thus,

‖G(θ̂ (τ) , a∗)‖ ≤ ‖Γ2(θ (τ) , a∗)(ã− a∗)‖+Op
(
‖ã− a∗‖2

)
+Op

(
‖θ̂ (τ)− θ (τ) ‖‖ã− a∗‖

)
+op(1)×

{
‖Gn(θ̂ (τ) , ã)‖+ ‖G(θ̂ (τ) , a∗)‖(1 + op(1)

}
+‖Gn(θ̂ (τ) , ã)‖,

and

‖G(θ̂ (τ) , a∗)‖(1− op(1)) ≤ ‖Gn(θ̂ (τ) , ã)‖(1 + op(1)) +Op(n−1/2)

= inf
θ
‖Gn(θ, ã)‖+Op(n−1/2).

We only need to show that

inf
θ
‖Gn(θ, ã)‖ = Op(n−1/2),

which is true since

‖Gn(θ, ã)‖ ≤ ‖Gn(θ, ã)−G(θ, ã)−Gn(θ (τ) , a∗)‖
+‖G(θ, ã)−G(θ, a∗)‖+ ‖G(θ, a∗)‖+ ‖Gn(θ (τ) , a∗)‖

≤ op(1)× {‖Gn(θ, ã)‖+ ‖G(θ, ã)‖}+ ‖G(θ, a∗)‖+Op(n−1/2).

Thus,

‖Gn(θ, ã)‖(1− op(1)) ≤ op(1)× {‖G(θ, ã)‖}+ ‖G(θ, a∗)‖+Op(n−1/2),

and
inf
θ
‖Gn(θ, ã)‖ = Op(n−1/2),

since ‖G(θ (τ) , a∗)‖ = 0 and

‖G(θ, ã)‖ ≤ ‖G(θ, a∗)‖+ ‖Γ2(θ (τ) , a∗)(ã− a∗)‖(1 + op(1)).

And consequently,

C‖θ̂ (τ)− θ (τ) ‖ ≤ ‖G(θ̂ (τ) , a∗)‖ = Op(n−1/2).

Now define the linearization

Ln(θ, ã) = Gn(θ (τ) , a∗) +G(θ, a∗) + Γ2(θ (τ) , a∗)(ã− a∗),

and note that

Gn(θ, ã) = Gn(θ (τ) , a∗) + Γ1(θ − θ (τ)) + Γ2(θ (τ) , a∗)(ã− a∗)
+G(θ, a∗)−G(θ (τ) , a∗)− Γ1(θ − θ (τ))
+Γ2(θ, a∗)(ã− a∗)− Γ2(θ (τ) , a∗)(ã− a∗)
+G(θ, ã)−G(θ, a∗)− Γ2(θ, a∗)(ã− a∗)
+Gn(θ, ã)−G(θ, ã)−Gn(θ (τ) , a∗) +G(θ (τ) , a∗)
−G(θ (τ) , a∗).
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Under Assumptions S1 - S6,

‖Gn(θ̂, ã)− Ln(θ̂, ã)‖ ≤ ‖G(θ̂, a∗)−G(θ (τ) , a∗)− Γ1(θ̂ − θ (τ))‖
+‖Γ2(θ, a∗)(ã− a∗)− Γ2(θ (τ) , a∗)(ã− a∗)‖
+‖G(θ̂, ã)−G(θ̂, a∗)− Γ2(θ̂, a∗)(ã− a∗)‖
+‖Gn(θ̂, ã)−G(θ̂, ã)−Gn(θ (τ) , a∗) +G(θ (τ) , a∗)‖
+‖G(θ (τ) , a∗)‖

= op(n−1/2),

because

‖G(θ̂, a∗)−G(θ (τ) , a∗)− Γ1(θ̂ − θ (τ))‖ = Op(‖θ̂ − θ (τ) ‖2) = op(n−1/2),

‖Γ2(θ, a∗)(ã− a∗)− Γ2(θ (τ) , a∗)(ã− a∗)‖ = op(1)‖θ̂ − θ (τ) ‖ = op(n−1/2),

by root-n consistency;

‖G(θ̂, ã)−G(θ̂, a∗)− Γ2(θ̂, a∗)(ã− a∗)‖ ≤ C
(
‖ã− a∗‖2

)
= op(n−1/2),

‖Gn(θ̂, ã)−G(θ̂, ã)−Gn(θ (τ) , a∗) +G(θ (τ) , a∗)‖ = op(n−1/2),

by stochastic equicontinuity, and

‖G(θ (τ) , a∗)‖ = op(n−1/2),

by definition. Thus

(25) min
θ
‖Gn(θ, ã)‖ = min

θ
‖Ln(θ, ã)‖+ op(n−1/2),

and
√
n
(
θ̂(τ)− θ(τ)

)
= −

(
Γ>1 Γ1

)−1
Γ>1
√
n [Gn(θ (τ) , a∗) + Γ2(θ (τ) , a∗)(ã− a∗)]

= −
(
fε
(
F−1
ε (τ)

)2 Ω2
)−1

fε
(
F−1
ε (τ)

)
Ω
√
n [Gn(θ (τ) , a∗) + Γ2(θ (τ) , a∗)(ã− a∗)]

= −
(
fε
(
F−1
ε (τ)

))−1 Ω−1√n [Gn(θ (τ) , a∗) + Γ2(θ (τ) , a∗)(ã− a∗)]

= − 1
fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

ztψτ (utτ ) + Γ2(θ (τ) , a∗)
√
n(ã− a∗)

}
.

In addition,

Γ2(θ (τ) , a∗) ≈ −E

fu|x(Qut(τ |xt))zt
p∑
j=1

θj
∂σt−j(a)
∂a>

 = −fε
(
F−1
ε (τ)

)
E

 p∑
j=1

θj
zt
σt

∂σt−j(a)
∂a>


since

∂σt−k(a)
∂aj

= |ut−k−j | ,
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we have

Γ2(θ (τ) , a∗) ≈ −fε
(
F−1
ε (τ)

)
E

 p∑
j=1

θj

[
zt |ut−j−1|

σt
, · · ·, zt |ut−j−m|

σt

] = Γ20 = fε
(
F−1
ε (τ)

)
Γ.

Let Lm/K =
[
Im

...0m×K

]
, then the minimum distance estimator of [a1, a2, · · ·, am] has as-

ymptotic representation:

−Lm/K
[
G>AnG

]−1
G>An

[
1√
n

n∑
t=m+1

ΥKt ⊗
[
D−1
n xt

]]
+ op(1)

Thus, the two-step estimator of θ(τ) has the following Bahadur representation:
√
n
(
θ̂(τ)− θ(τ)

)
= Γ1(θ (τ) , α0)−1

{√
nGn(θ (τ) , a∗) + Γ20

√
n(ã− a∗)

}
+ op(1)

= − 1
fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

ztψτ (utτ )

}

− 1
fε
(
F−1
ε (τ)

)Ω−1Γ20Lm/K

[
G>AnG

]−1
G>An

[
1√
n

n∑
t=m+1

ΥKt ⊗
[
D−1
n xt

]]
+op(1).

A.5. Proof of Corollary 5. For the asymptotic distribution of θ̂(τ), notice that
√
n
(
θ̂(τ)− θ(τ)

)
= Γ1(θ (τ) , α0)−1

{√
nGn(θ (τ) , a∗) + Γ20

√
n(ã− a∗)

}
+ op(1)

= − 1
fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

ztψτ (utτ )

}

−Ω−1ΓLm/K
[
G>AnG

]−1
G>An

[
1√
n

n∑
t=m+1

ΥKt ⊗
[
D−1
n xt

]]
+ op(1),

let

Ψt =
[

ψτ (utτ )

fε(F−1
ε (τ)) ,

ψτ1 (utτ1 )

fε(F−1
ε (τ1)) , · · ·,

ψτK (utτK )

fε(F−1
ε (τK))

]>
,

and

Mt =
[
zt, ΓLm/K

[
G>AnG

]−1
G>An1D

−1
n xt, · · ·, ΓLm/K

[
G>AnG

]−1
G>AnKD

−1
n xt

]
,

√
n
(
θ̂(τ)− θ(τ)

)
⇒ N

(
0,Ω−1MΩ−1

)
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where

M = lim
n

[
1
n

n∑
t=m+1

Mt

(
EΨtΨ>t

)
M>t

]
= E

[
MtΞM>t

]
where

Ξ = EΨtΨ>t

= E



ψ2
τ (utτ )

fε(F−1
ε (τ))2

ψτ (utτ )ψτ1 (utτ1 )

fε(F−1
ε (τ))fε(F−1

ε (τ1)) · · · ψτ (utτ )ψτK (utτK )

fε(F−1
ε (τ))fε(F−1

ε (τK))
ψτ (utτ )ψτ1 (utτ1 )

fε(F−1
ε (τ))fε(F−1

ε (τ1))
ψ2
τ1

(utτ1 )

fε(F−1
ε (τ1))2 · · · ψτ1 (utτ1 )ψτK (utτK )

fε(F−1
ε (τ1))fε(F−1

ε (τK))

· · · · · · . . . · · ·
ψτ (utτ )ψτK (utτK )

fε(F−1
ε (τ))fε(F−1

ε (τK))
ψτ1 (utτ1 )ψτ1 (utτK )

fε(F−1
ε (τ1))fε(F−1

ε (τK)) · · · ψ2
τK

(utτK )

fε(F−1
ε (τK))2



=



τ(1−τ)
fε(F−1

ε (τ))2
τ∧τ1−ττ1

fε(F−1
ε (τ))fε(F−1

ε (τ1)) · · · τ∧τK−ττK
fε(F−1

ε (τ))fε(F−1
ε (τK))

τ∧τ1−ττ1
fε(F−1

ε (τ))fε(F−1
ε (τ1))

τ1(1−τ1)

fε(F−1
ε (τ1))2 · · · τ1∧τK−τ1τK

fε(F−1
ε (τ1))fε(F−1

ε (τK))

· · · · · · . . . · · ·
τ∧τK−ττK

fε(F−1
ε (τ))fε(F−1

ε (τK))
τ1∧τK−τ1τK

fε(F−1
ε (τ1))fε(F−1

ε (τK)) · · · τK(1−τK)

fε(F−1
ε (τK))2


,

then
√
n
(
θ̂(τ)− θ(τ)

)
= − 1

fε
(
F−1
ε (τ)

)Ω−1 ×{
1√
n

∑
t

ztψτ (utτ ) + fε
(
F−1
ε (τ)

)
ΓLm/K

[
G>AnG

]−1
G>An

[
1√
n

n∑
t=m+1

ΥKt ⊗
[
D−1
n xt

]]}
+op(1)

= −Ω−1

{
1√
n

∑
t

zt
ψτ (utτ )

fε
(
F−1
ε (τ)

) +

[
ΓLm/K

[
G>AnG

]−1
G>An

[
1√
n

n∑
t=m+1

ΥKt ⊗
[
D−1
n xt

]]]}
+op(1)

= −Ω−1 1√
n

∑
t

MtΨt + op(1),

thus √
n
(
θ̂(τ)− θ(τ)

)
⇒ N

(
0,Ω−1MΩ−1

)
.

A.6. Proof of Corollary 6. By Theorem 4,

√
n
(
θ̂(τ)− θ(τ)

)
= − 1

fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

ztψτ (utτ ) + Γ2(θ, a∗)
√
n(ã− a∗)

}
.
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Setting ã0 = 1, we obtain Q̃εt(τ) = α̃0(τ) and solving the equations α̃j(τ) = ãjQ̃εt(τ),
for j = 1, 2, · · ·,m, gives

ã0 = 1, ã1 =
α̃1(τ)
α̃0(τ)

, · · ·, ãm =
α̃m(τ)
α̃0(τ)

then

ãj =
α̃j(τ)
α̃0(τ)

= {αj(τ) + [α̃j(τ)− αj(τ)]}

{
1

α0(τ)
− α̃0(τ)− α0(τ)

α0(τ)2
+

(α̃0(τ)− α0(τ))2

α0(τ)2α̃0(τ)

}

=
αj(τ)
α0(τ)

+
[α̃j(τ)− αj(τ)]

α0(τ)
− αj(τ) [α̃0(τ)− α0(τ)]

α0(τ)2
+Op

(m
n

)
= aj +

[α̃j(τ)− αj(τ)]
α0(τ)

− αj(τ) [α̃0(τ)− α0(τ)]
α0(τ)2

+Op

(m
n

)
Thus, noting that ã0 = 1, we have,

Γ2(θ (τ) , a∗)(ã− a∗)

= −fε
(
F−1
ε (τ)

) m∑
j=1

E

[
1
σt

p∑
k=1

θkzt
∂σt−k(a)
∂aj

]
(ãj − aj)

= −fε
(
F−1
ε (τ)

) m∑
j=1

E

[
zt
σt

1
α0(τ)

(
p∑

k=1

θk
∂σt−k(a)
∂aj

)]
[α̃j(τ)− αj(τ)]

+fε
(
F−1
ε (τ)

) m∑
j=1

E

[
zt
σt

αj(τ)
α0(τ)2

(
p∑

k=1

θk
∂σt−k(a)
∂aj

)]
[α̃0(τ)− α0(τ)] +Op

(
m2

n

)

=
1√
n
fε
(
F−1
ε (τ)

)
R>

[
1

fε
(
F−1
ε (τ)

)D−1
n

(
1√
n

n∑
t=m+1

xtψτ (utτ )

)]
+ op(

1√
n

)

= R>D−1
n

(
1
n

∑
t

xtψτ (utτ )

)
+ op(1),

where R> is a (p+ q + 1)× (m+ 1) matrix defined as

R> =

− m∑
j=1

αj(τ)rj
α0(τ)2

,
r1

α0(τ)
, · · ·, rm

α0(τ)

 ,
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and

rj =
p∑

k=1

θkE
(
∂σt−k(a)
∂aj

zt
σt

)
=

p∑
k=1

θkE





|ut−k−j | /σt
σt−1 |ut−k−j | /σt

· · ·
σt−p |ut−k−j | /σt
|ut−1| |ut−k−j | /σt

· · ·
|ut−q| |ut−k−j | /σt




.

Consequently, the two-step estimator of θ(τ)> = (β0(τ), β1(τ), · · ·, βp(τ), γ1(τ), · · ·, γq(τ))
has the Bahadur representation:
√
n
(
θ̂(τ)− θ(τ)

)
= Γ1(θ (τ) , α0)−1

{√
nGn(θ (τ) , a∗) + Γ20

√
n(ã− a∗)

}
+ op(1)

= − 1
fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

ztψτ (utτ ) + Γ20

√
n(ã− a∗)

}
+ op(1)

= − 1
fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

ztψτ (utτ ) +R>D−1
n

(
1√
n

∑
t

xtψτ (utτ )

)}
+ op(1)

= − 1
fε
(
F−1
ε (τ)

)Ω−1

{
1√
n

∑
t

[
zt +R>D−1

n xt

]
ψτ (utτ )

}
+ op(1)

⇒ N

(
0,

τ(1− τ)

fε
(
F−1
ε (τ)

)2 Ω−1MΩ−1

)
where

M = lim
1
n

∑
t

[
zt +R>D−1

n xt

] [
z>t + x>t D

−1
n R

]
= lim

1
n

∑
t

[
ztz
>
t +R>D−1

n xtz
>
t + ztx

>
t D
−1
n R+R>D−1

n xtx
>
t D
−1
n R

]
= M1 +M2 +M3

and M1 =E
[
ztz
>
t

]
, and

M2 = lim
1
n

∑
t

[
R>D−1

n xtz
>
t + ztx

>
t D
−1
n R

]
,M3 = lim

1
n

∑
t

R>D−1
n xtx

>
t D
−1
n R.
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