Mathematics 102

Examination 3
Answers

1. (5 points) State the Intermediate Value Theorem.

Answer: If $f(x)$ is a continuous function on a closed interval $[a, b]$, and $f(a) \neq f(b)$, and N is any number between $f(a)$ and $f(b)$, then there is a number c between a and b so that $f(c)=N$.
2. (10 points) Find the maximum and minimum values of the function $f(x)=3 x^{2}+24 x+11$ if $0 \leq x \leq 1$. Answer: We first find critical points. We have $f^{\prime}(x)=6 x+24$, so the only solution to the equation $f^{\prime}(x)=0$ is $x=-4$, which is not in the interval. Therefore, the extreme values must occur at $x=0$ and $x=1$, and some computation shows that the minimum value is $f(0)=11$ and the maximum value is $f(1)=38$.
3. (15 points) (a) State the Mean Value Theorem.
(b) If a and b are numbers so that $-\frac{\pi}{2}<a<b<\frac{\pi}{2}$, show that

$$
\tan b-\tan a \geq b-a
$$

Hint: Apply the Mean Value Theorem to the function $\tan x$.
Answer: If $f(x)$ is a continuous function on the closed interval $[a, b]$ which is differentiable on the open interval (a, b), then there is a number c between a and b so that

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Apply the theorem to the function $f(x)=\tan x$, which is continuous and differentiable on $[a, b]$ because of the given inequality, and we can conclude that there is a number c between a and b so that

$$
\frac{\tan b-\tan a}{b-a}=\sec ^{2} c
$$

We know that $\sec ^{2} x \geq 1$ for any number x, so we can conclude that

$$
\frac{\tan b-\tan a}{b-a} \geq 1
$$

which is the desired inequality.
4. (10 points) Use a linear approximation to give a fractional approximation of $\sqrt{82}$.

Answer: The point here is that it is easy to compute $\sqrt{81}$. We compute the tangent line to the graph of $y=\sqrt{x}$ when $x=81$. The derivative evaluated at 81 is $\frac{1}{18}$, and so the linear approximation is $y-9=$ $\frac{1}{18}(x-81)$. Substitute $x=82$ and solve for y, and we get $\sqrt{82} \approx 9 \frac{1}{18}$. This approximation is accurate to 3 decimal places, incidentally.
5. (10 points) Show that the equation $x^{49}+x^{25}+x+1=0$ has exactly one real solution.

Answer: There are two things that we need to show: the equation has at least one solution, and it has no more than one solution. Let $f(x)=x^{49}+x^{25}+x+1$. Then $f(-1)=-2$, and $f(0)=1$, so the Intermediate Value Theorem tells us that there is a number α between -1 and 0 with $f(\alpha)=0$. That tells us that the given equation has at least one solution.

Suppose now that the equation has another solution β. Then Rolle's Theorem says that there is a number γ between α and β so that $f^{\prime}(\gamma)=0$. But $f^{\prime}(x)=49 x^{48}+25 x^{24}+1$, and the smallest value of $f^{\prime}(x)$ is 1 (because the first two terms are never smaller than 0). Therefore, there cannot be more than one solution.
6. (15 points) Compute the following limits. Be sure to justify your answers. If a limit does not exist, but equals ∞ or $-\infty$, you must say so in order to get full credit. As usual, $[x]$ refers to the greatest-integer function.

$$
\lim _{y \rightarrow 0} \frac{\tan y}{y} \quad \lim _{x \rightarrow-\infty} \frac{2 x^{2}+3}{5 x^{3}} \quad \lim _{x \rightarrow 3^{+}}[x]-[-x]
$$

Answer: We have

$$
\lim _{y \rightarrow 0} \frac{\tan y}{y}=\lim _{y \rightarrow 0} \frac{\sin y}{y \cos y}=\lim _{y \rightarrow 0} \frac{\sin y}{y} \cdot \frac{1}{\cos y}=1 \cdot 1=1 .
$$

For the next one,

$$
\lim _{x \rightarrow-\infty} \frac{2 x^{2}+3}{5 x^{3}}=\lim _{x \rightarrow-\infty} \frac{2 \frac{x^{2}}{x^{3}}+\frac{3}{x^{3}}}{5}=\lim _{x \rightarrow-\infty} \frac{2 \cdot 0+0}{5}=0 .
$$

For the last one, we have

$$
\lim _{x \rightarrow 3^{+}}[x]-[-x]=\lim _{x \rightarrow 3^{+}}[x]-\lim _{x \rightarrow 3^{+}}[-x]=3-(-4)=7
$$

7. (10 points) Suppose that a rectangle has area A. In terms of the number A, what is the minimum length of the diagonal of the rectangle?
Answer: Suppose that the length of the rectangle is x, and the width is y. We want to minimize $D=$ $\sqrt{x^{2}+y^{2}}$, given that $x y=A$. Eliminate y from the equation for D, and we have the job of minimizing $D=\sqrt{x^{2}+\frac{A^{2}}{x^{2}}}=\frac{\sqrt{x^{4}+A^{2}}}{x}$.

We compute

$$
D^{\prime}=\frac{x \cdot \frac{2 x^{3}}{\sqrt{x^{4}+A^{2}}}-\sqrt{x^{4}+A^{2}}}{x^{2}}
$$

Rather than simplify, let's just solve the equation $D^{\prime}=0$ by setting the numerator to 0 :

$$
\begin{aligned}
\frac{2 x^{4}}{\sqrt{x^{4}+A^{2}}} & =\sqrt{x^{4}+A^{2}} \\
2 x^{4} & =x^{4}+A^{2} \\
x^{4} & =A^{2} \\
x & =\sqrt{A}
\end{aligned}
$$

Therefore, $y=\sqrt{A}$ also, and the minimum length of the diagonal is $\sqrt{x^{2}+y^{2}}=\sqrt{2 A}$.
8. (25 points) Let $y=\frac{x^{2}+x-7}{x+8}$. Use the first and second derivatives to figure out the intervals on which y is increasing, decreasing, concave up, and concave down. Find all local extrema and inflection points. Find all vertical and horizontal asymptotes. Show that $y=x-7$ is a slant asymptote.
Answer: We start by computing y^{\prime} :

$$
y^{\prime}=\frac{(x+8)(2 x+1)-\left(x^{2}+x-7\right)}{(x+8)^{2}}=\frac{2 x^{2}+17 x+8-x^{2}-x+7}{(x+8)^{2}}=\frac{x^{2}+16 x+15}{(x+8)^{2}}
$$

The critical points occur when $x^{2}+16 x+15=0$ and when $x+8=0$, and those equations have the solutions $x=-15, x=-1$, and $x=-8$. We can rewrite the derivative formula as $y^{\prime}=(x+1)(x+15) /(x+8)^{2}$, which helps in determining the sign of y^{\prime}. If $x<-15, y^{\prime}>0$; if $-15<x<-8, y^{\prime}<0$; if $-8<x<-1$, $y^{\prime}<0$, and if $x>-1, y^{\prime}>0$. We therefore have local extrema at $x=-15$ and $x=-1$; the first is a local maximum and the second is a local minimum.

Continuing, we compute $y^{\prime \prime}$:

$$
\begin{aligned}
y^{\prime \prime} & =\frac{(x+8)^{2}(2 x+16)-\left(x^{2}+16 x+15\right)(2)(x+8)}{(x+8)^{4}}=\frac{(x+8)(2 x+16)-\left(x^{2}+16 x+15\right)(2)}{(x+8)^{3}} \\
& =\frac{2 x^{2}+32 x+128-2 x^{2}-32 x-30}{(x+8)^{3}}=\frac{98}{(x+8)^{3}} .
\end{aligned}
$$

Therefore, we see that $y^{\prime \prime}<0$ if $x<-8$ and $y^{\prime \prime}>0$ if $x>-8$. There are no inflection points.
We can collect all of this information as follows:

Interval	Behavior
$x<-15$	Increasing, concave down
$-15<x<-8$	Decreasing, concave down
$-8<x<-1$	Decreasing, concave up
$-1<x$	Increasing, concave up

We also compute

$$
\lim _{x \rightarrow \infty} \frac{x^{2}+x-7}{x+8}=\lim _{x \rightarrow \infty} \frac{x+1-\frac{7}{x}}{1+\frac{8}{x}}=\infty
$$

and similarly

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}+x-7}{x+8}=\lim _{x \rightarrow-\infty} \frac{x+1-\frac{7}{x}}{1+\frac{8}{x}}=-\infty
$$

Therefore, there are no horizontal asymptotes. The vertical asymptote is $x=-8$, and there we have

$$
\lim _{x \rightarrow-8^{+}} \frac{x^{2}+x-7}{x+8}=+\infty \quad \lim _{x \rightarrow-8^{-}} \frac{x^{2}+x-7}{x+8}=-\infty
$$

Finally, to show that $y=x+7$ is a slant asymptote, we compute

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{x^{2}+x-7}{x+8}-(x-7) & =\lim _{x \rightarrow \infty} \frac{x^{2}+x-7}{x+8}-\frac{(x-7)(x+8)}{x+8}=\lim _{x \rightarrow \infty} \frac{x^{2}+x-7}{x+8}-\frac{x^{2}+x-56}{x+8} \\
& =\lim _{x \rightarrow \infty} \frac{49}{x+8}=0
\end{aligned}
$$

and similarly as $x \rightarrow-\infty$.

Grade	Number of people
73	2
71	1
69	1
67	1
66	2
65	1
62	2
60	2
59	1
58	2
57	1
51	1
50	1
49	1
35	1
32	1

Mean: 59.19
Standard deviation: 10.71

