Mathematics 3310.01

Homework 7
Due October 26, 2018
Please remember that if your submission is longer than one page, you must use a stapler or paper clip.

1. Let R be the ring $\mathbf{F}_{2} \times \mathbf{F}_{2}$, and let S be the ring $\mathbf{Z} / 4 \mathbf{Z}$.
(a) Show that there is no ring homomorphism $f: R \rightarrow S$.
(b) Find a ring homomorphism $g: S \rightarrow R$.
2. Now consider $G=\mathbf{Z} / 2 \mathbf{Z} \times \mathbf{Z} / 2 \mathbf{Z}$ just as a group, with group operation addition, and $H=\mathbf{Z} / 4 \mathbf{Z}$ again with group operation addition.
(a) Find a nontrivial group homomorphism $f: G \rightarrow H$.
(b) Find a nontrivial group homomorphism $f: H \rightarrow G$.
"Nontrivial" means a homomorphism other than the one that maps every element in the domain to the identity element in the codomain. In this case, that means finding a homomorphism that does not send every element of the domain to 0 .
3. Suppose that m and n are positive relatively prime integers larger than 1 . We know that we can find integers x and y so that $m x+n y=1$. Show that we can choose those integers so that $|x|<n$ and $|y|<m$.
4. Let F be a field. Suppose that $f, g \in F[x]$ are irreducible polynomials. We know that we can find $a, b \in F[x]$ so that $a f+b g=1$. Show that we can choose a and b so that $\operatorname{deg}(a)<\operatorname{deg}(g)$ and $\operatorname{deg}(b)<\operatorname{deg}(f)$.
5. Let $R=\mathbf{Z} / 21 \mathbf{Z}[x]$. Because $\mathbf{Z} / 21 \mathbf{Z}$ is a commutative ring with zero divisors, we know that R might have different properties from $F[x]$ when F is a field.
(a) Find a and b nonzero elements of $\mathbf{Z} / 21 \mathbf{Z}$ so that $a b=0$.
(b) Show that in $R, x^{2}-(a+b) x$ has two different factorizations into irreducible polynomials.
(c) Show that in R, we can find an irreducible polynomial p so that $p \mid f g, p \nmid f$, and $p \nmid g$.
6. Factor $x^{4}+1$ into irreducible factors in
(a) $\mathbf{R}[x]$
(b) $\mathbf{C}[x]$.
7. Using mostly trial and error, find all irreducible polynomials in $\mathbf{F}_{2}[x]$ of degree less than or equal to 4 .
