Mathematics 102

Examination 1
Answers

1. (16 points) (a) State the Intermediate Value Theorem.
(b) Use the Intermediate Value Theorem to explain why the equation $\sin x=x^{2}-1$ has a solution with x between 0 and π.
Answer:The Intermediate Value Theorem states: "If $f(x)$ is continuous on the closed interval $[a, b]$, with $f(a) \neq f(b)$, and N is any number between a and b, then there is a number c between a and b so that $f(c)=N$."

For the second part of the problem, let $f(x)=\sin x-x^{2}+1$. We easily compute that $f(0)=1$, and $f(\pi)=-\pi^{2}+1<0$. Therefore, between 0 and π, there is a number c so that $f(c)=0$, which is the same as $\sin c=c^{2}-1$. The number c is approximately 1.4096 , incidentally.
2. (10 points) Find the equation of the tangent line to the graph of $y=3 x^{2}+4$ at the point $(2,16)$. Answer: We must start by computing the slope of the tangent line, using the formula $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$:

$$
m=\lim _{x \rightarrow 2} \frac{3 x^{2}+4-16}{x-2}=\lim _{x \rightarrow 2} \frac{3 x^{2}-12}{x-2}=\lim _{x \rightarrow 2} 3 x+6=12
$$

The equation of the tangent line can then be found by the usual methods to be $y=12 x-8$.
3. (54 points) Compute the following limits. Be sure to justify your answers. If a limit does not exist, but equals ∞ or $-\infty$, you must say so in order to get full credit. As usual, $[x]$ refers to the greatest-integer function.
(a) $\lim _{x \rightarrow 0} \frac{(3+x)^{2}-9}{x}$
(b) $\lim _{x \rightarrow 3^{+}} \frac{x^{2}+2}{x-5}$
(c) $\lim _{x \rightarrow 3^{-}} \frac{x}{[x]}$
(d) $\lim _{x \rightarrow 6^{+}}[2 x+0.99]$
(e) $\lim _{x \rightarrow 4^{-}} \frac{x}{x-4}$
(f) $\lim _{x \rightarrow 5} \frac{x^{2}+9}{x-5}$
(g) $\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+4}-2}{x^{2}}$
(h) $\lim _{x \rightarrow \frac{\pi}{2}^{-}} \tan x$
(i) $\lim _{x \rightarrow 2} \frac{x^{3}-4 x^{2}+7 x-6}{x-2}$

Answer: We have

$$
\lim _{x \rightarrow 0} \frac{(3+x)^{2}-9}{x}=\lim _{x \rightarrow 0} \frac{9+6 x+x^{2}-9}{x}=\lim _{x \rightarrow 0} \frac{6 x+x^{2}}{x}=\lim _{x \rightarrow 0} 6+x=6
$$

For (b), we can use continuity:

$$
\lim _{x \rightarrow 3^{+}} \frac{x^{2}+2}{x-5}=\frac{\lim _{x \rightarrow 3^{+}} x^{2}+2}{\lim _{x \rightarrow 3^{+}} x-5}=\frac{11}{-2}=-5.5 .
$$

For (c), we can use limit laws, recalling that $\lim _{x \rightarrow 3^{-}}[x]=2$:

$$
\lim _{x \rightarrow 3^{-}} \frac{x}{[x]}=\frac{\lim _{x \rightarrow 3^{-}} x}{\lim _{x \rightarrow 3^{-}}[x]}=\frac{3}{2}=1.5
$$

For (d), we need to reason carefully. If x is close enough to 6 and larger than 6 , then $2 x$ will be larger than 12 , and smaller than 12.01 , and then $2 x+0.99$ will also be larger than 12 and smaller than 13 ; therefore, $\lim _{x \rightarrow 6^{+}}[2 x+0.99]=12$.

For (e), the first and simplest answer is that the limit does not exist: the numerator is close to 4, while the denominator gets closer and closer to 0 . But we can do better: because the denominator is always negative, and the numerator is positive, we can conclude that $\lim _{x \rightarrow 4^{-}} \frac{x}{x-4}=-\infty$.

For (f), the limit does not exist. We cannot say anything further, because if $x>5$, then the denominator will be positive; if $x<5$, then the denominator will be negative. The numerator is always positive. Therefore, the limit is neither ∞ nor $-\infty$.

For (g), we use some algebra:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+4}-2}{x^{2}} & =\lim _{x \rightarrow 0} \frac{\sqrt{x^{2}+4}-2}{x^{2}} \cdot \frac{\sqrt{x^{2}+4}+2}{\sqrt{x^{2}+4}+2}=\lim _{x \rightarrow 0} \frac{x^{2}+4-4}{x^{2}\left(\sqrt{x^{2}+4}+2\right)} \\
& =\lim _{x \rightarrow 0} \frac{x^{2}}{x^{2}\left(\sqrt{x^{2}+4}+2\right)}=\lim _{x \rightarrow 0} \frac{1}{\sqrt{x^{2}+4}+2}=\frac{1}{4} .
\end{aligned}
$$

For (h), the simplest way to proceed is to recall how the graph of $\tan x$ looks. The value $x=\frac{\pi}{2}$ is not in the domain of $\tan x$, but we can say more: $\lim _{x \rightarrow \frac{\pi}{2}-} \tan x=\infty$.

Finally, for (i), we can divide the numerator by the denominator:

$$
\lim _{x \rightarrow 2} \frac{x^{3}-4 x^{2}+7 x-6}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}-2 x+3\right)}{x-2}=\lim _{x \rightarrow 2} x^{2}-2 x+3=3 .
$$

4. (20 points) The first graph below is the graph of $y=f(x)$, and the second is the graph of $y=g(x)$:

Find numbers A, B, C, and D so that $g(x)=A f(B(x+C))+D$.
Answer:To begin, note that the width of the two graphs is identical: the first one goes from 1 to 4 , and the second from 2 to 5 . Therefore, there is no horizontal shrinking or stretching, so $B=1$.

Next, note that the graph is shifted to the right by 1 , so $C=-1$. So we know that $g(x)=A f(x-1)+D$.
Next, we see that the graph of $g(x)$ is stretched vertically by a factor of 2 , but also is inverted. That means that $A=-2$. So we see that $g(x)=-2 f(x-1)+D$.

One way to compute D is by substitution. Plug in $x=2$. We know that $g(2)=4$, and we also know that $f(1)=2$. Substituting gives $4=(-2)(2)+D$, so $D=8$.

It's a good idea to check other values of x to verify that $g(x)=-2 f(x-1)+8$, such as $x=3$, and $x=5$.

Grade	Number of people
97	2
93	1
92	1
91	1
90	1
87	1
85	1
77	5
76	1
75	1
72	1
70	2
66	1
63	1
58	1

Mean: 79.38
Standard deviation: 10.90

