Please remember that if your submission is longer than one page, you must use a stapler or paper clip.

1. Let $p(x) \in \mathbf{Z} / 6 \mathbf{Z}[x]$ be the polynomial $4 x^{3}+3 x$. Find another polynomial $q(x) \in \mathbf{Z} / 6 \mathbf{Z}[x]$ so that $p(x) \not \equiv q(x)(\bmod 6)$, but $p(n) \equiv q(n)(\bmod 6)$ for all integers n.
2. Let G be the group U_{45}, the positive integers which are less than 45 and relatively prime to 45 , with group operation multiplication. You may assume without checking that there are 24 elements in G.
(a) Let H_{1} be the subgroup generated by 4 . There are 6 elements in H_{1}. Find them, and find the order of each of the 4 cosets in G / H_{1}.
(b) Let H_{2} be the subgroup generated by 11. There are 6 elements in H_{2}. Find them, and find the order of each of the 4 cosets in G / H_{2}.
3. Find an element $x \in \mathbf{Z} / 105 \mathbf{Z}$ so that

$$
\begin{array}{ll}
x \equiv 2 & (\bmod 3) \\
x \equiv 4 & (\bmod 5) \\
x \equiv 3 & (\bmod 7)
\end{array}
$$

or explain why no such element x exists.
4. As usual, write \mathbf{F}_{2} as a shorter symbol for $\mathbf{Z} / 2 \mathbf{Z}$. Let R be the $\operatorname{ring} \mathbf{F}_{2} \times \mathbf{F}_{2}$. The ring R has 4 elements.
(a) Write the addition table for R.
(b) Write the multiplication table for R.
(c) Is R a field?
(d) Let G be the group $(R,+, 0)$. (In other words, forget that you can multiply elements of R, and just consider adding them.) List the order of each of the 4 elements in G.
5. We can define a ring homomorphism $f: \mathbf{Z} / 12 \mathbf{Z} \rightarrow \mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 6 \mathbf{Z}$ with the formula $f\left([n]_{12}\right)=\left([n]_{2},[n]_{6}\right)$. You do not need to check that this is a ring homomorphism.
(a) How many elements are in the image of f ? (The image of a function $f: A \rightarrow B$ is defined to be the set $f(A)$.)
(b) Compute the kernel of f.

