MATH4410
Homework 2
Due February 19, 2021
Your Name Here
Your answers must be in the form of a typed PDF file, and must be e-mailed to me by 5 PM EST on February 19. Please name your file hw02-lastname-firstname.pdf. For example, my solution file is hw02-gross-robert.pdf.

I will try to acknowledge receipt of each e-mail.

1. Sometimes a differential equation can be solved by a clever change of variables. That is the theme of the first few problems.
(a) Solve the first-order linear differential equation $y^{\prime}=y+t$ by finding an integrating factor, as we have done many times by now.
(b) You can also solve this differential equation with a change of variables. Substitute $y+t=z$, and eliminate y from the differential equation. The resulting differential equation is separable. Solve by separation of variables, and then remove z from the result and express y as a function of t.
2. The differential equation

$$
y^{\prime}-2 t y=t y^{2}
$$

is not linear.
(a) Show that this differential equation is separable, and solve by separation of variables.
(b) This equation can also be solved with the substitution $z=y^{-1}$. Make that substitution, solve the resulting linear differential equation for z, and then remove z from the solution and express y as a function of t.
3. Make the substitution $y=t z$ to solve each of these differential equations:
(a) $y^{\prime}=\frac{t+y}{t-y}$.
(b) $y^{\prime}=\frac{y^{2}}{t y+t^{2}}$.
(c) $y^{\prime}=\frac{t^{2}+t y+y^{2}}{t^{2}}$.
(d) $y^{\prime}=\frac{y+t e^{-2 y / t}}{t}$.

In most cases, you will only be able to find an equation relating y and t.
4. Each of the differential equations in the previous problem has the form $y^{\prime}=f(t, y)$, where $f(k t, k y)=f(t, y)$ for any non-zero real number k. Show that every differential equation of this form becomes separable after making the substitution $y=t z$.
5. Suppose that $y=\phi(t)$ solves the differential equation

$$
y^{\prime}+(\cos t) y=e^{-\sin t}
$$

Suppose as well that k is any integer. Show that $\phi(k \pi)-\phi(0)=k \pi$.
6. In class, we solved the first-order linear differential equation

$$
2 y^{\prime}+t y=2
$$

with an initial condition $y(0)=1$. This is also in the text: section 2.1 , example 5 . Change the initial condition to be $y(0)=A$ for any real number A, repeat the process of solving the differential equation, and evaluate $\lim _{t \rightarrow \infty} y(t)$. Your answer might depend on A.

