Mathematics 3310.01
Homework 1
Due September 7, 2018
Please remember that if your submission is longer than one page, you must use a stapler or paper clip.

1. Prove using induction that $2^{n}<n$! if n is an integer and $n \geq 4$.
2. Prove using induction that $n<1.5^{n}$ if n is an integer and $n \geq 2$.
3. Let d be the greatest common divisor of 21124 and 30055. Use the Euclidean algorithm to find d, and to find integers a and b so that $21124 a+30055 b=d$.
4. Let a, b, and c be positive integers. Suppose that $a \mid b c$ and $(a, b) \mid c$. Prove that $a \mid c^{2}$. Here, as usual, (a, b) is our notation for the greatest common divisor of a and b.
5. Suppose that R is a commutative ring with no zero divisors. Suppose that $r \in R$ solves the equation $r^{2}=1$. Show that $r=1$ or $r=-1$.
6. In $\mathbf{F}_{3}=\mathbf{Z} / 3 \mathbf{Z}$, the equation $x^{2}+1 \equiv 0$ has no solution. Just as we have done working with \mathbf{R}, we can invent a solution to this congruence. Let's call it α, so as not to confuse it with the imaginary number i, and we will use the rule that $\alpha^{2} \equiv-1 \equiv 2$ when evaluating expressions. Let R be the ring

$$
\left\{a+b \alpha \mid a, b \in \mathbf{F}_{3}\right\}
$$

There are 9 elements in R, including 0,1 , and 2 .
(a) Write down the other 6 elements.
(b) Write out the addition and multiplication tables for R.
(c) Show that every non-zero element of R is a unit. This shows (no more justification needed) R is a field with 9 elements.
7. Suppose that we repeat the previous exercise in $\mathbf{F}_{2}=\mathbf{Z} / 2 \mathbf{Z}$. Even though there is a solution to $x^{2}+1 \equiv 0$ in \mathbf{F}_{2}, suppose that we didn't notice and we invent a solution β and use the rule $\beta^{2} \equiv-1 \equiv 1$ when evaluating expressions. Let S be the ring

$$
\left\{a+b \beta \mid: a, b \in \mathbf{F}_{2}\right\}
$$

Then $S=\{0,1, \beta, 1+\beta\}$.
(a) Write out the addition and multiplication tables for S.
(b) What are the units in S ? What are the zero divisors?
(c) Is S a field?

