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ABSTRACT

We consider a semi-random walk on the space X of lattices in Euclidean n-space which
attempts to maximize the sphere-packing density function ®. A lattice (or its corresponding
quadratic form) is called “sticky” if the set of directions in X emanating from it along which
@ is infinitesimally increasing has measure 0 in the set of all directions. Thus the random
walk will tend to get “stuck” in the vicinity of a sticky lattice. We prove that a lattice is sticky
if and only if the corresponding quadratic form is semi-eutactic. We prove our results in the
more general setting of self-adjoint homogeneous cones. We also present results from our
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experiments with semi-random walks on X. These indicate some idea about the landscape

of eutactic lattices in the space of all lattices.

1. Introduction

A “lattice-packing” is a packing of R” (equipped with
the usual Euclidean inner product) by non-overlap-
ping spheres of maximum-possible equal radius cen-
tered at the points of a lattice A. The density of the
packing is a continuous function ®(A) on the space
of lattices in R". An important problem is to find the
densest lattice packing in each dimension, i.e., the
maximum of ®. The only dimensions in which the
densest possible packing is known are n <8 and
n=24 [Cohn et al. 17]. It is expected that in large
dimensions (perhaps even for n=9), the densest pos-
sible sphere packing will not be a lattice packing.

Voronoi [Voronoi 08] proved that the local max-
ima of @ occur at lattices that are perfect and eutactic
(we will define “eutactic” and “semi-eutactic” below,
and the concept of perfection is not needed for this
paper). These local maxima are called “extreme
lattices.” In [Ash 77], the first author proved that @ is
a topological morse function on the space of lattices
in R". Its critical points are exactly the eutactic latti-
ces. This generalizes Voronoi’s theorem. Also, the
results of [Ash 77] imply immediately that for fixed n,
there are only a finite number of eutactic and semi-
eutactic lattices in R".

In recent years, a number of researchers have used
quasi-random methods to look for the densest lattice.

Marcotte and Torquato [Marcotte and Torquato 13]
combined such methods with linear programing to
create a very impressive algorithm that managed to
re-discover the densest known lattice packings for n <
19. The reader may refer to their paper for references
to earlier work along these lines.

In this paper, we report on work that uses a quasi-
random walk on the space of lattices, beginning at a
randomly chosen “seed” lattice, designed always to
increase @. Our random walk generally gets “stuck” at
lattices that are not particularly dense, although for
n < 8, it sometimes attains the densest lattice. This
paper gives a theoretical explanation of these phenom-
ena plus an interpretation of our data in terms of
eutactic lattices. We are led to ask some questions
about the distribution of eutactic lattices within the
space of all lattices.

For n=3, we obtained good evidence that the
“sticky” lattices are exactly the semi-eutactic ones. For
n =3, every semi-eutactic lattice is eutactic. Our main
theorem implies that we can expect the sticky lattices
to be exactly the semi-eutactic ones.

Definition 1.1. Let i be a real-valued function on a
Riemannian orbifold X. We say x € X is sticky with
respect to \ if and only if

_vol({y € Bl () > ¥(x)})
r—0 VOI(Br (X))

=0,
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where B,(x) denotes the ball of radius r with center
at x.

This definition can be converted into a quantitative
measure of the “degree of stickiness” of any point x €
X with respect to Y, assuming that the limit of the
left-hand side exists at x.

I’s easy to see that if y is a differentiable morse
function on a differentiable Riemannian manifold X,
then the only points that are sticky with respect to
are the local maxima. However, if i is only a topo-
logical morse function, then other points may also be
sticky with respect to .

We will say that a lattice is eutactic or semi-eutac-
tic if its associated quadratic form is eutactic or
semi-eutactic.

Theorem 1.2. Let ® be the sphere-packing density
function on the space X of lattices in R". A lattice is
sticky with respect to ® if and only if it is
semi-eutactic.

With probability 1, a point that is sticky with
respect to Y behaves like a sink for a random process
on X that moves along paths of increasing . Our
main theorem thus explains why our algorithm gener-
ally sticks at or very near to semi-eutactic lattices.
(More accurately, the lattices on which our algorithm
gets stuck were observed to have the same or nearly
the same value of @ as a eutactic lattice. Presumably
they are in fact equal or close to eutactic lattices, but
it would have been overly expensive to check that.)

The concepts of eutacticity and the function @ can
be generalized to all self-adjoint homogeneous cones,
of which the cone of positive-definite symmetric real
matrices is just one kind. (See, for instance, [Ash
et al. 10, ch. 2].) The theorem below applies to all
self-adjoint homogeneous cones and works with a
more stringent definition of stickiness than the one
given above. We will explain how each of the concepts
we use in working with self-adjoint homogeneous
cones may be written explicitly in the case of the
space of quadratic forms.

Because our random walk gets stuck at semi-eutactic
lattices, we can view our experimental results as saying
something about how many semi-eutactic lattices there
are in R" as a function of ®. We formulate a conjec-
ture about this in the last section of the paper.

2. Definitions

We follow the notation in [Ash 77], where any defini-
tions not given below may be found. Our definitions
and proofs apply not only to the space of positive
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definite symmetric #n x n real matrices, but to all self-
homogeneous cones.

Let V be a real vector space of dimension N and C
a self-adjoint homogeneous cone contained in V.
Denote the closure of C in V by C. When we say C is
self-adjoint, it is with reference to some fixed inner
product on V. In fact, there is a Jordan algebra struc-
ture on V (determined by the cone C and the choice
of a basepoint in C), and we take the inner product
(z, w) to be the trace of Jordan multiplication by zo w
on V (where o denotes the Jordan multiplication).

For the purpose of studying the sphere-packing
density function on the space of lattices, we take V to
be the space of all real symmetric n x n matrices and C
the subcone of positive definite ones. We call this our
“running example.” In our running example, the
Jordan algebra structure is given by Ao B = (AB+
BA)/2 where A and B are symmetric matrices. The
inner product of A and B equals 1 Tr(AB), where Tr
denotes the usual trace of a square matrix, not the
Jordan trace of multiplication by an element in V.

The space of lattices in R" is isomorphic to
C/GL(n,Z). A lattice A maps to a point in C by send-
ing it to the Gram matrix (e.g., [Conway and Sloane
93, p. 4]) of a basis of A. We remove the dependence
on a choice of basis by taking the quotient of C by
GL(n,Z). It is convenient (and equivalent) to view the
sphere-packing density ® as a GL(#n, Z)-invariant func-
tion on C rather than as a function on lattices.

Every self-adjoint homogeneous cone C comes
equipped with a canonical normalized positive func-
tion ¢(x) such that ¢(x) dx is a G-invariant measure
(where G is the real Lie group of automorphisms of
C). See [Ash et al. 10, p. 39] for more details. The
function ¢ is called the “characteristic function” of
the cone. In our running example,
$(z) = det(z) V2,

To apply the results of [Ash 77], we must fix an
admissible lattice L in V. (For the definition of
“admissible,” see [Ash 77, p. 1042].) In our running
example, we take all symmetric matrices with integer
coefficients on the diagonal and half-integers elsewhere.
Given z € C, define its minimal vectors to be the mem-
bers of the set M(z) of a € C N L—{0} such that (z, a)
is minimized. Define m(z) to be this minimum, which
is a positive number. In fact, the set of minimal vectors
M(z) is a finite subset of the boundary of C.

In our running example, Barnes and Cohn [Barnes
and Cohn 75] proved that every a € M(z) is of the
form a = vv' for some nonzero integral column vector
v € R" and up to a constant y not depending on z,
the minimum m(z) is the length of v with respect to
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the metric given by z, i, v'zv. From now on, when
dealing with our running example, we will renormal-
ize m(z) by dividing it by p. This brings our definition
of ® into conformity with the usual definition of
density of a lattice packing.

The “packing” function F(z) that we shall use from
now on is the one used in [Ash 77], namely

F(z) = m(z) V97! (2).

Let V, be the volume of a sphere of radius 1 in
dimension #, and then in our running example

Therefore, we will minimize F in order to maxi-
mize O.

The main theorem of [Ash 77] is that F is a topo-
logical morse function whose critical points are pre-
cisely the eutactic elements of C. Here is the
definition of “eutactic™

Definition 2.1. Let z € C and z7! € C be its inverse
in the Jordan algebra. Let M(z) = {ay,...,a,}. Then z
is said to be eutactic if

p

-1 _

z @ = E o;a;
i=1

for some choice of positive ;.

In our running example, the Jordan inverse of a
positive definite matrix is the same as its ordinary
matrix inverse.

We also need the following definitions which are
not in [Ash 77]. For more discussion of these con-
cepts, see [Martinet 03, ch. 3].

Definition 2.2.
1. zis semi-eutactic if

P
7= E o;a;
i=1
for some choice of nonnegative a;.

2. zis weakly eutactic if

p
= E o;a;
i=1

for some choice of real o;.
Note that each category includes the previous one.

Definition 2.3. Let F be a positive function on C. z €
C is F-sticky iff there exists a finite union of hyper-
planes H and a neighborhood U of 0 in V such that

z+UCC and for all h€ U-H, F(z+h)>F(z). A
“hyperplane” means a co-dimension 1 subspace of V
through the origin.

Note that “F-sticky” implies “sticky with respect to
F~!” as defined in definition 1.1, because the inequal-
ities are reversed in the two definitions. We can make
the definition of F-sticky because we can take advan-
tage of the linear structure of V.

3. Theorem on stickiness

Theorem 3.1. Let z € C. Then z is F-sticky if and only
if z is semi-eutactic.

Proof. Without loss of generality we multiply z by a
positive scalar so that m(z) = 1.

The key fact is the corollary [Ash 77, p. 1047],
which implies the following:

Lemma 3.2. There is a positive number x, depending
only on z, such that

¢ Nz+h) =x(1+ (z7',h) +hot)

where h.o.t. stands for “higher order terms in h.”
Setting h=0, we see that k= ¢ '(z) = F(2),
because m(z) = 1.
Let K, be the hyperplane orthogonal to z7!. Then
K, = H,—z where H, is defined on p. 1046 of [Ash 77]:

H,={veV|(z ! v—2) =0}.

In the Jordan algebra, zo z ! =1id. Therefore,
(z,z7') = N, because it is the trace of Jordan multi-
plication by the identity on V.

We need the following result:

Lemma 3.3. If we add a small heV to z
then M(z+h) C M(z).

By “small,” we mean “contained in an open ball of
radius € centered at 0,” where ¢ is chosen small
enough for whatever context we are in.

Proof. Without loss of generality, m(z) = 1. Because
z € C, we know that (z,w) >0 for all w € C—{0}. Let
Er denote the exterior of the open ball of radius R
about 0 in V. Let B be a compact neighborhood of 0
in V such that z +B C C. Then

min{(x,y)|x €z+B,y GERQC} = A(R) >0,

and A(R) is a linear function of R. It follows that

o There exists € between 0 and 1 such that
(z,0)>1+eforall £ € CNL—{0}—M(z).



e There exists R>0 such that (z+ h,¢)>2 for all
heBand /€ ExgNC.

e Shrinking B if necessary, |(h,¢)| <e€/2 for all h € B
and ¢ € C—Eg.

With these values of € and R, we see that (z+
h,{)>1+¢/2 if h€B and € CNL-{0}—M(z).
Therefore, M(z + h) C M(z) if h € B. O

We continue with the proof of Theorem 3.1. We
have that F(h+2z) =m(z+h) "¢ '(z+h). Let us
suppose that a; is a minimal vector for z+ h. Then
m(z+h) = (z+h,a;) =1+ (h,a;), so to first order

K 'F(h+2) ="' (14 (ha) ¢ (z+h)
= (1-N(h,a1))(1+ (7%, h)) + ho.t.

We obtain that to first order, F(h+2z)=
F(z)(1-N(h,a1) + (z7',h)) + h.o.t., using the fact
that k = F(z). This proves:

Lemma 3.4. If h is small, and if a; is a minimal vector
for z+h, then the sign of F(z+ h)—F(z) is the same
as the sign of

f(h) := =N(h,a,) + (z71, h).

(If two numbers are both 0, we say they have the
same sign.)
If z is weakly eutactic, then

p

-1 _

z = E o;a;
i=1

for some real ;. Because a; are minimal vectors, we
have (z,a;) =1 for all i. Therefore, N = (z,z7!) =
> ai(z,ai) = >, 0. Restating, if z is weakly eutactic,
then

i(xi = N.
i=1

For any z € V, define H(z) to be the union of K,
and all the hyperplanes orthogonal to a;—a; for all
pairs i # j. If h & H(z), then (z+ h,q;) attains pair-
wise distinct values, so that M(z + h) has only one
vector in it.

We continue the proof of Theorem 3.1. First,
assume z is semi-eutactic, so that o; > 0 for all i. Let
h & H(z) so that M(z+ h) has only one vector in it,
which we may assume to be a;. Then

f) ==Y ana) + (> owar) = > ol a-ar).
(3-1)

Because a; is the only minimal vector of z+ h, we
have (z+h,a;)> (z+ h,a;). Because all the a; are
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minimal vectors of z, this implies (h,a;,—a;) >0 for
all i # 1.

C consists of squares of invertible elements [Ash
10, Theorem 2.13]. So by [Ash 10, Corollary 2.8], z™!
is in C, and so we know that at least two of the o; are
not equal to 0, because each g; lies in the boundary of
C. Therefore flh) > 0 and so F(z+h)>F(z). We
have proved that if z is semi-eutactic, then z is
F-sticky.

We now prove the reverse implication. To show
that a point z is not F-sticky, it suffices to find a cone
A (with vertex at 0 and open in V) such that for h
sufficiently small and h € A, we get f(h) < 0. This
implies that z is not F-sticky, because there is a set of
directions with positive measure emanating from z in
which F is decreasing.

For the following arguments, remember that C is
an open convex cone. Suppose first that z is weakly
eutactic but not semi-eutactic. Then, after re-ordering
the indices, for some g < p, there is an expression

q

-1 _

z = E oia;
i=1

where now the ag; run over a subset of the minimal
vectors of z (possibly all of them), the {a;} are linearly
independent, all the o; # 0, and o; <0. As noted
above, there are at least two terms in the sum, because
the minimal vectors are in the boundary of C and z™!

is in C.

Lemma 3.5. Let W be a finite-dimensional real vector
space with an inner product (-,-). Let wy, ..., w,, be lin-
early independent vectors in W, and Ay, ..., n € R,
Then there exists w € W such that (w;,w)=1; for
all i.

Proof. Extend wy,...,w,, to a basis. Then w is an
appropriate linear combination of elements of the
dual basis. 0

Because ay,...,a; are
a,—a;,a;—ay, ...,a,—a, are also linearly independent.
Therefore, using Lemma 3.5, we may choose v, such
that  (vo,a1—a;) =1>0 and for each j>
3, (vo,aj—az) = |ou|/3q|oy| > 0.

Therefore, if v is in a sufficiently small open ball B
centered at v, we have that

linearly  independent,

(v,a1—ay) > 0.
For each j > 3, (v,aj—a,) > 0.
We can bound above the

ratios: (v,aj—ay)/ (v, a1—az) < |ou|/2q]o].
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Because these things remain true when v is
replaced by Av for any positive 4, it follows that for
any v in the cone A over B, (v,a;—ay) >0 and for
each j>3,(v,aj—a;) >0 and (v,aj—az)/(v,a1—az)
< Joal/ 24151

Now assume that h is sufficiently small so that z 4
heC and M(z+h) C M(z), and let h € A. Then
(z+h,ay—a;)>0 and for each j>3,(z+
h,aj—a;) >0 and the ratios are bounded:
(h,aj—az)/ (h,a1—az) <|oa|/2q|o].

In particular, a, is the unique minimal vector of
z+ h. Therefore, from equation (3-1) with a, in place
of a;, we obtain:

q
f(h) = Zai(h, ai—ay)

and the sign of f(h) is the same as the sign
of F(z + h)—F(h).

Dividing both sides by the positive number
(h,a,—ay) we obtain

f R, (ha—a)
W)y )
(h,al - az) = (hwll - az)

Each term in the sum is less than |o;]/2q in abso-
lute value, so the whole sum is less than |o4|/2 in
absolute value. Because o; < 0, we obtain that if h € A
is sufficiently small, then f(h) < 0 and z is not sticky.

The remaining possibility is that z is not weakly

eutactic. Then
Z_1 = Z o;a; + Z ﬁjb],

where a; are minimal vectors of z, bj are non-minimal
vectors in V (that may not even be in the lattice L but
are still in C), and {a;, b;} are linearly independent,
all the o; and f; are nonzero, and there is at least one
b;. Let a small £>0 be given (in particular less than
1). There exists yo € V orthogonal to all the a; and all
the b; for j # 1 and with f,(yo, b1) = —2¢. Then for a
small enough open ball B, centered at y,, we have h €
By implies |(h,%a;)| <&* for all i and |(h, Na;)| < &
for all 4 and |[(h,pbj)| <& for all j#1
and (h, b)) < —¢.

We continue to require h so small that the min-
imum of z+h is still given by one of the a;s. Then
by Lemma 3.4, f(h) = —N(h, a;) + (h,z"") for some i.
If ¢ is sufficiently small and h € By, the dominant
term on the right-hand side is (yo,f101), and f(h)
< 0.

Because f(h) is a linear function of h, we conclude
that if h is in the cone over By, we still have f(h) < 0.
So z is not F-sticky. O

4. Data analysis

We performed our experiments for various values of
n from 2 to 16. We report here on »n from 2 to 9,
because the results for n larger than 9 were not quali-
tatively different from those for n=09.

Our programs used several libraries: gmp [gmp 18],
NTL [Shoup 18], and fplll [The FPLLL Development
Team 16]. NTL has its internal representation for
arbitrary precision integers, while fplll and gmp use a
different representation. We wrote simple functions to
translate between the two.

The analysis above uses a symmetric matrix to
define a sphere packing. The library fplll instead uses
the standard inner product, and, given a basis of a lat-
tice, computes the shortest vector in that lattice with
respect to the standard inner product. The basis of
that lattice must be in the form of integer vectors.

If the integers are too small, those vectors will typ-
ically not be able to approximate good lattice packings
very well (typically, the best lattice packings have
irrational bases). If the integers are too large, the com-
puter programs will run too slowly. We compromised
by starting with a seed matrix randomly chosen (using
a random number generator from gmp), containing
integer entries between —N and N for an integer
N=1000. The columns of this matrix are used as a
basis for the lattice. We used entries with a mean of
0. We computed the shortest vector in the lattice
using the shortest_vector function of fplll, which in
turn gave us the density of the lattice packing corre-
sponding to a matrix. We call this density the
“efficiency” of the matrix. We think of this matrix as
the “parent.”

We then altered each entry in the matrix randomly,
initially by adding —1, 0, or 1, and then computed the
efficiency of the “child” matrix. If the child matrix
gives a denser packing than the parent, it becomes the
new parent, and we repeat. After five tries, if none of
the five children are more efficient than the “parent,”
we double the possible modification size, so that now
we change each entry randomly by —2, ..., 2. We con-
tinue doubling the possible modification whenever
five children are no denser than the parent, and reset
the maximum modification to 1 if a child is denser
than its parent and becomes the new parent. Every
300 steps without any improvement in density, we
double all of the entries in the matrix. This has the
effect of making each step we take relatively smaller,
allowing us to try to thread our way through a bottle-
neck. If there are no improvements after 1000 trials,
the algorithm ceases. To prevent programs running
forever, we also capped the total number of steps,
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Dimension 8

0.01

0.02

Dimension 9

typically at 10°. This cap was seldom reached, never
more than 100 times in 10° or 10° experiments. In
other words, the random walk almost always got
stuck somewhere.

We present our results in the form of histograms.
In each, the horizontal axis shows ®/V,, the so-called
“center density” of the lattice. The vertical axis is a
count of the number of times that our program halted
at a lattice of the given density. For most dimensions,
the program was run 10° times. In dimension 9, the
program was run 10° times in the hope that at least
one such run would produce a packing with density
equal to or greater than the best known packing in
that dimension.

In the histogram for dimension 3, we have cut off
the top of the picture, so that we can use a scale that
shows the structure near all five eutactic points. The
thick spike around 0.17 actually continues upwards,
thinning into a spike above 0.166. If we included all
of this spike and the spike at 0.177, the part of the
histogram to the left becomes almost invisible.
Similarly two of the spikes in dimension 4 and one
spike in dimension 5 have been cut off at the top.

Our algorithms nearly always found the densest
packing in dimension 2. We therefore omit this

histogram, because it is essentially a single peak at the
densest packing.

From now on, the term “density” refers to the cen-
ter density of a given lattice packing. In dimension 3,
we can see that the algorithm can get “stuck” near
0.125, corresponding to the identity matrix, and also
near 0.144, 0.162, 0.166, and finally 0.176777, the
densest packing and the thin line at the right of the
histogram. These are the lattice-packing densities of
the 5 GL;(Z)-orbits of eutactic forms in dimension 3.
In dimensions 4 and higher, there are far more eutac-
tic lattices, and so it is harder to spot them as differ-
ent densities at which our algorithm halted.

The lattices at which our algorithm sticks, which
are very likely to be semi-eutactic lattices or close
approximations thereto, clearly have a unimodal dis-
tribution. This does not appear to be a normal distri-
bution, because the tails are too thick. Our histograms
are saying something about the number of semi-eutac-
tic lattices with a given sphere-packing density.

We are led to formulate the following conjecture.

Conjecture 4.1. Let n>9. Let M, be the absolute
maximum of ® in dimension n. Let x be a positive real
variable, and let f,(x) be the real-valued function such
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that

b
J fa(x) dx
is the number of semi-eutactic lattices in R" with
sphere-packing density in the interval [Mya, M,b| div-
ided by the number of all semi-eutactic lattices in R".
With this normalization, f,(x) is supported on [0,1]
and has total area 1. Then f,(x) is unimodal, and

fi= lim f,

exists.

It would be interesting to make this conjecture more
precise by predicting the exact shape of the limiting
graph (as n tends to infinity) of f(x), or at least its
mean and standard deviation, but we do not have suf-
ficient data for doing so.

Perhaps, the conjecture should take account of the
size of the basin of attraction of each semi-eutactic
lattice with respect to our algorithm. Because there
are huge numbers of semi-eutactic lattices when n is
large, we guess that these sizes would average out so
as not to have an effect on our conjecture.

We believe that the number of inequivalent semi-
eutactic lattices grows at least exponentially with n.
The growth rate of the number of semi-eutactic or
eutactic lattices seems not to be known. See [Bacher
18] for a proof that the number of perfect lattices
grows at least exponentially with n. However, it seems
to be likely that for large #» most of the perfect lattices
will not be eutactic. For example, Riener [Riener 06]
shows that for n=38, there are 20,916 inequivalent
perfect forms, of which 2408 are eutactic (and hence
extreme) and an additional 28 are semi-eutactic but
not eutactic. On the other hand, we expect that there
are vastly more eutactic lattices than extreme forms,
since the former occur as critical points with varying
indices of the sphere-packing function whereas the
extreme forms only have maximal index.
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