MT 007.02 / SL 266.01
 Ideas in Mathematics: The Grammar of Numbers

Sigma notation

1. Figure out what each of the following sums is equal to. First write out the terms to be added up, and then use a calculator to do the addition.

$$
\sum_{t=1}^{3}(2 t+1)^{2} \quad \sum_{r=9}^{11}\left(r^{2}-1\right) \quad \sum_{m=3}^{5} 2
$$

2. Compute each of these sums. Leave your answer as a fraction:

$$
\sum_{n=1}^{2} \frac{1}{n^{2}+n} \quad \sum_{n=1}^{3} \frac{1}{n^{2}+n} \quad \sum_{n=1}^{4} \frac{1}{n^{2}+n} \quad \sum_{n=1}^{5} \frac{1}{n^{2}+n}
$$

Based on your answers, make a guess about what

$$
\sum_{n=1}^{100} \frac{1}{n^{2}+n}
$$

will equal.
3. Compute each of these sums:

$$
\sum_{r=1}^{2}(2 r-1) \quad \sum_{r=1}^{3}(2 r-1) \quad \sum_{r=1}^{4}(2 r-1) \quad \sum_{r=1}^{5}(2 r-1)
$$

Based on your answers, make a guess about what

$$
\sum_{r=1}^{50}(2 r-1)
$$

will equal.

