Mathematics 3310.01
Homework 4
Due September 28, 2018
Please remember that if your submission is longer than one page, you must use a stapler or paper clip.

1. Let G be the group U_{19}. For each of the following subgroups, write down the cosets of the subgroup.
(a) $\langle 7\rangle$.
(b) $\langle 12\rangle$.
(c) $\langle 5\rangle$.
2. Now that you computed the cosets in the previous problem, write the multiplication tables for
(a) $U_{19} /\langle 7\rangle$.
(b) $U_{19} /\langle 12\rangle$.
(c) $U_{19} /\langle 5\rangle$.
3. The group U_{16} has 8 elements. Let $H_{1}=\langle 15\rangle$ and let $H_{2}=\langle 9\rangle$. Both H_{1} and H_{2} have 2 elements, so U_{16} / H_{1} and U_{16} / H_{2} both consist of 4 cosets. Write the multiplication tables for those two quotient groups.
4. If $m \in \mathbf{Z}$ and $m \geq 2$, and α is any integer, the function $L_{\alpha}: \mathbf{Z} / m \mathbf{Z} \rightarrow \mathbf{Z} / m \mathbf{Z}$ defined by $L_{\alpha}(k)=\alpha k$ is a group homomorphism (where the group operation on $\mathbf{Z} / m \mathbf{Z}$ is addition). You do not need to verify that L_{α} is a group homomorphism. Instead, compute $\operatorname{ker}\left(L_{\alpha}\right)$ if
(a) $m=10$ and $\alpha=6$.
(b) $m=11$ and $\alpha=9$.
(c) $m=12$ and $\alpha=8$.
5. Suppose that G_{1}, G_{2}, and G_{3} are groups, and $f_{1}: G_{1} \rightarrow G_{2}$ and $f_{2}: G_{2} \rightarrow G_{3}$ are both group homomorphisms. Show that $f_{2} \circ f_{1}: G_{1} \rightarrow G_{3}$ is also a group homomorphism. As usual, $f_{2} \circ f_{1}\left(g_{1}\right)$ is defined to be $f_{2}\left(f_{1}\left(g_{1}\right)\right)$ for every $g_{1} \in G_{1}$.
