Mathematics 102 Examination 4 Answers

1. (10 points) State the Extreme Value Theorem.

Answer: A continuous function f(x) attains its minimum and maximum values on the closed interval [a, b].

2. (42 points) Compute $\frac{dy}{dx}$ for each of the following functions. You do not need to simplify your answers.

(a)
$$y = 2^x$$
 (b) $y = \log_3 x$ (c) $y = \frac{(x-1)^2(x-2)^3}{\sqrt{x^2+5}}$
(d) $y = (\sec^2 x)^x$ (e) $y = \arcsin(x^2+1)$ (f) $y = \sinh(e^x)$

Answer: The first two are applications of the formulas in the text: $\frac{d}{dx}2^x = 2^x \ln 2$, and $\frac{d}{dx}\log_3 x = \frac{1}{x\ln 3}$. Part (c) is best done using logarithmic differentiation:

$$y = \frac{(x-1)^2(x-2)^3}{\sqrt{x^2+5}}$$

$$\ln y = 2\ln(x-1) + 3\ln(x-3) - \frac{1}{2}\ln(x^2+5)$$

$$\frac{1}{y}\frac{dy}{dx} = \frac{2}{x-1} + \frac{3}{x-3} - \frac{1}{2}\frac{2x}{x^2+5}$$

$$\frac{dy}{dx} = y\left(\frac{2}{x-1} + \frac{3}{x-3} - \frac{x}{x^2+5}\right)$$

$$= \left(\frac{(x-1)^2(x-2)^3}{\sqrt{x^2+5}}\right)\left(\frac{2}{x-1} + \frac{3}{x-3} - \frac{x}{x^2+5}\right)$$

Part (d) is also probably best done by taking logarithms:

$$y = (\sec^2 x)^x$$

$$\ln y = x \ln(\sec^2 x) = 2x \ln(\sec x)$$

$$\frac{1}{y} \frac{dy}{dx} = \frac{2x}{\sec x} \sec x \tan x + 2 \ln(\sec x)$$

$$= 2x \tan x + 2 \ln(\sec x)$$

$$\frac{dy}{dx} = y(2x \tan x + 2 \ln(\sec x))$$

$$= (\sec^2 x)^x (2x \tan x + 2 \ln(\sec x))$$

We have $\frac{d}{dx} \arcsin(x^2 + 1) = \frac{2x}{\sqrt{1 - (x^2 + 1)^2}}$, which certainly can be simplified a bit further. Finally, $\frac{d}{dx} \sinh(e^x) = \cosh(e^x)e^x$, by the chain rule.

3. (18 points) Compute the following limits. If a limit does not exist, but is equal to $+\infty$ or $-\infty$, you must state that in order to receive full credit.

$$\lim_{x \to 0^+} \ln(\tan x) \qquad \lim_{x \to 0^+} \ln(\cos x) \qquad \lim_{x \to \infty} \arctan(2x+1)$$

Answer: We have $\lim_{x\to 0^+} \ln(\tan x) = -\infty$, because $\lim_{x\to 0^+} \tan x = 0$, and $\lim_{y\to 0^+} \ln y = -\infty$. We have $\lim_{x\to 0^+} \ln(\cos x) = \ln 1 = 0$. Finally, $\lim_{x\to\infty} \arctan(2x+1) = \frac{\pi}{2}$. 4. (10 points) Let $f(x) = x^2 - 4$. Starting with the value $x_1 = 1$, perform two iterations (steps) of Newton's method to find a solution to the equation f(x) = 0. Leave your answer in fractional form.

Answer: The formula is $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$, which in this case becomes $x_{n+1} = x_n - \frac{x^2 - 4}{2x}$. We have, starting with $x_1 = 1$:

$$x_{2} = 1 - \frac{f(1)}{f'(1)} = 1 - \frac{-3}{2} = \frac{5}{2}$$
$$x_{3} = \frac{5}{2} - \frac{f(\frac{5}{2})}{f'(\frac{5}{2})} = \frac{5}{2} - \frac{9/4}{5} = \frac{5}{2} - \frac{9}{20} = \frac{41}{20}$$

5. (10 points) Suppose that $g(x) = f^{-1}(x)$, and further that f(2) = 3, f(3) = 4, f'(2) = 11, f'(3) = 5, and f'(4) = 6. Do you have enough information to compute g'(3)? If so, what is g'(3)? If not, what additional information do you need to compute g'(3)?

Answer: This follows from the formula g'(x) = 1/f'(g(x)): g'(3) = 1/f'(g(3)) = 1/f'(2) = 1/11.

6. (10 points) Prove the identity

$$2\arcsin x = \arccos(1 - 2x^2)$$

if $x \ge 0$. Be sure to point out where in your answer you use the assumption that $x \ge 0$. (The equation is false if x < 0, because the left-hand side of the equation will be negative, while the right-hand side is always positive.)

Answer: Let $F(x) = 2 \arcsin x$, and $G(x) = \arccos(1 - 2x^2)$. We start by showing that F'(x) = G'(x). We have $F'(x) = \frac{2}{\sqrt{1-x^2}}$. The harder part is G'(x):

$$G'(x) = \frac{-1}{\sqrt{1 - (1 - 2x^2)^2}}(-4x) = \frac{4x}{\sqrt{1 - (1 - 2x^2)^2}} = \frac{4x}{\sqrt{4x^2 - 4x^4}} = \frac{4x}{2x\sqrt{1 - x^2}} = \frac{2}{\sqrt{1 - x^2}}$$

Therefore, F'(x) = G'(x). Incidentally, we used the fact that x > 0 when we simplified $\sqrt{4x^2 - 4x^4}$ to $2x\sqrt{1-x^2}$.

This means that F(x) and G(x) differ by a constant. To verify that the constant is 0, substitute in any value of x that you choose, such as 0. We have $F(0) = 2 \arcsin 0 = 0$, while $G(0) = \arccos(1) = 0$.

Grade	Number of people
91	1
90	1
87	1
82	1
80	1
76	2
73	1
64	1
63	1
61	2
54	1
49	1
48	2
41	1
21	1

Mean: 64.72 Standard deviation: 18.42