Mathematics 3310.01
Homework 10
Due November 30, 2018
Please remember that if your submission is longer than one page, you must use a stapler or paper clip.

1. Let R be a commutative ring, and suppose that I and J are ideals of R. Prove that $I \cap J$ is an ideal of R.
2. Let m and n be positive integers greater than 1 . Let k be the least common multiple of m and n. Show that $(m) \cap(n)=(k)$. Here, as usual, (m) means the ideal containing all multiples of m.
3. We have seen that if I and J are ideals of a commutative ring R, there are two ways to construct new ideals: $I+J$ and $I \cap J$. There is another useful way to construct a new ideal. The set consisting of products of all elements of I with all elements of J is not closed under addition, so it is not an ideal. Instead, we define

$$
I J=\left\{i_{1} j_{1}+i_{2} j_{2}+\cdots+i_{k} j_{k}: i_{1}, i_{2}, \ldots, i_{k} \in I, j_{1}, j_{2}, \ldots, j_{k} \in J\right\}
$$

Show that $I J$ is an ideal.
4. On a previous homework, we decomposed $\frac{1}{\left(x^{2}+x+1\right)\left(x^{2}+2 x+1\right)}$ into partial fractions. Use that partial fraction decomposition to compute

$$
\int \frac{d x}{\left(x^{2}+x+1\right)\left(x^{2}+2 x+1\right)} .
$$

5. Write a multiplication table for $\mathbf{F}_{2}[x] /\left(x^{3}+x^{2}+1\right)$, a field with 8 elements. You can omit the row and column corresponding to multiplication by 0 . Rather than using x, write β for the element of the field that satisfies $\beta^{3}+\beta^{2}+1=0$.
6. Write a multiplication table for $\mathbf{F}_{3}[x] /\left(x^{2}+1\right)$, a field with 9 elements. You can omit the row and column corresponding to multiplication by 0 . Rather than using x, write γ for the element of the field that satisfies $\gamma^{2}+1=0$.
7. Continuing the previous problem, let K be the field with 9 elements $\left\{a+b \gamma: a, b \in \mathbf{F}_{3}\right\}$. Factor the polynomial $x^{2}+x+2$ using the elements of K.
8. The polynomial $x^{6}+1$ is not irreducible in $\mathbf{F}_{2}[x]$. Find a factorization of that polynomial, and use that factorization to show that $\mathbf{F}_{2}[x] /\left(x^{6}+1\right)$ is not an integral domain.
