MATH4410

Homework 4
Due March 12, 2021
Your Name Here
Your answers must be in the form of a typed PDF file, and must be e-mailed to me by 5 PM EST on March 12. Please name your file hw04-lastname-firstname.pdf. For example, my solution file is hw04-gross-robert.pdf. Please use hyphens and not underlines, please use all lower-case letters, and please do not leave any spaces in the name of your file. You will have 5 points added to your homework score if you follow these instructions.

I will try to acknowledge receipt of each e-mail.

1. Find the general solution of $y^{\prime \prime}+2 y^{\prime}+5 y=0$, and find the specific solution satisfying $y(0)=y^{\prime}(0)=0$.
2. Find the general solution of $y^{\prime \prime}+2 y^{\prime}+5 y=e^{-t}$, and find the specific solution satisfying $y(0)=y^{\prime}(0)=0$.
3. Find the general solution of $y^{\prime \prime}+2 y^{\prime}+5 y=\sin 2 t$, and find the specific solution satisfying $y(0)=y^{\prime}(0)=0$.
4. Find the general solution of $y^{\prime \prime}+2 y^{\prime}+5 y=e^{-t} \sin 2 t$, and find the specific solution satisfying $y(0)=y^{\prime}(0)=0$.
5. The differential equation

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

is called exact if it can be written in the form

$$
\left[P(x) y^{\prime}\right]^{\prime}+[f(x) y]^{\prime}=0
$$

where $f(x)$ is to be determined in terms of $P(x), Q(x)$, and $R(x)$. If the equation is exact, integration leads to the differential equation

$$
P(x) y^{\prime}+f(x) y=C
$$

which in turn can be solved because it is a first-order linear differential equation.
Show that if a second-order differential equation is exact, then

$$
P^{\prime \prime}(x)-Q^{\prime}(x)+R(x)=0
$$

6. On the examination, we studied the behavior of the equilibria of the first-order differential equation

$$
y^{\prime}=a y-b y^{2}-q, \quad y(0)=C
$$

where a and b are positive constants, and q varies. Now it's time to solve the equation. The formula varies depending on the size of q, but in all cases you can express y as a function of t.

It is helpful to remember that if the quadratic polynomial $A x^{2}+B x+C$ has roots α and β, then $A x^{2}+B x+C=A(x-\alpha)(x-\beta)$.
(a) Suppose that $q<\frac{a^{2}}{4 b}$. Show that the polynomial $a r-b r^{2}-q$ has 2 real roots. Call those roots r_{1} and r_{2}, with $r_{1}<r_{2}$. You can solve the differential equation using partial fractions to do the integration, and then write your answer explicitly solving for y as a function of t, in terms of r_{1} and r_{2}.

Then show that if $C>r_{1}$, then $\lim _{t \rightarrow \infty} y(t)=r_{2}$, and if $C<r_{1}$, then $y(t)$ is undefined for sufficiently large values of t.
(b) Suppose that $q=\frac{a^{2}}{4 b}$. Show that the polynomial $a r-b r^{2}-q$ has 1 double root, which we will call r. You can solve the differential equation, and then write your answer explicitly solving for y as a function of t, in terms of r.

Then show that if $C>r, \lim _{t \rightarrow \infty} y(t)=r$, while if $C<r$, then $y(t)$ is undefined for sufficiently large values of t.
(c) Suppose that $q>\frac{a^{2}}{4 b}$. Show that the polynomial $a r-b r^{2}-q$ has no real roots. You can solve the differential equation by completing the square. Write y as a function of t, and show that $y(t)$ is undefined for sufficiently large values of t for any value of C.

