Mathematics 3310.01 Homework 5 Due October 12, 2018

Please remember that if your submission is longer than one page, you must use a stapler or paper clip.

1. Let $p(x) \in \mathbb{Z}/6\mathbb{Z}[x]$ be the polynomial $4x^3 + 3x$. Find another polynomial $q(x) \in \mathbb{Z}/6\mathbb{Z}[x]$ so that $p(x) \not\equiv q(x) \pmod{6}$, but $p(n) \equiv q(n) \pmod{6}$ for all integers n.

2. Let G be the group U_{45} , the positive integers which are less than 45 and relatively prime to 45, with group operation multiplication. You may assume without checking that there are 24 elements in G.

- (a) Let H_1 be the subgroup generated by 4. There are 6 elements in H_1 . Find them, and find the order of each of the 4 cosets in G/H_1 .
- (b) Let H_2 be the subgroup generated by 11. There are 6 elements in H_2 . Find them, and find the order of each of the 4 cosets in G/H_2 .
- 3. Find an element $x \in \mathbb{Z}/105\mathbb{Z}$ so that

$$x \equiv 2 \pmod{3}$$
$$x \equiv 4 \pmod{5}$$
$$x \equiv 3 \pmod{7}$$

or explain why no such element x exists.

4. As usual, write \mathbf{F}_2 as a shorter symbol for $\mathbf{Z}/2\mathbf{Z}$. Let R be the ring $\mathbf{F}_2 \times \mathbf{F}_2$. The ring R has 4 elements.

- (a) Write the addition table for R.
- (b) Write the multiplication table for R.
- (c) Is R a field?
- (d) Let G be the group (R, +, 0). (In other words, forget that you can multiply elements of R, and just consider adding them.) List the order of each of the 4 elements in G.

5. We can define a ring homomorphism $f : \mathbb{Z}/12\mathbb{Z} \to \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ with the formula $f([n]_{12}) = ([n]_2, [n]_6)$. You do not need to check that this is a ring homomorphism.

- (a) How many elements are in the image of f? (The *image* of a function $f : A \to B$ is defined to be the set f(A).)
- (b) Compute the kernel of f.