MATH4410
Homework 10
Due April 30, 2021
Your Name Here
Your answers must be in the form of a typed PDF file, and must be e-mailed to me by 5PM EDT on April 30. Please name your file hw10-lastname-firstname.pdf. For example, my solution file is hw10-gross-robert.pdf. Please use hyphens and not underlines, please use all lower-case letters, and please do not leave any spaces in the name of your file. You will have 5 points added to your homework score if you follow these instructions.

I will try to acknowledge receipt of each e-mail.

1. Let

$$
h(t)= \begin{cases}4-2 t & 0 \leq t \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Write $h(t)$ using the unit step-function $u_{c}(t)$, and compute $\mathscr{L}(h)$.
2. Solve

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
2 & -5 \\
1 & -2
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
\sec t \\
0
\end{array}\right] \quad \mathbf{x}(0)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

3. Solve

$$
\mathbf{x}^{\prime}=\left[\begin{array}{cc}
2 & -5 \\
1 & -2
\end{array}\right] \mathbf{x}+\left[\begin{array}{c}
0 \\
u_{5}(t)
\end{array}\right] \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

4. Let \mathbf{A} be a 3×3 matrix, and suppose that the characteristic polynomial for \mathbf{A} factors as $(\lambda-c)^{3}$, where c is a fixed real number. If the matrix \mathbf{A} has 3 linearly independent eigenvectors, we know how to solve the system $\mathbf{x}^{\prime}=\mathbf{A x}$. We now consider what to do when this is not the case.
(a) Suppose that we can find only one linearly independent eigenvector \mathbf{v}, so that $\mathbf{A v}=c \mathbf{v}$.

We know that one solution of the differential equation is $\mathbf{v} e^{c t}$. We need to find two other linearly independent solutions.
(i) Suppose that a second linearly independent solution has the form $\mathbf{u}_{1} e^{c t}+\mathbf{u}_{2} t e^{c t}$. Write down the equations that the vectors \mathbf{u}_{1} and \mathbf{u}_{2} must satisfy.
(ii) Suppose that a third linearly independent solution has the form $\mathbf{w}_{1} e^{c t}+\mathbf{w}_{2} t e^{c t}+$ $\mathbf{w}_{3} t^{2} e^{c t}$. Write down the equations that the vectors $\mathbf{w}_{1}, \mathbf{w}_{2}$, and \mathbf{w}_{3} must satisfy.
It turns out that those equations can always be solved nontrivially.
(b) Suppose that we can find two linearly independent eigenvectors \mathbf{u} and \mathbf{v}, so that $\mathbf{A u}=c \mathbf{u}$ and $\mathbf{A v}=c \mathbf{v}$. We know that two linearly independent solutions of the differential equation are $\mathbf{u} e^{c t}$ and $\mathbf{v} e^{c t}$. We need to find one more linearly independent solution. Suppose that a solution has the form $\mathbf{w}_{1} e^{c t}+\mathbf{w}_{2} t e^{c t}$. Write down the equations that the vectors \mathbf{w}_{1} and \mathbf{w}_{2} must satisfy. Again, it turns out that this equation can always be solved nontrivially.
5. Suppose that we start with a second-order linear homogeneous differential equation

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

(a) Show that it is always possible to multiply this equation by a function $f(t)$ so that the resulting equation

$$
f(t) y^{\prime \prime}+f(t) p(t) y^{\prime}+f(t) q(t) y=0
$$

can be rewritten as

$$
\left[a(t) y^{\prime}\right]^{\prime}+b(t) y=0 .
$$

(b) Start with the differential equation

$$
y^{\prime \prime}-2 t y^{\prime}+\lambda y=0
$$

(where λ is any real number) and find the functions $f(t), a(t)$, and $b(t)$.
6. Suppose that we try to solve the differential equation from the previous problem,

$$
y^{\prime \prime}-2 x y^{\prime}+\lambda y=0
$$

We have switched the independent variable to x, because we would like to solve using a power series expansion. Show that if λ is a nonnegative even integer $2 m$, then one solution is a polynomial of degree m.

