Mathematics 3310.01
Homework 9
Due November 16, 2018
Please remember that if your submission is longer than one page, you must use a stapler or paper clip.

1. Suppose that D is an integral domain. Remember that in an integral domain, if $a b=a c$ and $a \neq 0$, then $b=c$. That property will be helpful in these next few problems.

Let

$$
M=\left\{\left(d_{1}, d_{2}\right) \in D \times D: d_{2} \neq 0\right\}
$$

Define a relation on M by saying that if $\left(d_{1}, d_{2}\right),\left(d_{3}, d_{4}\right) \in M$, then $\left(d_{1}, d_{2}\right) \sim\left(d_{3}, d_{4}\right)$ if and only if $d_{1} d_{4}=d_{2} d_{3}$. Show that this relation is an equivalence relation.
2. Now define two different binary operations on M :

$$
\begin{aligned}
& \left(d_{1}, d_{2}\right) \oplus\left(d_{3}, d_{4}\right)=\left(d_{1} d_{4}+d_{2} d_{3}, d_{2} d_{4}\right) . \\
& \left(d_{1}, d_{2}\right) \otimes\left(d_{3}, d_{4}\right)=\left(d_{1} d_{3}, d_{2} d_{4}\right)
\end{aligned}
$$

You may assume without checking that these operations are commutative.
(a) Show that $(0,1)$ is an identity element for \oplus.
(b) Show that $(1,1)$ is an identity element for \otimes.

Suppose that $\left(d_{1}, d_{2}\right),\left(d_{3}, d_{4}\right),\left(e_{1}, e_{2}\right),\left(e_{3}, d_{4}\right) \in M$, and $\left(d_{1}, d_{2}\right) \sim\left(e_{1}, e_{2}\right)$ and $\left(d_{3}, d_{4}\right) \sim$ $\left(e_{3}, e_{4}\right)$.
(c) Show that $\left(d_{1}, d_{2}\right) \oplus\left(d_{3}, d_{4}\right) \sim\left(e_{1}, e_{2}\right) \oplus\left(e_{3}, e_{4}\right)$.
(d) Show that $\left(d_{1}, d_{2}\right) \otimes\left(d_{3}, d_{4}\right) \sim\left(e_{1}, e_{2}\right) \otimes\left(e_{3}, e_{4}\right)$.
3. Suppose that R_{1} and R_{2} are commutative rings, and $f: R_{1} \rightarrow R_{2}$ is a ring homomorphism. Prove or give a counterexample:
(a) If f is surjective and R_{1} is an integral domain, then R_{2} is an integral domain.
(b) If f is injective and R_{1} is an integral domain, then R_{2} is an integral domain. A counterexample means finding specific rings R_{1} and R_{2} and clearly explaining the homomorphism f.
4. Suppose that R is a commutative ring and that I and J are ideals of R. Define

$$
I+J=\{i+j: i \in I, j \in J\} .
$$

Show that $I+J$ is an ideal of R.
5. In \mathbf{Z}, take any two positive integers m and n. Let $I=(m)$, the ideal consisting of multiples of m, and $J=(n)$. Define $I+J$ as in the last problem, and let $d=(m, n)$. Show that $I+J=(d)$.

