MATH4410
Homework 1
Due February 12, 2021
Your Name Here
Your answers must be in the form of a typed PDF file, and must be e-mailed to me by 5PM EST on February 12. Please name your file hw01-lastname-firstname.pdf. For example, my solution file is hw01-gross-robert.pdf.

I will try to acknowledge receipt of each e-mail.

1. Remember that the differential equation

$$
\frac{d v}{d t}=-0.4 v+9.8, \quad v(0)=0
$$

models the velocity of a falling object including air resistance.
(a) What is the solution of the differential equation?
(b) How long does it take for the falling object to reach 90% of terminal velocity?
(c) How far does the object go in that time?
2. Solve each of the following differential equations. In each equation, assume that y is a function of t.
(a) $y^{\prime}-y=2 t e^{t}, y(0)=1$.
(b) $y^{\prime}+2 y=t e^{-t}, y(1)=0$.
(c) $t y^{\prime}+(t+1) y=t, y(1)=1$.
(d) $t^{3} y^{\prime}+4 t^{2} y=e^{-t}, y(1)=0$.
3. Show that if a and λ are positive constants, and b is any real number, then every solution of

$$
y^{\prime}+a y=b e^{-\lambda t}
$$

has the property that $y \rightarrow 0$ as $t \rightarrow \infty$. You might need to treat as a special case the possibility that $a=\lambda$.
4. Consider the initial value problem

$$
y^{\prime}-y=1+3 \sin t, \quad y(0)=y_{0} .
$$

Find the value(s) of y_{0}, if any, for which $y(t)$ does not tend to infinity as $t \rightarrow \infty$.
5. Variation of Parameters is another method for solving first-order linear differential equations. Write such an equation as

$$
\begin{equation*}
y^{\prime}+p(t) y=g(t) \tag{1}
\end{equation*}
$$

(a) Suppose first that $g(t)=0$. Show that the solution is

$$
y=A \exp \left[-\int p(t) d t\right]
$$

for any constant A.
(b) Now suppose that $g(t)$ is not identically 0 . Suppose that we try to find a solution of (1) in the form

$$
\begin{equation*}
y=A(t) \exp \left[-\int p(t) d t\right] \tag{2}
\end{equation*}
$$

where now $A(t)$ is a function rather than a constant. Substitute expression (2) into the original differential equation (1) and conclude that $A(t)$ must satisfy

$$
\begin{equation*}
A^{\prime}(t)=g(t) \exp \left[\int p(t) d t\right] \tag{3}
\end{equation*}
$$

Using the expression for $A^{\prime}(t)$ in (3), it is possible to compute $A(t)$. (Don't forget the constant of integration!) It is then simple to substitute the function $A(t)$ back into (2) to compute y.
6. Use variation of parameters to solve:
(a) $y^{\prime}-2 y=t^{2} e^{2 t}$.
(b) $y^{\prime}+\frac{y}{t}=3 \cos 2 t$.
(c) $t y^{\prime}+2 y=\sin t$.
(d) $2 y^{\prime}+y=3 t^{2}$.

