Mathematics 3310.01
Homework 2
Due September 14, 2018
Please remember that if your submission is longer than one page, you must use a stapler or paper clip.

1. Suppose that R and S are commutative rings, and $f: R \rightarrow S$ is a homomorphism. Suppose that a is a unit of R. Prove that $f(a)$ is a unit of S, and in fact prove that $f\left(a^{-1}\right)=f(a)^{-1}$. 2. Use the previous problem to show that the only homomorphism $f: \mathbf{Q} \rightarrow \mathbf{Q}$ is the identity function $f(x)=x$.
2. Suppose that d and m are integers larger than 1, and $d \mid m$. Show that the homomorphism $f: \mathbf{Z} \rightarrow \mathbf{Z} / d \mathbf{Z}$ defined by $f(k)=[k]_{d}$ induces a homomorphism $\bar{f}: \mathbf{Z} / m \mathbf{Z} \rightarrow \mathbf{Z} / d \mathbf{Z}$ defined by $f\left([k]_{m}\right)=[k]_{d}$.
3. Let R be a commutative ring, and $M_{2}(R)$ be the set of 2×2 matrices with entries in R. Show that the function $f: R \rightarrow M_{2}(R)$ defined by

$$
f(r)=\left(\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right)
$$

is a homomorphism.
5. Suppose that F is a field with finitely many elements. Show that F has characteristic p for some prime p.
6. Suppose that r and s are relatively prime integers, each at least 2 . Suppose that the order of a in $\mathbf{Z} / r \mathbf{Z}$ is d, and the order of a in $\mathbf{Z} / s \mathbf{Z}$ is e. Show that the order of a in $\mathbf{Z} / r s \mathbf{Z}$ is the least common multiple of d and e.
7. Use the previous problem to find the order of 2 in $\mathbf{Z} / 77 \mathbf{Z}$.
8. What is the order of 2^{10} in $\mathbf{Z} / 77 \mathbf{Z}$?
9. Find a numerical example in which r and s are not relatively prime, and the conclusion of problem 6 is false.
10. Let $m=2^{15}-1=32767$. Show
(a) The order of 2 in $\mathbf{Z} / m \mathbf{Z}$ is 15 .
(b) 15 does not divide $m-1$.

Explain why you now can conclude that m is not prime, even though we do not know any factors of m.

