Mathematics 102

Examination 2
October 22, 2004
Answers

1. (10 points) (a) State the definition of $f^{\prime}(x)$, the derivative of $f(x)$.
(b) Let $f(x)=(x+1)^{3}+4$. Using only the definition of the derivative and basic theorems about limits, compute $f^{\prime}(4)$.
Answer:

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

In this case, we have

$$
\begin{aligned}
f^{\prime}(4) & =\lim _{h \rightarrow 0} \frac{(5+h)^{3}+4-129}{h}=\lim _{h \rightarrow 0} \frac{125+75 h+15 h^{2}+h^{3}-125}{h} \\
& =\lim _{h \rightarrow 0} \frac{75 h+15 h^{2}+h^{3}}{h}=\lim _{h \rightarrow 0} 75+15 h+h^{2}=75 .
\end{aligned}
$$

2. (30 points) Compute $\frac{d y}{d x}$ for each of the following functions.
(a) $\sqrt{x^{2}+1}$
(b) $\tan (2 x)$
(c) $\left(x^{3}+2\right)^{4}$
(d) $x \sin 3$
(e) $\sin (3 x)$
(f) $3 \sin x$

Answer: We have (omitting the details to save space)

$$
\begin{aligned}
\frac{d}{d x}\left(\sqrt{x^{2}+1}\right) & =\frac{x}{\sqrt{x^{2}+1}} \\
\frac{d}{d x} \tan (2 x) & =2 \sec ^{2} 2 x \\
\frac{d}{d x}\left(\left(x^{3}+2\right)^{4}\right) & =12 x^{2}\left(x^{3}+2\right)^{3} \\
\frac{d}{d x}(x \sin 3) & =\sin 3 \\
\frac{d}{d x}(\sin 3 x) & =3 \cos 3 x \\
\frac{d}{d x}(3 \sin x) & =3 \cos x
\end{aligned}
$$

3. (5 points) State the Intermediate Value Theorem.

Answer: If $f(x)$ is a continuous function defined on a closed interval $[a, b]$, with $f(a) \neq f(b)$, and M is any number between $f(a)$ and $f(b)$, then there is a number c between a and b so that $f(c)=M$.
4. (10 points) Let $f(x)=|x-2|+3$. For which values of x is $f^{\prime}(x)$ undefined? At which values of x is the function $f(x)$ differentiable? At those values for which the derivative exists, compute $f^{\prime}(x)$ and simplify your answer as much as possible.
Answer: One way to do this problem is to use the formula, derived on homework, that $\frac{d}{d x}|x|=\frac{x}{|x|}$. That formula tells us that $f^{\prime}(x)=\frac{x-2}{|x-2|}$. From this formula, it is immediately apparent that $f^{\prime}(x)$ is undefined when $x=2$. For all other values of x, it is defined, and we can further compute that

$$
f^{\prime}(x)=\left\{\begin{aligned}
1 & \text { if } x>2 \\
-1 & \text { if } x<2
\end{aligned}\right.
$$

Another way to see this same answer is to recall that the graph of $f(x)$ is just the graph of $y=|x|$, shifted to the right by 2 and upwards by 3 . That picture allows the computation of $f^{\prime}(x)$ quickly.
5. (10 points) Consider the graph defined by the equation $x^{4}+x y+y^{5}=19$. Find the equation of the tangent line to this graph at the point $(2,1)$.
Answer: The easiest way to do this problem is by using implicit differentiation. We have

$$
\begin{aligned}
x^{4}+x y+y^{5} & =19 \\
\frac{d}{d x}\left(x^{4}+x y+y^{5}\right) & =\frac{d}{d x}(19) \\
4 x^{3}+y+x \frac{d y}{d x}+5 y^{4} \frac{d y}{d x} & =0 \\
4 x^{3}+y+\left(x+5 y^{4}\right) \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =-\frac{4 x^{3}+y}{x+5 y^{4}}
\end{aligned}
$$

Therefore, when $x=2$ and $y=1$, we have $\frac{d y}{d x}=-\frac{33}{7}$, and so an equation for the tangent line is given by $(y-1)=-\frac{33}{7}(x-2)$. That simplifies to $7 y-7=-33 x+66$, or $33 x+7 y=73$.
6. (20 points) Compute the following limits.

$$
\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}} \quad \lim _{h \rightarrow 0} \frac{\cos \left(\frac{\pi}{2}-h\right)}{2 h} \quad \lim _{y \rightarrow 0} \frac{\sin y}{\sin 2 y} \quad \lim _{x \rightarrow 2^{-}}[94 x-1]
$$

Remember that as usual, $[x]$ refers to the greatest integer function.
Answer: We have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}} & =\lim _{x \rightarrow 0} \frac{\cos x-1}{x^{2}} \cdot \frac{\cos x+1}{\cos x+1}=\lim _{x \rightarrow 0} \frac{\cos ^{2} x-1}{x^{2}(\cos x+1)} \\
& =\lim _{x \rightarrow 0} \frac{-\sin ^{2} x}{x^{2}(\cos x+1)}=\lim _{x \rightarrow 0}-\left(\frac{\sin x}{x}\right) \cdot\left(\frac{\sin x}{x}\right) \cdot\left(\frac{1}{\cos x+1}\right)=-1 \cdot 1 \cdot \frac{1}{2}=-\frac{1}{2} . \\
\lim _{h \rightarrow 0} \frac{\cos \left(\frac{\pi}{2}-h\right)}{2 h} & =\lim _{h \rightarrow 0} \frac{\sin h}{2 h}=\lim _{h \rightarrow 0} \frac{1}{2}\left(\frac{\sin h}{h}\right)=\frac{1}{2} . \\
\lim _{y \rightarrow 0} \frac{\sin y}{\sin 2 y} & =\lim _{y \rightarrow 0} \frac{\sin y}{2 \sin y \cos y}=\lim _{y \rightarrow 0} \frac{1}{2 \cos y}=\frac{1}{2} .
\end{aligned}
$$

For the last one, we see that $[94 x-1]$ is never quite as large as $188-1=187$ if x does not get to be as large as 2. Therefore, $\lim _{x \rightarrow 2^{-}}[94 x-1]=186$.
7. (15 points) Let n be a positive integer. In class, we derived the formula

$$
\frac{d}{d x}\left(\sin ^{n} x \cos n x\right)=n \sin ^{n-1} x \cos (n+1) x
$$

Find a similar formula for

$$
\frac{d}{d x}\left(\sin ^{n} x \sin n x\right)
$$

Be sure to simplify your answer as much as possible.
Answer: We have

$$
\begin{aligned}
\frac{d}{d x}\left(\sin ^{n} x \sin n x\right) & =\frac{d}{d x}\left(\sin ^{n} x\right) \sin n x+\sin ^{n} x \frac{d}{d x}(\sin n x) \\
& =n \sin ^{n-1} x \cos x \sin n x+\sin ^{n} x(n \cos n x) \\
& =n \sin ^{n-1} x(\cos x \sin n x+\sin x \cos n x)=n \sin ^{n-1} x \sin (n+1) x
\end{aligned}
$$

Grade	Number of people
90	1
89	1
87	1
85	1
84	1
82	1
80	1
77	1
73	2
71	1
70	1
69	1
65	2
63	1
55	1
52	1
41	1
37	1

Mean: 68.24
Standard deviation: 17.35

