Mathematics 102

Examination 4
Answers

1. (10 points) State the Extreme Value Theorem.

Answer: A continuous function $f(x)$ attains its minimum and maximum values on the closed interval $[a, b]$.
2. (42 points) Compute $\frac{d y}{d x}$ for each of the following functions. You do not need to simplify your answers.
(a) $y=2^{x}$
(b) $y=\log _{3} x$
(c) $y=\frac{(x-1)^{2}(x-2)^{3}}{\sqrt{x^{2}+5}}$
(d) $y=\left(\sec ^{2} x\right)^{x}$
(e) $y=\arcsin \left(x^{2}+1\right)$
(f) $y=\sinh \left(e^{x}\right)$

Answer: The first two are applications of the formulas in the text: $\frac{d}{d x} 2^{x}=2^{x} \ln 2$, and $\frac{d}{d x} \log _{3} x=\frac{1}{x \ln 3}$.
Part (c) is best done using logarithmic differentiation:

$$
\begin{aligned}
y & =\frac{(x-1)^{2}(x-2)^{3}}{\sqrt{x^{2}+5}} \\
\ln y & =2 \ln (x-1)+3 \ln (x-3)-\frac{1}{2} \ln \left(x^{2}+5\right) \\
\frac{1}{y} \frac{d y}{d x} & =\frac{2}{x-1}+\frac{3}{x-3}-\frac{1}{2} \frac{2 x}{x^{2}+5} \\
\frac{d y}{d x} & =y\left(\frac{2}{x-1}+\frac{3}{x-3}-\frac{x}{x^{2}+5}\right) \\
& =\left(\frac{(x-1)^{2}(x-2)^{3}}{\sqrt{x^{2}+5}}\right)\left(\frac{2}{x-1}+\frac{3}{x-3}-\frac{x}{x^{2}+5}\right)
\end{aligned}
$$

Part (d) is also probably best done by taking logarithms:

$$
\begin{aligned}
y & =\left(\sec ^{2} x\right)^{x} \\
\ln y & =x \ln \left(\sec ^{2} x\right)=2 x \ln (\sec x) \\
\frac{1}{y} \frac{d y}{d x} & =\frac{2 x}{\sec x} \sec x \tan x+2 \ln (\sec x) \\
& =2 x \tan x+2 \ln (\sec x) \\
\frac{d y}{d x} & =y(2 x \tan x+2 \ln (\sec x)) \\
& =\left(\sec ^{2} x\right)^{x}(2 x \tan x+2 \ln (\sec x))
\end{aligned}
$$

We have $\frac{d}{d x} \arcsin \left(x^{2}+1\right)=\frac{2 x}{\sqrt{1-\left(x^{2}+1\right)^{2}}}$, which certainly can be simplified a bit further.
Finally, $\frac{d}{d x} \sinh \left(e^{x}\right)=\cosh \left(e^{x}\right) e^{x}$, by the chain rule.
3. (18 points) Compute the following limits. If a limit does not exist, but is equal to $+\infty$ or $-\infty$, you must state that in order to receive full credit.

$$
\lim _{x \rightarrow 0^{+}} \ln (\tan x) \quad \lim _{x \rightarrow 0^{+}} \ln (\cos x) \quad \lim _{x \rightarrow \infty} \arctan (2 x+1)
$$

Answer: We have $\lim _{x \rightarrow 0^{+}} \ln (\tan x)=-\infty$, because $\lim _{x \rightarrow 0+} \tan x=0$, and $\lim _{y \rightarrow 0^{+}} \ln y=-\infty$.
We have $\lim _{x \rightarrow 0^{+}} \ln (\cos x)=\ln 1=0$.
Finally, $\lim _{x \rightarrow \infty} \arctan (2 x+1)=\frac{\pi}{2}$.
4. (10 points) Let $f(x)=x^{2}-4$. Starting with the value $x_{1}=1$, perform two iterations (steps) of Newton's method to find a solution to the equation $f(x)=0$. Leave your answer in fractional form.
Answer: The formula is $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$, which in this case becomes $x_{n+1}=x_{n}-\frac{x^{2}-4}{2 x}$. We have, starting with $x_{1}=1$:

$$
\begin{aligned}
& x_{2}=1-\frac{f(1)}{f^{\prime}(1)}=1-\frac{-3}{2}=\frac{5}{2} \\
& x_{3}=\frac{5}{2}-\frac{f\left(\frac{5}{2}\right)}{f^{\prime}\left(\frac{5}{2}\right)}=\frac{5}{2}-\frac{9 / 4}{5}=\frac{5}{2}-\frac{9}{20}=\frac{41}{20}
\end{aligned}
$$

5. (10 points) Suppose that $g(x)=f^{-1}(x)$, and further that $f(2)=3, f(3)=4, f^{\prime}(2)=11, f^{\prime}(3)=5$, and $f^{\prime}(4)=6$. Do you have enough information to compute $g^{\prime}(3)$? If so, what is $g^{\prime}(3)$? If not, what additional information do you need to compute $g^{\prime}(3)$?
Answer: This follows from the formula $g^{\prime}(x)=1 / f^{\prime}(g(x)): g^{\prime}(3)=1 / f^{\prime}(g(3))=1 / f^{\prime}(2)=1 / 11$.
6. (10 points) Prove the identity

$$
2 \arcsin x=\arccos \left(1-2 x^{2}\right)
$$

if $x \geq 0$. Be sure to point out where in your answer you use the assumption that $x \geq 0$. (The equation is false if $x<0$, because the left-hand side of the equation will be negative, while the right-hand side is always positive.)
Answer: Let $F(x)=2 \arcsin x$, and $G(x)=\arccos \left(1-2 x^{2}\right)$. We start by showing that $F^{\prime}(x)=G^{\prime}(x)$. We have $F^{\prime}(x)=\frac{2}{\sqrt{1-x^{2}}}$. The harder part is $G^{\prime}(x)$:

$$
G^{\prime}(x)=\frac{-1}{\sqrt{1-\left(1-2 x^{2}\right)^{2}}}(-4 x)=\frac{4 x}{\sqrt{1-\left(1-2 x^{2}\right)^{2}}}=\frac{4 x}{\sqrt{4 x^{2}-4 x^{4}}}=\frac{4 x}{2 x \sqrt{1-x^{2}}}=\frac{2}{\sqrt{1-x^{2}}}
$$

Therefore, $F^{\prime}(x)=G^{\prime}(x)$. Incidentally, we used the fact that $x>0$ when we simplified $\sqrt{4 x^{2}-4 x^{4}}$ to $2 x \sqrt{1-x^{2}}$.

This means that $F(x)$ and $G(x)$ differ by a constant. To verify that the constant is 0 , substitute in any value of x that you choose, such as 0 . We have $F(0)=2 \arcsin 0=0$, while $G(0)=\arccos (1)=0$.

Grade	Number of people
91	1
90	1
87	1
82	1
80	1
76	2
73	1
64	1
63	1
61	2
54	1
49	1
48	2
41	1
21	1

Mean: 64.72
Standard deviation: 18.42

